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Abstract: The theoretical study of dendrimers is reviewed, considering both analytical approaches
and molecular simulation methods. We discuss the effect of molecular symmetry on the degeneracy
of the relaxation times, and then the calculation of observable quantities, in particular the intrinsic
viscosity, and then the viscoelastic complex modulus and the dynamic structure factor, in comparison
with the available experimental data. In particular, the maximum intrinsic viscosity with increasing
molar mass is analyzed in some detail. The approximations and/or assumptions of the adopted
methods are also described in connection with analogous results for polymer of a different topology,
in particular linear and star polymers.
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1. Introduction

Dendrimers are a relatively new class of macromolecules that can be prepared with extremely
accurate control of architecture and molecular weight, thus being essentially monodisperse [1,2].
Dendrimers can be topologically described as being formed by concentric shells, or generations g
growing from a central core, or branch point, with an f functionality (but a central unit with two
functional groups are also found), therefore comprising f dendra of order m; here, m are the branches
stemming from each trunk, while p bonds are present between the adjacent branch points, which have
an m + 1 functionality.

Many applications in different fields are envisioned for these macromolecules, including drug
delivery [3], catalysis, molecular electronics and nanomedicine [4], nucleic-acid transfection system [5]
and theranostics [6]. However, their highly branched monodisperse structures with a well-defined
and highly symmetrical geometry also provide stringent tests for analytical theories and molecular
simulations to be compared with experimental data. In this review, we describe the theoretical and
simulation investigations on the dynamics of dendrimers in dilute solution carried out with different
methods. The observable quantities of interest discussed in the following are mainly mechanical
properties, in particular the intrinsic viscosity [η], measured in the Newtonian regime at small shear
rate

.
γ, (possibly together with the non-Newtonian behavior at high

.
γ), and the viscoelastic complex

modulus measured under an oscillating shear stress, but we will also briefly discuss the dynamic
structure factor measured in quasi-elastic scattering experiments.

Much emphasis will be placed on the intrinsic viscosity, since in dendrimers it has been found
to show a maximum when plotted as a function of g. This behavior is present in poly(amidoamine),
or PAMAM, dendrimers emanating from two functional groups instead of a single core (usually
a diethylamino, or DEA, moiety) [1,2,7], in tri-polybenzylether, or Tri-PBzE, dendrimers [8] and in
phosphorous-containing dendrimers having [OC6H4P(Ph)2 = N-P(S)] repeat units [9]. Moreover,
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a maximum of [η] was also found in non-regular hyperbranched PAMAM molecules at a somewhat
larger molar mass than the PAMAM dendrimers [10]. On the other hand, no such maximum of [η] was
found in nitrile- and amine-terminated poly(propyleneimine), or PPI, dendrimers with a diaminobutane
(DAB) core having two functional groups [11,12]. Quite surprisingly, we note that to the best of our
knowledge these are the only papers in the literature that systematically investigate the dependence
of [η] on dendrimer generation, or equivalently on the polymer molar mass. Thus, it would be most
useful to check whether the trend is also found for other dendrimers or hyperbranched polymers
having different repeat units and different spacer lengths between adjacent branch points.

In the following, we briefly mention the basic features of the current analytical theories and
simulations methods relevant to study the intramolecular dynamics of polymers, and then we review
the results obtained by these methods. In the final section, we provide a summary and an outlook on
the possible future theoretical and experimental work in this area.

2. Overview of Analytical Theories and Simulation Methods

2.1. Analytical Theories

The intramolecular dynamics of polymers are most often described through a set of stochastic
Langevin equations for each bead in a coarse-grained model written in terms of their coordinates [13,14].
This equation expresses a balance between an inertia term and the forces acting on each polymer
unit (atoms, monomers or beads depending on the adopted model). The latter forces account for the
intramolecular elastic forces exerted by the other beads thanks to their connectivity, and may also take
into account the exclude volume interactions, related with the bead covolume. In any case, this term
couples the dynamic equations of each bead. In fact, the simplest polymer model that neglects these
interactions, and which may somewhat apply to the unperturbed Θ state, corresponds to the so-called
bead-and-spring chain, the conformation of which is equivalent to a random-walk model with the
appropriate polymer topology; in this model, the elastic force acting on a given bead transmitted
along the molecular backbone is simply proportional to its distance from the connected beads, just
as in the Hookean elastic spring, while more complicated expressions apply in the presence of more
sophisticated polymer models or in the presence of excluded volume interactions.

The stochastic dynamic equations also take into account the dissipative friction force with the
solvent (the Rouse limit), but usually also account for the hydrodynamic interaction in the partial
draining or in the impermeable coil limit (the Zimm limit) related to the drag effect of the solvent, which is
assumed to be an incompressible fluid. For this reason, the motion of a given polymer strand affects the
motion of other topologically distant strands through the induced motion of the solvent, which strongly
affects the conformational relaxation of the polymer [13,14]. The hydrodynamic interaction is often
modelled through the pre-averaged Oseen tensor for point-like friction beads, calculated through
the average molecular conformation in terms of the averaged reciprocal distances 〈r−1

i j 〉 among the
beads i and j. Moreover, these averages are usually obtained from the corresponding mean-square
distances assuming a Gaussian distribution for the interbead distances, while they may be correctly
calculated in computer simulations. A more sophisticated description of the hydrodynamic interaction
accounts for the finite bead size, which may be particularly relevant at short interbead distances.
In this case, the Rotne-Prager hydrodynamic tensor [13] can be used in simulation studies (see below).
Note, however, that the latter, more accurate tensor would yield the same expression as the Oseen
tensor in the pre-averaged approximation. Finally, the Langevin equation also accounts for the random
Brownian forces; these forces have a zero mean, and a variance given by the Fluctuation-Dissipation
theorem [14]. This term arises from the random collision with the solvent molecules, and accounts for
the thermal bath at the chosen temperature, thus compensating for the dissipative effect of the friction.

While the inertia terms are neglected when dealing with the solution dynamics of molecules
because of the very small values of the masses of atoms, of the repeat units or of the beads compared
with their friction coefficients with the solvent (technically, one is dealing with an over-damped
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motion), in order to solve the dynamic equations, which are in any case coupled because of the
intramolecular elastic forces even in the free-draining limit (Rouse limit), they must be decoupled
through a transformation to normal coordinates that relax independently. This procedure is performed
through the diagonalization of a non-symmetrical matrix having N × N dimension (N being the
bead number), given by the matrix product of two different matrices: a symmetrical one accounting
for the elastic forces, and a non-symmetrical one accounting for the hydrodynamic interactions.
Such diagonalization, usually performed through standard numerical procedures, yields the relaxation
times, which are proportional to the reciprocal of the eigenvalues, while the matrix collecting the
eigenvectors gives the transformation of the bead coordinates into the statistically independent
normal modes.

The normal modes relax independently with an exponential law, the characteristic times being
given by the relaxation times. Each normal mode is also characterized by an integer mode number,
indicated as p (p = 0, 1, 2, ... N), which makes it possible to order the eigenvalues in a decreasing
order. The mode with p = 0 corresponds to the in-phase motion of the whole molecule, and thus to
its diffusion, while the other indices describe the in-phase motion of the polymer strands comprising
N/p beads in a half-wave motion. Therefore, an increasing p will describe increasingly shorter strands
moving in phase, and thus with an increasingly short relaxation time. Incidentally, we note that this
procedure also makes it possible to calculate the equilibrium averages of interest, in addition to the
dynamical ones.

The dynamical quantities of interest include the intrinsic viscosity [η], given by

[η] ∼
1
N

N∑
p=1

τp, (1)

where τp are the relaxation times, τp ~ (2λp)−1, with λp being the above-mentioned eigenvalues or
relaxation rates. We can also obtain the real and the imaginary part of the viscoelastic complex modulus
[G′(ω)] and [G”(ω)], measured under an oscillatory shear deformation with the frequencyω

[G′(ω)] ∼
1
N

N∑
p=1

(
ωτp

)2

1 +
(
ωτp

)2 ; (2)

[G′′ (ω)] ∼
1
N

N∑
p=1

ωτp

1 +
(
ωτp

)2 , (3)

where [G′(ω)] and [G”(ω)] are the storage and loss modulus, respectively, corresponding to the stored
elastic energy and to the viscously dissipated energy within an oscillation cycle.

In linear chains, the relaxation times can be approximately expressed as τp ~ (N/p)3ν, where ν is
the Flory’s exponent, equal to 1/2 in the Θ state and 3/5 in a good solvent. By writing τp = τ1/p3ν where
τ1 ~ N3ν is the longest relaxation time, we obtain the Mark-Houwink-Sakurada Equation [13] from
Equation (1):

[η] = KMa, (4)

where the molar mass is M ~ N, and a = (3ν)−1, so that a = 0.5 or 0.8 in the Θ state and in a good solvent,
while the experimental values are 0.5 and � 0.75, respectively. Additionally, the ω-dependence of [G′]
and [G”] can be obtained as

[G′] ~ω2, [G”] ~ω for ωτ1→ 0; (5)

[G′] ~ωα1, [G”] ~ωα2 for 1 <ωτ1 <ωτN, (6)
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with α1 = α2 = (3ν)−1, the latter case corresponding to frequencies that probe the
intramolecular dynamics.

Another dynamic quantity of interest is the Dynamic Structure Factor, which is best studied in
quasi-elastic neutron scattering [15]. The dynamic structure factor S(q, t), where q = 4π sin(θ/2)/λ is the
modulus of the scattering vector, θ being the scattering angle and λ being the radiation wavelength,
is given by

S(q, t) = N−2
∑

i

N∑
j=1

exp
[
−

q2

6
〈

∣∣∣r j(t) − ri(0)
∣∣∣2〉] = exp

[
−q2Dt

] 1
N2

∑
i

N∑
j=1

exp
[
−

q2

6
〈r2

i j(t)〉
]

(7)

where ri(t) is the vector position of unit i at time t, while D is the diffusion coefficient of the center
of mass and 〈r2

i j(t)〉 is the mean-square distance of bead j at time t and of bead i at time 0 in a frame
of reference diffused with the center of mass, which can be obtained from the eigenvectors and the
relaxation times described before. The time decay of the S(q, t) is often characterized on the basis of the
first cumulant Ω(q), given by the initial logarithmic slope

Ω(q)= −
∂
∂t

ln
(

S(q, t)
S(q, t)

)∣∣∣∣∣∣
t→0

(8)

This quantity is also important, because, thanks to the t→0 limit, Ω(q) can be calculated either
with or without the pre-averaging approximation to the hydrodynamic interaction, thus providing
a way of assessing the error entailed in this procedure. The power-lay q-dependence of Ω(q) for linear
chains can be summarized as follows:

Ω(q) = Dq2 for qRg � 1 (9)

Ω(q) = Dbeadq2 for qRg � 1 (10)

Ω(q) ∼ q3 for qRg ≈ 1 (11)

where Dbead in Equation (10) is the diffusion coefficient of the single bead before it experiences
the connectivity effects of the bonded beads, while Equation (11) is valid in the presence of the
hydrodynamic interaction independent of the possible presence of the excluded volume.

2.2. Simulation Studies

Molecular simulations have been used for quite a number of years in polymer physics, as described
in many excellent textbooks [16–18], and therefore, here we simply point out a few basic issues that
will be relevant in the following.

The oldest simulation methods are the Monte Carlo methods, which aim to randomly sample
the possible molecular conformations generated in the simulation in order to calculate the average
relevant quantities of interest. New conformations can be generated by some random displacement
of atoms (or beads) according to some definite rules that depend on the chosen model. The simplest
one consists of placing the polymer on a regular lattice, often a simple lattice for a coarse-grained
model, and then moving the units (or group of units) onto different lattice sites, provided they are
empty so as to avoid overlaps or self-intersection of the molecule. This is computationally efficient,
in that one simply has to keep trace of the occupancy or vacancy of each site. A different method
adopts continuous space, and the random moves involve small local displacements of individual units,
which is particularly efficient for dense systems such as dendrimers. In the latter case, the Metropolis
algorithm is usually adopted: the energy change ∆E associated with the move due to bond stretching
and non-bonded interactions, for instance, is calculated together with the corresponding Boltzmann
weightω = exp(−∆E/kBT), then a random number ε uniformly distributed in the 0–1 range is selected,
and finally the move is accepted if ε <ω. In this way, one can also accept moves that produce an energy
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increase with a finite probability. An important point is that in general, the chosen rules of motion
should satisfy the detailed balance, i.e., a move must be chosen in an unbiased way, or more precisely,
the reverse move must have the same probability as the direct one. This is not a necessity, but is
a sufficient condition for obtaining system ergodicity, so that all accessible microstates in the relevant
phase space (i.e., all microscopic conformations) are sampled with the same probability, thus avoiding
any bias.

Another quite common simulation technique is the Molecular Dynamics method, whereby one
is able to follow the time evolution of the system using the classical equations of motion (Newton’s
equations). In this approach, each unit moves following the familiar equation F = ma, written as
-∇25BDV=m

..
R, where V is the potential energy of the selected model (accounting for bond-stretching,

non-bonded interactions, etc.), R is the position of the unit, and m is its mass. This equation is solved
numerically by assuming a discretized time with a very small time step with standard robust numerical
methods. Since the basic equation is a second-order differential equation, two initial conditions are
required, namely the starting trial coordinates and the starting velocities, randomly selected at the
chosen temperature from the Maxwell-Boltzmann distribution. These simulations are usually carried
out at a constant temperature, whose instantaneous value is determined by the average kinetic energy
in a canonical ensemble. Appropriate algorithms are then used to keep the average temperature equal
to the selected one (with fluctuations). The system is generally equilibrated in the initial part of the
simulation trajectory, and then the quantities of interest are periodically sampled to calculate their
statistical averages.

A variant of this method is the Brownian Dynamics method, which uses the stochastic
Langevin equation previously mentioned, neglecting again the inertia term under the assumption of
an over-damped motion. Note, incidentally, that in this case the Rotne-Prager tensor can be easily
implemented, rather than the Oseen tensor, because pre-averaging is not needed. It should be noted
that this method has a computational advantage compared to Molecular Dynamics in that it does not
require the solvent to be explicitly modelled, since it is implicitly accounted for by the friction force and
of the heat bath included in the random Brownian forces. The Langevin equation is then integrated
numerically in time, and for an ergodic system, the relevant averages are obtained by a time average
over the simulated trajectory.

3. Theoretical and Simulation Results for Directly Observable Quantities

3.1. Relaxation Times and Intrinsic Viscosity

3.1.1. Analytical Approaches

The first investigation of the intramolecular dynamics of dendrimers was carried out by La Ferla [19]
within the framework of the Rouse-Zimm approach. The modelled dendrimers had a ternary core (f = 3)
and binary dendra (m = 2), as shown in Figure 1, resulting in a variable number of bonds p between
consecutive branch points, while the generations g were numbered from 0 onward. The intramolecular
dynamics were described on the basis of the Langevin equation. As for the chosen conformational
model, which determines the intramolecular elastic forces acting on each bead, La Ferla adopted a freely
rotating model, whereby the connected springs associated with each chain segment and which have
one bead in common exhibit fixed bond angles that may be different depending on whether the bead is
the central core, another branching point, or is part of a linear portion; the simplest freely jointed model
was recovered by setting the average cosines of all the bond angles to 0. Only topologically short-ranged
interactions were included, while long-range excluded volume interactions were neglected. The scalar
products between the bond vectors determine the intramolecular elastic forces through an incidence
(or connectivity) matrix, depending only on the molecular topology. From a conformational viewpoint,
La Ferla was able to obtain analytical results for the radius of gyration Rg in the freely jointed dendrimer
that were equivalent to results obtainable from a random walk model, as a function of f, m, g and
the number of bonds p between adjacent branch points [19]. Here, we are only interested in the
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dynamical properties, starting from the spectrum of relaxation times and the intrinsic viscosity [η].
The relaxation spectrum shows a large degeneracy in the relaxation times τp, which become a universal
function at high g if they are plotted as a function of p/N (see Section 2.1). Considering dendrimers
having p = 1, La Ferla was also able to determine the degeneracy of the collective modes as a function
of f, m, g for dendrimers, that is, based only on the dendrimer topology. The intrinsic viscosity
[η] can thus be obtained through Equation (1), as it is mainly controlled by the longest relaxation
times of the collective modes. Unfortunately, La Ferla did not report the g-dependence of [η] for
a comparison with experimental data, but since [η] is proportional to R3

η/M based on the known
coefficients, where Rη is the viscosimetric radius and M is the molar mass, he showed that the calculated
Rη did not follow a power-law dependence on M, unlike what is found for linear chains and star
polymers. Moreover, the Rη values, calculated for dendrimers with f = 3 and m = 2, exceeded the
experimental values, with higher values corresponding to higher generation g. The reason for this
discrepancy was tentatively attributed to a small incomplete branching at high g of the experimental
samples, which was also implied by the small but non-negligible polydispersity, which would affect
the viscosimetric radius much more that the radius of gyration.

Polymers 2020, 12, x FOR PEER REVIEW 6 of 20 

 

M is the molar mass, he showed that the calculated Rη did not follow a power-law dependence on M, 
unlike what is found for linear chains and star polymers. Moreover, the Rη values, calculated for 
dendrimers with f = 3 and m = 2, exceeded the experimental values, with higher values corresponding 
to higher generation g. The reason for this discrepancy was tentatively attributed to a small 
incomplete branching at high g of the experimental samples, which was also implied by the small but 
non-negligible polydispersity, which would affect the viscosimetric radius much more that the radius 
of gyration. 

 
Figure 1. A schematic drawing of the topology of a dendrimer. In this coarse-grained model, there is 
a single tri-functional core (f = 3), binary dendra (m = 2) and a single bond connecting adjacent branch 
points (p = 1), while the dotted circles indicate the successive generations g. This is a second-generation 
dendrimer (g = 2) if g is numbered from 0 onward, but in some cases, if the numeration starts from 1, 
it will be denoted as a third-generation dendrimer. 

The spectrum of relaxation times and the intrinsic viscosity were later investigated while also 
considering the effect of good solvent expansion [20] in view of the large covolume effects that are 
present in the sterically crowded dendrimers. Intramolecular expansion was calculated through self-
consistent minimization of the intramolecular free energy, accounting for the configurational entropy 
loss experienced by the swollen molecule and for the covolume two-body interactions. In turn, the 
latter interactions are calculated on the basis of the pairwise contact probability among the beads, 
assuming a Gaussian distribution of the (perturbed) inter-bead distances. Both these free-energy 
contributions can be written in terms of the scalar products among all the bond vectors connecting 
the beads for the topology of interest [20–22]. As a result, the equilibrium state is determined, which 
corresponds to the optimal compromise between the repulsive covolume interactions, which tend to 
non-affinely swell the molecule, and the elastic penalty opposing it as a result of the entropic 
configurational loss. This approach led to an asymptotically finite expansion dictated by the finite, 
and quite small, span of each dendron. Moreover, the optimized scalar products among the bond 
vectors also yield the elastic forces acting on the beads and the inter-bead distances required to 
account for the hydrodynamic interaction. However, while the agreement with the experimental 
values for the PPI dendrimers were quite satisfactory for , the viscosimetric radius obtained from 
the calculated [η] was found to exceed the experimental data at high values of g, which is in keeping 
with the La Ferla’s results. Moreover, the intrinsic viscosity [η] did not show any maximum if plotted 
as a function of g, and only the phantom molecule (which corresponds to a random walk) hinted at 
the possible presence of such a maximum, and only for unrealistically high g values. In the same 
paper [20], it was also shown, however, that slightly attractive pairwise interactions among the beads, 
resisted only by configurational entropy, could indeed lead to a maximum in [η]. Interestingly, such 
weak attractive interactions, corresponding to a slightly negative binary cluster that is integral among 
the beads [13], are actually required in order to achieve an unperturbed Θ state, whereby the 
temperature produces a vanishing second virial coefficient between the molecules that is measured, 
for instance, in osmometry and in light scattering experiments [23]. Because of the molecular 
topology, in branched systems, the interactions between two molecules also entail repulsive three-

Figure 1. A schematic drawing of the topology of a dendrimer. In this coarse-grained model, there is
a single tri-functional core (f = 3), binary dendra (m = 2) and a single bond connecting adjacent branch
points (p = 1), while the dotted circles indicate the successive generations g. This is a second-generation
dendrimer (g = 2) if g is numbered from 0 onward, but in some cases, if the numeration starts from 1,
it will be denoted as a third-generation dendrimer.

The spectrum of relaxation times and the intrinsic viscosity were later investigated while also
considering the effect of good solvent expansion [20] in view of the large covolume effects that are present
in the sterically crowded dendrimers. Intramolecular expansion was calculated through self-consistent
minimization of the intramolecular free energy, accounting for the configurational entropy loss
experienced by the swollen molecule and for the covolume two-body interactions. In turn, the latter
interactions are calculated on the basis of the pairwise contact probability among the beads, assuming
a Gaussian distribution of the (perturbed) inter-bead distances. Both these free-energy contributions
can be written in terms of the scalar products among all the bond vectors connecting the beads for
the topology of interest [20–22]. As a result, the equilibrium state is determined, which corresponds
to the optimal compromise between the repulsive covolume interactions, which tend to non-affinely
swell the molecule, and the elastic penalty opposing it as a result of the entropic configurational loss.
This approach led to an asymptotically finite expansion dictated by the finite, and quite small, span of
each dendron. Moreover, the optimized scalar products among the bond vectors also yield the elastic
forces acting on the beads and the inter-bead distances required to account for the hydrodynamic
interaction. However, while the agreement with the experimental values for the PPI dendrimers
were quite satisfactory for Rg, the viscosimetric radius obtained from the calculated [η] was found
to exceed the experimental data at high values of g, which is in keeping with the La Ferla’s results.
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Moreover, the intrinsic viscosity [η] did not show any maximum if plotted as a function of g, and only
the phantom molecule (which corresponds to a random walk) hinted at the possible presence of
such a maximum, and only for unrealistically high g values. In the same paper [20], it was also
shown, however, that slightly attractive pairwise interactions among the beads, resisted only by
configurational entropy, could indeed lead to a maximum in [η]. Interestingly, such weak attractive
interactions, corresponding to a slightly negative binary cluster that is integral among the beads [13],
are actually required in order to achieve an unperturbed Θ state, whereby the temperature produces
a vanishing second virial coefficient between the molecules that is measured, for instance, in osmometry
and in light scattering experiments [23]. Because of the molecular topology, in branched systems,
the interactions between two molecules also entail repulsive three-body interactions among the beads;
in fact, two beads of different molecules cannot freely approach one another because of the covolume
of a topologically neighboring third bead. Such intermolecular repulsion must be compensated by
a slightly negative binary cluster that is integral to achieving the Θ state [23]. Therefore, it can be
concluded that the maximum [η] obtained in Reference [20] corresponds to what was calculated for
the Θ state. One general issue related to this point is that, in overcrowded systems such as dendrimers
at high values of g, the excluded volume effects are effectively screened out by the locally dense
environment, similar to what is found in polymer melts. As for the spectrum of relaxation times,
this has been analyzed in more detail in a subsequent paper, discussed below in connection with the
calculations of other dynamical observables [24], where the degeneracy of the relaxation times, related
to the topological symmetry of the molecules alone was fully determined as a function of g, f, m and p.

The analysis of the normal modes of motion of dendrimers and the multiplicity of relaxation times
related to molecular symmetry was investigated independently by Cai and Chen [25] with respect to the
Rouse free-draining limit, that is, neglecting hydrodynamic interactions. Moreover, the intramolecular
excluded-volume interactions were ignored, so that the molecule could be conformationally described
as an appropriate random walk. In this way, many quantities of interest can be analytically calculated,
such as Rg, for instance [19]. More interestingly, in this way, the dynamical problem can be solved
quasi-analytically, and the normal modes of motion can be obtained explicitly together with the
relaxation times (or at least the collective ones) for the low-generation dendrimers, and then,
by extension, for higher g values. The degeneracy of the relaxation times was largely determined in
this way (see also Reference [24] for a more systematic list), while the intrinsic viscosity could also
be analytically determined as a function of the generation, g, in consideration of dendrimers with
a tri-functional core (f = 3) and binary dendra (m = 2); in keeping with the other investigations mentioned
above, [η] was found to increase monotonically with g, with no indication of any maximum [25].
In a subsequent paper [26], Cai and Chen investigated the intrinsic viscosity [η] of dendrimers
in more detail, adopting the variational approach of Fixman [27] to tackle this problem, the exact
solution of which is a formidable task, usually requiring some approximation such as the pre-averaged
approximation. Since the effect of this approximation on the calculation of [η] is unknown, but can be
large in dense systems, Fixman proposed two different approximations that could bracket the “true”
values, rather than the pre-averaged one, which provides an overestimation of [η]. Cai and Chen
adopted the Rotne-Prager tensor to model hydrodynamic interaction, since it is more accurate that the
Oseen tensor, but this introduced a further parameter—hydrodynamic bead diameter. If this value is
equal to the excluded-volume bead diameter used to account for the bead covolume, no maximum can
be obtained for [η] for either the upper or the lower limit. If, however, the hydrodynamic bead diameter
is close to the segment length, while the covolume bead diameter is very small (thus approaching the
Θ state), a shallow maximum can indeed be obtained. It can be noted that this procedure is quite ad
hoc, and no clear molecular basis for this difference can be given on physical grounds. This problem
was investigated again by the same group with Monte Carlo simulations [28], as described in the
next section.

The theoretical study of dendrimer dynamics was subsequently carried out by Biswas’ group
employing the standard Rouse-Zimm approach with hydrodynamic interaction and using the
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pre-averaged Oseen tensor [29]. Biswas et al. adopted a semiflexible conformational model by imposing
restrictions on the direction and orientations of consecutive bond vectors, somehow accounting locally
for the excluded-volume effects. The conformational model yields equilibrium quantities such as Rg,
for instance, and determines the elastic force terms in the Langevin equation. The restrictions on the
direction and orientation of the bond vectors are applied by fixing the bond angle values formed by
the vectors stemming from a branch point in polar coordinates using appropriate spherical harmonics,
thus describing the local correlation between consecutive bonds of different generations (since p = 1,
see Figure 1) and allowing for more compressed or more expanded conformations. The elastic forces
are then evaluated based on the average scalar products between the bond vectors, so that finally
the spectrum of the relaxation times and of the normal modes of motion can be obtained. While the
multiplicity of the relaxation times is not affected, the first result is that the rigidity constraints of the
semiflexible dendrimers produces longer relaxation times for the local modes, but does not greatly
affect the relaxation times of the collective modes. Interestingly, the resulting intrinsic viscosity shows
a well-defined maximum when plotted as a function of g, this maximum being present at g = 7 quite
independently of stiffness (generations are numbered from g = 1 onward), and being only slightly
shifted to g = 6–7 with more compressed conformations. It should be pointed out that such g values
(calculations were carried out up to g = 10) are quite high, producing a very high intramolecular density
that is only achieved for PAMAM dendrimers that have a relatively long and flexible spacer between
adjacent branch points and an EDA central unit with two functional groups, such that a value of g = 10
was realized. It is noteworthy that a pronounced maximum was also obtained in the same paper [29]
for the model adopted by La Ferla [19], carrying out calculation for up to g = 10 (La Ferla considered
the g = 6 case, at most); furthermore, in this case, a maximum of [η] was obtained for g = 7. It may
therefore be concluded that in other cases, too (for instance in References [20,25,28]), such a maximum
could indeed be found at g values higher than those considered. Therefore, the existence of a maximum
of [η] as a function of g could be a general feature of current approaches that are close to the ideal Θ
state, even though the quantitative agreement would often be quite poor, at least at this location.

Biswas’ group also investigated the dynamical properties of randomly hyperbranched polymers
along the same lines [30,31]. The hyperbranched polymers were closely similar to dendrimers, but were
built using a growth algorithm starting from a three-functional core (f = 3) and binary branches (m = 2)
after each bond. However, at each generation, one end unit was randomly selected as a dead end,
wherefrom no further branching (or linear bonding) took place [30], while a limited flexibility was
introduced in the same way as previously described in References [29,32]. In the second paper on
hyperbranched polymers, the elastic forces were accounted for through the elastic springs associated
with each bond and through a local excluded volume term between beads belonging to the same
or to the adjacent shell only with two different parameters [31]. It may be pointed out again that
this description would not account for the long-range excluded volume effects of linear polymers,
since it would simply renormalize the segment length of an equivalent random walk chain. However,
it could be used for dendrimers, assuming that the covolume effects are effectively screened out in
dense systems. The dynamical equations, which account for hydrodynamic interactions through the
pre-averaged Oseen tensor, yield the spectrum of relaxation times and the normal modes of motion
for different values of the excluded volume parameters. The intrinsic viscosity [η] is then obtained as
a function of g; a clear maximum is seen for g = 5 in the case of regular dendrimers with a significant
excluded volume interaction, while in the analogous randomly hyperbranched polymer the maximum
takes place for g = 6 and is less pronounced with a weaker decrease of [η] at higher generations.
Moreover, in the hyperbranched polymers, the magnitude of [η] increases with decreasing strength of
the excluded volume interaction, ultimately approaching the values of star polymers with the same
number of beads, with a monotonous increase of [η] at an increasing molar mass.

Dendrimer dynamics were also discussed in a further paper by Biswas’ group [33], again using
a pre-averaged hydrodynamic interaction and accounting for the excluded volume between the nearest
non-bonded beads only. The strength of this interaction was characterized by a parameter derived from
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Flory’s mean-field approximation through minimization of the molecular free energy accounting for
the configurational entropy and an excluded volume term estimated in the mean-field approximation
through the volume pervaded by the polymer (a sphere having a radius equal to Rg). Because of
that, the excluded-volume parameter depends on the number of beads, on the number of the nearest
non-bonded interactions and on the sum of the distances among the bead pairs, hence on the dendrimer
generation. An alternative approach adopted in the same paper consists of adopting the geometrical
procedure proposed by the same group [31] in terms of two parameters for beads belonging to the
same or to the adjacent generation only (see before). With either method, in order to account for the
excluded-volume parameter, a maximum of [η] is obtained for relatively small g values. In fact, using
the geometrical procedure with a small excluded volume parameter, the maximum can be seen at g = 6,
with a small shift at higher g for a weaker excluded value strength; when using the parameter obtained
with Flory’s mean-field approximation, it takes place at g = 4 (the generations are numbered from g = 1
onward). By tuning the excluded-volume parameters of the geometrical approach, Biswas et al. [33]
were also able to satisfactorily reproduce a large number of experimental and simulation results on
the intrinsic viscosity of dendrimers. Figure 2 summarizes the experimental results mentioned in the
introduction and the fitting results of Biswas et al. [33].
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Figure 2. Plots of the experimental and calculated intrinsic viscosity [η] for different dendrimers as
a function of generation. The experimental results are for PAMAM dendrimers with an EDA core
(a) [1], for an amino-terminated PPI dendrimer with a DAB core, indicated as a DAB-dendr-(NH2)
(b) [11], for a Tri-PBzE dendrimer (c) [8] and for a PPI dendrimer with a DAB core (d) [12]. In the panels,
νθ and νψ are the two excluded-volume parameters for beads belonging to the same or to the adjacent
generation (see the text and Reference [33] for more details), while νFlory is the parameter estimated
from Flory’s mean-field approximation [33]). Reprinted with permission from Rai, G.J.; Kumar, A.;
Biswas, P. Dynamics of dendrimers with excluded volume: a comparison with experiments and
simulations. J. Rheol. 2016, 60, 111–120, doi:10.1122/1.4937378. Copyright 2016, The Society of Rheology.

As a final theoretical approach, we should also mention an entirely different method for calculating
the intrinsic viscosity of dendrimers based on a sort of mesoscopic molecular description, rather than
a fully microscopic one as used before. The theory was first proposed in terms of a simple two-zone
model of dendrimers [34]. In this model, the dendrimer is described as being formed of a dense core
impermeable to the flow field, where the solvent molecules are effectively trapped (thus adopting
the Einstein result for the viscosity of a suspension of spheres [13]), and a thin outer region where
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the solvent drains freely (i.e., in the Rouse limit). Assuming spherical symmetry and a Gaussian
radial density profile, the dependence of [η] on g could be calculated in quantitative agreement
with the experimental results for PBzE dendrimers, in particular with respect to the presence of the
maximum and its position. The theory and the general mesoscopic molecular picture of polymers was
subsequently developed in greater detail [35], introducing a drag function in order to describe the
local volume fraction of the solvent flowing with the polymer, and a drainage function related to the
solvent that moves through the polymer. Both functions are calculated from a spherical symmetric
density profile, which is now determined on the basis of appropriate Monte Carlo simulations for the
topologies of interest using the Lennard-Jones potential for the non-bonded interactions. The results of
these calculations favorably compare semi-quantitatively with experimental data from polymers of
different topologies (linear, ring, star polymers) and for the dendrimers (PAMAM, PBzE, PPI) with
only a few adjustable parameters. We note that the connection of this model with a more microscopic
one is quite unclear, and would require a more detailed investigation, as also indicated at the end of
this review.

3.1.2. Simulation Methods

The first simulation study investigating the intrinsic viscosity of dendrimers and of hyperbranched
polymers was probably carried out in 1998 using Metropolis Monte Carlo simulations [36]. The polymers
were built starting from a trifunctional B3 core by sequentially adding AB2 monomers assuming definite
reaction probabilities at the ends of each unit. By tuning these a priori probabilities, both dendrimers and
hyperbranched polymers with some dead ends could be obtained. The chosen monomers corresponded
to a branched alkane, described on the basis of the Rotational Isomeric Scheme (RIS) [37] for the
rotations around single bonds, but they effectively adopted a phantom-chain model (bond crossing
was not forbidden). The excluded-volume interactions were neglected, as well as the hydrodynamic
interactions. The intrinsic viscosity was then calculated through the Flory-Fox equation [η] ~ R3

g/N,
with Rg being the radius of gyration obtained by the simulations and N being the total number of
monomers. Quite surprisingly, in view of the above-mentioned approximations and the inadequacy
of using the Flory-Fox equation noted in other studies [34,38], this approach yielded a maximum of
[η] for g = 3 for regular dendrimers (g was numbered from 0 onward), in a range consistent with the
experimental data. A similar maximum was also predicted for hyperbranched molecules, with the
maximum progressively shifting to a somewhat larger molecular weight corresponding to g ≈ 4–5 of
the respective dendrimers with a decreasing branching pattern, and with larger [η] values than the
corresponding dendrimers [36].

The calculation of the spectrum of relaxation times and of intrinsic viscosity was later investigated
in more detail by Cai and Chen [28], with an analysis of the approximations involved in the analytical
studies. The dendrimer conformation was modelled by standard Monte Carlo simulations in continuous
space for a freely jointed model with g = 3 and m = 2 (see Figure 1) and with a single bond between
adjacent branch points in order to calculate averages of interest, including those yielding the elastic
potential and the elements of the hydrodynamic tensor, both in the simple Oseen form and in the more
sophisticated Rotne-Prager form. The dynamical equations were then solved numerically, producing
the spectrum of relaxation times and the normal modes of motion. The relaxation times showed the
expected degeneracies independently of the strength of the excluded volume interaction. As for the
intrinsic viscosity, the pre-averaged Oseen tensor led to values that somewhat exceeded both the upper
and the lower bounds calculated using Fixman’s variational method with the Rotne-Prager tensor [27].
In any case, no maximum of [η] was obtained as a function of g using the same bead diameter for the
hydrodynamic interaction and for the excluded volume [28].

A more complete simulation study of dendrimer dynamics was later performed by Mansfield in
a seminal paper [39], adopting lattice Monte Carlo simulations for the dendrimers. The issue of the
simulation of the transport properties, including the intrinsic viscosity in particular, was dealt with
using an analogy with electrostatic and random-walk statistics, so that the Navier-Stokes equation
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was transformed into the Laplace equation, while the intrinsic viscosity was proportional to the trace
of the polarizability tensor, even though the proportionality constant depends on the shape of the
body. It is not clear, however, how much this analogy depends on the step length of the random walk,
and on the assumption of a continuous solvent medium, as adopted in the Rouse-Zimm approach.
The simulations were carried out for dendrimers on a diamond lattice, assuming that seven bonds were
present between adjacent branch points under excluded volume conditions, and showed a well-defined
maximum of the intrinsic viscosity for g = 6 [39]. Unfortunately, the applied methodology violated the
detailed balance [40], potentially casting some doubt on the calculated properties. Further simulations
by Mansfield and Jeong [41] took this issue into account and overcame the original problem by using
a different criterion for accepting the trial moves. The result was that the former Mansfield’s results
were significantly affected by the detailed-balance violation for phantom-chain dendrimers, but were
qualitatively valid provided the exclude volume interactions were accounted for, so that in this case
a sharp maximum of [η] was calculated for g = 6–7. No direct comparison with the experimental data
was attempted, however, as the main emphasis was on the conformational equilibrium properties.

Another simulation study of the dynamical properties of dendrimers was carried out by Lyulin et al.
using Brownian Dynamics simulations of dendrimers under a shear flow [42]. Again adopting
a dendrimer model with a trifunctional core (f = 3) and binary dendra (m = 2) comprising either
one or two bonds between adjacent branch points (p = 1 or 2), the equations of motion accounted
for the hydrodynamic interaction with the Rotne-Prager tensor. The interaction potential among the
beads was modelled on the basis of Lennard-Jones potential, with parameters that reproduced the
unperturbed Θ state in linear chains, while a rigid constraint was applied to the bond lengths, and the
solvent velocity in one direction was given in terms of an applied shear rate

.
γ. The intrinsic viscosity

[η], calculated from its definition as the ratio between the appropriate non-diagonal component of the
stress tensor and the applied shear rate in the limit

.
γ→0, displayed a shallow maximum for g = 4–5.

At a significantly higher shear rate, a shear thinning behavior was obtained, such that [η] was found
to decrease with an increase of

.
γ according to the power-law

.
γ−1/3, with a concomitant significant

increase in the molecular size in the shear direction, as expected. Hyperbranched polymers were
also investigated using the same Brownian Dynamics simulations [43], with the polymers being built
by using the same algorithm as in Reference [36]. A maximum of the intrinsic viscosity was again
observed for dendrimers and for hyperbranched polymers with a large branching degree, while the
shear thinning behavior was again detected at a large shear rate, although the simulations did not
allow to detect a clear power-law dependence of [η] from

.
γ.

The intrinsic viscosity of dendrimers has also been modelled using Molecular Dynamics
methods [44], adopting a coarse-grained model of dendrimers in explicit solvent, modelled as
Lennard-Jones particles. Dendrimers were described up to g = 7 with a trifunctional core (f = 3),
and binary dendra (m = 2), comprising a single harmonic spring between consecutive branch points
(p = 1), while the non-bonded beads interacted through Lennard-Jones potential. The shear viscosity
was calculated with the Green-Kubo formula as the integral over time of the stress autocorrelation
function, using the off-diagonal terms of the stress tensor, which in turn were obtained from the
momenta of the particles, and on the interparticle forces and distances. The intrinsic viscosity thus
calculated, which is in principle quite computationally demanding, showed a clear maximum at g = 5,
and in general compared very well with the Brownian Dynamics simulations [42].

A different approach was later subsequently by Freire et al. [45], who used coarse-grained Monte
Carlo simulations in continuous space for dendrimers with a single core or a central unit with two
functional groups and tri-functional branch points, comprising a further bead between adjacent
branch points of the dendra so as to avoid bond crossing. Furthermore, the beads interacted through
a hard-sphere potential with an appropriate bead diameter, which was indirectly related to the solvent
quality. The starting conformations for the simulations were obtained through a lengthy procedure
involving a preliminary atomistic Molecular Dynamics simulation using a standard force-field
(the CVFF force field) for a few specific dendrimers [45]. A careful ad hoc strategy was used in these
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runs carried out in vacuo, but eventually the modelled Rg reproduced the experimental value. In this
way, a reasonable set of conformations was achieved, wherefrom a systematic coarse-grained sampling
of relevant atoms (in particular the branch points) provided the starting coordinates of the beads
for the Metropolis Monte Carlo runs. These simulations, which were much more efficient than the
atomistic Molecular Dynamics runs for sampling the phase space of the system, were performed
by small random displacements of a randomly selected bead, provided the resulting bond lengths
were consistent with the distribution inferred from the atomistic Molecular Dynamics runs. These
simulations yielded the conformational averages (for instance, those involved in the pre-averaged
hydrodynamic interaction) required to calculate the intrinsic viscosity according to the lower bound of
the variational procedure introduced by Fixman [27], assuming that a frictional radius of each bead
had been appropriately chosen. The intrinsic viscosity plotted as a function of g did indeed show
a maximum, which was quantitatively consistent with the experimental data [45]. It should be noted,
however, that the ratio between the bead friction radius and the bead hard-sphere radius required for
dendrimers appears to be much larger than that required in linear chains, which suggests a different
non-draining behavior. This point would require a more detailed investigation, in our opinion; in fact,
with these dense systems, the assumption of the solvent treated as a continuum that pervades the inner
part of the molecule may be incorrect, while a different treatment of a few discrete molecules would be
required, with a physically different approach.

Subsequently, Freire et al. improved their model somewhat by applying a few corrections of
varying importance [46]. The first correction, and probably the most important one, was the addition of
the contribution of an individual friction bead, which could be important for small molecules. This term
amounted to assuming that the friction forces are distributed on the bead surface, rather than acting on
the bead centers. The second correction amounted to incorporating a realistic distribution of the internal
angle formed by the bonds connecting adjacent branch points. The third correction involved adopting
a more realistic distribution of the distances between the adjacent branch points in order to better
account for the presence of the solvent molecules. The simulation results again provided the observed
maxima of [η] as a function of g, and were generally in very good agreement with the experimental
data. Moreover, the optimized bead friction radius was generally more reasonable than what was
required by Reference [45], even though its value, which was larger than that of the hard-sphere radius,
was still not fully clear. Subsequently, these parameters were further revised [47], but the relative
size of these two radii was not qualitatively affected. It should also be noted that in a subsequent
paper, Freire et al. [48] also investigated the effect of pre-averaging on the calculated intrinsic viscosity
obtained adopting the same model as in Reference [46]. The pre-averaged approximation turned out
to be inaccurate, especially at high g, producing results that were too large by a factor greater than 2 at
the highest values of g (g = 7).

In a later simulation study [49], Brownian Dynamics simulations were used to investigate the
dynamics of dendrimers adopting a finite-extensible nonlinear elastic (i.e., non-Hookean) FENE
potential for the springs connecting the adjacent branch points. Excluded-volume interactions
were ignored, while the hydrodynamic interaction was modelled through the Rotne-Prager tensor.
Each spring was assumed to stand for a given number of statistical segments (or better, Kuhn steps),
which were entered as a parameter in the expression of the FENE potential, so that different spacers
between the branch points could be effectively modelled. The viscosity was then calculated as the
ratio between the applied stress tensor and the shear rate

.
γ, so that [η] was obtained within the

limit
.
γ→0. The intrinsic viscosity plotted vs. the generation was found to show a maximum at

g = 3, which is a bit less than, although still close to, what was observed experimentally. It is also
interesting to point out that a significant effect of shear rate on viscosity was detected upon increasing
.
γ. In particular, the intrinsic viscosity first exhibited a minor decrease when

.
γτη ≈ 1 (here, τη is

a characteristic relaxation time derived from the zero-shear intrinsic viscosity), then a minor increase
with a small shear thickening effect within a decade in the applied frequency, and finally a pronounced
shear thinning effect at lager

.
γ with a power-law scaling behavior so that [η] ~

.
γ−α with α ≈ 0.55–0.6.
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Interestingly, the same pattern of shear thinning, followed by shear thickening and then by a much
larger shear thinning was previously predicted for heavily branched star polymers with long arm
lengths using a different approach [50]. In the latter study, an analytical approach made it possible to
describe the behavior of star polymers under shear, considering both the excluded-volume and the
pre-averaged hydrodynamic interaction through the stochastic Langevin equation under the constraint
of a constant contour length, somehow consistent with, but different in detail from, the approach of
Reference [49]. These changes of the intrinsic viscosity with increasing applied

.
γ, starting roughly at

the same reduced shear rate
.
γτ

0
1 ≈ 1, where τ0

1 is the longest relaxation time of the chain under a very
small

.
γ (→0), were attributed to the incipient arm unwinding, followed by a change in the draining

regime due to the arm deformation, and eventually to a decrease of the hydrodynamic interaction
due to the full arm deformation of the arms in the flow direction with an asymptotic power-law

.
γ−α

dependence with α = 2/3 [50]. Such physical effects are also at play in the case of dendrimers, as also
briefly noted in Reference [49].

3.2. The Viscoelastic Complex Modulus and the Dynamic Structure Factor

3.2.1. Analytical Approaches

In his seminal paper on the intramolecular dynamics of dendrimers, La Ferla also calculated the
viscoelastic complex modulus for dendrimers modelled as described previously [19]. In order to better
understand the discussion in this section, we report in Figure 3 the calculated results for a linear freely
jointed chain in the partial draining regime (Zimm limit).
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Figure 3. Plot of the real part G′ and the imaginary part G” of the viscoelastic complex modulus for
a linear freely jointed chain with 104 repeat units. Here, the low-frequency behavior of Equation (5)
can be clearly seen forωτ1 < 1, while at higherω, the power-law behavior of Equation (6) can clearly
be seen. Finally, at very high ωτ1 (>106 for this linear chain), the results are not physically realistic,
since G′ and G” would probe the intramolecular dynamics at length and time scales smaller that of
a single spring.

At a very low frequency, such that ωτ1 << 1, with τ1 being the longest relaxation time,
the power-law relationships of Equation (5) clearly applied, with G′ being much smaller than
G”, showing a predominantly viscous response with a negligible elastic one, as also shown by linear
chains in Figure 3. On the other hand, no power law was found in the log–log plot of G′ and G” vs.
ω at higher frequencies, unlike what was predicted by Equation (6) and observed in experimentally
linear and star polymers (see again Figure 3). Thus, La Ferla found a continuous and smooth change
of slope of the curves related to the extensive dendrimer branching, or, more precisely, to the large
degeneracies of the relaxation times discussed in Section 3.1.1. The main reason for this behavior is the
small span of the individual dendra, and in particular the short path from the core to the terminal beads
(seven steps at most for the largest generation, g = 6, if the starting generation is labelled g = 0), which is
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consistent with what has already been pointed out by one of us for star polymers [51]. Moreover,
the calculated dynamic structure factor displayed a simple exponential decay as a function of t for
qRg � 1; that is, for distances of observation much larger than the molecular size, due to the diffusion
of the center of mass. However, deviations from simple exponential decay were observed for larger q
values, probing the intramolecular dynamics. The first cumulant was analyzed by plotting Ω(q)/q3

(see Equation (11) as a function of qRg for qRg of the order of 1 to detect deviation from the constant
value shown by linear polymers. Indeed, a minimum of the exact Ω(q)/q3 (i.e., calculated without
the pre-averaging approximation) was found at qRg ≈ 2, which is clearly related to the branched
molecular structure, as it was also found in star polymers at the same position, albeit with a much
shallower depth. Thus, the minimum became increasingly deep with increasing generation number,
while the deviations from the pre-averaged values (whose minimum occurs at qRg ≈ 2.5) increase
somewhat; it may thus be concluded that, as expected, pre-averaging leads to larger errors with higher
degrees of branching. Such theoretical predictions are in semi-quantitative agreement with neutron
spin echo experimental results obtained for dendrimers with a six-functional core (f = 6) and binary
dendra (m = 2) with relatively long and flexible spacers between adjacent branch points [52]. In fact,
a deep minimum was measured in the plot of Ω(q)/q3 as a funtion of qRg. The minimum occurred at
qRg ≈ 2.5–3, and thus was close to the calculated value, although somewhat deeper, while the increase
of Ω(q)/q3 at qRg smaller than 2.5 was sharper than calculated, but smoother at higher qRg values.
We note, incidentally, that in the same paper [52], the corresponding linear polymer followed the
theoretical prediction of Equation (11). Furthermore, it should be added that in a previous paper of
the same group [53], analogous neutron scattering experiments carried out on PAMAM dendrimers
(which had a much shorter spacer length than the sample mentioned previously) with generations up
to g = 8 only displayed a diffusive behavior, while the intramolecular dynamics were too slow to be
effectively recognized.

A closely related theoretical approach was adopted by Blumen et al., who modelled Gaussian
Generalized Structures (GGS) of beads connected by harmonic springs [54], in particular describing
polymers in the Θ state and focusing on polymer deformation under an external field [55–57]. A first
study modelled dendrimers using the stochastic Langevin equation, neglecting the hydrodynamic
interaction (free draining regime) [55]. In this case, too, no power-law behavior of [G′] and of [G”] was
found as a function of the applied frequencyω in the intermediateω range, even though some hints of
such functional dependence could be tentatively glimpsed for g = 9 (generations were numbered from
g = 1 onward). The introduction of the pre-averaged hydrodynamic interaction into the GGS model
was subsequently described [56], while the corresponding effect on the viscoelastic complex modulus
was subsequently considered [57]. In the latter paper, the intramolecular dynamics, investigated
at intermediate ω values, as noted previously, did not show any clear power-law dependence of
[G′] and of [G”] on the applied frequencyω, but rather a near logarithmic one [57]. Introduction of
a local stiffness in this model [58,59] in a way quite similar to that adopted by La Ferla [19], but in the
free-draining regime, did not significantly change the qualitative picture, and again no power-law
dependence of [G′] and of [G”] on ω was detected, which is in keeping with the La Ferla’s results.
Even in these cases, we note that the small span of the dendra modelled as phantom chains, close to
the Θ state, does not make it possible for the power-law dependence to actually be displayed.

Another investigation into the intramolecular dynamics of dendrimers and randomly
hyperbranched polymers was carried out in Reference [60] in consideration of elastic springs for the
bonds with restrictions on the bond angles, thus corresponding to a freely rotating model, and neglecting
excluded volume interactions. Accordingly, the conformational model and the dynamic equations
were the same as those adopted by La Ferla [19]. In this case, too, the dendrimers had a trifunctional
core (f = 3) and binary dendra (m = 2), with a single bond between adjacent branch points (p = 1),
while the hyperbranched polymers were built stepwise by randomly selecting a terminal vertex at each
step and adding two branches to it, thus generating two further terminal vertices. The calculations
for the randomly hyperbranched molecules were then averaged over a very larger number (104–105)
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of random realizations. The viscoelastic complex modulus calculated by this model did not show
any clear power-law dependence in the intermediate ω range, which is consistent with the results
previously obtained by La Ferla [19], which is hardly surprising, since the same conformational model
was adopted. More interestingly, the randomly hyperbranched molecules only showed very minor,
if any, differences compared to regular dendrimers when the comparison was carried out with the same
number of beads or molecular mass. Accordingly, the presence of defects in the dendrimer structure
does not lead to any significant differences in intramolecular dynamics.

A subsequent study of the viscoelastic complex modulus was later carried out by our group [24]
by exploiting the above-mentioned equilibrium results [20] when investigating the conformational
behavior and intrinsic viscosity of dendrimers in a good solvent. While the low-frequency power-law
behavior of Equation (5) was again observed, in the presence of good solvent expansion, the increased
breadth of the spectrum of relaxation times for high-generation dendrimers again yielded a power-law
in the intermediate frequency range 1 <ωτ1 <ωτN, with [G′] ~ ωα1 and [G”] ~ ωα2 (see Equation (6)
and Figure 3 for a comparison). However, this power-law could not be clearly detected in dendrimers
comprising a single bond between adjacent branch points (p = 1), and only in those with p = 2; in other
words, a power law is only apparent in this frequency range provided the dendron span is large enough,
or better, provided the core-to-end bead distance is great enough. In this case, the above-mentioned
α exponents had the values α1 = 0.55 and α2 = 0.46, as compared with the predicted asymptotic
values α1 = α2 = (3ν)−1 as noted after Equation (6), yielding a common exponent equal to 2/3 = 0.67
in the Θ state and 5/9 = 0.56 in a good solvent (but in finite chains α1 & α2 [51]). In the same
paper [24], the dynamic structure factor was also calculated. Focusing again on the results obtained for
high-generation dendrimers investigated with a large scattering vector q (or its modulus, more precisely)
in order to probe the intramolecular dynamics, the plots of S(q, t) vs. t exhibited deviations from the
simple exponential decay characteristic of the center-of-mass diffusion. As previously found [19],
the exact Ω(q)/q3 (without pre-averaging the hydrodynamic approximation) plotted as a function
of qRg exhibited a clear minimum for qRg ≈ 2, while pre-averaging led to a somewhat shallower
minimum at qRg ≈ 2.5. Moreover, it was also shown that the good solvent expansion led to lower
pre-averaging error compared to the phantom polymer with random-walk conformation, because
the dendrimer expansion, even though still limited due to the topological connectivity constraint,
somewhat relieves the density of the branch points that mostly affect the solvent flow. As for the
comparison with the experimental data discussed previously [52], what was said when discussing
La Ferla’s results still applies here, in view of the qualitative similarities of the theoretical results in
this respect.

The viscoelastic complex modulus of semiflexible dendrimers was later investigated by Biswas’
group [32], adopting the same conformational model proposed in Reference [29] for the study of
intrinsic viscosity. The low-frequency behavior had the usual power-law dependence presented in
Equation (5), while the asymptotic behavior for ω → ∞ discussed in the paper ([G′] → ω0 and
[G”]→ω−1) cannot have physical relevance; in fact, it would apply for ωτN > 1, thus probing the
internal dynamics of a spring at times shorter than the shortest relaxation time, and therefore beyond
the validity of the adopted model (see again Figure 3). At intermediate frequencies, when probing the
intramolecular dynamics in dendrimers with g > 4, a power-law dependence of [G′] and [G”] onω
was again recovered with an exponent close to 0.5 in particular for dendrimers were the local rigidity
increased the distance from the branch point to the terminal beads. In particular, the semiflexible
dendrimers at a generation g = 8 with a more open conformation due to the chosen orientation of
the bond vectors across a branch point displayed exponents equal to α1 = 0.53 and α2 = 0.478 [32],
which are the same as those found in Reference [24] for dendrimers with excluded-volume interactions.

The intramolecular dynamics of dendrimers were also investigated by Biswas et al. [61], accounting
for the effect of the local excluded volume on nearest non-bonded beads belonging to the same and
to the adjacent generation (see also Reference [31] for the intrinsic viscosity calculated with this
model). Since the low-frequency behavior has a universal power-law dependence onω as given by
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Equation (5) independently of the molecular topology and of the solvent quality, we now focus only
on the intermediate frequency behavior relevant for the intramolecular dynamics. In this frequency
range, a power-law dependence of [G′] and of [G”] onω is again observed. The exponents of these
power laws (see Equation (6)) were found to be in the range 0.574 < α1 < 0.522 and 0.485 < α2 < 0.432,
with larger α values being found with greater excluded-volume parameters, and smaller values with
smaller parameters. Note that, in this case, too, α1 is larger than α2, as found previously, while these
values bracket those found for semiflexible dendrimers [32] and in the presence of a (non-local)
excluded-volume expansion [24]. Accordingly, it may be stated that the local excluded-volume
interactions may closely reproduce these different models, at least as far as the intramolecular
mechanical behavior is concerned.

Biswas et al. also calculated the viscoelastic complex modulus of hyperbranched polymers
with a random distribution of dead ends in consecutive shells through the conformational models
described previously for the intrinsic viscosity. Thus, one paper dealt with the effect of the molecular
rigidity [30], and another one with the effect of a local excluded-volume effect between bead pairs
belonging to consecutive shells [31,61]. As before, only the intermediate frequency behavior, where the
intramolecular dynamics are most relevant, is discussed. In the former model [30], a power-law
dependence on ω was again recovered with a large total number of shells, with exponents equal
to α1 = 0.487 and α2 = 0.521 in semiflexible hyperbranched molecules with a more expanded
conformation, and to α1 = 0.587 and α2 = 0.632 in more compressed ones. On the other hand,
in the latter model [31], the exponents describing the power-law dependence at intermediate ω in
hyperbranched molecules with a large number of shells fell in the range 0.526 < α1 < 0.464 and
0.552 < α2 < 0.508. As mentioned previously for regular dendrimers, greater α values were found
with larger excluded-volume parameters, and smaller ones with smaller parameters. However, it is
noteworthy that in the hyperbranched polymers α2 > α1, that is, [G”] has a stronger dependence on
ω than [G′], unlike what was shown for dendrimers; it is unclear, however, whether this different
behavior is due to the presence of defects (the dead ends) per se, or to the slight changes in the
hydrodynamic interactions they induce inside the molecule.

3.2.2. Simulation Studies

To the best of our knowledge, the only simulation study of the viscoelastic complex modulus was
performed by Freire et al. [48] using MC methods in continuous space, as first proposed in Reference [46],
with the corrections described previously to account for the contribution of an individual friction
bead with a finite size, for a realistic distribution of the angles formed by the bonds between adjacent
branch points, and for a realistic distance distribution between adjacent branch points. This approach
yielded a good agreement for the g-dependence of the intrinsic viscosity [46], and since it produced
the relaxation times, it was then used to simulate the viscoelastic complex modulus measured under
an oscillating shear deformation using Equations (2) and (3). In the intermediate frequency range,
where the intramolecular dynamics are dominant, a power-law dependence of [G′] and [G”] on ω
was clearly visible, which is consistent with Equation (6), in particular for the PAMAM dendrimers,
possibly as a result of the larger number of flexible chemical bonds between consecutive branch
points. Unfortunately, no explicit values for the power-law exponents were reported, even though the
inequality α1 > α2 can be easily seen from the plots.

4. Conclusions and Outlook on Future Work

In this review, we describe the theoretical investigations into the dynamics of dendrimers in
solution carried out with analytical theories and with molecular simulations. The most relevant
observable quantity is undoubtedly the intrinsic viscosity [η], in view of its widespread and simple use
in polymer characterization. A first important observation is that the familiar Mark-Houwink-Sakurada
[η] = KMa, valid for linear, ring and star polymers, does not hold in the case of dendrimers. In fact,
for the latter macromolecules, [η] does not increase monotonically with molar mass, as implied by
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Equation (4) with a > 0, but rather exhibits a maximum, occurring at some generation g. This behavior
has been clearly shown in the case of PAMAM dendrimers [1,2,7], in Tri-PBzE dendrimers [8]
and in Phosphorous-containing dendrimers [9], as well as in non-regular hyperbranched PAMAM
molecules [10], but not in PPI dendrimers [11,12]. Clearly, the possibility remains that in the latter
dendrimers, the experimental generations up to g = 5 (the numeration started from 1) were not
large enough to display the maximum [η]. It is highly remarkable that these are the only systematic
studies that investigate the dependence of [η] from the dendrimers generation and, to some extent,
on the spacer length between adjacent branch points. Therefore, further experiments on higher-g PPI
dendrimers and on further chemically different dendrimers would be most welcome to clarify this
issue and to check whether the maximum [η] is indeed really a distinctive signature of the dendrimer
topology irrespective of the local details.

Theoretical approaches to modeling the intrinsic viscosity do appear to show the same problem.
In fact, while molecular simulations always predict a maximum [η] for some g value (even though
quantitative discrepancies may sometimes be present), the predicted results of analytical theories are
less clear, in a way. In fact, while this maximum was predicted with some specific conformational
dendrimer models [29,33], with other models [19,20,25], this maximum was not predicted, at least for
the number of generations taken into account. It is interesting, however, to stress that in Reference [29],
the calculations of Reference [19] were extended to higher g values, producing a maximum [η], albeit not
one in the correct position for most of the above-mentioned dendrimers. This result, and the trend in
the calculated [η] values strongly suggest that in all cases, this maximum would indeed be present,
albeit at a very high g and in a position not consistent with the experimental data.

There is a more general issue related with the conclusion of the previous paragraph. The intrinsic
viscosity of dendrimers was investigated in analytical theories using two different viewpoints.
The first one consists of applying the theoretical approach followed for linear (and star) polymers
to dendrimers, obviously with the correct molecular topology [19,20,25]. The second one introduces
some ad hoc assumptions that can be qualitatively justified in intramolecularly dense systems such
as dendrimers [29,33], but which would not apply to linear chains. It could therefore be argued that
a full, consistent theory that can be applied to polymers of any topology and is in good agreement with
experiments is still lacking. In the same spirit, we also point out that the approach of Lu et al. [34,35],
which we described as a mesoscopic model of polymers, appears to be satisfactory for all of the above
topologies, but in our opinion it lacks a sound microscopic model, such that in this case, too, further
analysis would be welcome.

Other experiments are able to probe more directly the intramolecular dynamics of dendrimers,
in particular at the so-called segmental scale. These experiments can probe the mechanical behavior
under applied oscillatory stress through the viscoelastic complex modulus in terms of [G′] and
[G”], that is, the storage and the loss modules, as a function of the applied frequency ω. In this
connection, it should be pointed out, however, that certain approaches did not show any maximum
as a function of g for intrinsic viscosity, for instance, Reference [20], unlike other studies that did
so, such as [29], while the results obtained for the viscoelastic complex modulus were qualitatively
quite similar, being different only in the details. Accordingly, this experimental technique appears to
depend on topology, but does not allow for clear discrimination between different theories. Another
experiment probing the segmental dynamics, or more precisely the intramolecular correlation among
the beads at different times, consists of quasi-elastic scattering, measuring the dynamic structure factor.
Unfortunately, very few experimental data of this quantity are available for dendrimers in solution,
unlike what can be found for linear and, at least in part, for star polymers. At the same time, only
a few theoretical investigations have explicitly considered this quantity (apart from References [19,24]),
and even fewer through experimental studies (see Reference [53]), where these could provide important
information. We thus believe that more experiments and modeling studies of the dynamic structure
factor of dendrimers and of highly branched polymers would be most useful.
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We feel that future experimental and theoretical work on these issues will eventually provide
useful information for tuning the behavior of dendrimers, either in themselves or after suitable
functionalization of the end units or, in some cases, also in their interior parts, for a wide range
of applications ranging from drug delivery systems [3] to nucleic-acid transfection system [5] and
theranostics [6] or nanomedicine, catalysis and molecular electronics [4]. The still growing interest
in these highly branched molecules is also evident in most recent extensive reviews discussing,
for instance dendrimer-based nanoparticles for cancer treatment as drug carriers through non-covalent
encapsulation or bound to the functionalized ends [62], or dendrimers acting as electrochemical
biosensors and sensors through functionalization of the free ends [63], and dendrimers having
functionalized ends for the removal of contaminants in water environment [64]. It is remarkable that in
these applications, the dendrimer dynamics is relevant for the release of the encapsulated molecules, or
for an efficient functionalization of the free ends that must be mostly found at the molecular envelope
in order to achieve their maximum efficiency.
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