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Abstract—In this paper, we derive exact symbol error proba-
bility (SEP) expressions for orthogonal frequency-division multi-
plexing (OFDM) based on discrete fractional Fourier transform
(DFrFT) when symbol timing offset (STO) and carrier frequency
offset (CFO) are present together. Closed form expressions are
derived for binary phase shift keying, quadrature phase shift key-
ing, and 16-ary quadrature amplitude modulation in the case of
transmission over a frequency selective Rayleigh fading channel.
As it is well known, in OFDM the presence of CFO destroys the
orthogonality between the sub-carriers, generating inter-carrier
interference (ICI), while the presence of STO introduces intersym-
bol interference, between successive symbols, and phase rotations
in frequency domain, within the same symbol. It is well recognized
that an OFDM system based on DFrFT is more robust to ICI in-
troduced by CFO than that based on discrete Fourier transform
(DFT). Motivated by this, the combined effect of CFO and STO on
the SEP of a DFrFT-based OFDM system is analyzed. Our results
show that the DFrFT-based OFDM system outperforms that based
on the DFT for different values of the DFrFT “angle parameter.”
Monte Carlo simulations are used to demonstrate the correctness
of the derived analytical expressions.

Index Terms—Error rate analysis, sampling-type FrFT, fre-
quency selective fading, orthogonal frequency-division multiplex-
ing (OFDM), symbol timing offset, carrier frequency offset.

I. INTRODUCTION

IN the recent years discrete fractional Fourier transform
(DFrFT) has been proposed in many fields of digital signal

processing as a practical means of performing time-frequency
analysis [1], [2]. In the context of wireless communications, the
use of DFrFT was proposed in place of discrete Fourier trans-
form (DFT) as multi-carrier modulation technique for orthogo-
nal frequency-division multiplexing (OFDM). The advantages
of DFrFT over DFT in OFDM systems for transmission over 
doubly selective channels, i.e., channels that are selective both
in time and in frequency, were originally delineated in [3].

As is well known, the main advantages of OFDM are chan-
nel estimation, low-complexity equalization, efficient hardware
implementation, and easy realization of MIMO transmission.
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Due to all these supportive properties, the DFT-based OFDM
system has been adopted by many standards, such as wireless
IEEE 802.11a/g/n, local area networks, i.e., wireless metropoli-
tan area networks, i.e., IEEE802.16a, terrestrial digital video
broadcasting systems, and wireless cellular networks, i.e., 4th
generation (4G) Long Term Evolution and 5th generation (5G)
New Radio (NR) [4]–[7]. Concerning with 5G-NR, different
variants of OFDM, i.e., DFT-spread OFDM, filtered OFDM,
and windowed-OFDM, will play a key role in the scenarios
categorized in the 2020 time frame by International Telecom-
munication Union, which are defined by the following three
main groups [4]: i) enhanced mobile broadband (eMBB) [8]; ii)
massive machine type communication (mMTC) [9]; iii) ultra-
reliable and low latency communications (URLLC)[10]. Also,
many advanced technologies have been introduced to meet
the different requirements arising from the three groups, such
as, massive multiple input multiple output (MIMO) [11] and
millimeter-wave (mmWave) communication [12].

Although OFDM has several advantages, it also presents
some disadvantages that are mainly introduced by synchroniza-
tion issues like high sensitivity to symbol timing offset (STO)
and carrier frequency offset (CFO) [13]. CFO is due to either
mismatching of transmitter and receiver oscillators frequencies
or Doppler spread while STO is caused by the discrepancy
between the current sampling phase and the optimal one. The
presence of CFO destroys the orthogonality among sub-carriers,
which generates inter-carrier interference (ICI) [14]. The pres-
ence of STO introduces phase rotations in frequency domain,
within the same symbol, and intersymbol interference (ISI),
between successive symbols [13].

There are many synchronization techniques available in the
literature for estimating and compensating offsets in OFDM sys-
tems [15]. However, in the presence of oscillator drifts and time-
varying Doppler shifts, residual CFO and STO are still present
in the received signal after the application of synchronization
algorithms. In order to improve the robustness to residual CFO,
an OFDM system based on the use DFrFT was proposed by
Martone in [3]. This system is analogous to the conventional
OFDM one with the difference that DFT and inverse DFT
(IDFT) are replaced by DFrFT and inverse DFrFT (IDFrFT),
respectively. As observed by Martone, in case of a time-varying
frequency selective fading channel the entire conceptual frame-
work of frequency-domain channel partitioning, exploited by
DFT-based OFDM, loses its optimality. To counteract this draw-
back, Martone proposed the use of the DFrFT in OFDM where
orthogonal signal bases of chirp function with rate cot(α), be-
ing α the ‘angle parameter’, are used in place of the orthogo-
nal complex exponentials of DFT in the presence of Doppler

https://orcid.org/0000-0002-0016-1061
https://orcid.org/0000-0001-9288-0452
mailto:atul.kumar@polimi.it
mailto:atul.kumar@polimi.it
mailto:maurizio.magarini@polimi.it


effect. The main advantage of using orthogonal chirp function
consists in the control of the time-frequency partition of the
channel. Here, as already observed in the existing literature, the
same concept is used to mitigate the performance degradation
introduced by the loss of orthogonality due to CFO. Moreover,
concerning STO, it is here observed for the first time that DFrFT
is also beneficial in terms of performance. This is demonstrated
by quantifying its effect in an analytical expression of the term
responsible for introducing ICI and ISI, which is part of novel
contribution.

It is worth noting that the higher tolerance to CFO and STO
of DFrFT-based OFDM systems is achieved without any in-
crease in implementation complexity compared to efficient im-
plementation of DFT, which is known as fast Fourier transform
(FFT). However, in the literature several versions of DFrFT algo-
rithms have been proposed [16]. The proposed versions belong
to four different categories: eigenvector decomposition-based
method [17], weighted summation-based method [18], linear
combination-based method [19], and sampling-based method
[20]. As shown in Table I of [16], the complexity mainly de-
pends on the constraints set on the implementations of different
DFrFT algorithms. By following [16], we observe that when the
block of length N is a power of 2, the run time complexity of
DFrFT computation is in the order of O(N 2) for the eigenvector
decomposition and the weighted summation-based methods. In
contrast, the complexity of sampling and linear-based methods
is in the order of O(N log2 N), which is the same as that of FFT.
For the sampling-based method this complexity is achieved by
means of the Pei’s algorithm [21]. Concerning with the use of
DFrFT algorithm in OFDM, the most important property that
must be satisfied is the reversibility in the IDFrFT computa-
tion. For this reason, we focus on the closed-form type form
of sampling-based method that ensures such a property [22].
Note that, a further reduction in the complexity of DFT can be
achieved via a novel sub-linear algorithm, named sparse Fourier
transform, developed by Haitham et al. [23]. When the input data
have a large size with a sparse spectrum, this algorithm reduces
the complexity of DFT to O(log2 N ·√kN log2 N)), where
k stands for the number of large coefficients in the frequency
domain. Similarly, Liu et al. [22] proposed the sparse DFrFT
to achieve fast computation. These recent results about the low
complexity implementation of DFrFT are the main motivation
towards hardware implementations as, for example, those de-
scribed in [24].

An important measure to evaluate the robustness of DFrFT
with respect to residual CFO and STO is represented by the
error rate performance. Closed form expressions for the symbol
error probability (SEP) of a DFrFT-based OFDM system for
frequency selective fading channels in presence of CFO were
derived by many authors [25]–[29]. In [25], an exact bit error
probability (BEP) formula was derived for binary phase shift
keying (BPSK) transmission over the Rayleigh fading channel.
For the same modulation and channel model, the authors in [26]
analyzed BEP for the weighted-type DFrFT impaired by CFO.
Always considering BPSK, in [27] the exact BEP of the hyper-
bolic DFrFT was derived for transmission over the Rician fading
channel. In [28], the authors extended the work of [25] to the
case of quadrature phase shift keying (QPSK) and derived an
exact SEP expression for frequency selective Rayleigh fading
channel. Finally, the analysis done in [29] extended SEP perfor-
mance evaluation to the transmission over a Nakagami-m fading
channel both for BPSK and for QPSK modulation formats.

Fig. 1. DFrFT-based OFDM system model.

However, since it happens that CFO and STO are present si-
multaneously, a more complete picture is obtained by analyzing
the performance when their effect is considered together instead
of dealing only with CFO.

The main contributions of this paper are:
1) Definition of a DFrFT-based OFDM system model for a

generalized multipath channel that includes both CFO and
STO effects.

2) Derivation of exact SEP expressions for a DFrFT-based
OFDM system with simultaneous presence of CFO and
STO. The analytical closed form expressions are given
for BPSK, QPSK, and 16-QAM modulation formats in
case of transmission over a frequency selective Rayleigh
fading channel.

3) Derivation of the closed form expression of the optimal
DFrFT angle parameter α as a function of CFO.

The remaining sections are organized as follows. Section II
describes the DFrFT-based OFDM system model in presence of
CFO and STO. In Section III the derivations of exact SEP ana-
lytical expressions for BPSK, QPSK, and 16-QAM are given in
case of transmission over a frequency selective Rayleigh chan-
nel. Possible extension to the massive MIMO case is suggested
in Section IV. In Section V the derivation of an optimal closed
form expression for the DFrFT angle parameter is given. In order
to confirm the analytical results obtained in Section III, a com-
parison with Monte Carlo simulations is reported in Section VI.
Finally, conclusion is drawn in Section VII.

II. SYSTEM MODEL

Figure 1 reports the block diagram of the complex baseband
equivalent model of the DFrFT-based OFDM system. The trans-
mitter includes the encoder block and the serial-to-parallel (S/P)
converter block whose role is that of splitting the high data rate
stream into a number of N lower data rate parallel streams.
The IDFrFT is computed on a block of N information symbols.
To overcome the effect of ISI, a cyclic prefix (CP) is inserted
between successive OFDM symbols that consists of NC P sam-
ples, such that the length of the CP is at least equal to the
memory of the channel measured in sampling intervals. Under
this condition, the linear convolution between the transmitted
sequence and the channel is converted to a circular convolu-
tion. The cyclically extended sequence is first sent at the input
of a continuous-time pulse shaping filter and then transmitted
through a time-varying multi-path fading channel. At the re-
ceiving side, a white Gaussian noise is added to the continuous
time received signal and the resulting signal is filtered through
the receiving pulse shaping filter and sampled. The CP is then
removed and the resulting samples are S/P converted and sent



to the DFrFT block. The N samples at the output of the DFrFT
are equalized, again serialized, and finally decoded to produce
an estimate of the originally transmitted data.

A. Model of the Transmitted Signal

The input bit stream is encoded into symbols taken from
a given set of complex constellation points. The resulting N
complex symbols X(k), k = 0, 1, 2, . . . , N − 1, are fed into
the IDFrFT block, whose mth output sample is written as

x (m) =
N −1∑

k=0

X (k) F−α (m, k) ,m = 0, 1, 2, . . . , N − 1, (1)

where F−α (m, k) is the kernel defined as

F−α (m, k) =

√
sinα + j cos α

N

e
−j m 2T 2 c o t (α )

2 e
−j k 2u 2 c o t (α )

2 e
j 2π m k

N , (2)

being u the sampling interval in the fractional Fourier domain
and T the sampling interval in the time domain. The two sam-
pling intervals are related as u × T = 2π | sin(α)|

N . The angle be-
tween the fractional Fourier domain and the time domain is
α = a × π

2 , with 0 ≤ a ≤ 1, where a is a real number comprised
between 0 and 1. For α = π/2, that is a = 1, the DFrFT-based
OFDM converts into DFT-based OFDM.

A CP of length NC P is appended at the beginning of the
block of N samples x(m), m = 0, . . . , N − 1, given in (1). The
resulting discrete-time sequence is then applied at the input of
continuous-time baseband transmit filter with impulse response
gtx(t) that, in the following, is assumed to be a square root
raised cosine filter with unit energy. By following [30], when
dealing with the presence of STO a suffix of length NG must
be introduced in order to take into account of the effect, in
each time instant t, of the NG symbols that precede and follow
the actual one. Although in theory the length of NG for raised
cosine impulse responses should be set to infinite, in a practical
case we can assume for it a “finite” value, which depends on
the considered roll-off parameter. The value of NC P must be
chosen higher or equal to Lch − 1, where Lch is the length of
the channel measured in sampling intervals. In general, one has
NC P ≥ NG . However, if it happens that NC P ≤ NG we must
increase NC P to NG . Therefore, we have NC P = max(Lch −
1, NG ). The resulting baseband complex equivalent expression
of the the continuous-time OFDM signal is

s(t) =
N −1+NG∑

m=−NC P

x̃ (m) gtx (t − mT ) , 0 ≤ t < Ts, (3)

where Ts = NT is the OFDM symbol interval and

x̃ (m) =

{
x (N + m) , m = −NC P , . . . ,−1,
x (m) , m = 0, . . . , N − 1,
x (m − N − 1) , m = N + 1, . . . , N + NG.

(4)

B. Channel Model

The L-path tapped delay line baseband equivalent channel
model defined in [31] is here considered. According to this

model, the impulse response of the time-varying multi-path fad-
ing channel is defined as

h (t) =
L−1∑

l=0

hl (t) δ (t − τlT ) , (5)

where hl(t) is the complex amplitude, or tap coefficient, at time t
of the lth path associated with the propagation delay τlT , with τl

being a real positive number, and δ(t) is the delta Dirac function.
For the coefficients of the channel, we consider a model, where
hl(t), l = 0, 1, 2, . . . , L − 1, are independent and identically
distributed complex random variables with Rayleigh distributed
amplitude, uniform distributed phase in [0, 2π), and average
power σ2

l = 1/L. Therefore, σ2
0 + σ2

1 + · · · + σ2
L−1 = 1. In the

following, we consider the case where τl = l, which implies
having delays at integer multiples of T and, therefore, it results
in Lch = L.

C. Model of the Received Signal With CFO and STO

After transmission over the channel the received signal r(t)
is expressed as

r (t) =
L−1∑

l=0

hl (t) s (t − lT ) + w (t) , (6)

where w(t) represents the complex additive white Gaussian
noise (AWGN) at the receiver with power spectral density N0.
The signal in (6) is filtered by the receiving filter grx(t), which
is matched to gtx(t), to give

u (t) = r (t) � grx (t) , (7)

where � denotes linear convolution. In case of perfect synchro-
nization the only distortions are introduced by the multi-path
channel and by the Gaussian noise. However, due to estima-
tion errors, residual timing and frequency offsets exist. The
continuous-time model of the received signal that includes their
effects is

y(t) = ej2πΔf tu (t − ΔT ) , (8)

where Δf and ΔT denotes residual CFO and STO, respectively.
The received signal is sampled at time instants t = nT . After

removal of the CP, the resulting discrete-time signal model is

y (nT ) = e
j 2π Δ ε n

N

L−1∑

l=0

hl (nT )
N −1+NG∑

m=−NC P

x̃ (m)

g(nT − mT − lT − ΔT ) + w̃ (nT ) , (9)

where Δε = ΔfTs is the residual CFO normalized to the sub-
carrier spacing 1/Ts , w̃(nT ) = w(nT − ΔT ) is the AWGN,
and g(t) = gtx(t) � grx(t), which is a raised cosine impulse
response that satisfies the Nyquist condition for not having ISI
such as

g (t) =
sin πt

T
πt
T

· cos πρt
T

1 − ( 2ρt
T )2

(10)

with ρ denoting the roll-off factor [31]. By omitting T , the
fractionally Fourier domain signal after the DFrFT block is

Y (q) =
N −1∑

n=0

y (n) Fα (q, n) , (11)



where Fα (q, n) is the kernel defined as

Fα (q, n) =

√
sinα − j cos α

N
e

j n 2T 2 c o t (α )
2 e

j q 2u 2 c o t (α )
2 e

−j 2π n q
N .

(12)
Substituting the value of y(n) given in (9) into (11) we get

Y (q) =
N −1∑

n=0

{

e
j 2π Δ ε n

N

L−1∑

l=0

hl (n)
N −1+NG∑

m=−NC P

N −1∑

k=0

X(k)

F−α (m, k) g(n − m − l − Δθ) + w̃ (n)

}

Fα (q, n) , (13)

where Δθ = ΔT/T is the normalized residual fractional STO.
By following [30], we apply the change of variable n − m =
p + NC P in (15) to get

Y (q) =
N −1∑

n=0

{

e
j 2π Δ ε n

N

N −1∑

k=0

X(k)
n−N +1−NG −NC P∑

p=n

L−1∑

l=0

hl (n)

g(p + NC P − l − Δθ)F−α ((n − p − NC P )N , k)

+ w̃ (n)

}

Fα (q, n) . (14)

Also, by using the same approximation of [30], where g(t) ≈ 0
is assumed for |t| ≥ NGT , we obtain

Y (q) =
N −1∑

n=0

{

e
j 2π Δ ε n

N

N −1∑

k=0

X(k)F−α (n, k)
L−1∑

l=0

hl (n)

NC P∑

m=−NG

g(m − l − Δθ)e−j 2π
N km + w̃ (n)

}

Fα (q, n) . (15)

In order to have a more compact notation, a matrix represen-
tation is adopted. Also, we make the assumption of block fading
channel where the coefficients hl(n), with l = 0, . . . , L − 1, re-
main constant for the entire duration of the OFDM symbol,
i.e., hl(n) = hl . Let X = [X(0),X(1), . . . ,X(N − 1)]T be
the N × 1 vector of symbols applied at the input of the ID-
FrFT block to give the transmitted vector

x = F−αX, (16)

where F−α is the N × N IDFrFT kernel matrix whose element
(m, k) is given in (2). Similarly, for x̃(m), m = −NC P , . . . ,
N + NG , we define the vector

x̃ =
[
xT (N − NC P + 1 : N)xT xT (1 : NG )

]
, (17)

where x(n : m) denotes the elements of vector x from n to m
given by

x(n : m) = F n :m,k
−α (n : m, k), (18)

being F n :m,k
−α the (m − n) × N matrix obtained by taking rows

of F−α (n, k) from n to m, with m > n. After some mathemat-
ical manipulation we can rewrite (18) as

x̃ = F̃−αX, (19)

where F̃−α = [F̃
(N −NC P −1:N,k)
−α F−αF

(1:NG ,k)
−α ]. With the in-

troduced matrix notation, (9) is rewritten as the column vector

y = D(Δε)
L−1∑

l=0

hlGl(Δθ)x̃ + w̃, (20)

where D(Δε) = diag(1, e
j 2π Δ ε

N , . . . , e
j 2π Δ ε (N −1)

N ) is the residual
CFO matrix, with diag(·) denoting a diagonal matrix, w̃ =
[w̃(0), . . . , w̃(N − 1)]T is the noise vector, and Gl(Δθ) is the
time domain STO matrix. The received signal in the fractionally
Fourier domain is written as

Y = S(Δε,Δθ)HdX + W̃ , (21)

where S(Δε,Δθ) = F αD(Δε)F−αG̃(Δθ), W̃ = F αw̃ is
the noise vector, and G̃(Δθ) is a diagonal matrix represented as

G̃(Δθ) = diag

{
NG∑

m=−NC P

g(m − Δθ)e
−j 2π m 0

N ,

NG∑

m=−NC P

g(m − Δθ)e
−j 2π m 1

N , . . . ,

NG∑

m=−NC P

g(m − Δθ)e
−j 2π m (N −1)

N

}

.

In (21), Hd = diag(β), with β = F 1:Lh, where h = [h(0),
. . . , h(L − 1)]T is the time-domain vector of channel coeffi-
cients and F 1:L corresponds to the first L columns of the N × N
DFT matrix. The kth sub-carrier of the received signal vector
given in (21) is given in (22), shown at the bottom of this page,
where X(k) is the transmitted complex data symbol over the
kth sub-carrier, β(k) is the channel frequency response for the
kth sub-carrier, w̃(k) is the complex AWGN with zero mean
and variance per dimension σ2 = N0/2, and

S (l, k) =
1
N

N −1∑

n=0

ej 2π Δ ε n
N

N −1∑

m=0

e−j
(m 2−n 2)T 2 c o t (α )

2

ej
(l 2−k 2)u 2 c o t (α )

2 ej
2π (m k −n l )

N · b (l + k) , (23)

where b(n) = [G̃(Δθ)]n,n .

III. SYMBOL ERROR PROBABILITY ANALYSIS

In this section we present the exact SEP analysis of DFrFT-
based OFDM system in presence of CFO and STO for BPSK,
QPSK, and 16-QAM modulation formats when transmission
takes place over a frequency selective Rayleigh fading channel.

Y (k) = X(k)S (0, k) β(k)
︸ ︷︷ ︸

Desired signal
on the k th sub-carrier

+
∑N −1

q=0,q �=k
X(q)S (< q − k >N , k) β(q)

︸ ︷︷ ︸
ICI and ISI terms

due to sub-carriers other than k︸ ︷︷ ︸
R(k)

+w̃(k), k = 0, . . . , N − 1, (22)



A. BPSK

In the case of BPSK modulation scheme, symbols are drawn
from the set {±1}. As in [32], we evaluate the performance on
the kth sub-carrier when X(k) = +1. With this assumption the
received signal on the kth sub-carrier is expressed as

Y (k) = S (0, k) β(k) +
N −1∑

q=0,q �=k

X(q)S (q, k) β(q) + w̃(k).

(24)
The equalized signal on the kth sub-carrier is given by

β∗(k)Y (k) = S (0, k) |β(k)|2

+
N −1∑

q=0,q �=k

X(q)S (q, k) β(q)β∗(k) + w̃(k)β∗(k), (25)

where ∗ denotes complex conjugation. It is worth noting that,
when STO is also present, in contrast to the case of CFO only,
each sub-carrier is characterized by a different SEP [30]. The
SEP on the kth sub-carrier is

Ps (ξk ) =
∫

β

Ps (ξk |β) pB (β) dβ, (26)

where Ps(ξk |β) is the SEP conditioned to a given β, this latter
being described by the N -dimensional joint probability density
function (PDF) pB(β). Since the evaluation of the above multi-
dimensional integral is difficult, a simplification can be obtained
by using the following factorization

pB (β) = pβk |β (k) (βk |β(k)) pβ (k) (β(k)) , (27)

where βk = [β(0 : k − 1) β(k + 1 : N − 1)]T , pβ (k)(β(k)) is
the one dimensional PDF of β(k), and pβk |β (k)(βk |β(k)) is the
conditional PDF of βk given β(k). By replacing (27) in (26) we
obtain

Ps(ξk ) =
∫ ∞

0
Ps (ξk |β(k)) pβ (k) (β(k)) dβ(k), (28)

where

Ps(ξk |β(k)) =
∫

βk

Ps (ξk |β(k),βk ) pβk |β (k) (βk |β(k)) dβk .

(29)
The expression of Ps(ξk |β(k),βk ) can be obtained by comput-
ing the conditional characteristic function (CHF) of the received
signal approach described in [28]. The considered conditional
CHF of the real part of the equalized received signal given
β(k),βk , defined as �[β∗(k)Y (k)|β(k),βk ] in (25), is

ϕ�[β ∗(k)Y (k)|β (k),βk ] (ω) = E
[
ejw�[β ∗(k)Y (k)]|β(k),βk

]
,

(30)
where �[·] denotes the real part and E[·] denotes the statistical
expectation. Substituting (25) in (30) and averaging over the
AWGN we get

ϕ�[β ∗(k)Y (k)|β (k),βk ] (ω) = ejw�[S (0,k)|β (k)|2 ]

N −1∏

q=0,q �=k

E
[
ejω�[X (k)S (q ,k)β (q)β ∗(k)]

]
· e−

ω 2σ 2
β

2 , (31)

where σ2
β = |β(k)|2σ2. By computing the average over all the

possible combinations of symbols and by using the trigonomet-

ric identity given by [32, eq. (3)], from (31) we get

ϕ�[β ∗(k)Y (k)|β (k),βk ] (ω) = ejω�[S (0,k)|β (k)|2] · e−
ω 2σ 2

β
2

1
2N −1

2N −2∑

q=0,q �=k

ejω�[β ∗(k)eT
q Λβk ] + e−jω�[β ∗(k)eT

q Λβk ], (32)

where Λ = diag(S(1, k), S(2, k), . . . , S(N − 1, k)) and eq is
an N × 1 vector corresponding to the binary codeword of the
number 2N −1 − q, in which zeros have been substituted with
−1 s. After some straightforward mathematical passages, (32)
can be rewritten as

ϕ�[β ∗(k)Y (k)|β (k),βk ] (ω) =
1

2N −1
· e−

ω 2σ 2
β

2

2N −2−1∑

q=0

ejω(�[S (0,k)|β (k)|2]+�[β ∗(k)eT
q Λβk ])

+
2N −2−1∑

q=0

ejω(�[S (0,k)|β (k)|2]−�[β ∗(k)eT
q Λβk ]). (33)

It can be observed that (33) represents the CHF of a mixture
of Gaussian densities [32]. Now, an error will occur only if
�[β∗(k)Y (k)|β(k)βk ] < 0. The probability of this event can
be computed as

Ps (ξk |β(k),βk ) =
∫ 0

−∞
f�[β ∗(k)Y (k)|β (k),βk ] (x) dx, (34)

where f�[β ∗(k)Y (k)|β (k),βk ](·) is the conditional PDF obtained
from the inverse Fourier transform (IFT) of the conditional CHF
given in (33). The solution of (34) gives the following expression
of the resulting conditional SEP

Ps (ξk |β(k),βk ) =
1

2N −1

2N −2−1∑

q=0

Q

(
|β(k)| 2� [S (0, k)] + bk

q

σβ

)

+ Q

(
|β(k)|2� [S (0, k)] − bk

q

σβ

)

,

(35)

where bk
q = �[β∗(k)eT

q Λβk ]. The expression of Ps(ξk |β(k))
can now be obtained by substituting (35) in (29) and averag-
ing over the conditional Gaussian PDF pβk |β (k)(βk |β(k)), with
mean E[βk |β(k)] and covariance Cβk |β (k) [32, eq. (27)]. The
resulting expression is

Ps (ξk |β(k)) =
1

2N −1

2N −2−1∑

q=0

Q

⎛

⎝ |β(k)| (� [S (0, k)] + zk
q

)

σ

√
1 + ak

q

2σ 2

⎞

⎠

Q

⎛

⎝ |β(k)| (� [S (0, k)] − zk
q

)

σ

√
1 + ak

q

2σ 2

⎞

⎠ , (36)

where zk
q and ak

q are related to the mean and to the variance of
the conditional random variable (bk

q |β(k)) as [25]

zk
q =

E
[
bk
q |β(k)

]

|β(k)|2 = C−1
β (k)β (k)�[

(
eT

q Λ
)
Cβk β (k) ] (37)



and

ak
q = 2

var
[
bk
q |β(k)

]

|β(k)|2 =
(
eT

q Λ
)
Cβk |β (k)

(
eT

q Λ
)H

, (38)

respectively. In (37) and (38) we have Cβk β (k) = E[βkβ∗(k)],
C(βk |β (k)) = Cβk βk

− C−1
β (k)β (k)Cβk β (k)C

H
βk β (k) , C(βk βk ) =

F 1:LhF H
1:L , being (·)H the Hermitian transpose conjugation. In

order to calculate the overall SEP we first introduce the change
of variable γk = 2|β(k)|2/σ2, which allows us to express (36)
as a function of the instantaneous signal-to-noise ratio (SNR)
γk on the kth sub-carrier, and then we average (28) over all the
sub-carriers as

Ps(ξ) =
1
N

N −1∑

k=0

Ps(ξk ) =
1
N

N −1∑

k=0

∫ ∞

0
Ps(ξk |γk ) pγk

(γk )dγk ,

(39)

where pγk
(γk ) = γ̄−1

k e
γ k
γ̄ k is the PDF of Rayleigh fading with

average SNR γ̄k = 2E[|β(k)|2]/σ2.
In what follows we adopt the polar form definition given in

[31] for the Q-function in (36). The overall SEP is computed
by applying the moment generating function (MGF) approach
in (39) as

Ps(ξ) =
1

πN2N −1

2N −2−1∑

q=0

N −1∑

k=0

∫ π
2

0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0
exp

⎛

⎝−γk

(� [S (0, k)] + zk
q

)2

(
1 + ak

q

2σ 2

)
sin2θ

⎞

⎠ pγk
(γk )dγk

︸ ︷︷ ︸
Mγ k

(s1)

+
∫ ∞

0
exp

⎛

⎝−γk

(� [S (0, k)] − zk
q

)2

(
1 + ak

q

2σ 2

)
sin2θ

⎞

⎠ pγk
(γk )dγk

︸ ︷︷ ︸
M γ k

(s2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (40)

where Mγk
(s) is used to denote the scaled Laplace transform

of pγk
(γk ), which is known as MGF. The analytical expression

of the MGF for the Rayleigh distribution is given by

Mγk
(s) = (1 − sγ̄k )−1 . (41)

The computation of Ps(ξ) is done by using (1.8) and (5.6) of
[31]. The resulting analytical expression is

Ps(ξ) =
1
2
− 1

N2N

2N −2−1∑

q=1

N −1∑

k=0

{

f1

√
γ̄kCβ (k)β (k)(� [S (0, k)] + zk

q )2

1 + γ̄k (Cβ (k)β (k)(� [S (0, k)] + zk
q )2 + ak

q )

+f2

√
γ̄kCβ (k)β (k)(� [S (0, k)] − zk

q )2

1 + γ̄k (Cβ (k)β (k)(� [S (0, k)] − zk
q )2 + ak

q )

}

, (42)

where f1 = sgn(�[S(0, k)] + zk
q ) and f2 = sgn(�[S(0, k)] −

zk
q ), being sgn(·) the signum function. By substituting α = π/2

in S(l, k) and Cβ (k)β (k) = 2σ2, we get the final expression of
SEP for BPSK OFDM system based on DFT given by (13) of
[25]. This is conform to the fact that OFDM system based on
DFrFT is a generalization of conventional OFDM system.

B. QPSK

For QPSK modulation the symbols are drawn from the set
{±1 ± j}. Without loosing generality, as done in Section III-A,
we make the assumption that the symbol transmitted on the kth
sub-carrier is X(k) = 1 + j. By following [28] we can write
the conditional probability of correct decision as

Pc (β∗(k)Y (k) ∈ D1|X(k)

= 1 + j,� [β∗(k)R(k)] ,
 [β∗(k)R(k)])

= Q

(
−� [β∗(k)R(k)]

σβ

)
Q

(
−
 [β∗(k)R(k)]

σβ

)
, (43)

where 
[·] denotes the imaginary part. The probability of
correct decision is obtained by averaging (43) over the joint
two-dimensional (2D) PDF defined by the real and imaginary
parts of β∗(k)R(k)|X(k)=1+j, which is given by IFT of the
CHF as

ϕ�[β ∗(k)R(k)|β (k),βk ],
[β ∗(k)R(k)|β (k),βk ] (ωI , ωQ )

= ej |β (k)|2(ωI (�[S (0,k)]−
[S (0,k)])+ωQ (
[S (0,k)]+�[S (0,k)]))

N −1∏

q=0
q �=k

cos(ωI�[S(q, k)β∗(k)β(q)] + ωQ
[S(q, k)β∗(k)β(q)])

cos (ωI
 [S (q, k) β∗(k)β (q)] − ωQ� [S (q, k) β∗(k)β (q)]) .
(44)

By following [28], the resulting 2D conditional PDF is

p (� [β∗(k)R(k)] ,
 [β∗(k)R(k)] |β(k),βk ) =
1

22N −2

2N −2−1∑

q=0

2N −2−1∑

n=0

4∑

m=1

δ
[
� (β∗(k)R(k)) − |β(k)|2 (DA + ϕq,n [1,m])

]

δ
[

 (β∗(k)R(k)) − |β(k)|2 (DB + ϕq,n [2,m])

]
, (45)

where DA = �[S(0, k)] −
[S(0, k)], DB = �[S(0, k)] + 

[S(0, k)] and ϕq,n [r, c] is the entry (r, c) of the 2 × 4 matrix G
= [(gA + gB ) (−gA − gB ) (gA − gB ) (−gA + gB )] with

gA =
[� [β∗(k)eT

q Λβk

] 
 [β∗(k)eT
n Λβk

]]T
,

gB =
[ 
 [β∗(k)eT

q Λβk

] −� [β∗(k)eT
n Λβk

]]T
.

The expression of the conditional probability of correct decision
Pc(β∗(k)R(k) ∈ D1|β(k),βk ) is therefore obtained by averag-
ing (43) over the 2D PDF in (45). The conditional SEP on the
kth sub-carrier is obtained by subtracting the corresponding
conditional probability of correct decision from 1 as

Ps (ξk |β(k),βk ) = 1 − Pc (β∗(k)R(k) ∈ D1|β(k),βk )

= 1 − 1
N22N −2

2N −2−1∑

q=0

2N −2−1∑

n=0

4∑

m=1



Q

(

−|β(k)|2 (DA + ϕq,n [1,m])
σβ

)

Q

(

−|β(k)|2 (DB + ϕq,n [2,m])
σβ

)

. (46)

As seen in Section III-A, computing Ps(ξk |β(k),βk ) requires
the solution of a multi-dimensional integral. Therefore, first
we need to average Ps(ξk |β(k),βk ) over pβk |β (k)(βk |β(k)),
then the expression of Ps(ξk |β(k)) is obtained by using the
mean |β(k)|2ϑq,n [i,m] and variance |β(k)|2νq,n [m]/2 of the
conditional Gaussian random variable ϕq,n [i,m]|β(k) as

Ps (ξk |β(k)) = 1 − 1
N22N −2

2N −2−1∑

q=0

2N −2−1∑

n=0

4∑

m=1

Q

⎛

⎝−|β(k)| (DA + ϑq,n [1,m])

σ
√

1 + νq , n [m ]
2σ 2

⎞

⎠

Q

⎛

⎝−|β(k)| (DB + ϑq,n [2,m])

σ
√

1 + νq , n [m ]
2σ 2

⎞

⎠ , (47)

where
� ϑq,n [i,m] is the entry (i,m) of the 2 × 4 matrix W =

[(wA + wB )(−wA − wB )(wA − wB )(−wA + wB )]
with

wA = C−1
β (k)β (k)

[�[eT
q ΛCβk β (k)

]
 [eT
q ΛCβk β (k)

]]T
,

wB = C−1
β (k)β (k)

[
[eT
n ΛCβk β (k)

]−�[eT
n ΛCβk β (k)

]]T
,

being Cβk |β (k) the channel auto-covariance matrix given
in [25];

� νq,n [m] is the entry m of the 1 × 4 vector ν = [ν1 ν2

ν3 ν4], where νi = ζT
i ΛCβk β (k)Λζi and ζ1 = eq+en ,

ζ2 = −eq−en , ζ3 = eq−en , ζ4 = −eq + en .
We convert the multiplication of the two Q-functions in (47)

into the sum of two Q-functions, which is given in equation
(4.8) of [31]. Then, we apply the polar form definition of the
Q-function in (47) and, as done in Section III-A, introduce γk

to express the instantaneous SNR on kth sub-carrier. Following
(39), the resulting SEP is (48), shown at the bottom of this page.

The equation can be further simplified by using [31, eq. (1.8)]
and, by using the MGF of Rayleigh fading given in (41), the
resulting expression can be solved using (5.102) of [31]. After
some mathematical passages, the SEP expression is given by

Ps(ξ) =
3
4
− 1

N22N −1

N −1∑

k=0

2N −2−1∑

q=0

2N −2−1∑

n=0

4∑

m=1

√
Cβ (k)β (k) γ̄kΨ2

q ,n [1,m]
2 + γ̄k νq,n [m] + Cβ (k)β (k) γ̄kΨ2

q ,n [1,m]
(

1
2

+
1
π

atan

{√
Cβ (k)β (k) γ̄kΨ2

q ,n [2,m]
2 + γ̄k νq,n [m] + Cβ (k)β (k) γ̄kΨ2

q ,n [1,m]

})

+

√
Cβ (k)β (k)Ψ2

q , n [2,m ] γ̄k

2 + γ̄k νq,n [m] + Cβ (k)β (k) γ̄kΨ2
q ,n [2,m]

(
1
2

+
1
π

atan

{√
Cβ (k)β (k) γ̄kΨ2

q ,n [1,m]
2 + γ̄k νq,n [m] + Cβ (k)β (k) γ̄kΨ2

q ,n [2,m]

})

,

(49)

where Ψq ,n [i,m] is the entry (i,m) of the 2 × 4 matrix
Φ = D ⊗ 11×4 + W , in which ⊗ is the Kronecker product,
11×4 is a 1 × 4 vectors of 1s, and D = [DA DB ]T . Similarly,
substituting α = π/2 in S(l, k) and Cβ (k)β (k) = 2σ2 in (49)
we get the SEP expression of QPSK for conventional OFDM
system given by (16) of [14].

C. 16-QAM

For 16-QAM symbols are drawn from the set {±1 ± j,±1 ±
3j,±3 ± j,±3 ± 3j}. We assume that symbol X(k) trans-
mitted on the kth sub-carrier takes a value in the subset
{1 + j, 1 + 3j, 3 + j, 3 + 3j}, which corresponds to points in
the first quadrant D1 [33].

First we consider that the transmitted symbol is X(k) = 1 + j
and evaluates the probability that the equalized received signal
lies in the region Ds1 = {a + bj|2 ≥ a ≥ 0, 2 ≥ b ≥ 0} of the
complex plane. Thus, the conditional probability of making a
correct decision given X(k) = 1 + j is

Pc,1 (β∗(k)Y (k) ∈ Ds1|X(k)

= 1 + j,� [β∗(k)R(k)] ,
 [β∗(k)R(k)])

Ps(ξ) = 1 − 1
2πN2N −2

N −1∑

k=0

2N −2−1∑

q=0

2N −2−1∑

n=0

4∑
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⎧
⎪⎪⎪⎪⎪⎪⎨
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∫ π
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0

∫ ∞

0
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2σ 2

)
sin2θ

⎞

⎠ pγk
(γk )dγk
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Mγ k
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+
∫ tan−1

(
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)

0

∫ ∞

0
exp

⎛

⎝−γk (DB + ϑq,n [2,m])2

(
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2σ 2

)
sin2θ

⎞

⎠ pγk
(γk )dγk

︸ ︷︷ ︸
Mγ k

(s2)

⎫
⎪⎪⎪⎪⎪⎪⎬
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(48)



=
∫ 2

0

1√
2πσ

e−
(x −�[β ∗(k)R (k) ] ) 2

2σ 2 dx

∫ 2

0

1√
2πσ

e−
(y −
[β ∗(k)R (k) ] ) 2

2σ 2 dy

=
[
Q

(−�[β∗(k)R(k)]
σβ

)
− Q

(
2 −�[β∗(k)R(k)]

σβ

)]

[
Q

(−
[β∗(k)R(k)]
σβ

)
− Q

(
2 −
[β∗(k)R(k)]

σβ

)]
(50)

The probability of correct decision is obtained by averaging (50)
over the joint 2D PDF of β∗(k)R(k) as

Pc,1avg (β∗(k)Y (k) ∈ Ds1|X(k) = 1 + j)

=
∫ ∞

−∞

∫ ∞

−∞
Pc,1 (β∗(k)Y (k) ∈ Ds1|X(k)

= 1 + j,� [β∗(k)R(k)] ,
 [β∗(k)R(k)])

p(� [β∗(k)R(k)] ,
 [β∗(k)R(k)] |X(k)

= 1 + j)d� [β∗(k)R(k)] d
 [β∗(k)R(k)] , (51)

where the expression of p(�[β∗(k)R(k)],
[β∗(k)R(k)]|X(k)
= 1 + j) is given in [34]. Following [28], after substituting
the value of the equalized signal β∗(k)R(k) and after some
simplifications, the 2D-CHF can be written as

ϕ�[β ∗(k)R(k)|β (k),βk ],
[β ∗(k)R(k)|β (k),βk ] (ωI , ωQ )

= E
[
ej |β (k)|2(ΩT Sa(0,k)�[X (k)]−ΩT Sb(0,k)
[X (k)])

]

N−1∏

q=0
q �=k

E
[
ej(β ∗(k)β (q)ΩT Sa(q ,k)�[X(q)]−β ∗(k)β (q)ΩT Sb(q ,k)
[X(q)])

]
,

(52)

where ΩT =[ωI ωQ ], Sa(q, k) = [�[S(q, k)]
[S(q, k)]]T and
Sb(q, k) = [
[S(q, k)] −�[S(q, k)]]T . By substituting the
value of X(k) = 1 + j in (52) and by expanding in terms of
real and imaginary parts we get

ϕ�[β ∗(k)R(k)|β (k),βk ],
[β ∗(k)R(k)|β (k),βk ] (ωI , ωQ )

= E
[
e[j |β (k)|2{ωI (�[S (0,k)]−
[S (0,k)]+ωQ (
[S (0,k)]+�[S (0,k)])}]

]

N −1∏

q=0
q �=k

cos (ωI� [S(q, k)β∗(k)β(q)] + ωQ
 [S(q, k)β∗(k)β(q)])

cos (2ωI� [S(q, k)β∗(k)β(q)] + 2ωQ
 [S(q, k)β∗(k)β(q)])

cos (ωI
 [S(q, k)β∗(k)β(q)] − ωQ� [S(q, k)β∗(k)β(q)])

cos (2ωI
 [S(q, k)β∗(k)β(q)] − 2ωQ� [S(q, k)β∗(k)β(q)]) .
(53)

The resulting PDF, obtained by computing the IFT of (53), is

p(�[β∗(k)R(k)],
[β∗(k)R(k)])

=
1

24N −2

2N −2−1∑

q=0

2N −2−1∑

l=0

2N −2−1∑

m=0

2N −2−1∑

n=0

16∑

f =1

δ
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δ
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, (54)

where ζq ,l,m ,n [p, q] is the entry of the 2 × 16 matrix of

G =
[
(gA + gB + gC + gD ) (gA + gB + gC − gD )

(gA + gB − gC + gD ) (gA + gB − gC − gD )
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]
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,
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gC =
[
 [β∗(k)Λβk eT

m

]−� [β∗(k)Λβk eT
m

]]T
,

gD =
[
2
 [β∗(k)Λβk eT

n

]− 2� [β∗(k)Λβk eT
n

]]T
.

The PDF given in (54) is a function of β and, therefore, by
substituting in (51), we get (55), shown at the bottom of the
previous page. It is worth observing that in the above equation
the dependence on (β(k),βk ) is implicit in ζq ,l,m ,n [1, f ] and
ζq ,l,m ,n [2, f ].

When symbol X(k) = 1 + 3j is considered, a correct deci-
sion is taken when the equalized received signal lies in the re-
gion Ds2 = {a + bj|2 ≥ a ≥ 0, b ≥ 2}. By repeating the same
considerations done for symbol X(k) = 1 + j, it is possible
to derive the expression of the probability of correct decision
conditioned to the transmission of symbol X(k) = 1 + 3j as

Pc,2avg (β∗(k)Y (k) ∈ Ds2|β(k),βk )

=
1
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Similarly, for transmitted symbol X(k) = 3 + j, the correct
decision lies in the region Ds3 = {a + bj|a ≥ 2, 2 ≥ b ≥ 0}

Pc,3avg (β∗(k)Y (k) ∈ Ds3|β(k),βk )

=
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Finally, for transmitted symbol X(k) = 3 + 3j, the correct
decision lies in the region Ds4 = {a + bj|a ≥ 2, b ≥ 2}

Pc,4avg (β∗(k)Y (k) ∈ Ds4|β(k),βk )

=
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By taking into account the symmetry of the 16-QAM modu-
lation, the average probability of correct decision is

Pc(ξk |β(k),βk) =
1
4

4∑

z=1

Pc,zavg (β∗(k)Y (k) ∈ Dsz |β(k),βk).

(59)
The analytical expression of the SEP given (β(k),βk ) is

Ps (ξk |β(k),βk ) Δ= Ps (β∗(k)Y (k) /∈ Ds1|β(k),βk )

= 1 − Pc (β∗(k)Y (k) ∈ Ds1|β(k),βk ) (60)

By following (29), the analytical expression of Ps(ξk |β(k))
given in (61), shown at the bottom of the next page, is obtained
by averaging over the pdf pβk |β (k)(βk |β(k)), which is described

by using the conditional mean |β(k)|2ϑq ,l,m ,n [i,m]|β(k) and
the conditional variance |β(k)|2νq ,l,m ,n [m]/2|β(k) of the con-
ditional Gaussian random variable ζq ,l,m ,n [i, f ]|β(k), i = 1, 2,
where

� ϑq ,l,m ,n [i, f ] is the entry (i, f) of the 2 × 16 matrix of
W =
[
(wA + wB + wC + wD ) (wA + wB + wC − wD )

(wA + wB − wC + wD ) (wA + wB − wC − wD )

(−wA − wB + wC + wD ) (−wA − wB + gC − wD )

(−wA − wB − wC + wD ) (−wA − wB − wC − wD )

(wA − wB + wC + wD ) (wA − wB + wC − wD )

(wA − wB − wC + wD ) (wA − wB − wC − wD )

(−wA + wB + wC + wD ) (−wA + wB + wC − wD )

(−wA + wB − wC + wD)(−wA + wB − wC − wD)
]
,

with

wA = C−1
β (k)β (k)

[� [eT
q ΛCβk β (k)

]
 [eT
q ΛCβk β (k)

]]T

wB = C−1
β (k)β (k)

[
2� [eT

l ΛCβk β (k)
]
2
 [eT

l ΛCβk β (k)
]]T

wC = C−1
β (k)β (k)

[
 [eT
mΛCβk β (k)

]−� [eT
mΛCβk β (k)

]]T

wD = C−1
β (k)β (k)

[
2
[eT

nΛCβk β (k)
]− 2�[eT

nΛCβk β (k)
]]T

being Cβk |β (k) the channel auto-covariance matrix given
in [25];



� νq ,l,m ,n [f ] is the f th element of the 1 × 16 vector ν =
[ν1 ν2 · · · ν16], where νi = ζT

i ΛCβk β (k)Λζi and ζ1 =
eq + el + em +en , ζ2 = eq + el + em−en , ζ3 = eq

+ el − em + en , ζ4 = eq + el − em−en , ζ5 = −eq −
el + em + en , ζ6 = −eq − el + em−en , ζ7 = −eq −
el − em + en , ζ8 = −eq − el − em−en , ζ9 = eq −
el + em + en , ζ10 = eq − el + em − en , ζ11 = eq −
el − em +en , ζ12 = eq − el − en − en , ζ13 = −eq +
el + em +en , ζ14 = −eq + el + em + en , ζ15 = −eq +
el − em +en , ζ16 = −eq + el − em − en .

Following the same analysis developed in Section III-B, the
computation of the SEP can be performed by replacing the polar
form definition of the Q-function in (61) and by converting the
multiplication of the two Q-functions into the sum of two Q-
functions given in equation (4.8) of [31]. After that, by using
(5.102) of [31], the expression of the resulting Ps(ξ) is given
in (62), shown at the bottom of the next page. Substituting
α = π/2 in S(l, k) and Cβ (k)β (k) = 2σ2 in (42) we get the SEP
expression of 16-QAM for conventional OFDM system given
by (51) of [35].

IV. EXTENSION TO MASSIVE MIMO

The analysis presented so far can be easily extended to the
case of massive MIMO channel. To this aim, the channel model
given in (5) must be modified to include also the spatial char-
acteristic. In particular, by focusing on the case of a uniform
planar array with M antennas at the transmitter and a single an-
tenna at the receiver, in [36] a 3D space-time channel model is
proposed by associating a steering vector, defined by azimuthal
and the elevation angle of departures (AoDs), to each multi-path

component. The resulting multipath channel model is

h (t) =
L−1∑

l=0

hl (t) δ (t − τlT )a (φl(t), θl(t)) , (63)

where a(φl(t), θl(t)) is the time-varying steering vector related
to the lth path defined as

a(φl(t), θl(t)) =
[
1, ej2π d

λ
sin(θl (t)) , . . ., ej2π d

λ
(M 2−1) sin(θl (t))

]

⊗ 1√
M

[
1, ej2π d

λ
cos(θl (t)) sin(φl (t)) ,

. . . , ej2π d
λ
(M 1−1) cos(θl (t)) sin(φl (t))

]T
, (64)

being ⊗ the Kronecker product, φu,l and θu,l the azimuthal
and elevation AoD, respectively, M1 and M2 the number of
horizontal and vertical antennas, respectively, and M = M1 ×
M2. In general, as observed in [37], angle coherence time is
higher compared to classical channel coherence time, which
leads to slow variations in time of AoDs compared to those
of complex amplitudes hl(t). Therefore, when the same block
fading assumption done in Sec. II.C is made, the channel model
given in (63) can be written as

h (t) =
L−1∑

l=0

hlδ (t − τlT )a (φl, θl) . (65)

By adopting the classical narrowband channel assumption, the
above equation reduces to the same spatial channel vector
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defined by [36, eq. (1)] giving rise to

h =
L−1∑

l=0

hla (φl, θl) . (66)

In massive MIMO, the spatial channel model defined in (66)
is used by the transmitter to perform beamforming where the
resulting channel is modeled as a scalar coefficient. This defines
a frequency flat fading channel for which it is straightforward
to analyze the performance in the presence of CFO and STO by
using the analytical expressions derived in Section III.

Since this paper deals with the analysis of performance in
presence of CFO and STO for transmission over a frequency
selective channel, the SEP analysis for massive MIMO is left
to future work. No simulation results are therefore reported in
Section VI.

V. OPTIMAL DFrFT ANGLE PARAMETER

From Fig. 2 it is clearly visible that for a given Δε the opti-
mal value of the DFrFT angle parameter α is independent from
the modulation scheme. The reason of this independence can
be easily explained from (22), which gives the model of the

Fig. 2. Analytical and simulated SEP versus DFrFT angle parameter α at
normalized CFO Δε = 0.1, 0.2 in case of 8-point DFrFT-based OFDM for
BPSK, QPSK, and 16-QAM and transmission over frequency selective Rayleigh
fading channel with 2-taps equal power delay profile at γ̄k = 25 dB.

received signal used to derive all the analytical expressions of
the SEP. From such an equation we observe that the first term,
which denotes the desired signal, and the second term, which
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where Œi
1(a) =

√
Cβ (q)β (k) γ̄k

5 + γ̄k νq,l,m ,n [f ] + Cβ (k)β (k) γ̄k (Ψi
a [1, f ])2 ,Œi

2(a) =

√
Cβ (q)β (k) γ̄k

5 + γ̄k νq,l,m ,n [f ] + Cβ (k)β (k) γ̄k (Ψi
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[
Di (1) + ϑq ,l,m ,n [1, f ] − a
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and Ψi
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[
Di (2) + ϑq ,l,m ,n [2, f ] − a
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where D1 = [11] ,D2 = [13] ,D3 = [31] and D4 = [33] (62)



is responsible for the introduction of ICI and ISI, consist of a
scaling of the symbols transmitted on different sub-carriers by
S(0, k) and S(l, k), respectively, since this function includes the
effect of α, Δε and Δθ. Therefore, all the derived expressions
of SEP given in (42), (49), and (62) have the same minimum
for a given value of Δε. After having observed this, one can
argue that a strategy to find an expression for the optimal value
of α consists in taking the most manageable SEP expression
and look for its minimization. Hence, in our approach, we con-
sider the SEP expression for BPSK given in (42) with respect
to α. In order to minimize Ps(ξ) given in (42), we proceed
with the calculation of the partial derivative ∂Ps(ξ)/∂α as re-
ported in Appendix A. The result is given in (67) at the bottom
of this page. The derivation of the closed form expression of
the optimal α can be obtained by considering the following
remarks:

Remark 1: Fig. 3 reports the SEP versus α at γk = 25 dB
with Δθ = 0 for an 8-point DFrFT-based OFDM system in
case of BPSK transmission over a multi-path Rayleigh fading
channel having a number of channel coefficients L = 1, . . . , 5
with equal power delay profile when Δε = 0.1, 0.2. From
Fig. 3 it can be observed that the optimal α, for a fixed
Δε, is independent of channel coefficients L, besides being
independent of the modulation scheme. With the above ob-
servation, we can say that the optimal α is independent of
the channel co-variance, meaning that it does not depend on
zk
q and ak

q and on the respective partial derivatives ∂zk
q /∂α

and ∂ak
q /∂α defined in Appendix VII. Hence, the two par-

tial derivatives ∂zk
q /∂α and ∂ak

q /∂α are set to zero in (67),
which can be therefore rewritten as (68), shown at the bot-
tom of this page. The following variables C̃ =

√
f+(α), D̃ =

√
f−(α), Z = γ̄k ak

q + 1, GG =
√

AC̃2/1 + AC̃2 + γ̄k ak
q and

FF =
√

AD̃2/1 + AD̃2 + γ̄k ak
q have been introduced in (68).

Fig. 3. Analytical and simulated SEP versus DFrFT angle parameter α at
Δε = 0.1, 0.2 for 8-point DFrFT-based OFDM in the case of BPSK transmis-
sion over frequency selective Rayleigh fading channel with different values of
L at γ̄k = 25 dB.

Remark 2: From Remark 1, it descends that when ∂zk
q /∂α

and ∂ak
q /∂α are equal to zero it happens that C̃ = D̃ and, there-

fore, we have Y Y = ZZ and WW = XX in (68), which can
be rewritten as
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From (69) we observe that to have ∂Ps(ξ)/∂α = 0 both the two
terms at the RHS must be equal to zero individually:

�
∑2N −2−1

q=1

∑N −1
k=0 Y Y = 0

�
∑2N −2−1

q=1

∑N −1
k=0 WW = 0.

∂Ps(ξ)
∂α

= − 1
N2N

2N −2−1∑

q=1

N −1∑

k=0

⎧
⎪⎪⎨

⎪⎪⎩

sign(C̃)
√

AC̃ 2

1+AC̃ 2+ γ̄k ak
q

AZC̃
(

∂�[S (0,k)]
∂α + ∂zk

q

∂α

)
− Aγ̄k C̃2 ∂ak

q

∂α
(

1 + AC̃2 + γ̄k ak
q

)2 + 4

√
AC̃2

1 + AC̃2 + γ̄k ak
q

C̃δ
(
C̃
)

×
(

∂�[S(0, k)]
∂α

+
∂zk

q

∂α

)

+
sign(D̃)

√
AD̃ 2

1+AD̃ 2+ γ̄k ak
q

AZD̃
(

∂�[S (0,k)]
∂α − ∂zk

q

∂α

)
− Aγ̄k D̃2 ∂ak

q

∂α
(

1 + AD̃2 + γ̄k ak
q

)2

+ 4

√
AD̃2

1 + AD̃2 + γ̄k ak
q

D̃δ
(
D̃
)(∂�[S(0, k)]

∂α
− ∂zk

q

∂α

)}

(67)

∂Ps(ξ)
∂α

=
−1

N2N

2N −2−1∑

q=1

N −1∑

k=0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sign(C̃)AZC̃
(

∂�[S (0,k)]
∂α

)

GG
(

1 + AC̃2 + γ̄k ak
q

)2

︸ ︷︷ ︸
Y Y

+ 4GGC̃δ(C̃)
(

∂�[S(0, k)]
∂α

)

︸ ︷︷ ︸
W W

+
sign(D̃)AZD̃

(
∂�[S (0,k)]

∂α

)

FF
(

1 + AD̃2 + γ̄k ak
q

)2

︸ ︷︷ ︸
ZZ

+ 4FFD̃δ(D̃)
(

∂�[S(0, k)]
∂α

)

︸ ︷︷ ︸
X X

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(68)



Fig. 4. Comparison of SEP versus α for different values of N in the case
of BPSK transmission over a 2-taps Rayleigh fading channel with equal power
delay profile, Δε = 0.1, and γ̄k = 25 dB.

Based on both above points, this condition can be satisfied
only when ∂S(0, k)/∂α = 0.

Remark 3: In Fig. 4, we plotted the SEP versus α at γ̄k =
25 dB for different values of N in case of BPSK transmission
over an equal power delay profile frequency selective Rayleigh
fading channel with 2 taps when Δε = 0.1 and Δθ = 0. From
the figure it is clearly visible that the optimal α for fixed Δε is
a function of N . By using Remarks 1, 2, and 3 and following
the derivation reported in the Appendix, it is now possible to
compute the optimal α expression by setting ∂S(0, k)/∂α = 0.
After some mathematical manipulations and after substituting
Δθ = 0, the final closed form expression of the optimal α is
given by

αopt = 10

∣∣∣
∣∣
arcCoth

(

2 · log
(
− exp

(
j(Δε)aπ

b

)))∣∣∣
∣∣
, (70)

where a = 0.7N 0.3664 and b = −25.22N−0.5943 + 14.62. Fi-
nally, to confirm that the derived optimal expression for α gives
a minimum, we computed the second partial derivative and
evaluated its sign. The expression of the second order partial
derivative is not reported due to the lack of space. By replacing
the optimal value of α for different Δε we got a positive sign,
thus confirming that a minimum of SEP was achieved. The opti-
mal α as a function of Δε is reported in Fig. 7. From the results
reported in the figure it is confirmed that the derived closed form
expression of the optimal α matches with the one we are getting
from the SEP performance given in Fig. 2

VI. THEORETICAL AND SIMULATION RESULTS

In order to verify the correctness of the analysis done in
Section III, SEP results obtained from Monte Carlo (MC) simu-
lations, marked as (× ), are compared with those given in equa-
tions (42), (49), and (62) by considering the roll-off ρ = 0.1. For
this roll-off we verified experimentally that NG = 4 is enough
for taking into account the samples that precede and follow the
actual one in a particular time instant t. First of all, the impact
of the DFrFT angle parameter α is numerically evaluated to find
its optimal value that minimizes the SEP for different values of
the normalized CFO Δε versus γ̄k with Δθ = 0. The analyt-
ical and MC simulation results, obtained for Δε = 0.1, 0.2 at

Fig. 5. Comparison of SEP versus γ̄k for 8-point DFT- and DFrFT-based
OFDM in case of BPSK modulation and transmission over an equal power
delay 2-taps frequency selective Rayleigh fading channel at α = 1.59.

Fig. 6. Comparison of SEP versus γ̄k between an 8-point DFT- and DFrFT-
based OFDM system for QPSK in the case of the transmission over frequency
selective Rayleigh fading channel with 2-taps of equal power delay profile at
Δε = 0.1, 0.2 and at Δθ = 0 by considering the α = 1.59.

γ̄k = 25 dB with N = 8 in case frequency selective Rayleigh
fading channel with L = 2 are shown in Fig. 2. From Fig. 2
it is clearly visible that the optimal value of α is independent
of the modulation order for a given value of Δε. The optimal
value of the angle parameter αopt depends only on the nor-
malized carrier frequency offset Δε. From the figures it can
be observed that simulation results confirm the derived analyt-
ical expressions. The choice of γ̄k = 25 dB represents a value
that is about in the middle of the range of SNR values consid-
ered for measuring SEP performance, as it will be shown in
Figs. 5, 6, and 8. However, the SEP performance is analyzed
by considering α = 1.59 for both the two values of the CFO,
Δε = 0.1, 0.2, and the STO Δθ = 0. Obviously, in the results
presented in this section α = π/2 converts to the DFT-based
OFDM. In Fig. 5 the SEP performance analysis is done in the
case of BPSK modulation scheme for the DFrFT-based OFDM
system with two different values of CFO, i.e., Δε = 0.1, 0.2.
The analytical expression of the SEP given in (42) is confirmed
by MC simulation in the case of transmission over the Rayleigh



Fig. 7. Optimal DFrFT angle parameter versus Δε for BPSK modulation
DFrFT-based OFDM.

Fig. 8. Comparison of SEP versus γ̄k between 8-point DFT- and DFrFT-
based OFDM for 16-QAM modulation scheme transmission over frequency
selective Rayleigh fading channel of 2-taps with equal power delay profile at
Δε = 0.1, 0.2 and Δθ = 0 by considering α = 1.59.

fading channel with L = 2. Moreover, by substituting α = π/2,
the proposed expression given in (42) converts into the DFT-
based OFDM and at α = 1.59 is the same for both the values of
CFO, Δε = 0.1, 0.2. Similarly, Figs. 6 and 8 report the SEP per-
formance for QPSK and 16-QAM, respectively, considering the
same parameters used above. As it can be observed from Figs. 5,
6, and 8, the performance of the DFrFT-based OFDM system
with α = 1.59 overcomes that of the DFT-based one and simu-
lation results perfectly match analytical ones for different values
of Δε and Δθ = 0. Furthermore, the analysis of the STO effect
on SEP performance for DFrFT-based OFDM system using the
same value of the DFrFT angle parameter α = 1.59 and for
α = π/2 at γ̄k = 25 dB is given in Figs. 9, 10, and 11. In Fig. 9
the SEP performance obtained from the analytical expression
given in (42), which holds for BPSK, is plotted for different val-
ues of the CFO, Δε = 0.15, 0.18, 0.2. From Fig. 9, it is clearly
visible that DFrFT-based OFDM system for α = 1.59 is more
robust to STO than that based on DFT. Moreover, it can be ob-
served that DFrFT-based OFDM is more robust to STO as well

Fig. 9. Comparison of SEP versus Δθ between 8-point DFT- and DFrFT-
based OFDM BPSK in the case of transmission over frequency selective
Rayleigh fading channel with 2-taps of equal power delay profile at Δε = 0.15,
0.18, and 0.2 and γ̄k = 25 dB for DFrFT angle parameter α = 1.59.

Fig. 10. Comparison of SEP versus Δθ between 8-point DFT- and DFrFT-
based OFDM for QPSK transmission over frequency selective Rayleigh fad-
ing channel of 2-taps with equal power delay profile at normalized CFOs
Δε = 0.15, 0.18, and 0.2 and γ̄k = 25 dB for DFrFT angle parameter
α = 1.59.

as to CFO as compared to DFT-based OFDM. Similarly, Figs. 10
and 11 show the SEP performance of QPSK and 16-QAM, re-
spectively, for the same values of CFO considered above. As
it can be observed from Figs. 9, 10, and 11, by increasing the
values of Δθ the SEP performance degrades significantly, the
rate of degradation of DFrFT being larger as compared to that
of DFT. This is because we fixed the values of the DFrFT angle
parameter to α = 1.59 and evaluated over the different Δθ. By
increasing the value of Δθ for fixed α the term S(l, k), which is
responsible for ICI and ISI in (23), increases. Due to the fixed
value α = 1.59, the rate of the degradation in SEP performance
in DFrFT is larger as compared to the one based on DFT. Our
results show that DFrFT-based OFDM system guarantees more
robustness that DFT-based OFDM system when the effect of
CFO and STO are considered together by proper selection of
the DFrFT angle value α.



Fig. 11. Comparison of SEP versus Δθ between 8-point DFT- and DFrFT
based OFDM for 16-QAM transmission over frequency selective Rayleigh fad-
ing channel of 2-taps with equal power delay profile at Δε = 0.15, 0.18 and 0.2
and at γ̄k = 25 dB for DFrFT angle parameter α = 1.59.

Fig. 12. Comparison of SEP versus γ̄k between 8-point DFT- and DFrFT
based OFDM for BPSK modulation techniques transmission over frequency
selective Rayleigh fading channel with different number of channel coefficients
L at Δε = 0.1 and Δθ = 0.

Figure 12 reports the SEP versus γ̄k for different values of
the multi-path Rayleigh fading channel coefficients L in case of
BPSK. In the figure, we compare the SEP performance for 8-
point DFrFT- and DFT-based OFDM system for different values
of L with equal power delay profile frequency selective Rayleigh
fading channel when Δε = 0.1 and Δθ = 0. From Fig. 12, it is
clearly visible that the performance of the DFrFT-based OFDM
system is always better than that of the DFT-based one for any
value of L. Also, at α = π/2 and Δθ = 0 derived results have
a perfect match with those given in literature when only CFO
is present. With the same parameters of Fig. 12, in Fig. 13 a
similar behavior of SEP versus γ̄k is observed for QPSK. From
the figure it can also be seen that at α = π/2 and Δθ = 0 there
is a perfect match with the results shown in [14]. Finally, similar
confirmation can be obtained for 16-QAM. The results for 16-
QAM are reported in Fig. 14, for which at α = π/2 and Δθ = 0
derived results there is a perfect agreement with those given in

Fig. 13. Comparison of SEP versus γ̄k between 8-point DFT- and DFrFT
based OFDM for QPSK modulation techniques transmission over frequency
selective Rayleigh fading channel with different number of channel coefficients
L at Δε = 0.1 and Δθ = 0.

Fig. 14. Comparison of SEP versus γ̄k between 8-point DFT and DFrFT-
based OFDM 16-QAM transmission over frequency selective Rayleigh fading
channel with different number of channel taps L at Δε = 0.1 and Δθ = 0.

[35]. Therefore, our results confirm the superiority of DFrFT-
based OFDM compared to DFT-based OFDM when the optimal
angle parameter is set for the given value of Δε.

The optimality of α is verified by drawing the SEP versus
CFO in case of transmission over a 2-taps frequency selec-
tive Rayleigh fading channel. In Fig. 15, the SEP versus Δε
is reported by considering the fixed value of γ̄k = 25 dB and
Δθ = 0 for an 8-point DFrFT-based OFDM system using BPSK
at α = π/2, 1.584, 1.591, and1.61. The chosen values of α are
the optimal ones for Δε = 0.1, 0.2, and 0.3, respectively. From
Fig. 15 we observe that the best SEP performance is always
better at the value of Δε that defines αopt and that as we move
away from both the two sides of these optimal values the per-
formance degrades. With the same parameters given in Fig. 15,
Fig. 16 reports the SEP versus Δε for QPSK. From Fig. 16 we
can observe a similar behavior in the SEP performance. Finally,
the same behavior is also observed for 16-QAM from the results
shown in Fig. 17.



Fig. 15. Comparison of SEP versus Δε between 8-point DFrFT-based
OFDM for BPSK modulation techniques transmission over frequency selec-
tive Rayleigh fading channel with 2-taps for different α and at γ̄k = 25 dB.

Fig. 16. Comparison of SEP versus Δε between 8-point DFrFT-based
OFDM for QPSK modulation techniques transmission over frequency selec-
tive Rayleigh fading channel with 2-taps for different α and at γ̄k = 25 dB.

VII. CONCLUSION

This article provides SEP analysis of DFrFT-based OFDM
systems with CFO and STO in frequency selective Rayleigh
fading channels. It is well known that DFrFT-based OFDM
systems allow to improve the performance of the DFT-based one
over doubly dispersive fading channels by properly choosing the
optimal value of the DFrFT angle parameter αopt . In this paper
we have focused on the derivation of exact SEP expressions for
DFrFT-based OFDM system in case of BPSK, QPSK, and 16-
QAM modulation schemes for the frequency selective Rayleigh
fading channel when STO and CFO are present at the same
time. From the presented results, it came out for the first time
that DFrFT based OFDM system is also more robust to STO
(Δθ) as well as the CFO (Δε) at αopt . In order to get the
confirmation of the αopt for particular CFO values, we have also
derived the closed form expression of the αopt as a function of
the Δε. The correctness of the derived analytical expressions
has been demonstrated by comparing them to SEP obtained by
means of Monte Carlo simulations. Our results demonstrate that
at optimal value of the angle parameter αopt the DFrFT-based
OFDM system overcomes DFT-based OFDM one because the

Fig. 17. Comparison of SEP versus Δε between 8-point DFrFT-based OFDM
for 16-QAM in case of transmission over frequency selective Rayleigh fading
channel with 2-taps with different α and at γ̄k = 25 dB.

lower sensitive to the STO as well as the CFO. For α = π/2
DFrFT-based OFDM system converts to DFT-OFDM system.
A possible extension of the given SEP analysis to the massive
MIMO case has been also addressed. However, an in depth
analytical study of this case is left to future work.

APPENDIX A
DERIVATIVE OF SEP EXPRESSION

The computation of ∂Ps(ξ)/∂α is given in (71) and shown
at the top of the next page, where P = Af+ (α)

1+Af+ (α)+ γ̄k ak
q

, Q =
Af−(α)

1+Af−(α)+ γ̄k ak
q

, with f+(α) = (�[S(0, k)]+zk
q )2 and f−(α)

=(�[S(0, k)]−zk
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∂α ). The individual terms appearing in the above
equations are defined in (72), (73)–(75), shown at the top of
the next page, (76), and (77). To compute ∂Ps(ξ)/∂α, we first
need to compute the derivative of the several individual terms
such as S(l, k), zk

q and the ak
q with respect to α, where zk

q and
ak

q are the mean and variance of conditional random variables
bk
q |β(k), respectively given in (35). To this aim, we rewrite the

expression of S(l, k) given in (23) as
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(72)

By using S(l, k), we can also write the term S(0, k) by sub-
stituting l = 0 given in (72). Therefore, we can also rewrite the
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expressions of zk
q and ak

q as
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The derivative of the individual terms S(l, k), zk
q and ak

q with
respect to α are given in eqs. (75), (76) and (77) respectively, as
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The result of ∂S(l, k)/∂α is given in (75), for l = 0, . . . N − 1.
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