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Abstract

Atmospheric pollution of particulate matter (PM) is a major concern for its deleterious effects on
human health and climate. Over the past 50 years, Equatorial Asia has experienced significant
land-use change and urbanization, which have contributed to more intense and frequent extreme
PM concentrations associated with increased anthropogenic and wildfire emissions. Recent
advances in remote sensing instrumentation and retrieval protocols have enabled effective
monitoring of PM from space in near real time with almost global coverage. In this study,
long-term satellite-based observations of key chemical and physical parameters, integrated with
ground-based concentrations of PM with aerodynamic diameter <10 ym (PM;) measured at 52
stations, are used to develop a machine learning approach for continuous PM;y monitoring. As
PM atmospheric pollution, like most of environmental processes, is highly non-linear and
influenced by numerous variables, machine learning approaches seem very suitable. Herein, deep
neural networks are developed and tested over different temporal scales and used to map PM;
over Equatorial Asia during the period 2005-2015. The proposed model captures both PMj
seasonal variability and the occurrence of extreme episodes, which are found to impact air quality
on the regional scale. The modeled annual mean fine PM (PM, 5) concentrations are used to
estimate long-term premature mortality. This study indicates that the region is experiencing
increasing mortality rates related to long-term exposure to PM, 5, with 150 000 (108 000—193 000)
premature deaths in 2005 and 204 000 (145 000—260 000) in 2015. This is mostly due to air quality
worsening and high population growth in urban areas, although the contribution of years of

intense wildfires results as well significant.

1. Introduction

Atmospheric particles (i.e. aerosols) have been shown
to be responsible for increased morbidity and prema-
ture mortality (Cohen et al 2017, Burnett et al 2018),
particularly in developing countries, where extreme
aerosol episodes are more frequent and intense than
in high-income countries (WHO 2018). In recent
decades, many countries worldwide have experi-
enced rapid development, with fast economic growth,
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industrialization and urbanization (Muntean 2018,
United Nations 2018), which have led to increased
primary emissions and enhanced secondary forma-
tion of aerosols in the atmosphere.

To improve understanding of atmospheric pollu-
tion impacts and inform policymakers on effective
mitigation strategies, there is a strong need to assess
aerosols’ properties at high spatio-temporal resolu-
tion. This includes information on the distribution of
particulate matter (PM) with aerodynamic diameter
smaller than 10 ym and 2.5 pm (PM;y and PM;,
respectively). Large uncertainties in the estimates of
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PM environmental and societal impacts arise from
the incomplete understanding of the key controls
dictating the spatio-temporal variability of degraded
air quality conditions and extreme aerosol events.
Multiple factors, including climate variability, met-
eorological conditions and land-use change, poten-
tially play different and changing roles in increased
occurrence of extreme pollution episodes globally
(Jacob and Winner 2009, Fiore et al 2012, Hong et al
2019, Turnock et al 2020).

Data from monitoring networks are frequently
used to produce localized assessments, but their
spatio-temporal coverage degrades dramatically in
developing countries, where air quality is gener-
ally worse and in need of monitoring. Advances in
satellite-borne instrumentation and data retrieval
protocols now allow identification of pollution
sources and detailed monitoring of atmospheric
properties and thus of air quality conditions with
almost global and near real-time coverage. Multiple
mathematical approaches have been proposed to
infer ground-level PM concentrations from satel-
lite retrievals of column integrated aerosol optical
depth (AOD). Simple statistical linear models (LMs)
have demonstrated high potential for global map-
ping (Donkelaar et al 2010, Reid et al 2012) and
more sophisticated proxies have been also success-
fully proposed to predict ultrafine particle concen-
trations (Kulmala et al 2011, Crippa et al 2013) and
to account for aerosol dynamics (Sullivan et al 2016,
Crippa et al 2017). However, LMs present limited
skills in predicting PM;( spatio-temporal distribu-
tion and cannot capture mechanisms involved in
aerosol dynamics, chemistry and transport processes
which are characterized by a strong non-linearity and
interactions between variables (Seinfield and Pandis
2016). To overcome major limitations of prior stud-
ies, machine learning approaches represent a unique
opportunity given their high predictive skills (Grguri¢
etal 2014, Lietal 2017, Chen et al 2018, Di et al 2019,
Shtein et al 2019) and low computational expense
compared to the widely used Earth System Models
(Huntingford et al 2019, Reichstein et al 2019). Spe-
cifically, artificial neural networks have shown to be
one of the most effective and low-demanding tools in
predicting the spatio-temporal distribution of both
gaseous pollutants and atmospheric PM (Feng et al
2019, Lautenschlager et al 2020), especially over areas
with sparse monitoring sites (Alimissis et al, 2018).

The present study develops a novel and general
Deep Learning approach for spatially and temporally
continuous air pollution mapping based on a suite
of satellite retrievals. As previous studies mainly rely
on AOD, meteorological and land-use data to infer
ground-level PM (Ma et al 2014, Wei et al 2019),
this machine learning application aims to account
for chemical processes connected to primary and
secondary aerosol formation/evolution and for dif-
ferent emission sources by exclusively relying on
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satellite-retrieved data. Moreover, the presented
application targets an entire decade (2005-2015),
with the purpose to quantify and capture spatio-
temporal patterns and long-term trends in PMj,
and PM, 5 concentrations and their epidemiological
impacts. Specifically, this work aims to (i) investigate
the predictive skills of a set of satellite-based prox-
ies in reproducing ground-level PM;, through deep
neural networks (DNNs), (ii) explore the predicted
seasonal and inter-annual changes in air quality over
the period 2005-2015 in response to variable atmo-
spheric composition, land use and emissions, and
(iii) analyze the chronic health impacts due to PM; 5
exposure. The focus is on Equatorial Asia, a tropical
region particularly sensitive to changes in climate that
in recent decades has experienced significant urban-
ization and land-use/land-cover change (Field et al
2009, Gaveau et al 2014). Recent studies have shown
that haze episodes and extreme air pollution con-
centrations have become more frequent due to both
increased local/urban emissions and transbound-
ary pollution (Aouizerats et al 2015, Lee et al 2018,
Hansen et al 2019, Alifa et al 2020). Equatorial Asia
is also currently one of the most densely populated
regions in the world, thus the need of improving air
quality to reduce harmful impacts on human health
is particularly pressing.

2. Data

2.1. PM,, observations

Long-term observations of PM;, concentrations from
a network comprising 52 ground-level monitor-
ing stations across Peninsular Malaysia and Malay-
sian Borneo are analyzed (figure 1). The sites have
been active during the period 1997-2015 and mon-
itored PM;, concentration through beta attenuation
or tapered element oscillating microbalance instru-
ments, as part of the continuous air quality monit-
oring program of Malaysia. Measurements have been
standardized using universal calibration approaches.
In this work, daily mean PM;q, values are used
to investigate air pollution variability at multiple
time scales, including monthly, seasonal, annual, and
inter-annual.

2.2. Satellite observations of aerosols, atmospheric
trace gases and land use

Satellite retrievals of aerosol properties, trace gases
and land use are used to develop a satellite-based
proxy able to capture the variability of ground-level
PM¢. Key features of the analyzed satellite retrievals
are summarized in table S1. Specifically, our proxy is
based on:

e Aerosol optical depth (AOD) data from MODIS
(Moderate-resolution Imaging  Spectrora-
diometer) Collection 6 deployed onboard the
NASA Terra and Aqua satellites. Level 2 (L2)
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Figure 1. Analyzed region and location of the 52 ground-based stations monitoring PMg (blue triangles). The color shading
indicates satellite-retrieved tropospheric column NO, [mmol m~?2] averaged during 2005-2015.

daily AOD (at the A = 550 nm wavelength)
at 1 km x 1 km resolution from the multi-
angle implementation of atmospheric correc-
tion (MAIAC) algorithm (Lyapustin et al 2018)
is used. MAIAC is chosen because characterized
by a wider spatial coverage and higher retrieval
accuracy, compared to other algorithms applied in
neighboring regions (Mhawish et al 2019). AOD
is chosen as a proxy for suspended aerosols in the
atmosphere, including fine solid PM. Over land,
95.5% of the AOD data used have the highest qual-
ity in the MAIAC product.

Column water vapor (CWV), retrieved as a daily,
1 km x 1 km resolution data from MODIS on
Terra and Aqua, and corrected through MAIAC.
CWV is considered as indicator of liquid suspen-
ded particles/droplets, which affect AOD measure-
ments as absorbing part of the radiation detected
by MODIS.

Normalized difference vegetation index (NDVI),
retrieved as monthly Level 3 (L3) 1 km x 1 km
resolution quantity from MODIS onboard Aqua.
NDVI denotes the vegetation surface coverage and
is used as a proxy of natural emissions of PM pre-
cursors (e.g. volatile organic compounds (VOCs),
mainly isoprene), as well as an important absorber
of both atmospheric PM, and its gaseous precurs-
ors (Nowak et al 2014, 2018).

Carbon monoxide (CO), tropospheric amount
derived from the Measurements of Pollution in
the Troposphere (MOPITT) sensor onboard Terra
(Deeter et al 2017), as gridded L3 (Version 8)
monthly averages at 1° x 1° latitude x longit-
ude resolution. CO is taken into account as an
indicator of primary PM emissions derived from
both anthropogenic (e.g. traffic) and natural (e.g.
wildfires) combustion processes.

e Urban fraction (UF), from the Consensus Land-
cover dataset (Tuanmu and Jetz 2014), as a single
satellite image with 30-arc-second spatial resolu-
tion (~1 km at the equator). UF is included, as
expected to be positively associated with anthropo-
genic emissions of both primary PM,, and gaseous
precursors of secondary aerosol.

Tropospheric amounts of trace gases and ultra-
violet (UV) irradiance, measured by the ozone mon-
itoring instrument (OMI) onboard the NASA’s Aura
spacecraft, are also considered in this study as key
precursors of both inorganic and organic secondary
atmospheric PM:

e Nitrogen dioxide (NO,), daily  tropospheric
column, cloud-screened at 30%, with 0.25 x 0.25°
latitude x longitude resolution from the
OMNO2d (V3) L3 product (Duncan et al 2018).

e Sulfur dioxide (SO,), daily L3 column amount
within the planetary boundary layer (OMSO2e,
V3) at 0.25° x 0.25° resolution (Krotkov et al
2008).

e Formaldehyde (HCHO), daily L3 weighted mean
global V3 (OMHCHOd) HCHO column amount,
gridded at 0.1° x 0.1° resolution. HCHO is
included, similarly to (Sullivan et al 2016), as a
proxy for the availability of secondary organic aer-
osol precursors (e.g. VOCs).

e Ultra-violet irradiance (UV), daily gridded L2
retrieval (OMUVBG, V3) at 0.25° x 0.25° resolu-
tion, measured at A = 310 nm. UV is considered as
the main energy source of the photochemical reac-
tions that lead to secondary aerosol formation.

2.3. Population data
Population data are retrieved from the Socioeco-
nomic Data and Application Center (SEDAC) census
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archived in the NASA Earth Observing System Data
and Information System. Population counts, available
at1km x 1 km resolution for the years 2005, 2010 and
2015, are upscaled to the reference grid by summing
all the cells falling inside each 0.25° x 0.25° square
unit. A linear regression across the 3 available years is
performed for each grid cell i to account for the differ-
ent demographic growth rate across the whole region
for all other intermediate years.

3. Methods

3.1. Data pre-processing

To test models skills in predicting ground-level PM,,
satellite data are extracted by averaging the values
of the pixels falling within a 20 km radius around
each measuring station. The radius choice derives
from our sensitivity analysis that identifies the min-
imum radius maximizing the correlation between
daily PM;y and AOD while retaining an appreciable
number of non-missing data over the entire period
2005-2015. AOD averages are computed if at least 5%
of the total number of pixels inside the 20 km radius
are non-missing data.

An autocorrelation analysis is performed at each
site to quantify the actual scales of PM;, temporal
variability. As the PM;, autocovariance function dis-
plays an exponential decay (also shown by (Alifa et al
2020)), the mean autocovariance among sites reaches
the value of 1/e (~0.37) at a lag equal to 7 d (figure
S1 (https://stacks.iop.org/ERL/15/104088/mmedia)),
thus we average daily PM;y concentration using a 7-d
moving average without discarding significant tem-
poral variability. This moving average is applied only
when at least 3/7 values are non-missing. An analog-
ous moving average is applied to daily values of AOD,
CWYV, NO,, SO,, HCHO and UV. Monthly satellite-
retrievals of CO and NDVT are replicated on a daily
basis for each month and a 7-d moving average is
applied to smooth the transition between consecut-
ive months.

Satellite retrievals are homogenized to the refer-
ence OMI 0.25° x 0.25° (latitude x longitude) grid
when aiming to predict PM;o maps over Equatorial
Asia. As CO is available at 1° x 1° resolution, each
grid cell is divided into 16 sub-cells containing the
same value of the initial one to match the reference
grid.

3.2. Deep neural networks

DNNs are powerful non-parametric approaches to
explain highly non-linear relationships between input
and output (Goodfellow et al 2016) and hence appro-
priate to explain atmospheric chemistry processes in
the Earth system (Reichstein et al 2019). Here DNNs
are trained using satellite data extracted with a 20 km
averaging radius around each station and aggregated
with a 7-d moving average. Based on our sensitivity
analysis on model performance (figure S2), we define
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our DNN to comprise two subsequent hidden layers
of ten and nine nodes, respectively. Given the 9 inputs
and 1 output, the total number of model’s parameters
is 209 (figure S3). DNNs are trained on a randomly
extracted 80% subset of all available data; then, val-
idation is performed on the remaining 20%. The data
for DNN are selected when all the nine input variables
are non-missing at the same time-step. One hundred
trials are performed to eliminate the dependence of
model performance on individual random sampling
of training data. The overall performance of DNN is
evaluated with the Pearson () and Spearman (p) cor-
relation coefficients between observed and modeled
values. The model bias and error are quantified on a
seasonal basis using the normalized mean bias factor
(NMBF) and the normalized mean absolute error
factor (NMAEF) (Yu et al 2006), defined as:

> (mi—oi)
o
i (1
> (mi—oi)
2mi

ifim >0

S (Imi—oi])
NMAEF= " ifin >0
>0

S (Jmi—oi])
NMAEF = = ifin <
> m

(2)

where m; represents the estimated PMj, and o; the
observed one, while m and o their associated means
and n the number of samples of the entire dataset.
DNN predictive skills are also compared against the
performance of a LM having the same input and
output variables. Moreover, as seasonal phenomena
(mainly monsoons and wildfires) are present in the
analyzed area, model evaluation is also performed
over distinct seasons: winter, spring, summer and fall
(DJE, MAM, JJA and SON, respectively).

To predict annual mean PM, spatial fields, other
DNNs are trained on monthly aggregated data. PM;
patterns are thus predicted from the monthly aggreg-
ated satellite variables homogenized to the reference
grid at 0.25° x 0.25° resolution. Due to the presence
of several missing values in satellite-retrieved CO, the
aforementioned monthly based DNNss are integrated
with an additional DNN trained by excluding this
variable and used on grid cells where CO is missing.
Monthly PM;y maps at 0.25° x 0.25° resolution are
finally averaged on a yearly basis, to obtain annual
maps during 2005-2015.

A sensitivity analysis performed on a set of
meteorological parameters obtained from the
Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA2, (Gelaro et al
2017)) indicates that meteorological variables do
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not enhance DNN performance on a monthly basis
(see table S2), while they are more relevant over
shorter time scales and when more data are available
(table S3). Thus when aiming to predict annual mean
PM,, fields, meteorological data are not incorporated
into DNN.

3.3. Premature mortality estimates
We apply the global exposure mortality models
(GEMMs) (Burnett et al 2018) to estimate the mortal-
ity burden associated with the satellite-derived PM;,
concentrations. As GEMMs require PM, 5 data, we
estimate the PM, 5/PMq ratio from simulations of
the Weather Research and Forecasting model with
Chemistry (WRF-Chem) presented in (Crippa et al
2016) for September, October and November 2015.
The annual domain average PM, s/PM;, retrieved
by assuming September and October to be wildfire
months and November being representative of the
other 10 ‘ordinary’ months, is estimated by averaging
all the on-land grid cells. A value of 0.622 £ 0.036 is
found, consistent with (Amil et al 2016).

The relative risk (RR), which is the probability of
a fatal outcome from a specific disease due to PM, 5
chronic exposure divided by the risk of the same out-
come in the case of no-exposure, is calculated for each
grid cell i and year, following (Burnett et al 2018):

RR, — exp (91g<+l>)> )

1+exp (— 2‘%“

where 0, o, u, are age and disease-specific paramet-
ers and z; the maximum between zero and the differ-
ence between PM, 5 concentration in grid cell i and
the no-observed-effect concentration (2.4 ug m=2).
RR is calculated by referring to 5-year age groups
>25yearsold (i.e. 25-30, 31-35, 36—40... 80 plus) and
to four chronic diseases: chronic obstructive pulmon-
ary disease (COPD), lung cancer (LC), ischemic heart
disease (IHD) and stroke (S).

The premature deaths in each year and grid cell 7
are computed as:

RR; —1

Deaths; = RR -B-P; (4)
1

where P; is the total population living in cell i for a
specific year and B the yearly baseline mortality for
a specific chronic disease, derived from the Global
Burden of Disease (Naghavi et al, 2017). The total
population living in the region in figure 1 is con-
sidered for the health impact assessment. The uncer-
tainty of (i) PM,5/PM;, ratio, (ii) GEMMs para-
meter (0) and (iii) B, is propagated into the estim-
ates of yearly premature deaths with a Monte Carlo
approach on 10000 simulations, assuming a Gaus-
sian distribution of each of the parameters, similarly
to (Giani et al 2020). Estimation of the uncertainty
associated with DNNs parameters remains an open
question in computer science (Goodfellow et al 2016),
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thus the uncertainty from PM; predictions cannot be
included in our assessment.

4, Results

4.1. Sources of seasonal and inter-annual
variability of air quality in Equatorial Asia

During 2005-2015, significant seasonal patterns
are observed in ground-measured PM,y, with
highest concentrations during summer and low-
est in winter (figure S4). The mean PM,, aver-
aged across all stations is higher during Jun—Aug
(50.90 + 23.63 ug m—>) and lower during Dec—Feb
(45.63 & 15.71 ug m—3). This is related to the occur-
rence of monsoon cycles characterized by a dry period
during May-September (Southwest Monsoon) and
a wet period during November—March (Northeast
Monsoon). Higher PMj levels are likely during the
Southwest Monsoon, as humidity is lower, rainfall is
less frequent (Tan et al 2015) and widespread wild-
fires may occur, particularly during drought years
enhanced by intense El-Nifio Southern Oscillation
(ENSO) conditions (Marlier et al 2012, Field et al
2016). PMj, peaks appear in fall 2006 and 2015
(figure S4), due to the dry conditions brought by
ENSO and associated wildfires. During these years,
central Sumatra and southern Borneo were hotspots
of intense and widespread wildfires, which degraded
air quality in surrounding areas (Crippa et al 2016,
Field et al 2016). In addition to PM;, seasonal vari-
ability due to climate and meteorological conditions,
satellite retrievals also display a strong seasonality
which may also explain the PM,, variability. AOD
and CO show a strong seasonality, with highest val-
ues over southern Borneo and central Sumatra during
fall (figures S5 and S6), as a result of the Southwest
Monsoon and possible wildfires occurrence. A sea-
sonal pattern is also noticeable in SO,, which high-
lights the impact of volcanic emissions (Carn et al
2017), especially over Java island and during winter
(figure S7). Conversely, no clear seasonal pattern is
observed for NO, and HCHO (figures S8 and S9),
which however clearly identify key anthropogenic
sources. Given the significant seasonal variability of
the predictors, our DNNs are developed on a seasonal
basis to capture seasonal phenomena key to explain
PM,, variability and ultimately improve satellite-
based PMy predictions.

4.2. Model evaluation

The evaluation of seasonal DNN performance and
comparison to LM, as described in section 3.2, are
here presented. Significantly higher r and p are found
for DNN compared to LM (table 1), which indicate
that DNNs present higher performance in predict-
ing ground-level PM,, values. This is likely due to
the presence of non-linear mechanisms and interac-
tions between variables, typical of environmental pol-
lution systems, which are not captured by the LM. The
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Table 1. DNN and LM performance on 7-d moving average PM
data. Statistical metrics include correlation coefficients (r and p)
as well as NMBF and NMAEEF (see definitions in Methods)
computed on validation data (i.e. 20% of the sample size 1).

Seasons Model r p  NMBF NMAEF n

DNN 0.694 0.628 0.0001 0.1891

Winter 1M 0453 0372 —0.0438 02442 1770
. DNN 0.643 0.544 0.0007 0.2018

SPring I\ 0488 0379 —0.0421 02369 050

ummer NN 0744 0,628 —0.0025 0.2208 o

LM 0.598 0.553 —0.0482 0.2589

DNN 0.777 0.656 —0.0004 0.2018
Fall LM 0.684 0.565 —0.0403 0.2420 8335

accuracy of DNN predictions is also higher, as both
model bias (NMBF) and absolute error (NMAEF)
are significantly closer to 0. Moreover, while LM
underestimates PMo observations in every season,
DNN presents a negative NMBF in summer and fall,
when PM; peaks generally occur, and a slightly over-
estimation in winter and spring. NMBF remains any-
way modest and lower compared to prior chemical
transport model simulations performed over the area
(Gao et al 2014, Crippa et al 2016).

The seasonal variability of model performance
reflects the complexity of the relationship between
dependent (measured PM,o) and independent vari-
ables (satellite-retrieved). DNNis skill on relatively low
PM;y (~40 pug m™—>) remains similar among sea-
sons; however, the occurrence of higher PM¢ in sum-
mer and fall favors an improved fit, with the model
being able to estimate a wider range of values (figure
§10). Such model behavior suggests the presence of a
baseline PM level that cannot be fully explained by
the predictors included in the model. Some satellite
retrievals are also subject to higher uncertainty when
aiming to detect low levels of trace gases, thus other
predictors, such as meteorological variables, may be
included to provide additional information on PMy,
variability.

DNN seasonal performance is generally higher
when input data are aggregated on a monthly basis.
The monthly averaging reduces some short-term
variability, while still capturing seasonal patterns,
and produces a non-negligible increase in the linear
correlation coefficients r and p, compared to DNN
trained on 7-d moving averages (table 2 and figure
S11). In this case, training is performed on all the
available data, as the monthly temporal aggregation
reduces the sample size by an order of magnitude and
precludes generating random samples, representative
of most of data variability, for training and validation.

4.3. Spatial variability in annual PM;o and PM, 5
concentrations

DNN trained on monthly aggregated data are applied
to predict annual mean PMjy at 0.25° x 0.25°
resolution. The estimated annual PM;, means are
slightly underestimated compared to the observed
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Table 2. DNN statistic metrics for model evaluation. Comparison
between DNN trained on data aggregated with 7-d moving
averages (MA) and monthly means (MM). Statistical metrics of
model performance are computed using the entire sample size n,
differently from the results shown in table 1, which refer to the
validation on 20% of all available data.

Season Model r p NMBF NMAEF n

0.731 0.666 —0.0004 0.1779 11775

Winter M.
MM 0.712 0.668 —0.0004 0.1594 1112
Spring MA  0.694 0.578 0.0002 0.1921 15830
MM 0.724 0.679 —0.0009 0.1491 1393

0.786 0.644 —8.625e-05 0.2087 15845

A
Summer \ o 0.805 0759 0.0009  0.1474 1466
gl MA 08250690 —0.0003  0.1873 8335

MM 0.905 0.741 —0.0009  0.1423 1081

values (mean bias of —3.15 g m™> over the entire
period). Figure 2 compares two ordinary years (i.e.
2008 and 2014) against 2006 and 2015, which instead
experienced widespread wildfires and, consequently,
intense haze phenomena and extreme concentrations
particularly in southern Borneo and central Sumatra.

Diffusion and dispersion phenomena are also
captured by the model, as wildfire emissions appear to
have spread towards densely populated areas (mostly
Singapore and Kuala Lumpur), as also identified in
prior modeling studies (Crippa et al 2016, Lee et al
2018, Mead et al 2018).

High values of PMjy (>50 ug m~2) also occur
over Peninsular Malaysia, central/eastern Sumatra
and part of Java every year (see figure 1 for the loc-
ations of these islands), due to the combined effect
of local emission sources and transnational pollu-
tion transport (Lee et al 2016). Urban scale pollu-
tion is also captured by the model, as localized pollu-
tion peaks are present over metropolitan areas includ-
ing Singapore, Jakarta and Kuala Lumpur. The yearly
average PMj, over these areas always exceeds the
World Health Organization threshold of 50 g m™2,
thus suggesting that both wildfires and large anthro-
pogenic emissions are critical in deteriorating the
regional air quality and lead to potentially severe
impacts on human health. Analogous results are
found for yearly maps of PM, 5 where most of the ana-
lyzed domain exceeds the yearly average WHO stand-
ard of 10 ug m—3 (figure S12).

4.4. Trends in human health impacts
Yearly satellite-based PM, spatial fields, generated
with DNNs, are converted to PM,s maps (see
example in figure S12) using a PM,s5/PM;, ratio
estimated from WRF-Chem (see Methods) and fed
to the GEMMs. Premature deaths are computed for
each year by integrating the estimated RR with popu-
lation distribution maps. The total premature mortal-
ity burden and the associated 95% confidence interval
(C.L.) are reported in table 3.

The most relevant diseases over the analyzed
decade are IHD and stroke, which on average
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Table 3. Total estimated premature deaths associated with PM, 5 and 95% confidence interval (C.I.) (columns 2 and 3, respectively) over
the analyzed domain for each year during 2005-2015. Columns 4-7 indicate the percentage of premature deaths associated with each of
the diseases analyzed (see section 3.3 for their definition). Column 8 contains the total exposed population (in millions) over the

analyzed domain.

Year Total Deaths 95% C.I. %COPD %LC %IHD %S Population
2005 149500 108 400-193 400 10.51 6.97 49.20 33.31 284
2006 158 200 111 100-202 300 10.84 6.95 48.51 33.70 289
2007 149500 106 000-193 500 10.69 7.02 49.57 32.72 294
2008 159 800 112200-205 600 10.35 7.07 49.54 33.05 298
2009 162100 115300-210 100 10.41 6.87 49.66 33.06 303
2010 160700 113 600-206 800 10.07 7.04 50.42 32.47 308
2011 173900 124200-223 400 10.00 7.08 49.97 32.95 313
2012 170900 122 800-218 400 9.91 6.99 50.40 32.71 317
2013 173 500 122 800-224 400 9.71 7.08 50.56 32.65 322
2014 191000 137 100-245 000 9.60 7.22 49.50 33.68 327
2015 203900 145 200-260 100 9.50 7.24 49.22 34.04 332

contribute to 49.69% and 33.12% of the premature
deaths, while COPD and LC are responsible for the
10.14% and 7.05%, respectively. A positive trend is
seen in the absolute number of estimated deaths,
partially due to the significant population growth
over the area: from ~284 M in 2005 to ~332 M in
2015. A rise through the years is evident also when
the number of deaths is normalized by the exposed
population: the mean trend, calculated by exclud-
ing 2006 and 2015 as ‘extraordinary’ wildfire years,
is significantly increasing (45.19 deaths/Mpop/year,
p-value = 0.033, figure 3). The trend including all
years would be +6.38 deaths/Mpop/year. This sug-
gests that regional air quality has deteriorated and its
effects enhanced during the past decades, especially
over big cities, where the majority of people lives and
population growth rates are higher. The effect of wild-
fire occurrence is clear, particularly in 2015, and to
a lower extent in 2006. The number of deaths per

million inhabitants in these years is in fact higher than
the mean trend. The same happens in 2014, although
less affected by wildfires, as it presented higher
mean concentrations than other years (figure 3). Our
mortality rate of ~570 deaths/Mpop/year for the
four analyzed diseases, quantified as the mean trend
in figure 3, moderately underestimates the World
Health Organization value of 676.4 deaths/Mpop/year
for 2016 (computed as the mean rate for Indonesia
and Malaysia) (WHO 2020).

The total burden of PM, s-related deaths during
2005-2015 is mapped to highlight the most impacted
regions (figure 4). Big metropolitan areas, includ-
ing Jakarta, Singapore and Kuala Lumpur, stand out
clearly as the most affected areas. This is certainly due
to the large population, but PM; 5 also plays a crucial
role, as it peaks over those locations (figure 2). Other
PM, s-related health effects, beyond to big cities, are
prominent in highly urbanized areas, such as Java
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Figure 3. Annual median premature deaths (white line) per million people due to PM, 5 chronic exposure. The blue shading
indicates the standard deviation computed through Monte Carlo approach, assuming a Gaussian distribution of death estimates.

2010 2011 2012 2013 2014 2015
Year

cell with 0.25° x 0.25° resolution.

10'N 30000
'*-' 10000
)
5N
1000
v
100
58 110
10°S 1
90 E 95’ E 100" E 105 E 110°E 115 E 120E 125 E 130°E

Figure 4. Cumulative premature deaths associated with long-term exposure to PM» 5 concentrations during 2005-2015, as
estimated by applying GEMMs to the satellite-based estimates of annual mean PM; 5. The number of deaths refers to each grid

and the west coast of Peninsular Malaysia. Health
effects of wildfires are instead moderate over southern
Borneo and central Sumatra, which are sparsely
populated (figure 4). Conversely, wildfire contribu-
tion to premature mortality is most likely determined
by transport phenomena from burnt areas to densely
populated areas, thus impacting the total amount of
victims (table 3).

5. Conclusions

In this study, we develop a novel DNN approach
trained on a suite of satellite-retrieved variables

related to atmospheric physics and chemistry,
and land use, to remotely predict ground-level
PM;o concentrations. The model is developed for
Equatorial Asia but its applicability extends to any
region with a sparse monitoring network. DNNs gen-
erally show enhanced predictive skills and lower bias
compared to the more classical LM approach, as able
to capture significant non-linear mechanisms and
variable interactions dictating PM;, concentrations.
On a seasonal basis, the dry period brought by the
Southwest monsoon, possibly enhanced by ENSO,
is found to be associated with higher PM;, that lead
to an improved model performance during summer
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and fall. Higher PM in the fall is associated with the
less frequent wet deposition processes and enhanced
wildfires occurrence, which determined the extreme
haze events recorded in 2006 and 2015. As signi-
ficant spatio-temporal variability remains poorly
explained for relatively low PM,, future research
should focus on including additional meteorological
variables (e.g. wind speed/direction, ground temper-
ature and planetary boundary layer height), which
may enable description of aerosol vertical profiles and
transport and dispersion processes on the local scale.
Further, while this study shows high skill of DNN in
predicting surface PM concentrations, future invest-
igations could be directed to quantify the predictive
skills of a different machine learning approaches (e.g.
random forests, gradient boosting machine or mixed
models).

The annual PM,y, and PM;5 maps reveal sig-
nificant spatial and inter-annual patterns related to
both anthropogenic drivers and wildfires. The estim-
ated health impacts indicate that metropolitan areas
remain the most affected, due to the combined effect
of numerous anthropogenic emissions and high pop-
ulation density. Conversely, the effect of wildfires
dominates on the regional scale, as indicated by the
strong inter-annual variability in the number of pre-
mature deaths over the region, which are significantly
higher during fire years than adjacent non-fire years.
We also found a significant increasing trend of PM, 5-
related mortality of 41600 additional deaths per year
on average over 2005-2015. In addition to the popu-
lation growth, a possible explanation for this include
the ongoing urbanization and land-use and land-
cover changes, as well as large-scale climatic changes,
such as the enhanced intensity of ENSO and more
frequent wildfire events. Future research will be dir-
ected to attribute the role of these drivers through
numerical model simulations including different cli-
mate conditions and emission scenarios.
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