
CLASSES OF COMPLETE INTERSECTION NUMERICAL SEMIGROUPS

MARCO D’ANNA, VINCENZO MICALE AND ALESSIO SAMMARTANO

Abstract. We consider several classes of complete intersection numerical semigroups, aris-
ing from many different contexts like algebraic geometry, commutative algebra, coding the-
ory and factorization theory. In particular, we determine all the logical implications among
these classes and provide examples. Most of these classes are shown to be well-behaved with
respect to the operation of gluing.

Introduction

The concept of complete intersection is one of the most prominent in algebraic geometry.
The notion of complete intersection for numerical semigroups (i.e. submonoids of (N,+))
was introduced by Herzog in [21], where he proved the celebrated theorem stating that a
three-generated semigroup is a complete intersection if and only if it is symmetric. Complete
intersection semigroups have been studied extensively since then (see e.g. [2], [7], [8], [16],
[28], [30]).

Several subclasses of the complete intersections have been investigated, with different
motivations arising from algebra and geometry. The study of the value-semigroup of plane
algebroid branches was initiated by Apéry in his famous paper [1] and then continued by
several other authors (e.g. [4], [10], [31]). Bertin and Carbonne defined free numerical
semigroups in [6] in order to generalize a formula for the conductor of the local ring of a
plane branch in terms of its Puiseux expansion. Telescopic semigroups were introduced in [23]
for their applications to codes, but they have also been studied in connection with homology
(cf. [24]) and factorization theory (cf. [29]). Numerical semigroups with β-rectangular and
γ-rectangular Apéry set were defined in [14] to characterize semigroup rings whose tangent
cone is a complete intersection. Finally, semigroups having a unique Betti element were
characterized in [20].

The main purpose of this paper is to understand better the classes mentioned above and
the relations among them. We also introduce a new class which is naturally related to the
previous ones, semigroups with α-rectangular Apéry set. Our main result is Theorem 1.13 in
which we show that the implications in Figure 1 hold and provide counterexamples for the
“missing arrows”. Some of these implications are somewhat surprising: despite the fact that
the definitions of free and telescopic semigroups are very similar, two classes of semigroups
with rectangular Apéry sets sit between them. In Section 2 we study the operation of gluing,
which allows to produce new complete intersection semigroups from old ones. We show that
semigroups with α-rectangular Apéry sets are also, in some sense, well-behaved with respect
to gluing. We conclude with some applications to known results in literature.
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Figure 1. Logical implications in Theorem 1.13.

Computations were performed by using GAP (cf. [15],[18]). The tests for the properties
treated in this paper will be included in the next release of the package NumericalSgps.

1. The Classes

We start by giving some preliminaries on numerical semigroups. Let N denote the set of
non-negative integers. A numerical semigroup is a subset S ⊆ N that is closed under
addition, contains 0 and has finite complement in N. The largest integer in Z \ S is called
Frobenius number of S and is denoted by f = f(S), whereas the smallest positive integer
in S is known as multiplicity of S and is denoted by m = m(S).

We define a partial order on S setting s � t if there is an element u ∈ S such that
t = u+ s. The set of minimal elements in the poset (S \ {0},�) is called minimal system
of generators of S. We define the embedding dimension of S as the cardinality of its
minimal system of generators and denote it by ν = ν(S); it is easy to see that ν(S) ≤ m(S).
A numerical semigroup minimally generated by {g1, . . . , gν} will be denoted by 〈g1, . . . , gν〉.
The condition |N \ S| <∞ is equivalent to gcd(g1, . . . , gν) = 1.

For any n ∈ S we define the Apéry set of S with respect to n as Ap(S, n) = {s ∈
S | s − n /∈ S}, or equivalently Ap(S, n) = {ω0, . . . , ωn−1} where ωi = min{s ∈ S : s ≡ i
(mod n)}. The smallest element in Ap(S, n) is 0, while the largest one is f(S) + n. If
n = m(S) is the multiplicity we just write Ap(S) in place of Ap(S, n), and we will refer to
it simply as the Apéry set of S.
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Two types of semigroups are among the most studied, mainly for their relevance in
algebraic geometry. A semigroup S is called symmetric if, for any x ∈ Z, we have
x ∈ S ⇔ f(S) − x /∈ S; this condition is equivalent to the fact that f(S) + m(S) is
the unique maximal element of the poset (Ap(S),�). A semigroup S is called a complete
intersection if the semigroup ring k[[tS]] is complete intersection, or equivalently if the
cardinality of any of its minimal presentations equals ν(S)− 1 (cf. [27], page 129).

Numerical semigroups other than N are never unique factorization monoids, as there are
always elements with different decompositions into irreducibles (note that in our context an
irreducible element is the same thing as a minimal generator). If s = λ1g1 + · · ·+ λνgν with
λi ∈ N we say that λ1g1 + · · · + λνgν is a representation of s. Given s ∈ S, we define
the M-adic order as ord(s) = max{

∑ν
i=1 λi |

∑ν
i=1 λigi is a representation of s}. We say

that s = λ1g1 + · · ·+ λνgν is a maximal representation of s if
∑ν

i=1 λi = ord(s). We can
define an other partial order on S setting s �M t if there exists u ∈ S such that s + u = t
and ord(s) + ord(u) = ord(t) (cf. [11]). The number of representations and of maximal
representations of elements in a semigroup is related to some of the objects of our study; see
[9] for more on factorization in numerical semigroups.

The book [27] is an exhaustive source on the subject of numerical semigroups.

We now give the main definitions of the paper.

Definitions 1.1. Let S be a numerical semigroup minimally generated by g1 < · · · < gν .
For each i = 2, . . . , ν define:

τi = τi(S) = min{h ∈ N |hgi ∈ 〈g1, . . . , gi−1〉} − 1;

αi = αi(S) = max{h ∈ N |hgi ∈ Ap(S)};
βi = βi(S) = max{h ∈ N |hgi ∈ Ap(S) and ord(hgi) = h};
γi = γi(S) = max{h ∈ N |hgi ∈ Ap(S), ord(hgi) = h and

hgi has a unique maximal representation}.
If n = {n1, . . . , nν} is any rearrangement of the minimal generators (i.e., the minimal

system of generators not necessarily in increasing order), define for each i = 2, . . . , ν:

φi = φi(S,n) = min{h ∈ N |hni ∈ 〈n1, . . . , ni−1〉} − 1.

Remark 1.2. For each index i = 2, . . . , ν, we clearly have γi ≤ βi ≤ αi. This, together with

the fact that Ap(S) ⊆
{∑ν

i=2 λigi | 0 ≤ λi ≤ γi

}
(cf. [14, Corollary 2.7]), implies that

Ap(S) ⊆
{ ν∑

i=2

λigi | 0 ≤ λi ≤ γi

}
⊆
{ ν∑

i=2

λigi | 0 ≤ λi ≤ βi

}
⊆
{ ν∑

i=2

λigi | 0 ≤ λi ≤ αi

}
.

In particular, we have m = |Ap(S)| ≤
∏ν

i=2(γi + 1) ≤
∏ν

i=2(βi + 1) ≤
∏ν

i=2(αi + 1).

Definitions 1.3. Let S be a numerical semigroup minimally generated by g1 < · · · < gν .

(1) S is telescopic if Ap(S) =
{∑ν

i=2 λigi | 0 ≤ λi ≤ τi

}
;

(2) S is associated to a plane branch if S is telescopic and (τi + 1)gi < gi+1 for all
i = 2, . . . , ν − 1;
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(3) S has α-rectangular Apéry set if Ap(S) =
{∑ν

i=2 λigi | 0 ≤ λi ≤ αi

}
;

(4) S has β-rectangular Apéry set if Ap(S) =
{∑ν

i=2 λigi | 0 ≤ λi ≤ βi

}
;

(5) S has γ-rectangular Apéry set if Ap(S) =
{∑ν

i=2 λigi | 0 ≤ λi ≤ γi

}
;

(6) S is free if there exists a rearrangement n = {n1, . . . , nν} of the minimal generators

such that Ap(S, n1) =
{∑ν

i=2 λini | 0 ≤ λi ≤ φi

}
.

Notice that the definitions of telescopic and free semigroups are not standard, but it is
proved in [27] that the conditions we state are equivalent to the classical definitions.

We turn now to the study of semigroups with α-rectangular Apéry set providing some
characterizations, then we collect analogous statements for classes (1), (4), (5) and (6). In
[25] Rosales introduced the following definition: a numerical semigroup S has Apéry set
of unique expression if every element in Ap(S) has a unique representation. We will see
that this condition is closely related to having α-rectangular Apéry set.

Lemma 1.4 ([17], Lemma 6). If s � t and t ∈ Ap(S), then s ∈ Ap(S).

Lemma 1.5. If s � t and t has a unique representation, then s �M t and s has a unique
representation.

Proof. If an element has a unique representation then this must be maximal and the sum of
the coefficients equals the order of the element. Let t =

∑ν
i=1 λigi and s + u = t for some

u ∈ S. Since the representation of t is unique, it follows that s =
∑ν

i=1 ξigi and u =
∑ν

i=1 ρigi,
with ρi + ξi = λi for each i. These representations must be unique, otherwise t has a double
representation, and we get ord(s) + ord(u) =

∑ν
i=1 ξi +

∑ν
i=1 ρi =

∑ν
i=1 λi = ord(t). �

Proposition 1.6. The following conditions are equivalent:

(i) Ap(S) is α-rectangular;
(ii) there is only one maximal element in (Ap(S),�) and it has a unique representation;

(iii) S is symmetric and Ap(S) is of unique expression;
(iv) f +m =

∑ν
i=2 αigi;

(v) m =
∏ν

i=2(αi + 1).

Proof. (i) ⇒ (ii) Since Ap(S) is α-rectangular, we immediately get that
∑ν

i=2 αigi is the
unique maximal element in (Ap(S),�). Let us suppose that

∑ν
i=2 αigi =

∑ν
i=2 uigi for some

non-negative integers ui. By Lemma 1.4, uigi ∈ Ap(S) for each i and hence ui ≤ αi, by
definition of αi; it follows that ui = αi for each index i and the two representations coincide.

(ii) ⇔ (iii) It follows by Lemma 1.5 and by the fact that S is symmetric if and only if
f +m is the only maximal element of (Ap(S),�).

(ii) ⇒ (iv) The unique maximal element in (Ap(S),�) is necessarily f + m. Therefore
αigi � f + m for each i = 2, . . . , ν. Since f + m has a unique representation, the thesis
follows immediately.

(iv)⇒ (i) Since f +m ∈ Ap(S) in general, it follows by Lemma 1.4.
(i)⇒ (v) It follows by m = |Ap(S)| and by the fact that Ap(S) is of unique expression.

(v) ⇒ (i) We already noticed that Ap(S) ⊆
{∑ν

i=2 λigi | 0 ≤ λi ≤ αi

}
and since m =∏ν

i=2(αi + 1) = |Ap(S)|, we must have an equality. �
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Example 1.7. We apply the criterion above to show that the Apéry set of S = 〈12, 15, 16, 18〉
is α-rectangular, without even computing the whole Ap(S). We determine the αi’s:

2 · 15 = 12 + 18 ∈ 12 + S

2 · 16 = 32 /∈ 12 + S

3 · 16 = 4 · 12 ∈ 12 + S

2 · 18 = 3 · 12 ∈ 12 + S

and so α2 = 1, α3 = 2, α4 = 1 and m = 12 = 2 · 2 · 3 =
∏ν

i=2(αi + 1).

A semigroup is called M-pure if all the maximal elements in the poset (Ap(S),�M) have
the same order; M -pure semigroups were introduced in [11] along the way to the character-
ization of Gorenstein associated graded rings. In analogy to [25], we say that a semigroup
S has Apéry set of unique maximal expression if every element in Ap(S) has a unique
maximal representation. In connection to this, the number of maximal representations of
elements in a semigroup has been investigated recently (cf. [12], [13]). Now we give the
criteria for the remaining classes.

Proposition 1.8 ([14], Theorem 2.16). The following conditions are equivalent:

(i) Ap(S) is β-rectangular;
(ii) S is M-pure, symmetric and Ap(S) is of unique maximal expression;

(iii) Ap(S) has a unique maximal element with respect to �M and this element has a
unique maximal representation;

(iv) f +m =
∑ν

i=2 βigi;
(v) m =

∏ν
i=2(βi + 1).

Proposition 1.9 ([14], Theorem 2.22). The following conditions are equivalent:

(i) Ap(S) is γ-rectangular;
(ii) f +m =

∑ν
i=2 γigi;

(iii) m =
∏ν

i=2(γi + 1).

Proposition 1.10 ([27], Proposition 9.15). The following conditions are equivalent:

(i) S is telescopic;
(ii) f +m =

∑ν
i=2 τigi;

(iii) m =
∏ν

i=2(τi + 1).

Proposition 1.11 ([27], Proposition 9.15). The following conditions are equivalent:

(i) S is free;
(ii) there is an arrangement n of the minimal generators such that f + n1 =

∑ν
i=2 φini;

(iii) there is an arrangement n of the minimal generators such that n1 =
∏ν

i=2(φi + 1).

The next lemma is a crucial step in establishing one of the implications in Theorem 1.13.

Lemma 1.12. Let S have γ-rectangular Apéry set. For each i = 2, . . . , ν there exist relations

(?) (γi + 1)gi = λi,1g1 + λi,2g2 + · · ·+ λi,νgν

and a permutation σ of {1, . . . , ν} such that σ(1) = 1 and λσ(i),σ(j) = 0 if i ≤ j, j ≥ 2.

Proof. Fix an index i ∈ {2, . . . , ν}. By definition of γi we have two possible cases:
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(I) If (γi + 1)gi ∈ Ap(S), then the representation (γi + 1)gi is not maximal or it is not
the unique maximal one; hence there is a different representation

∑ν
j=1 λi,jgj of the

same element with γi + 1 ≤
∑ν

j=1 λi,j. Notice that (γi + 1)gi ∈ Ap(S) forces λi,1 = 0.

(II) If (γi+1)gi /∈ Ap(S), then we can write (γi+1)gi =
∑ν

j=1 λi,jgj for some non-negative
integers λi,j, with λi,1 > 0.

It is useful to consider the square matrix obtained from the relations (?) found in (I) and
(II) leaving out the coefficients of g1

L =


λ2,2 λ2,3 . . . λ2,ν
λ3,2 λ3,3 . . . λ3,ν
. . . . . . . . . . . .
λν,2 λν,3 . . . λν,ν

 .

Now we construct a permutation σ of {1, 2, . . . , ν} satisfying σ(1) = 1 and λσ(i),σ(j) = 0
whenever i ≤ j and j ≥ 2, or equivalently such that the square matrix

Lσ =


λσ(2),σ(2) λσ(2),σ(3) . . . λσ(2),σ(ν)
λσ(3),σ(2) λσ(3),σ(3) . . . λσ(3),σ(ν)
. . . . . . . . . . . .

λσ(ν),σ(2) λσ(ν),σ(3) . . . λσ(ν),σ(ν)


is lower triangular with zeros in the diagonal. We proceed by decreasing induction on h.

For the basis of the induction h = ν it is enough to show that there exists a column in L
with all zero entries. Let us suppose by contradiction that every column in L has a non zero
element, that is, for every j ≥ 2 there exists τ(j) such that λτ(j),j > 0. Taking the sum over
all the relations (?) we obtain

ν∑
i=2

(γi + 1)gi =
ν∑
i=2

ν∑
j=1

λi,jgj.

and subtracting
∑ν

i=2 gi from both sides we get

u :=
ν∑
i=2

γigi =
ν∑
j=1

ν∑
i 6=1,τ(j)

λi,jgj +
ν∑
i=2

(λτ(i),i − 1)gi.

As u ∈ Ap(S) by γ-rectangularity, we necessarily have λi,1 = 0 and hence case (II) above
is not possible for any i ∈ {2, . . . , ν}. We get by (I) that

∑ν
j=1 λi,j ≥ γi + 1 for every i.

Furthermore, the representation u =
∑ν

i=2 γigi is maximal by [14, Lemma 2.19] and so if
there exists i such that

∑ν
j=1 λi,j > γi + 1 then it follows

ord(u) =
ν∑
i=2

γi <

ν∑
j=1

ν∑
i 6=1,τ(j)

λi,j +
ν∑
i=2

(λτ(j),j − 1) ≤ ord(u)

yielding a contradiction; thus
∑ν

j=1 λi,j = γi + 1 for every i. In particular for the index of
the largest generator we have

(γν + 1)gν =
ν∑
j=1

λν,jgj and
ν∑
j=1

λν,j = γν + 1.
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But gj < gν for j 6= ν forces λν,j = 0 and λν,ν = γν + 1, contradicting the fact that in (I) we
found a different representation. So the p-th column of L consists of zeros for some p ≥ 2,
and we let σ(ν) = p.

Now let 1 < h < ν and suppose that for every j ∈ {σ(ν), σ(ν−1), . . . , σ(h+ 1)} and i ≤ j
we have λσ(i),σ(j) = 0. By repeating the same argument as in the basis of the induction for
the submatrix of L indexed by i, j ∈ {2, . . . , ν} \ {σ(ν), σ(ν− 1), . . . , σ(h+ 1)} we get a new
index σ(h) for which the statement is true, and the inductive step follows. �

In order to present the main theorem of the paper, we need to give one more definition. A
numerical semigroup S has a unique Betti element if the first syzygies of the semigroup
ring k[[tS]] have all the same degree (in the S-grading; see [20] for a purely numerical defini-
tion). In [20] the authors prove that S = 〈g1, . . . , gν〉 has a unique Betti element if and only
if there exist pairwise coprime integers a1, . . . , aν greater than one such that gi =

∏
j 6=i ai;

these semigroups are shown to be complete intersection. Moreover in [5] it is shown that for
such a semigroup S the tangent cone of the semigroup ring k[[tS]] is a complete intersection,
implying thus that Ap(S) is γ-rectangular by [14, Theorem 3.6].

Theorem 1.13. Let S be a numerical semigroup. Consider the following conditions:

(1) S is associated to a plane branch;
(2) S has a unique Betti element;
(3) S is telescopic;
(4) S has α-rectangular Apéry set;
(5) S has β-rectangular Apéry set;
(6) S has γ-rectangular Apéry set;
(7) S is free;
(8) S is complete intersection.

Then (1) ⇒ (3) ⇒ (5), (2) ⇒ (4) ⇒ (5), (1) ⇒ (4), (2) ⇒ (3), (5) ⇒ (6) ⇒ (7) ⇒ (8)
(compare Figure 1). Moreover, all the implications are strict.

Proof. In each of the proofs below, let S be minimally generated by g1 < · · · < gν .
• Plane branch ⇒ Telescopic.
It follows from Definitions 1.3. The semigroup S = 〈6, 10, 15〉 is not associated to a plane
branch, as (τ2 + 1)g2 = 3 · 10 > 15 = g3; however S has a unique Betti element, in particular
it is telescopic and with α-rectangular Apéry set (see below).
• Plane branch ⇒ α-rectangular Apéry set.
We prove that (τi + 1)gi /∈ Ap(S) by induction on i ∈ {2, . . . , ν}. Since (τ2 + 1)g2 ∈ 〈g1〉 we
get (τ2 + 1)g2 /∈ Ap(S). Given i > 2, we have (τi + 1)gi = λ1g1 + · · · + λi−1gi−1 for some
λj ∈ N. Assume by contradiction (τi + 1)gi ∈ Ap(S), then by induction and Lemma 1.4 we
must have λ1 = 0 and λj ≤ τj for j = 2, . . . , i− 1. By definition of semigroup associated to
a plane branch, we have the following chain of inequalities:

(τi + 1)gi ≥ 2gi > 2(τi−1 + 1)gi−1 ≥ (τi−1 + 1)gi−1 + 2gi−1 >

> (τi−1 + 1)gi−1 + 2(τi−2 + 1)gi−2 ≥ · · · ≥
≥ (τi−1 + 1)gi−1 + · · ·+ (τ2 + 1)g2 > λ1g1 + · · ·+ λi−1gi−1 = (τi + 1)gi

reaching a contradiction. Hence (τi + 1)gi /∈ Ap(S) and αi ≤ τi. Finally Ap(S) is α-
rectangular by Proposition 1.6 (v) as m ≤

∏ν
i=2(αi + 1) ≤

∏ν
i=2(τi + 1) = m, where we used
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Remark 1.2 and the fact that S is telescopic.
• Unique Betti element ⇒ α-rectangular Apéry set.
Let a1 > a2 > · · · > aν > 1 be pairwise coprime integers such that gi =

∏
j 6=i aj. Similarly

to the previous proof, it suffices to show that αi + 1 ≤ ai. But this is trivial as aigi =
a1g1 /∈ Ap(S). Now let S = 〈4, 6, 13〉: we have Ap(S) = {0, 6, 13, 19}, τ2 = τ3 = 1, and
m = (τ2 + 1)(τ3 + 1), (τ2 + 1)g2 < g3. So S is associated to a plane branch and hence
telescopic and with α-rectangular Apéry set, but S does not have a unique Betti element.
• Unique Betti element ⇒ Telescopic.
Let a1 > a2 > · · · > aν > 1 be pairwise coprime integers such that gi =

∏
j 6=i aj. We show

that τi = ai − 1 for each i ≥ 2, from which it follows that S is telescopic by Proposition
1.10 (iii). Since the aj’s are coprime, ai does not divide hgi for h ≤ ai − 1, hence hgi /∈
〈g1, . . . , gi−1〉. However aigi = a1g1 ∈ 〈g1, . . . , gi−1〉 so that τi = ai − 1.
• α-rectangular Apéry set ⇒ β-rectangular Apéry set ⇒ γ-rectangular Apéry set.
It follows from Remark 1.2. The semigroup S = 〈8, 10, 15〉 is telescopic and therefore Ap(S)
is β-rectangular (see below), but it is not α-rectangular: Ap(S) = {0, 10, 15, 20, 25, 30, 35, 45}
and it is easy to check that α2 = α3 = 3 and τ2 = 3, τ3 = 1 so that m = (τ2 + 1)(τ3 + 1)
but m 6= (α2 + 1)(α3 + 1). The Apéry set of S = 〈8, 10, 11, 12〉 is γ-rectangular but not
β-rectangular: we have Ap(S) = {0, 10, 11, 12, 21, 22, 23, 33} and we get β2 = 1, β3 = 3, β4 =
1, γ2 = γ3 = γ4 = 1, hence m = (γ2 + 1)(γ3 + 1)(γ4 + 1) and m 6= (β2 + 1)(β3 + 1)(β4 + 1).
• Telescopic ⇒ β-rectangular Apéry set.
For each i ∈ {2, . . . , ν} we have (τi + 1)gi = λ1g1 + · · ·+ λi−1gi−1 for some λj ∈ N. The fact
that g1 < · · · < gi−1 < gi forces λ1 + · · ·+λi−1 > τi + 1 and therefore ord((τi + 1)gi) > τi + 1.
It follows that βi ≤ τi and by Remark 1.2 we get m ≤

∏ν
i=2(βi + 1) ≤

∏ν
i=2(τi + 1) =

m and hence Ap(S) is β-rectangular by Proposition 1.8 (v). Let S = 〈4, 5, 6〉: we have
Ap(S) = {0, 5, 6, 11} and thus α2 = α3 = 1, τ2 = 3, τ3 = 1 so that Ap(S) is α-rectangular as
m = (α2 + 1)(α3 + 1) (hence β-rectangular) but S is not telescopic as m 6= (τ2 + 1)(τ3 + 1).
• γ-rectangular Apéry set ⇒ Free.
Assume S has γ-rectangular Apéry set. Let σ be the permutation of {1, . . . , ν} as in Lemma
1.12, and consider the rearrangement of the minimal generators n = {n1, . . . , nν} with
ni = gσ(i). By relations (?) for each i = 2, . . . , ν we get

(γσ(i) + 1)ni = (γσ(i) + 1)gσ(i) =
ν∑
j=1

λσ(i),jgj =
ν∑
j=1

λσ(i),σ(j)gσ(j) =
ν∑
j=1

λσ(i),σ(j)nj

thus φi ≤ γσ(i) by the triangularity of the matrix Lσ. Following the notation of [27], let

ci = min
{
h ∈ N \ {0}

∣∣ gcd(n1, . . . , ni−1) divides hni
}
.

In [27, Lemma 9.13] it is proved that n1 =
∏ν

i=2 ci and ci ≤ φi + 1. On the other hand
n1 =

∏ν
i=2(γi + 1) =

∏ν
i=2(γσ(i) + 1) by Proposition 1.9 (iii). We conclude that

n1 =
ν∏
i=2

ci ≤
ν∏
i=2

(φi + 1) ≤
ν∏
i=2

(γσ(i) + 1) = n1

hence n1 =
∏ν

i=2(φi + 1) and S is free by Proposition 1.11 (iii).
Let S = 〈5, 6, 9〉. Since 5 is prime, we cannot have m = (γ2 + 1)(γ3 + 1), therefore Ap(S)

is not γ-rectangular. Consider the arrangement n = {6, 9, 5}: we have φ2 = 1, φ3 = 2 so
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that S is free as n1 = (φ2 + 1)(φ3 + 1).
• Free ⇒ Complete intersection.
This is well-known and is proven e.g. in [27, Corollary 9.17] by means of gluing. Counterex-
amples for the inverse implication are provided at the beginning of the next section. �

2. Gluing and other applications

In this section we explore an operation that allows to construct new (more complicated)
semigroups from old ones. Let S1 and S2 be two numerical semigroups minimally generated
by n1, . . . , nr and m1, . . . ,ms, respectively. Given positive integers d1 ∈ S1 \ {n1, . . . , nr}
and d2 ∈ S2 \ {m1, . . . ,ms} such that gcd(d1, d2) = 1, the semigroup

S = d2S1 + d1S2 = 〈d2n1, . . . , d2nr, d1m1, . . . , d1ms〉
is called a gluing of S1 and S2. Notice that ν(S) = ν(S1) + ν(S2). The importance of
gluing was first highlighted in [16], where the author proved that a semigroup is a complete
intersection if and only if it is a gluing of two complete intersection semigroups, formulating
thus a recursive characterization. A gluing of two symmetric semigroups is again symmetric.
Although the gluing of two free semigroups needs not be free, a semigroup of embedding
dimension ν is free if and only if it is a gluing of N and a free semigroup of embedding
dimension ν − 1 (cf. [27, Theorem 9.16]). We remark that gluing has other interesting
applications, e.g. to Rossi’s conjecture (cf. [3], [22]) and to Huneke-Wiegand conjecture (cf.
[19]).

Example 2.1. As an illustration, we construct a family of complete intersection semigroups
that are not free. Let p1, p2, p3, p4 be distinct primes such that p3, p4 > p1p2. Consider

S = 〈p1p3, p2p3, p1p4, p2p4〉 = d2T + d1T

where T = 〈p1, p2〉, d1 = p4 and d2 = p3 (note p3, p4 ∈ T \ {p1, p2} as f(T ) = p1p2− p1− p2).
Now T is a complete intersection being two-generated, therefore S is a complete intersection.
However, there is no hope of expressing S as a gluing of N and a three-generated semigroup
because any three generators of S are coprime; by the characterization above S is not free.

Remark 2.2. By [27, Theorem 9.16] and by definition, it is easy to see that a semigroup S
is telescopic if and only if it is a gluing of N and a telescopic semigroup T = 〈n1, . . . , nν−1〉
with d2 > d1nν−1.

Furthermore, it is also easy to check that a semigroup S = 〈g1, . . . , gν〉 has a unique Betti
element if and only if it is the gluing d1T +d2N where T = 〈n1, . . . , nν−1〉 has a unique Betti
element, d2 = lcm(n1, . . . , nν−1) and gcd(ni, d1) = 1 for each i.

Finally, by definition, a semigroup is associated to a plane branch if and only if it is a
gluing of N and a semigroup associated to a plane branch T = 〈n1, . . . , nν−1〉 with d2 >
d1(τν−1(T ) + 1)nν−1.

Our aim at this point is to push this study further: we use gluing to prove a recursive
characterization for semigroups with α-rectangular Apéry sets.

Theorem 2.3. Let T be a semigroup with α-rectangular Apéry set and d1, d2 ∈ N such that
d1 /∈ Ap(T ), d1 > d2m(T ); then the gluing S = d2T + d1N has α-rectangular Apéry set.
Conversely, every semigroup S 6= N with α-rectangular Apéry set arises in this way.
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Proof. Assume that S is the gluing d2T+d1N where T = 〈n1 < · · · < nν−1〉 has α-rectangular
Apéry set and d1 ∈ T \{n1, . . . , nν−1}, d2 ∈ N\{1} are coprime integers satisfying d1 /∈ Ap(T )
and d1 > d2m(T ); in particular we have m(S) = d2m(T ). In the proof of this implication
αi(S) denotes, with an abuse of notation, the integer α from Defintions 1.1 relative to the
minimal generator d2ni of S (which is not necessarily the i-th generator of S in increasing
order). By Proposition 1.6 (v), n1 =

∏ν−1
i=2 (αi(T ) + 1). We claim that αi(S) ≤ αi(T ) for

each i = 2, . . . , ν − 1. In fact

(αi(T ) + 1)ni = λ1n1 + · · ·+ λν−1nν−1 =⇒ (αi(T ) + 1)d2ni = λ1d2n1 + · · ·+ λν−1d2nν−1

for some λj ∈ N with λ1 > 0. Since m(S) = d2n1 we get (αi(T ) + 1)d2ni /∈ Ap(S), proving
that αi(S) ≤ αi(T ). Now we show that αν(S) ≤ d2− 1: we have d1−n1 ∈ T as d1 /∈ Ap(T ),
therefore d2d1 − d2n1 ∈ S and d2d1 /∈ Ap(S). By Remark 1.2

m(S) ≤
ν∏
i=2

(αi(S) + 1) ≤ d2

ν−1∏
i=2

(αi(T ) + 1) = d2n1 = m(S)

and hence Ap(S) is α-rectangular by m(S) =
∏ν

i=2(αi(S) + 1).

Assume now that S = 〈g1 < · · · < gν〉 6= N has α-rectangular Apéry set. By Theorem 1.13
Ap(S) is γ-rectangular and thus there is a rearrangement n = {n1, . . . , nν} of the minimal
generators such that g1 = n1 and fulfilling the conditions of Proposition 1.11; let σ be the
permutation such that ni = gσ(i). Let d = gcd(n1, . . . , nν−1). Then S is the gluing of

T =
〈
n1

d
, . . . , nν−1

d

〉
and N, with integers d1 = nν and d2 = d; furthermore T is free by [27,

Theorem 9.16]. We prove that Ap(T ) is α-rectangular.
Let l = σ(ν); it is shown in [27, Lemma 9.13 (3), Proposition 9.15 (4)] that

d = min
{
h ∈ N

∣∣hgl ∈ 〈g1, . . . , ĝl, . . . , gν〉}.
By unique expression of Ap(S) we get hgl /∈ 〈g1, . . . , ĝl, . . . , gν〉 for all h ≤ αl(S), so αl(S) ≤
d− 1. On the other hand (αl(S) + 1)gl /∈ Ap(S), so it has another representation involving
the multiplicity g1, and by maximality of αl(S) this representation does not involve gl. Thus
(αl(S) + 1)gl ∈ 〈g1, . . . , ĝl, . . . , gν〉 and αl(S) + 1 ≥ d. Hence d = αl(S) + 1.

Let us show now that αi(T ) ≤ ασ(i)(S) for each i = 2, . . . , ν (here αi(T ) denotes the
integer α relative to the minimal generator ni

d
of T ). If αi(T ) > ασ(i)(S), then

(ασ(i)(S) + 1)
gσ(i)
d
∈ Ap(T ) =⇒ (ασ(i)(S) + 1)

gσ(i)
d
− g1

d
/∈ T

because m(T ) = g1
d

. By definition of ασ(i), we have

(ασ(i)(S) + 1)gσ(i) − g1 ∈ S =⇒ (ασ(i)(S) + 1)gσ(i) = g1 +
∑
j 6=l

ξjgj + ξlgl

hence d divides ξlgl, but gcd(d, gl) = gcd(S) = 1, therefore d actually divides ξl. It follows

(†) (ασ(i)(S) + 1)
gσ(i)
d

=
g1
d

+
∑
j 6=l

ξj
gj
d

+
ξl
d
gl.
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By definition of gluing gl = d1 ∈ T \
{
n1

d
, . . . , nν−1

d

}
, i.e. gl =

∑
j 6=l ηj

gj
d

. Substituting this

last equation in (†) we obtain the contradiction

(ασ(i)(S) + 1)
gσ(i)
d
− g1

d
=
∑
j 6=l

(
ξj +

ηjξl
d

)gj
d
∈ T.

Putting all the inequalities together, we get by Remark 1.2 and α-rectangularity of Ap(S)

m(T ) ≤
ν−1∏
i=2

(
αi(T ) + 1

)
≤
∏
i 6=l

(
ασ(i)(S) + 1

)
=

∏ν
i=2

(
αi(S) + 1

)
αl(S) + 1

=
m(S)

d
= m(T )

concluding that Ap(T ) is α-rectangular by Proposition 1.6 (v).
Now if d1 = nν ∈ Ap(T ), then nν =

∑ν−1
i=2 λi

ni
d

with λi ≤ αi(T ) and hence nν =∑ν−1
i=2 λi

gσ(i)
d

with λi ≤ αi(T ) ≤ ασ(i)(S), by the previous part of the proof. Since Ap(S) is
α-rectangular, it follows that dnν ∈ Ap(S), contradicting, again by the previous part of the
proof, the definition of αl.

The fact that d1 = nν > d2m(T ) follows from d2m(T ) = n1 = g1 < gl = nν . �

Example 2.4. Let T = 〈18, 21, 27, 35〉, then it is possible to check that α2 = 2, α3 = 1, α4 =
2 from which it follows that Ap(T ) is α-rectangular. Let S = 2T + 69N = 〈36, 42, 54, 69, 70〉;
then we have α2 = 2, α3 = 1, α4 = 3, α5 = 2 so that Ap(S) is not α-rectangular. This
example shows the property of having α-rectangular Apéry set is not preserved by gluing
with N if we drop the hypothesis d1 /∈ Ap(T ) in Theorem 2.3 (notice that 69 ∈ Ap(T )).

Question 2.5. Is it possible to characterize semigroups with β-rectangular and γ-rectangular
Apéry set in terms of gluing?

We conclude the paper by relating our work to a theorem of Watanabe and one of Rosales
and Branco. In [30, Theorem 1] the author proves that there exist complete intersection
semigroups S with prescribed values of multiplicty and embedding dimension, satisfying the
condition m(S) ≥ 2ν(S)−1. We want to apply Theorem 2.3 to prove a similar statement for
semigroups with α-rectangular Apéry set. However we need the stronger condition `(m(S)) ≥
ν(S)− 1, where `(·) denotes the length of the factorization into primes of an integer. Note
that this condition is implied if Ap(S) is α-rectangular, as it follows from Propostion 1.6 (v).

Corollary 2.6. Given m, ν ∈ N with `(m) ≥ ν − 1, ν ≥ 2, there exists a semigroup S with
m(S) = m, ν(S) = ν such that Ap(S) is α-rectangular.

Proof. Since `(m) ≥ ν−1 we can writem = a1a2 · · · aν−1, with ai ≥ 2 integers, not necessarily
prime. Let S(1) = 〈a1, b〉 where b > a1 and gcd(a1, b) = 1, then Ap(S(1)) is α-rectangular.
Assume we constructed S(j−1) with j > 1 fulfilling m(S(j−1)) = a1 · · · aj−1, ν(S(j−1)) = j and
with Ap(S(j−1)) α-rectangular. Glue S(j−1) and N with integers d1 and d2 = aj, choosing
d1 sufficiently large. By Theorem 2.3 the result S(j) has still α-rectangular Apéry set, and
furthermore m(S(j)) = a1 · · · aj and ν(S(j)) = j + 1. Finally take S = S(ν−1). �

Now we analyze a family of semigroups introduced in [26], where the authors provide
families of free semigroups with arbitrary embedding dimension.
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Proposition 2.7. Let a, b, p ∈ N be such that gcd(a, b) = 1 and a, b, p > 1. The semigroup
S = 〈ap, ap + b, ap + ab, . . . , ap + ap−1b〉 has α-rectangular Apéry set and is not telescopic.

Proof. We have that {ap, ap + b, ap + ab, . . . , ap + ap−1b} are the minimal generators of S.
Let us assume that g1 = ap, gi = ap + ai−2b for all i ∈ {2, . . . , p + 1}. If i ≤ p, we have
agi − g1 = a(ap + ai−2b) − ap = (a − 1)ap + ai−1b = gi+1 + (a − 2)g1 ∈ S. If i = p + 1 then
agi−g1 = a(ap+ap−1b)−ap = (a+b−1)g1 ∈ S. In both cases we have agi /∈ Ap(S) and hence
αi ≤ a−1. Thus g1 = ap ≥

∏p+1
i=2 (αi+1). But we have in general g1 = ap ≤

∏p+1
i=2 (αi+1) (cf.

Remark 1.2) and therefore Ap(S) is α-rectangular by Proposition 1.6 (v). These semigroups
are never telescopic: since gcd(a, b) = 1 we necessarily have τ2 + 1 = ap and since p > 1 it
follows that

∏p+1
i=2 (τi + 1) > τ2 + 1 = ap = m. �
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