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Summary

This paper addresses finite-horizon robust control of a piecewise affine system
affected by uncertainty and characterized by different affine dynamics (modes) asso-
ciated with a polyhedral partition of the state space. The goal is to design a static
state-feedback control law that maintains the state of the system within given –
possibly time-varying – sets, subject to actuation constraints.
The proposed approach rests on two phases: a reference mode sequence with a suffi-
ciently large robustness level is determined first, and then a tracking state-feedback
control law defined on the reach sets of the controlled system is designed to coun-
teract uncertainty and maintain the reach sets within the reference sequence. If this
is not possible and the reach sets split over different modes, then, further reference
mode sequences and tracking controllers are computed.
The designed state-feedback control law is represented through a collection of
controllers defined on pre-computed reach sets of the closed-loop control system.
Performance of the approach is shown on some numerical examples.

1 INTRODUCTION

PieceWise Affine (PWA) systems are a class of nonlinear dynamical models whose evolution is described by a finite collection of
affine dynamics associated with a polyhedral partition of the state space. Despite the simplicity of their mathematical description,
they are characterized by significant modelling capabilities. They naturally arise as model of certain classes of systems with
a phased behaviour, and they can be used to approximate smooth nonlinear systems with a given accuracy1 to the purpose of
formal verification and control design (see, e.g.,2,3,4,5). Furthermore, in6 PWA systems have been proven to be equivalent to a
class of hybrid models called Mixed Logical Dynamical (MLD) that can be used to describe a wide range of systems7.
PWAmodels have been adopted in several domains of applications, including the robotics and automotive fields. For instance,

a recent work on hybrid model predictive control of a humanoid robot has been presented in8, where the piecewise affinity
property appears spontaneously whenmodelling the occurrence of contact phenomena affecting the dynamics of the robot. In the
automotive context, uncertain PWA models have been adopted to design a robust lateral stability controller for ground vehicles
in9,10.
In this paper, we address robust control of uncertain discrete-time PWA systems along a finite time horizon. More precisely,

the goal is to design a static state-feedback control law that makes the system satisfy some specifications given in terms of
constraints on the admissible value of the state for every instance of the uncertainty, subject to input actuation limits. Uncertainty
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enters the system dynamics through an additive disturbance and the initial state, that are only known to take values in some
compact sets.
Robust control of PWA systems has been tackled in the literature according to different paradigms. In11 backward reachability

analysis and symbolic model checking are applied to check attainability of a sequence of state regions, that is, the property
of a controller to drive the state to a (safe) target set along a given sequence of sets for all possible realizations of the system
uncertainty. Approaches based on polyhedral computations and dynamic programming are also adopted,12,13, where13 includes
also reachability analysis. An alternative approach not relying neither on reachability analysis nor on polyhedral computations
and dynamic programming is presented in14, where a computational procedure for the class of MLD systems that is based on
Mixed Integer Programming (MIP) is described. Also, works are available in the literature dealing with discrete-time PWA
systems within a model predictive control framework,15,16,17,18.
A key feature of the method that we propose in this paper is that it rests on the computation of reachability sets of the PWA

system, i.e., the sets of states that can be reached through the PWA system dynamics starting from the set of admissible initial
conditions and applying all admissible input values. Using polyhedral sets for reachability analysis as in11 and13 may become
computationally challenging as the computation horizon length and the system dimension increase. A possible strategy to mit-
igate this problem is to employ lower complexity outer-approximating sets, as done for example in19, where hyper-rectangular
sets are adopted for outer-approximating polytopes. A computationally convenient way to perform reachability computations is
to introduce zonotopes, i.e., a class of convex polytopes whose points are expressed as a linear combination of a center and of a
finite collection of vectors called generators, suitably weighted with coefficients ranging in [−1, 1].
Performing reachability computations on affine systems affected by inputs taking values in a set reduces to applying affine

maps and computing Minkowski sums. Zonotopes are close under these operations and, differently from generic polytopes,
present better scalability properties as the system dimension grows,20. Moreover, a higher degree of tunability is provided by
zonotopes while computing outer-approximations, since techniques are available to outer-approximate complex zonotopes with
simpler ones by suitably setting the number of desired generators,21.
A set-based reachability method using zonotopes has been recently proposed in22 for addressing a finite horizon control

problem where the goal is driving the state of a system affected by uncertainty to some target value, while satisfying some
safety specifications and actuation constraints. To achieve this, the effect of the uncertainty on the initial state and of an additive
bounded disturbance entering the system dynamics has to be counteracted via state feedback. The approach is proposed for linear
systems and extended to nonlinear systems via linearization along a nominal trajectory. The key idea in22 is to use zonotopes to
represent specifications, actuation constraints, disturbance and initial state sets, possibly via suitable under/over approximations,
and then express the control input at each time step as a linear combination of center and generators of the actuation constraints
set according to coefficients that are optimized so as to minimize the extent of the reach set at next step while enforcing the
specifications. The input applied on-line will depend on the actual value taken by the state in the reach set, via coefficients
re-scaling factors.
The control design method proposed in this paper relies on reachability computations, but differently from11, analysis is

performed on a look-ahead horizon and, similarly to22, we adopt zonotopes to represent the reach sets of the system. A static
state-feedback control law, whose structure is inspired by the one adopted in22, is introduced. However, differently from22, center
and generators of the zonotopic control policy are taken as design parameters and, in particular, generators providing the state
feedback component of the control law are not constrained to be a linear combination of the generators of the (zonotopic) set
representing the input constraints, but they are optimized. Moreover, the considered PWA dynamics in our setup does not require
any kind of regularity, while applicability of22 to nonlinear dynamics relies on linearization, thus requiring differentiability of
the nonlinear function.
To obtain a computationally convenient procedure for the offline controller design phase, the concept of robust mode control

introduced in14 is here applied in the context of reachability computations by fixing a-priori a mode sequence to be tracked by
the reach sets of the closed-loop system at each time instant. In this way, the PWA system can be reformulated as a time-varying
affine system, and the controller design procedure reduces to the solution of convex quadratic programs, for which efficient
solvers are available,23. However, differently from14, a feedback policy is here adopted, and in case the controller fails to keep
some reach set inside a single mode, computations at subsequent time instants are performed independently for each non-empty
intersection of the reach set with the modes by adopting suitable zonotopic outer-approximations.
The designed feedback controller is described through two collections of zonotopes, one in the state and the other in the control

input space. Locating the current state value in the appropriate state space zonotope (to then determine the corresponding control
action in the associated input zonotope) is usually easier than locating it within the state-space partition associated with an



RICCARDO DESIMINI AND MARIA PRANDINI 3

explicit MPC controller as in18. More precisely, the online implementation of the designed controller requires solving a convex
quadratic program in order to determine the control action to be applied at the current state and, hence, it is computationally
low demanding.
The problem of choosing among the admissible switching sequences the one to be tracked in closed-loop is here addressed by

assessing their robustness level through a procedure inspired by the one presented in24 but for a different problem and class of
systems. In24 discrete time linear systems subject to an additive disturbance are considered, and the objective is to determine the
maximal amount of uncertainty that can enter the system dynamics while guaranteeing the existence of a control policy ensuring
the satisfaction of polytopic state and input constraints. To this aim, parameterized uncertainty sets and a suitable metric are
introduced to quantify the amount of uncertainty. Differently from24, where a closed-loop affine policy is considered together
with several families of sets (ellipsoidal, rectangular, polyhedral) to model uncertainty and recover computational tractability, we
choose the control inputs according to an open-loop strategy and parametrize uncertainty sets with zonotopes whose generators
are rescaled by suitable factors representing the decision variables to be chosen so as to optimize the metric quantifying the
uncertainty amount.
The rest of the paper is organized as follows. We first introduce some basic notions and notations and formulate the addressed

robust control problem for uncertain piecewise affine systems. We then describe in Section 2 the control design method based
on reachability computations proposed in this paper. More in detail, we first address the problem of generating an admissibile
switching sequence for a PWA system with no uncertainty in Section 2.1, then we describe in Section 2.2 a procedure to assess
the robustness level of a computed switching sequence, and in Section 2.3 we present the state-feedback controller design
procedure for uncertain PWA systems. Section 2.4 concludes Section 2 with a description of the online implementation of the
designed state-feedback controller. In Section 3, we perform a complexity analysis of the proposed design methodology, and
show in Section 4 some numerical results. We conclude the paper with some remarks in Section 5.

Basic notions and notations
Given two positive integers m and n, the symbol ℝm×n denotes the space of the m × n real matrices and ℝm stands for ℝm×1.
The symbol Im denotes the identity matrix of order m, while 0m and 1m are the elements of ℝm with all zero and unitary entries,
respectively.
Given two sets A, B ⊆ ℝℎ, the symbol A ⊕ B denotes the Minkowski sum of A and B. Given two matrices M1 ∈ ℝm,n and
M2 ∈ ℝp,q , the symbolM1 ⊗M2 denotes the Kronecker product ofM1 andM2.
A (convex) polyhedron ⊆ ℝℎ is defined as the intersection of q half-spaces (H-representation25), and can be expressed through
PA ∈ ℝq×ℎ and pB ∈ ℝq as  = {z ∈ ℝℎ

|PAz ≤ pB} or  = (PA, pB) for ease of notation. A polytope is a (convex) bounded
polyhedron. Given a finite set {xi}

p
i=1 in ℝℎ, the symbol conv({xi}

p
i=1) indicates the convex hull of {x1,… , xp}. Zonotopes

are centrally symmetric convex polytopes. More precisely, a convex polytope in ℝℎ is called a zonotope if it can be written as
 = {z ∈ ℝℎ

|z = c+
∑r
i=1 �igi, �i ∈ [−1, 1]}, where c ∈ ℝℎ is the center and gi ∈ ℝℎ, i = 1,… , r, are the generators. We shall

then use ⟨c, G⟩ as a more concise notation of  (G-representation), where G ∈ ℝℎ×r is the generator matrix, which contains the
generators as its columns. A parallelotope is a zonotope with an invertible generator matrix. Given a generator matrix G, G[k]
denotes its k-th generator and G[k,l] denotes the submatrix composed by the generators of G from column k to column l, l ≥ k.
Note that an interval in ℝℎ is a zonotope whose generators are parallel to the coordinate axes.

Robust constrained control problem formulation
We consider a discrete-time PieceWiseAffine (PWA) dynamical systemwhose state space is partitioned into s polyhedral regions
i, i = 1,… , s. Each region is called a mode and activates a different affine dynamics as follows:

xt+1 = Aixt + Bu,iut + Bw,iwt + fi, xt ∈i, i = 1,… , s, (1)

where x ∈ ℝnx is the state, u ∈ ℝnu is a control input, andw ∈ ℝnw is a disturbance input taking values in a polytope ⊂ ℝnw .
Uncertainty affects the initial state, which is only known to belong to a polytope 0 ⊂ ℝnx .
The control input is subject to actuation limits expressed via a polytope ⊂ ℝnu , whereas the state is subject to specifications

given in terms of a sequence of polyhedral sets sp,t ⊆ ℝnx , t = 1,… , N , along the look-ahead time horizon [1, N] which are
named specs in the sequel.
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Our goal is designing a finite-horizon static state-feedback policy = ( t)N−1t=0 , with t ∶ ℝnx →  , such that the closed-loop
system

{

xt+1 = Aixt + Bu,iut + Bw,iwt + fi, xt ∈i, i = 1,… , s
ut =  t(xt)

(2)

satisfies the state specifications xt+1 ∈ sp,t+1, for any x0 ∈ 0 and any wt ∈  , t = 0,… , N − 1. Note that a particular
instance of the introduced problem is obtained when sp,t = ℝnx , t = 1,… , N − 1, and sp,N = f , which corresponds to state
regulation to the target set f .

2 CONTROL DESIGN BASED ON REACHABILITY COMPUTATIONS

We introduce amethod for robust constrained control design for the uncertain PWA system (1) that rests on set-based reachability
computations. The basic idea of the proposed method is to design a controller that acts on position and shape of the reach sets
of the controlled system, i.e., the sets of states that can be reached by the system under the designed control law and subject to
all admissible realizations of uncertainty, with the aim of maintaining them inside the specs. The effectiveness of any approach
to control design that is based on reach set computations obviously depends on the class of sets that are used to model the reach
sets of the system. Here, we represent reach sets by means of zonotopes because zonotopes are easy to describe, have favorable
scalability properties with the system dimension, and they are closed under affine transformations and the Minkowski sum,
which are the two main operations involved in set propagation according to the PWA system dynamics.
The method is particularly efficient if, at each time instant, the reach set of the closed-loop system is contained within a single

mode. In such a case, the PWA system can be described as a time-varying affine system and, by over-approximating the polytopic
sets  and 0 with outer-zonotopes w and x,0, respectively, we can exploit the property of closeness with respect to affine
transformation andMinkowski sum of zonotopic sets to obtain a computationally convenient procedure for reach set propagation.
If instead some reach set of the closed-loop system covers multiple modes, then each mode intersection is approximated by an
outer-zonotope and propagated independently, thus generating multiple branches.
The design of the control law in the horizon [0, N−1] is structured in two phases: in the first phase, we neglect uncertainty and

determine an admissible sequence of modes for the nominal system associated with (1), and, in the second phase, we consider
uncertainty and design a static state-feedback control law that best compensates it while maintaining the reach sets within the
specs. To avoid splitting, we select the mode sequence that has the largest degree of robustness in open-loop (first phase) and
then reduce the size of the reach sets in closed-loop (second phase). If a reach set split is unavoidable at some time instant t < N ,
then the two phases described above are performed over the residual time horizon [t,N − 1] starting from the zonotopic outer
approximation of each mode fragment of the split set.
The resulting control law is defined through a collection of closed-loop reach sets along the time horizon [0, N − 1] and of

the associated static state-feedback control laws. Each reach set is approximated via an outer-zonotope and the control law is
zonotopic too, with given center and generator matrix, while the coefficients weighting the generators depend on the state value
and are set equal to the ones identifying the state position in the (zonotopic) reach set to which it belongs.
The described control design procedure is sketched in Algorithm 1. Note that for short-hand notation, we use the switching

sequence S[0,N−1] = (i0, i1,… , iN−1) to denote the mode sequencei0 ,i1 ,… ,iN−1 .
The procedures involved in the implementation of Algorithm 2 are thoroughly described in Sections 2.1 – 2.3, whereas the

online control law implementation is described in Section 2.4.

2.1 Generating an admissible switching sequence for the nominal PWA
Assume without loss of generality that the zonotope w outer approximating the disturbance set  is centered at 0, so that
w = ⟨0nw , Gw⟩. Then, the nominal system associated with (1) is given by

x̄t+1 = Aix̄t + Bu,iut + fi, x̄t ∈i, i = 1,… , s (3)

and is initialized at x̄0 = cx,0, where cx,0 denotes the center of the zonotope x,0 outer approximating 0, i.e., x,0 = ⟨cx,0, G0⟩.
We now introduce the notion of admissible switching sequence for the nominal system (3).
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Algorithm 1 Finite-horizon robust constrained control design
Require: N , x,0, w, PWA dynamics (1), {sp,j}Nj=1, 

Apply Algorithm 2 by setting t← 0 and x,t ← x,0
if k provided by Algorithm 2 satisfies k = N then

Algorithm 2 has computed the control law along [0, N − 1] without any branching
else branching has occurred

while the output k of Algorithm 2 satisfies k < N do
Apply Algorithm 2 to all branches originated by the {(i)

x,k} splits of the reach set by setting t← k and x,t ← (i)
x,k

end while
end if
Provide as output the control laws computed along all branches

Algorithm 2 Control law design via reachability computations along a branch
Require: t,N , x,t, w, PWA dynamics (1), {sp,j}Nj=t+1,  , %min
%← 0
while % < %min do

Compute a switching sequence S[t,N−1] over [t,N − 1] for the nominal system initialized at the center of x,t (§ 2.1)
Evaluate admissibility and robustness level % of S[t,N−1] (§2.2)

end while
continue← 1; k← t
while continue ∧ k < N do

Design a static state-feedback law  k ∶ ℝnx →  at time k that makes the control system robustly satisfy the specs when
the system evolves according to S[k,N−1] starting from x,k (§2.3)

if k < N − 1 then
Compute the reach setx,k+1 of system (2) at time k + 1 by applying  k starting from x,k
if x,k+1 does not split among modes then

x,k+1 ← x,k+1
else

Determine an outer-zonotope (i)
x,k+1 for each non-empty intersection ofx,k+1 with the system modes

continue← 0
end if

end if
k← k + 1;

end while
Provide as output: k, the control law within [t, k − 1] along the branch starting from x,t and, if k < N , also {(i)

x,k}

Definition 1 (Admissible switching sequence for the nominal system). A switching sequence S∗[0,N−1] = (i∗0, i
∗
1,… , i∗N−1) is

admissible for the nominal system (3), if there exists a sequence of input values ut ∈  , t = 0, 1,… , N − 1, that makes (3)
initialized at x̄0 = cx,0 evolve inside the specs through the corresponding mode sequencei∗0

,i∗1
,… ,i∗N−1

.

In this section we present three methods for generating an admissible switching sequence for system (3), highlighting their
relevant features. A comparison in terms of complexity is postponed to Sections 3 and 4.

2.1.1 A mixed integer linear programming approach
In this method, the problem of determining an admissible switching sequence for (3) is formulated as a mixed integer linear
programming feasibility test for finding an input sequence that guarantees the specs satisfaction in nominal conditions. The
corresponding switching sequence will be an admissible switching sequence for (3).
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TheMixed Integer Linear Program (MILP) reformulation is achieved by first rewriting the PWA system (3) as aMixed Logical
Dynamical (MLD) system given by linear equalities and inequalities involving also binary variables, and then adding the specs
and actuation constraints.

Converting the PWA system to an equivalent MLD model
An MLD systems is a dynamical model of the following form:

xt+1 = Axt + Buut + B��t + Bzzt + f (4)
Exxt + Euut + E��t + Ezzt ≤ e

where x ∈ ℝnx is the state, u ∈ ℝnu is the input, � ∈ {0, 1}n� is a vector of binary auxiliary variables and z ∈ ℝnz is a vector of
continuous auxiliary variables.
Suppose, without loss of generality, that the modes i, i = 1,… , s, of the PWA system are defined through nℎ half-spaces

{j}
nℎ
j=1, so that eachi is obtained as the intersection of a subset of them and of the complements of the remaining ones. This

can be encoded via a �(i) vector with nℎ binary elements where the j-th element is 1 ifi is contained withinj , and 0 if it is
within its complement. We can then introduce a binary auxiliary vector �t ∈ {0, 1}nℎ such that:

xt ∈i ⇐⇒ �t = �(i).

In order to translate the definition of �t into a set of mixed-integer linear constraints, we consider the H-representations (Haj , ℎbj),
j = 1,… , nℎ, of the half-spaces {j}

nℎ
j=1, and apply the big-M technique (see7):

{

Hajxt ≤ ℎbj +M(1 − �tj)
−Hajxt ≤ −ℎbj − m�tj − �m(1 − �tj)|ℎbj|

j = 1,… , nℎ (5)

withM = maxj=1,…,nℎ maxx∈[xmin,xmax](Hajx−ℎbj) andm = minj=1,…,nℎ minx∈[xmin,xmax](Hajx−ℎbj), where �m > 0 is the machine
precision and [xmin, xmax] ⊆ ℝnx is an interval large enough to contain all the reachable states of (3) in the horizon [0, N].
Furthermore, a H-representation (Mia, mib) of modei is given by:

Mia = (2 diag(�
(i)
1 ,… , �(i)nℎ ) − Inℎ)Ha

mib = (2 diag(�
(i)
1 ,… , �(i)nℎ ) − Inℎ) (ℎb + (Inℎ − �m diag(�

(i)
1 ,… , �(i)nℎ ))|ℎb|)

(6)

where the operator | ⋅ | is applied elementwise and we set

Ha =
⎛

⎜

⎜

⎝

Ha1
⋮

Hanℎ

⎞

⎟

⎟

⎠

, ℎb =
⎛

⎜

⎜

⎝

ℎb1
⋮
ℎbnℎ

⎞

⎟

⎟

⎠

.

By setting zt = xt+1 and using the big-M technique, the PWA dynamics

xt+1 = Aixt + Bu,iut + fi ⇐⇒ xt ∈i ⇐⇒ �t = �(i)

can be expressed as follows:
{

zt ≤ Aixt + Bu,iut + fi − Γ(2�(i) − 1nℎ)
T �t + Γ‖�(i)‖1

−zt ≤ −Aixt − Bu,iut − fi − Γ(2�(i) − 1nℎ)
T �t + Γ‖�(i)‖1

i = 1,… , s, (7)

where
Γ = max

i,j=1,…,s
max

x∈[xmin,xmax]
u∈[umin,umax]

|(Aj − Ai)x + (Bu,j − Bu,i)u + fj − fi|,

[umin, umax] ⊆ ℝnu being an interval including  . Note that equality (2�(i) − 1nℎ)
T �t = ‖�(i)‖1 holds if and only if �t = �(i).

Summarizing, the inequality constraints in (4) are obtained by stacking constraints (5) and (7), while the equality is simply
xt+1 = zt.

MILP formulation
We now describe a procedure to compute an admissible switching sequence for system (3) starting from reformulation (4),
which consists in solving a feasibility problem with (ut)N−1t=0 , (�t)N−1t=0 and (zt)N−1t=0 as decision variables. The aim is to choose
them so as to make the state of system (4) evolve inside the specs for t = 1,… , N , while the input is constrained to  . If
such an assignment of the decision variables exists, then the selected sequence of binary vectors (�∗t )

N−1
t=0 induces an admissible
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switching sequence S∗[0,N−1] = (i
∗
0, i

∗
1,… , i∗N−1) for system (3) according to Definition 1, being each binary vector �∗t associated

with a mode index i∗t of system (3).
More formally, we need to test if there exists an assignment for the decision variables (ut)N−1t=0 , (�t)N−1t=0 and (zt)N−1t=0 such that

the constraints in (4) with t = 0,… , N − 1, and the additional constraints

xt ∈ sp,t, t = 1,… , N
ut ∈  , t = 0,… , N − 1

are satisfied. Sincesp,t and are polyhedral sets and xt = zt−1, all constraints are linear in the decision variables. The problem
at hand is then a MILP that is feasible if and only if there exists an admissible switching sequence for system (3). In case of
feasibility, such a sequence is retrieved by recovering the mode indices (i∗t )

N−1
t=0 associated to the selected binary vectors (�∗t )

N−1
t=0 .

If we need to compute multiple admissible switching sequences with this method, we have to perform multiple feasibility
tests, where every time we eliminate the previously computed switching sequences by adding appropriate constraints.
More precisely, suppose that ns switching sequences S∗ℎ , ℎ = 1,… , ns, have been already computed, each one associated with

a set of binary vectors �∗ℎt, t = 0,… , N − 1. In order to express in terms of mixed integer linear conditions the constraint that
the switching sequence coded through the decision variables �t, t = 0,… , N − 1, is different from S∗ℎ , we associate to S

∗
ℎ a set

of binary variables bℎti, t = 0,… , N − 1, i = 1,… , nℎ, defined as:

bℎti = 1 ⇐⇒ �ti ≠ �∗ℎti ⇐⇒ �ti + (2�∗ℎti − 1)bℎti = �
∗
ℎti t = 0,… , N − 1, i = 1,… , nℎ (8)

and impose the constraint:
N−1
∑

t=0

nℎ
∑

i=1
bℎti ≥ 1, (9)

which expresses the condition that at least one component of at least one binary vector associated to the new switching sequence
must change. By embedding (8) and (9) with ℎ = 1,… , ns into the original feasibility problem, we obtain a MILP that is
infeasible only if no further admissible switching sequence for system (3) exists besides the ns computed ones.

2.1.2 A reachability analysis based approach
The second method relies on reachability analysis through efficient set-based computations to determine admissible switch-
ing sequences for the nominal system (3). Differently from the first method, where the generation of an admissible switching
sequence is reduced to the solution of a MILP by suitably embedding specs inside the problem as hard constraints, here the idea
is to compute the reach sets of system (3) (i.e., the sets of the states that can be reached along the time horizon [1, N] starting
from x̄0 by applying at each time step all possible input values within ), and then to check if they intersect the spec sets so as
to determine admissible switching sequences.
Efficiency is obtained by over-approximating the polytopic input set with a zonotope u and representing the reach sets of

system (3) as zonotopes through the procedure described next.
We start at time t = 0 by considering the nominal initial state x̄0. Such state belongs to a modei∗0

, which activates an affine
dynamics (Ai∗0 , Bi∗0 , fi∗0 ). The first element of the currently generated switching sequence is then i∗0. We apply to x̄0 the dynamics
of i∗0

for all input values in u, i.e., we compute the set 1 = Bu,i∗0u + (Ai∗0 x̄0 + fi∗0 ). Note that 1 is a zonotope, because
it is the image of u through an affine map and zonotopes are closed with respect to such maps. According to Definition 1, a
necessary condition to obtain an admissible switching sequence is that the system state at time t = 1 enters the spec set sp,1,
and so we cut from the propagation the states of 1 that are outside sp,1. Since zonotopes are not closed under intersection, the
set 1 ∩ sp,1 is a polytope but not necessarily a zonotope. To keep performing reachability computations efficiently, we then
have to outer-approximate it with a zonotope. Before doing this, in order to minimize the introduced level of conservativeness,
we first check if 1 ∩ sp,1 covers multiple modes. If it is included into a single mode, say i∗1

, then we set i∗1 as the second
element of the generated switching sequence. We then outer-approximate1∩sp,1 with a zonotope and apply to it the dynamics
of i∗1

, i.e., we compute the set 2 = Ai∗1OZ(1 ∩ sp,1) ⊕ Bu,i∗1u ⊕ fi∗1 , OZ() denoting an outer-zonotope of  . Set
2 is still a zonotope, due to the closure property of zonotopes with respect to Minkowski sum. Consider now the case where
1 ∩ sp,1 covers multiple modes. Then, each part of 1 ∩ sp,1 is associated in general with a different dynamics, and so we
have to propagate them independently, thus generating multiple branches of sets. At this point, in order to fix the next index of
the currently generated sequence, one has to select a single branch. Computations are then carried out along the selected branch
only, while the other ones are stored in memory. This allows to rapidly generate a potentially admissible switching sequence.
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By iterating the above procedure until the end of the reference time horizon, a switching sequence S∗[0,N−1] = (i
∗
0, i

∗
1,… , i∗N−1)

is finally generated.
Due to the introduced over-approximation, some a-posteriori verification procedure is needed to test the actual admissibility

of any computed switching sequence. In order to verify whether the generated sequence is admissible or not, the procedure
described in Section 2.2 can be adopted. If the admissibility test fails, another sequence has to be generated, which can be done
easily by choosing a different branch to be propagated after splitting. Note also that, if no further sequence can be generated,
then no additional admissible switching sequence exists for system (3), because reachability analysis is performed by using an
input set u that includes the original one  and the computed zonotopes include the actual reach sets of the system.
Since the proposed method strongly relies on a zonotopic outer-approximation of polytopes, we now describe how to tightly

enclose a given polytope  within a parallelotope oa = ⟨coa, Goa⟩.
Given a coordinate transformation matrix T , the center and the generator matrix are computed as follows:

coa =
T
2
(

wmax +wmin
)

, Goa =
T
2
diag

(

wmax −wmin
)

,

with wmax = maxj=1,…,nv wj and wmin = minj=1,…,nv wj , where wj , j = 1,… , nv, is the j-th vertex of the polytope obtained by
applying the coordinate transformation matrix T −1 to  . T needs to be chosen so as to get a tight over-approximation. To this
purpose, one can adopt two methods:

Principal Component Analysis (PCA): the set of the vertices of  is interpreted as a set of data and T provides the
transformation to a new orthogonal coordinate system where the greatest variance of the data is along the first axis, the
second greatest variance of the data is along the second axis and so on and so forth. The procedure described in21 can be
adopted. The drawback associated to this method is the necessity of computing the vertices of  , which can be costly.

Maximum volume inner ellipsoid: the largest ellipsoidal inner approximation of  is computed and its axes are taken
as directions of the new coordinate system. The algorithm presented in26 can be adopted to determine the ellipsoidal
inner approximation of a full-dimensional polyhedron by solving a convex optimization program. We extended such an
algorithm so as to deal with lower-dimensional polyhedra too. Differently from PCA, ellipsoid computation does not
require the vertices of  .

2.1.3 A randomized approach
We finally propose a randomized approach for determining an admissible switching sequence S∗[0,N−1] = (i

∗
t )
N−1
t=0 for the nominal

PWA system (3), which rests on extracting at random a sequence ut ∈  , t = 0,… , N − 1, and checking if it makes system
(3) satisfy the specs along the time interval [1, N]. If this is the case, the mode sequence, say i∗0

,i∗1
,… ,i∗N−1

, associated
with the obtained state trajectory (x∗t )

N
t=1 identifies an admissible switching sequence S∗[0,N−1] = (i∗t )

N−1
t=0 for system (3). We

next provide an estimate on the number of extractions to be performed before giving up in looking at an admissible switching
sequence.
Let us assume that u0,… , uN−1 are independent randomvariables uniformly distributed over .We can associate a probability

measure p to the event, say E, that the multi-sample u0,… , uN−1 provides an admissible switching sequence. Our goal is to
determine a number n of independent extractions for u0,… , uN−1 such that, if no extracted multi-sample provides an admissible
switching sequence, then, p is smaller than or equal to an a-priori defined threshold probability pT ∈ (0, 1). The threshold
probability pT can in turn be set equal to �N , with � ∈ (0, 1), so as to account for the horizon length N . Indeed, the Lebesgue
measure of the set within N corresponding to probability pT is pTV N

 where V denotes the volume of  .
Suppose that we run n independent experiments to extract n input sequences. Then, the random variable nE representing the

number of experiments where event E has occurred is a binomial random variable with parameters p and n. Its cumulative
distribution is given by:

fn(m; p) = ℙ(nE ≤ m) =
m
∑

ℎ=0

(

n
ℎ

)

pℎ (1 − p)n−ℎ, m = 0, 1,… , n, (10)

and depends on the unknown probability p of event E and on the number of experiments n.
We now choose n so that the probability of extracting no multi-sample in E while having p > pT is smaller or equal to some

predefined (small) � ∈ (0, 1):
fn(0; p) = (1 − p)n ≤ �, if p > pT .
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Given that fn(0; p) is decreasing as a function of p, the condition above is satisfied if the following one holds:

fn(0; pT ) = (1 − pT )n ≤ �,

which entails
n ≥ − 1

log(1 − pT )
log 1

�
pT→0∼ 1

�N
log 1

�
.

If none of the n independent extractions is in E, then, the probability that there exists an admissible switching sequence for
system (3) is smaller than �N with probability larger than or equal to 1 − �.
If we set � = 10−6 and � = 0.01, then, we obtain n ≥ 14 ⋅ 100N .
Note that, differently from the previous two approaches, the randomized one does not guarantee that all admissible switching

sequences are eventually found. Also, as the time horizon length grows, the number of input sequences to be extracted grows
exponentially.

2.2 Evaluating the robustness level of a switching sequence
In this section, we assess the robustness level of a given switching sequence for system (3) when re-introducing uncertainty as
in the original system (1) where an additive disturbance is present and the initial state is uncertain.
To this purpose, the rescaling factors �0i ∈ [0, 1], i = 1,… , p0, and �wj ∈ [0, 1], j = 1,… , pw, are associated to the generators

of the uncertainty zonotopic setsx,0 andw, and system (1) is considered with the following parametrized sets, which describe
the uncertainty on the initial state x0 and the disturbance w:

0�0 =
⟨

cx,0, G0�0
⟩

=
⟨

cx,0,
[

�01G
[1]
0 … �0p0G

[p0]
0

]⟩

w�w =
⟨

0nw , Gw�w
⟩

=
⟨

0nw ,
[

�w1G
[1]
w … �wpwG

[pw]
w

]⟩

Note that, since �0 and �w have components in [0, 1], it holds that 0�0 ⊆ x,0 and w�w ⊆ w, and the sets coincide if all
rescaling factors are unitary.
In order to assess the robustness level of the switching sequence S∗[0,N−1] = (i∗0,… , i∗N−1), we look for an input sequence

u0,… , uN−1 for system (1) that satisfies specs and input constraints under S∗[0,N−1] while maximizing the level of uncertainty
given by the zonotopes 0�0 and w�w . More precisely, we maximize

%(�0, �w) =
1

p0 + pw

( p0
∑

i=1
�0i +

pw
∑

j=1
�wj

)

subject to the constraints:

�0i, �wj ∈ [0, 1], i = 1,… , p0, j = 1,… , pw
x,t(�0, �w) ⊆ sp,t ∩i∗t

, t = 1,… , N

ut ∈  , t = 0,… , N − 1

wherei∗N
= ℝnx andx,t(�0, �w) is the reach set of system (1) at time t when sequence S∗[0,N−1] is applied and the uncertainty

affecting the system is represented by the zonotopes 0�0 and w�w .
We now show that the reach setx,t(�0, �w) is a zonotope.
Consider the expression of the state at time t when sequence S∗[0,N−1] is applied:

xt =
t

∏

j=1
Ai∗t−jx0 +

t−1
∑

j=0

t−1
∏

ℎ=j+1
Ai∗t+j−ℎ(Bui∗j uj + Bwi∗jwj + fi∗j ). (11)

Since x0 and wj , j = 0,… , t − 1, belong to 0�0 and w�w respectively, then, there exist �0 and �w,j with ‖�0‖∞ ≤ 1 and
‖�w,j‖∞ ≤ 1 such that x0 = cx,0 + G0�0�0 and wj = Gw�w�w,j , so that expression (11) rewrites as:

xt =
t

∏

j=1
Ai∗t−j (cx,0 + G0�0�0) +

t−1
∑

j=0

t−1
∏

ℎ=j+1
Ai∗t+j−ℎ(Bui∗j uj + Bwi∗jGw�w�w,j + fi∗j ).
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By defining

cx,t =
t

∏

j=1
Ai∗t−j cx,0 +

t−1
∑

j=0

t−1
∏

ℎ=j+1
Ai∗t+j−ℎ(Bui∗j uj + fi∗j )

Gx,t(�0, �w) =

[

t
∏

j=1
Ai∗t−jG0�0

t−1
∏

ℎ=1
Ai∗t−ℎBwi∗0Gw�w … Bwi∗t−1Gw�w

]

we obtain

xt = cx,t + Gx,t(�0, �w)�x,t, (12)

where

�x,t =

⎡

⎢

⎢

⎢

⎢

⎣

�0
�w,0
⋮

�w,t−1

⎤

⎥

⎥

⎥

⎥

⎦

, ‖�x,t‖∞ ≤ 1.

The expression in (12) shows thatx,t(�0, �w) is a zonotope with center cx,t and generator matrix Gx,t(�0, �w). By exploiting the
zonotopic structure ofx,t(�0, �w), we can express the state constraints as:

X∗
a,tcx,t + max

�∈[−1,1]pt
X∗
a,tGx,t(�0, �w)� ≤ x∗b,t, t = 1,… , N, (13)

where (X∗
a,t, x

∗
b,t) is a H-representation of sp,t ∩i∗t

, pt = p0 + tpw and the operator max(⋅) is applied elementwise. Condition
(13) is equivalent to:

X∗
a,tcx,t + ‖X∗

a,tGx,t(�0, �w)‖1 ≤ x∗b,t, t = 1,… , N, (14)

where the operator ‖ ⋅ ‖1 is applied row-wise. Now, observe that

‖X∗
a,tGx,t(�0, �w)‖1 = ‖X∗

a,tGx,t diag(�01,… , �0p0 , �w1,… , �wpw)‖1 = |X∗
a,tGx,t|

[

�0
1t ⊗ �w

]

= |X∗
a,tGx,t|Dt

[

�0
�w

]

,

where the operator | ⋅ | is applied elementwise and we set

Gx,t =

[

t
∏

j=1
Ai∗t−jG0

t−1
∏

ℎ=1
Ai∗t−ℎBwi∗0Gw … Bwi∗t−1Gw

]

, Dt = diag(Ip0 , 1t ⊗ Ipw).

Constraints (14) finally rewrite as

X∗
a,tcx,t + |X∗

a,tGx,t|Dt

[

�0
�w

]

≤ x∗b,t t = 1,… , N,

and are linear in the decision variables u0,… , uN−1, �0 and �w since cx,t is affine as a function of u0,… , ut−1.
The actuation constraints can be written as

Uaut ≤ ub t = 0,… , N − 1,

where (Ua, ub) is a H-representation of  and, hence, they are linear in u0,… , uN−1.
Summarizing, to assess the robustness level of a given switching sequence for system (3), we have to solve the following

Linear Program (LP):

max
u0,…,uN−1,�0,�w

%(�0, �w) (15)

subject to:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0i, �wj ∈ [0, 1], i = 1,… , p0, j = 1,… , pw

X∗
a,tcx,t + |X∗

a,tGx,t|Dt

[

�0
�w

]

≤ x∗b,t, t = 1,… , N

Uaut ≤ ub, t = 0,… , N − 1.

Note that problem (15) is feasible if and only if S∗[0,N−1] is admissible for system (3). Admissibility evaluation of S∗[0,N−1] can
then be embedded in this phase, setting the robustness level to −1 in case of infeasibility. In case of feasibility, given an optimal
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solution �∗0 , �
∗
w, the optimal value %(�∗0 , �

∗
w) is compared with some user-chosen threshold %min > 0: sequence S∗[0,N−1] is then

accepted if %(�∗0 , �
∗
w) ≥ %min, otherwise it is discarded (see Algorithm 2).

2.3 Static state-feedback design based on reach-set computations
We address the problem of determining a state-feedback control law  k ∶ ℝnx →  at time k ∈ [0, N − 1] that makes the
control system (2) initialized at time k with xk ∈ x,k = ⟨cx,k, Gx,k⟩ satisfy the spec at time k + 1, when evolving according to
a given switching sequence S[k,N−1] = (ik,… , iN−1).
To avoid a blind selection of  k, we fix a prediction horizon length M and design a static state-feedback policy

( ̃t)
min{k+M−1,N−1}
t=k along the look-ahead horizon [k, k+M −1], truncated to [k,N −1] if k > N −M , satisfying the specs for

system (1) constrained to the switching sequence S[k,N−1], i.e.:

xt+1 = Atxt + Bu,tut + Bw,twt + ft (16)

where At = Ait , Bu,t = Bu,it , Bw,t = Bw,it , ft = fit , t = k,… ,min{k +M − 1, N − 1}.
We then set  k =  ̃k and apply it to x,k to obtain the zonotopic reach setx,k+1 at time k+ 1, which becomes the initial set

for computations at time k + 1 (see Algorithm 2.)
The structure chosen for the static state feedback policy ( ̃t)

min{k+M−1,N−1}
t=k rests on the following result.

Proposition 1. Consider system (16) initialized at time k with xk ∈ ⟨ck, Gk⟩, ck ∈ ℝnx and Gk ∈ ℝnx×pk , and subject to
wt ∈ ⟨0nw , Gw⟩ with generator matrix Gw ∈ ℝnw×pw .
Then, for all t ≥ k, based on xt, we can choose �t ∈ ℝpt , pt = pk + (t − k)pw, with ‖�t‖∞ ≤ 1, so that by setting

ut = cu,t + Gu,t�t,

where cu,t ∈ ℝnu andGu,t ∈ ℝnu×pt , the reach set at time t+1 is a zonotopex,t+1 = ⟨cx,t+1, Gx,t+1⟩with center cx,t and generator
matrix Gx,t given by:

cx,t =

( t−k
∏

j=1
At−j

)

ck +
t−1
∑

j=k

( t−1
∏

l=j+1
At+j−l

)

(Bu,jcu,j + fj) (17)

Gx,t =

[( t−k
∏

j=1
At−j

)

Gk +
t−1
∑

j=k

( t−1
∏

l=j+1
At+j−l

)

Bu,jG
[1,pk]
u,j

( t−k
∏

j=2
At+1−j

)

Bw,kGw +
t−2
∑

j=k

( t−1
∏

l=j+2
At+j+1−l

)

Bu,j+1G
[pk+1,pk+1]
u,j+1

( t−k
∏

j=3
At+2−j

)

Bw,k+1Gw +
t−3
∑

j=k

( t−1
∏

l=j+3
At+j+2−l

)

Bu,j+2G
[pk+1+1,pk+2]
u,j+2 … Bw,t−1Gw

]

(18)
with the understanding that summations and products ranging from ℎ1 to ℎ2 with ℎ1 > ℎ2 correspond, respectively, to the zero
and the identity matrix. Specifically, �t should satisfy:

xt = cx,t + Gx,t�t, ‖�t‖∞ ≤ 1. (19)

Proof. We prove the statement by induction on t: for t = k, since xk ∈ ⟨ck, Gk⟩, then, there exists �k ∈ ℝpk such that

xk = ck + Gk�k, ‖�k‖∞ ≤ 1 (20)

Now, by applying:
uk = cu,k + Gu,k�k,

since wk ∈ ⟨0nw , Gw⟩, we obtain:

xk+1 = Akxk + Bu,kuk + Bw,kwk + fk = Akck + Bu,kcu,k + fk +
[

AkGk + Bu,kGu,k Bw,kGw
]

[

�k
�w,k

]

,
‖

‖

‖

‖

‖

�k
�w,k

‖

‖

‖

‖

‖∞

≤ 1

that is, xk+1 ∈ ⟨cx,k+1, Gx,k+1⟩ where

cx,k+1 = Akck + Bu,kcu,k + fk
Gx,k+1 =

[

AkGk + Bu,kGu,k Bw,kGw
]

are given in (17) and (18) with t = k + 1.
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Now we prove that if the statement holds for ℎ − 1, then it holds also for ℎ. By the induction hypothesis, xℎ ∈ ⟨cx,ℎ, Gx,ℎ⟩
where the expressions of cx,ℎ and Gx,ℎ are given in (17) and (18) by posing t = ℎ. Now, by applying:

uℎ = cu,ℎ + Gu,ℎ�ℎ,

where �ℎ satisfies (19) with t = ℎ, we obtain:

xℎ+1 = Aℎxℎ + Bu,ℎuℎ + Bw,ℎwℎ + fℎ = Aℎcx,ℎ + Bu,ℎcu,ℎ + fℎ +
[

AℎGx,ℎ + Bu,ℎGu,ℎ Bw,ℎGw
]

[

�ℎ
�w,ℎ

]

,
‖

‖

‖

‖

‖

�ℎ
�w,ℎ

‖

‖

‖

‖

‖∞

≤ 1

By substituting cx,ℎ and Gx,ℎ with their expressions obtained by applying the induction hypothesis, we get:

Aℎcx,ℎ + Bu,ℎcu,ℎ + fℎ = Aℎ

(ℎ−k
∏

j=1
Aℎ−j

)

ck + Aℎ
ℎ−1
∑

j=k

( ℎ−1
∏

l=j+1
Aℎ+j−l

)

(Bu,jcu,j + fj) + Bu,ℎcu,ℎ + fℎ =

=

(ℎ+1−k
∏

j=1
Aℎ+1−j

)

ck +
ℎ−1
∑

j=k

( ℎ
∏

l=j+1
Aℎ+1+j−l

)

(Bu,jcu,j + fj) + Bu,ℎcu,ℎ + fℎ =

=

(ℎ+1−k
∏

j=1
Aℎ+1−j

)

ck +
ℎ
∑

j=k

( ℎ
∏

l=j+1
Aℎ+1+j−l

)

(Bu,jcu,j + fj),

[

AℎGx,ℎ + Bu,ℎGu,ℎ Bw,ℎGw
]

=
[

Aℎ

[(ℎ−k
∏

j=1
Aℎ−j

)

Gk +
ℎ−1
∑

j=k

( ℎ−1
∏

l=j+1
Aℎ+j−l

)

Bu,jG
[1,pk]
u,j

(ℎ−k
∏

j=2
Aℎ+1−j

)

Bw,kGw +
ℎ−2
∑

j=k

( ℎ−1
∏

l=j+2
Aℎ+j+1−l

)

Bu,j+1G
[pk+1,pk+1]
u,j+1

(ℎ−k
∏

j=3
Aℎ+2−j

)

Bw,k+1Gw +
ℎ−3
∑

j=k

( ℎ−1
∏

l=j+3
Aℎ+j+2−l

)

Bu,j+2G
[pk+1+1,pk+2]
u,j+2 … Bw,ℎ−1Gw

]

+ Bu,ℎGu,ℎ Bw,ℎGw

]

=

[(ℎ+1−k
∏

j=1
Aℎ+1−j

)

Gk +
ℎ
∑

j=k

( ℎ
∏

l=j+1
Aℎ+j+1−l

)

Bu,jG
[1,pk]
u,j

(ℎ+1−k
∏

j=2
Aℎ+2−j

)

Bw,kGw +
ℎ−1
∑

j=k

( ℎ
∏

l=j+2
Aℎ+j+2−l

)

Bu,j+1G
[pk+1,pk+1]
u,j+1

(ℎ+1−k
∏

j=3
Aℎ+3−j

)

Bw,k+1Gw +
ℎ−2
∑

j=k

( ℎ
∏

l=j+3
Aℎ+j+3−l

)

Bu,j+2G
[pk+1+1,pk+2]
u,j+2 … AℎBw,ℎ−1Gw + Bu,ℎG

[pℎ−1+1,pℎ]
u,ℎ Bw,ℎGw

]

,

that is, xℎ+1 ∈ ⟨cx,ℎ+1, Gx,ℎ+1⟩, where cx,ℎ+1 and Gx,ℎ+1 are given in (17) and (18) with t = ℎ + 1.

By exploiting Proposition 1, we can parametrize the static state feedback control law  ̃t ∶ ℝnx → ℝnu , t = k,… , k +H − 1,
whereH = min{M,N − k}, as follows:

 ̃t(x) = cu,t + Gu,t�∗t (x), (21)
where

�∗t (x) = arg min
�∈{�∈ℝpt∶x=cx,t+Gx,t�, ‖�‖∞≤1}

‖�‖22

and cx,t and Gx,t are respectively the center and the generators of the zonotopic set x,t in Proposition 1.1
By using the parametrization (21), control design at time k reduces to determine {cu,k+j}H−1j=0 and {Gu,k+j}H−1j=0 so as to satisfy

the following constraints:

x,k+j ⊆ sp,k+j ∩ik+j j = 1,… ,H

u,k+j ⊆  j = 0,… ,H − 1

where iN = ℝnx , u,k+j−1 = ⟨cu,k+j−1, Gu,k+j−1⟩, x,k+j = ⟨cx,k+j , Gx,k+j⟩, j = 1,… ,H , and the expressions of cx,k+j and
Gx,k+j are given in (17) and (18) by setting ck = cx,k, Gk = Gx,k and t = k + j.
In order to avoid that the design problem turns out to be infeasible because the reach sets split over multiple modes and not

because of the specs, we introduceH (nonnegative) auxiliary decision variables �j , j = 1,… ,H , to relax the modes constraints.

1We adopt the minimum Euclidean norm as a tie break rule for choosing a vector �t that satisfies (19).
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More precisely, by exploiting the H-representation (6) ofi, we introduce a non-negative scalar � ≥ 0 and define

i,� = {x ∈ ℝnx ∶Miax ≤ mib + �1nℎ},

which satisfiesi ⊆i,�. We then consider the modified constraints:

x,k+j ⊆ sp,k+j ∩ik+j ,�j j = 1,… ,H

u,k+j ⊆  j = 0,… ,H − 1
�j ≥ 0 j = 1,… ,H

(22)

In this way, infeasibility occurs only when the state specifications and the actuation constraints cannot be satisfied, and splitting
occurs at time k + 1 if and only if �1 > 0. The idea is then to minimize the cost

J� =
H
∑

j=1

�j�j ,

where 
�j ≥ 0, so as to obtain a state feedback that keeps the reach sets inside the modes defined by the given switching sequence
S[k,N−1]. Indeed, if �j = 0, j = 1,… ,H are feasible values for constraints (22), then splitting does not occur in [k+ 1, k+H].
In order to reduce the possible splits at the subsequent time instants, we minimize the size of the reach sets through the

following cost:

Jg =
H
∑

j=1

gj

pk+j−1
∑

l=1

‖

‖

‖

G[l]x,k+j
‖

‖

‖

2

2

where 
gj ≥ 0 and the last pw generators of Gx,k+j are neglected because they provide a constant contribution.
To favor recursive feasibility of the constraints (22), we introduce the following cost:

Jc =
H
∑

j=1

cj

‖

‖

‖

cx,k+j − cOLx,k+j
‖

‖

‖

2

2

where 
cj ≥ 0 and cOLx,k+j , j = 1,… ,H , are the centers of the open-loop reach sets obtained during the evaluation of the
robustness level of S[k,N−1]. If the robustness level were maximal, by minimizing Jc (i.e., the distance between the centers of
the zonotopic reach sets of the closed-loop system and the corresponding ones of the open-loop system), we aim at imposing
a containment condition that guarantees the specs satisfaction over the whole horizon [k + 1, N] and not only over the limited
time window [k + 1, k +H].
Summarizing, at time k we need to solve the following optimization problem:

min
cu,k+j−1,Gu,k+j−1,�j ,j=1,…,H

(Jc + Jg + J�) (23)

subject to:
⎧

⎪

⎨

⎪

⎩

x,k+j ⊆ sp,k+j ∩ik+j ,�j , j = 1,… ,H
u,k+j ⊆  , j = 0,… ,H − 1
�j ≥ 0, j = 1,… ,H

that is next shown to be a convex Quadratic Program (cQP).
As for the cost, it is clearly convex and quadratic, given the expressions of Jc , Jg and J�, jointly with the fact that cx,k+j and the

columns of Gx,k+j are affine functions of cu,k,… , cu,k+j−1 and the columns of Gu,k,… , Gu,k+j−1 respectively (see (17) and (18)).
As for the state constraints, by exploiting the zonotopic structure of x,k+j , we can express them as:

Xsp
a,k+jcx,k+j + ‖Xsp

a,k+jGx,k+j‖1 ≤ xspb,k+j , j = 1,… ,H

Mik+jacx,k+j + ‖Mik+jaGx,k+j‖1 ≤ mik+jb + �j1nℎ , j = 1,… ,H
(24)

where (Xsp
a,k+j , x

sp
b,k+j) is a H-representation of sp,k+j , the expressions of Mik+ja and mik+jb are obtained from (6) by posing

i = ik+j , and the operator ‖ ⋅ ‖1 has to be applied row-wise.
In order to obtain linear constraints in the decision variables, we introduce auxiliary variables, each one upper bounding an

element of the absolute valuematrices |Xsp
a,k+jGx,k+j| and |Mik+jaGx,k+j|, and then plug in these variables in (24).More explicitly,
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we introduce vectors ℎsp,jl ∈ ℝqsp,j and ℎm,jl ∈ ℝnℎ and write:

Xsp
a,k+jcx,k+j +

pk+j−1
∑

l=1
ℎsp,jl + ‖Xsp

a,k+jBw,k+j−1Gw‖1 ≤ xspb,k+j , j = 1,… ,H

Mik+jacx,k+j +
pk+j−1
∑

l=1
ℎm,jl + ‖Mik+jaBw,k+j−1Gw‖1 ≤ mik+jb + �j1nℎ , j = 1,… ,H

− ℎsp,jl ≤ Xsp
a,k+jG

[l]
x,k+j ≤ ℎsp,jl, l = 1,… , pk+j−1

− ℎm,jl ≤Mik+jaG
[l]
x,k+j ≤ ℎm,jl, l = 1,… , pk+j−1.

The same procedure is applied also to the actuation constraints, which become:

Uacu,k+j +
pk+j
∑

l=1
ℎu,jl ≤ ub, j = 0,… ,H − 1

− ℎu,jl ≤ UaG
[l]
u,k+j ≤ ℎu,jl, l = 1,… , pk+j ,

where (Ua, ub) is a H-representation of  and ℎu,jl ∈ ℝqu are suitable auxiliary vectors.
The state-feedback controller design procedure presented in this section is performed offline, prior to the actual implementa-

tion of the controller on the operating system. In the next section, we illustrate the computational effort involved in the online
implementation of the designed controller, which consists in retrieving at each time step the control action to be applied to
system (1), given the current value of the state.

2.4 Online control law implementation
The outcome of Algorithm 1 is a time-varying state feedback control law along the time horizon [0, N − 1], expressed as a
collection of zonotopes {(i)

x,t, i = 1,… , nt}N−1t=0 jointly with the associated static maps { (i)t ∶ (i)
x,t →  , i = 1,… , nt}N−1t=0 .

The zonotopes represent the (possibly over-approximated) initial uncertainty set if t = 0 and the reach sets of the controlled
system if t ∈ [1, N − 1]. The images of each control law  (i)t ∶ (i)

x,t →  form a collection of control input zonotopes
{(i)

u,t, i = 1,… , nt}N−1t=0 , each zonotope (i)
u,t = ⟨c(i)u,t, G

(i)
u,t⟩ being associated with a reach set (i)

x,t ⊂ ℝnx , and with center and
generator matrix obtained via (23).
If xt is the state value at time t and belongs to (i)

x,t = ⟨c(i)x,t, G
(i)
x,t⟩, then, the associated input is given by:

ut = c
(i)
u,t + G

(i)
u,t�

∗
t (xt),

where the computation of �∗t (xt) requires solving the following cQP problem:

�∗t (xt) = arg min
�∈{�∈ℝpt∶x=c(i)x,t+G

(i)
x,t�, ‖�‖∞≤1}

‖�‖22.

Identifying the set (i)
x,t to which xt belongs is easy: one has to consider the previous set (j)

x,t−1 to which state xt−1 belongs,
consider its one-step successor reach sets, and identify the one to which xt belongs by determining its mode.
In conclusion, the complexity of the online control law implementation reduces to solving a single cQP with a number of

decision variables and constraints that in the worst case grow linearly in time, since pt = p0 + tpw.

3 COMPLEXITY ANALYSIS OF THE OFFLINE CONTROL DESIGN PROCEDURE

In this section we assess the complexity of Algorithm 1 proposed in Section 2 to address the control problem introduced in
Section 1. The proposed algorithm rests on some optimization problems as building blocks. Since these problems finally reduce
to LP, cQP, MILP, we shall express their complexity in terms of the LP, cQP, MILP complexity.
Linear and convex quadratic programs can be solved in polynomial time, while MILP is NP-hard. In the following, we shall

denote with MILP(nc , nb, m) an upper bound on the time required to solve a mixed integer linear program with nc continuous
decision variables, nb binary decision variables, andm inequality constraints, while the symbols LP(n,m) and cQP(n,m) indicate
the worst-case computation time required to solve respectively a linear program and a convex quadratic program with n decision
variables and m inequality constraints.



RICCARDO DESIMINI AND MARIA PRANDINI 15

We start by considering the problem of generating an admissible switching sequence for system (3) and assessing its robustness
level. In particular, we first consider the effort associated to the first switching sequence generation and then we extend the
reasoning to the case where multiple switching sequences have to be computed.
If we adopt the MILP method to compute the first switching sequence, a feasibility problem is solved whose complexity is

bounded by MILP(N(nu + nx),Nnℎ, mmld +msc + quN), where mmld denotes the number of inequalities of system (4) and msc
and quN are respectively the number of the additional state and actuation constraints introduced in Section 2.1. In particular:

mmld = 2N(nℎ + nxs), msc =
N
∑

t=1
qsp,t ≤ Nqsp,max,

where qsp,max = maxt=1,…,N qsp,t and qsp,t is the number of half-spaces used to describe sp,t.
If, instead, we adopt the method based on reachability analysis, the first sequence is found when the reach sets computation
along a branch is not prematurely interrupted for infeasibility. Clearly, the more the number of prematurely interrupted branches,
the higher the computational burden. We now quantify the cost of exploring a single branch with no interruptions: at time t =
0,… , N−1, given a zonotopet, a zonotopet+1 = ⟨cx,t+1, Gx,t+1⟩ is computed with negligible cost, since its G-representation
is simply obtained from the ones oft andu throughmatrix multiplications and sums. To assess if the intersectiont+1∩sp,t+1
is empty, a feasibility test is performed, where a vector � has to be chosen so that ‖�‖∞ ≤ 1 and:

Xsp
a,t+1cx,t+1 +X

sp
a,t+1Gx,t+1� ≤ xspb,t+1

where (Xsp
a,t+1, x

sp
b,t+1) is a H-representation of sp,t+1. The complexity of this test is bounded by LP(ng,t+1,2ng,t+1+ qsp,t+1), ng,t+1

being the number of generators oft+1. Then, a H-representation oft+1 has to be computed and stacked into the one of sp,t+1.
The conversion of a G-representation to a H-representation can be performed by means of the algorithm in21, whose complexity
is O

(

ng,t+1
(ng,t+1
nx−1

)

)

. The next step is to check if t+1 ∩sp,t+1 covers multiple modes. To this aim, we check if such a set crosses
at least one boundary of the mode partition and thus we need to verify for each j = 1,… , nℎ if some of the two set-containment
conditionst+1∩sp,t+1 ⊆ j andt+1∩sp,t+1 ⊆ c

j is met,c
j being the complement of the half-spacej . The introduced set-

containment conditions are equivalent tomaxx∈t+1∩sp,t+1 Hajx ≤ ℎbj andmaxx∈t+1∩sp,t+1 −Hajx ≤ −ℎbj−|ℎbj|�m respectively,
and so we need to solve 2 nℎ LP with nx decision variables and up to 2

(ng,t+1
nx−1

)

+qsp,t+1 inequality constraints, 2
(ng,t+1
nx−1

)

being a tight
upper bound on the number of facets of t+1,21. After solving such programs, we are able to obtain a (possibly conservative)
subset of indices associated to modes covering t+1 ∩ sp,t+1. If t+1 ∩ sp,t+1 does not violate any half-space boundary, then
no splitting occurs and thus the set is outer-approximated with a zonotope, which is used as starting set for computations at
time t + 1. Otherwise, we have to determine which modes actually cover the set t+1 ∩ sp,t+1 by searching for each possibly
intersecting modei a vector � such that ‖�‖∞ ≤ 1 and:

Miacx,t+1 +MiaGx,t+1� ≤ mib
Xsp
a,t+1cx,t+1 +X

sp
a,t+1Gx,t+1� ≤ xspb,t+1

where Mia and mib assume the expressions in (6). The complexity of this test is bounded by LP(ng,t+1, 2ng,t+1 + nℎ + qsp,t+1)
and in the worst-case we have to repeat it s times. Once the actually intersecting modes have been detected, the non-empty
intersections with them are easily retrieved by suitably stacking the H-representations of t+1, sp,t+1 and i, and zonotopic
outer-approximations are computed for each intersection. The complexity of over-approximating a polytope with a zonotope
depends on the adopted method. In the following we indicate with OA() an upper bound on the computation time required to
compute a zonotopic outer-approximation of a polytope  with one of the two methods presented in Section 2.1.
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Summarizing, the cost of reachability analysis along a single branch is bounded by:
N
∑

t=1

[

LP (ng,t, 2 ng,t + qsp,t) + Cng,t

(

ng,t
nx − 1

)

+ 2 nℎLP
(

nx, 2
(

ng,t
nx − 1

)

+ qsp,t

)]

+

+
∑

t∈Ins

OA(t ∩ sp,t) +
∑

t∈Is

⎡

⎢

⎢

⎣

|Icm,t|LP (ng,t, 2 ng,t + nℎ + qsp,t) +
∑

i∈I∗cm,t

OA(t ∩ sp,t ∩i)
⎤

⎥

⎥

⎦

≤

≤ N
[

LP (ng,max, 2 ng,max + qsp,max) + Cng,max

(

ng,max
nx − 1

)

+ 2 nℎLP
(

nx, 2
(

ng,max
nx − 1

)

+ qsp,max

)]

+

+ |Ins|maxt∈Ins
OA(t ∩ sp,t) + |Is|sLP (ng,max, 2 ng,max + nℎ + qsp,max)+

+ |Is|smaxt∈Is
max
i=1,…,s

OA(t ∩ sp,t ∩i),

where Is and Ins form a partition of {1,… , N} and their elements are the time instants where the current set respectively splits
among modes and covers a single mode, Icm,t ⊆ {1,… , s} is the set of the indices associated to modes possibly intersecting
t ∩sp,t, I∗cm,t ⊆ Icm,t is the set of the indices of the modes actually intersecting t ∩sp,t, ng,max = maxt=1,…,N ng,t and C is a
positive constant.
Finally, if we apply the randomized method, the first switching sequence generation is performed at negligible cost with

respect to the other two methods.
Consider now the problem of evaluating the first computed switching sequence: the proposed procedure rests on linear pro-

gramming to determine the maximal amount of the uncertainty entering system (1) such that specifications can be met by
designing an open-loop controller. The complexity associated to this stage is given by the complexity of problem (15), which is
bounded by LP(nuN + p0 + pw, m� + msc + quN), where

m� = 2 (p0 + pw), msc =
N
∑

j=1
qsp,j + (N − 1)nℎ ≤ Nqsp,max + (N − 1)nℎ.

If the first computed sequence is not admissible or does not obtain a sufficiently high value of %, then it is necessary to recompute
a switching sequence for system (3). Note that, although the evaluation procedure has the same complexity bound for each
generated sequence, the generation process may become more or less expensive according to the adopted method.
Consider theMILPmethod: each time a sequence has to be recomputed, we have to addNnℎ extra binary variables and 1+2Nnℎ
extra inequality constraints, and so its complexity grows at each recomputation step. Differently from MILP, the complexity
associated to reachability analysis along a single branch does not depend on the number of already computed sequences and thus
the derived bound for the first sequence computation remains unchanged. Similarly, complexity associated to a new switching
sequence generation grows in the randomized method, since the greater the number of generated sequences, the smaller is the
chance to obtain a new one.
We finally consider the state-feedback control design procedure of Section 2.3. Here, the aim is to satisfy the specifications

while at the same time minimizing the number of sets that split: in fact, each time splitting occurs, it is required to outer-
approximate each part of the split set with a zonotope and then to branch the parts by generating a new admissible switching
sequence for each one of them. A new switching sequence has to be recomputed also when recursive feasibility does not hold. If
such situations occur too frequently (splitting and recursive feasibility violation), the computational effort may grow too much
and the design procedure may become computationally hard.
We now focus the attention on the case in which splitting never occurs and recursive feasibility holds while considering a

given switching sequence. In this case, designing the controller requires only to compute at each time t = 0,… , N − 1 a state-
feedback control law in the horizon [t, t+Ht−1],Ht = min{M,N−t} by solving a convex quadratic programwhose complexity
is bounded by cQP(ncp,t +Ht + naux,t, msc,t +Ht +mac,t), where ncp,t is the number of control law parameters at time t, naux,t is
the total number of auxiliaries variables introduced at time t, msc,t is the number of state constraints applied at time t and mac,t
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is the number of actuation constraints applied at time t. Moreover:

ncp,t = nu

(

Ht +
Ht−1
∑

j=0
pt+j

)

= nu

(

Ht + ptHt +
Ht−1
∑

j=0
jpw

)

= nu
[

(1 + pt)Ht +
1
2
pwHt(Ht − 1)

]

,

naux,t =
Ht
∑

j=1
(qsp,t+j + nℎ + qu) pt+j−1 =

Ht
∑

j=1
(qsp,t+j + nℎ + qu) pt +

Ht
∑

j=1
(qsp,t+j + nℎ + qu) (j − 1)pw ≤

≤
(

max
j=1,…,Ht

qsp,t+j + nℎ + qu

)

ptHt +
1
2

(

max
j=1,…,Ht

qsp,t+j + nℎ + qu

)

pwHt(Ht − 1) =

=
(

max
j=1,…,Ht

qsp,t+j + nℎ + qu

)

[

ptHt +
1
2
pwHt(Ht − 1)

]

,

msc,t =
Ht
∑

j=1
qsp,t+j + nℎHt +

Ht
∑

j=1
2 (qsp,t+j + nℎ)pt+j−1 =

=
Ht
∑

j=1
qsp,t+j + nℎHt +

Ht
∑

j=1
2 (qsp,t+j + nℎ)pt +

Ht
∑

j=1
2 (qsp,t+j + nℎ)(j − 1)pw ≤

≤
(

max
j=1,…,Ht

qsp,t+j + nℎ

)

Ht + 2
(

max
j=1,…,Ht

qsp,t+j + nℎ

)

ptHt +
(

max
j=1,…,Ht

qsp,t+j + nℎ

)

pwHt(Ht − 1) =

=
(

max
j=1,…,Ht

qsp,t+j + nℎ

)

[

(1 + 2 pt)Ht + pwHt(Ht − 1)
]

,

mac,t = quHt +
Ht−1
∑

j=0
2 qu pt+j = quHt +

Ht−1
∑

j=0
2 qu pt +

Ht−1
∑

j=0
2 qu jpw = qu

[

(1 + 2pt)Ht + pwHt(Ht − 1)
]

.

Note that both the number of decision variables and the number of constraints are not the same at each time t, since the number
of the initial set generators, the prediction horizon length and the number of state specifications are functions of t. An upper-
bound to the overall complexity of controller computation in [0, N −1] when no splitting occurs and a feasible controller exists
at each time t is then obtained by summing up the bounds on the required computational effort at each time t, that is:

N−1
∑

t=0
cQP(ncp,t +Ht + naux,t, msc,t +Ht + mac,t) ≤ N ⋅ max

t=0,…,N−1
cQP(ncp,t +Ht + naux,t, msc,t +Ht + mac,t) ≤

≤ N ⋅ cQP
(

max
t=0,…,N−1

(ncp,t +Ht + naux,t), max
t=0,…,N−1

(msc,t +Ht + mac,t)
)

,

where

max
t=0,…,N−1

(ncp,t +Ht + naux,t) ≤ max
t=0,…,N−1

[

(1 + nu)Ht +
(

nu + max
j=1,…,Ht

qsp,t+j + nℎ + qu

)

[

ptHt +
1
2
pwHt(Ht − 1)

]

]

≤

≤ (1 + nu) max
t=0,…,N−1

Ht +
(

nu + max
t=0,…,N−1

max
j=1,…,Ht

qsp,t+j + nℎ + qu

)

max
t=0,…,N−1

[

ptHt +
1
2
pwHt(Ht − 1)

]

≤

≤ (1 + nu)M +
(

nu + qsp,max + nℎ + qu
)

[

(p0 + (N − 1)pw)M + 1
2
pwM(M − 1)

]

,

max
t=0,…,N−1

(msc,t +Ht + mac,t) ≤ max
t=0,…,N−1

(

qu + max
j=1,…,Ht

qsp,t+j + nℎ

)

[

(1 + 2 pt)Ht + pwHt(Ht − 1)
]

≤

≤
(

qu + max
t=0,…,N−1

max
j=1,…,Ht

qsp,t+j + nℎ

)

max
t=0,…,N−1

[

(1 + 2 pt)Ht + pwHt(Ht − 1)
]

≤

≤
(

qu + qsp,max + nℎ
) [

(1 + 2 (p0 + (N − 1)pw))M + pwM(M − 1)
]

.

This means that the overall computation time is not greater than the one required to solveN convex quadratic programs whose
number of decision variables and inequality constraints scale linearly withN and quadratically withM .
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4 NUMERICAL EXAMPLES

We present some numerical examples to illustrate the control design methodology introduced in this paper.
More precisely, our goal is threefold: (i) compare the three approaches presented in Section 2.1 for the generation of an admis-

sible switching sequence for the nominal PWA system, (ii) show the performance of the static state-feedback controller designed
via Algorithm 1, and (iii) compare the proposed state-feedback controller with a tube-based controller from the literature.
Computations were performed on a personal computer equipped with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM.

All the optimization problems (LP, cQP and MILP) were solved with CPLEX,23.

4.1 Generation of an admissible switching sequence and assessment of its robustness level
We consider a discrete-time PWA model obtained through suitable linearization and discretization of the equations of the
quadruple-tank process presented in27. The resulting system has a four-dimensional state x, a two-dimensional control input
u and a four-dimensional disturbance input w accounting for the linearization error. The control input is constrained to the set
 = [0, 12]2 and the disturbance input ranges in  = [−1.5, 1.5]4. The system has s = 16 modes, associated with the state
partition generated by the half-spaces:

 j ∶ xj ≥ 3 j = 1,… , 4.

The PWA system dynamics is described by:

xt+1 = Aixt + Bu,iut + Bw,iwt + fi, xt ∈i, i = 1,… , s, (25)
where

A1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0163 0
0 0.9884 0 0.0115
0 0 0.9836 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A2 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0163 0
0 0.9884 0 0.0315
0 0 0.9836 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A3 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0444 0
0 0.9884 0 0.0115
0 0 0.9552 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A4 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0444 0
0 0.9884 0 0.0315
0 0 0.9552 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A5 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0163 0
0 0.9683 0 0.0114
0 0 0.9836 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A6 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0163 0
0 0.9683 0 0.0312
0 0 0.9836 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A7 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0444 0
0 0.9683 0 0.0114
0 0 0.9552 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A8 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9836 0 0.0444 0
0 0.9683 0 0.0312
0 0 0.9552 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A9 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0161 0
0 0.9884 0 0.0115
0 0 0.9836 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A10 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0161 0
0 0.9884 0 0.0315
0 0 0.9836 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A11 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0438 0
0 0.9884 0 0.0115
0 0 0.9552 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A12 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0438 0
0 0.9884 0 0.0315
0 0 0.9552 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A13 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0161 0
0 0.9683 0 0.0114
0 0 0.9836 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A14 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0161 0
0 0.9683 0 0.0312
0 0 0.9836 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

A15 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0438 0
0 0.9683 0 0.0114
0 0 0.9552 0
0 0 0 0.9884

⎤

⎥

⎥

⎥

⎥

⎦

A16 =

⎡

⎢

⎢

⎢

⎢

⎣

0.9552 0 0.0438 0
0 0.9683 0 0.0312
0 0 0.9552 0
0 0 0 0.9683

⎤

⎥

⎥

⎥

⎥

⎦

Bu,1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0005
0.0003 0.0513
0 0.0584

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,2 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0005
0.0008 0.0513
0 0.0584

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,3 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0013
0.0003 0.0513
0 0.0576

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,4 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0013
0.0008 0.0513
0 0.0576

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,5 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0005
0.0003 0.0507
0 0.0584

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,6 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0005
0.0008 0.0507
0 0.0584

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,7 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0013
0.0003 0.0507
0 0.0576

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,8 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0584 0.0013
0.0008 0.0507
0 0.0576

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,9 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0005
0.0003 0.0513
0 0.0584

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,10 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0005
0.0008 0.0513
0 0.0584

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,11 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0013
0.0003 0.0513
0 0.0576

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,12 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0013
0.0008 0.0513
0 0.0576

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,13 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0005
0.0003 0.0507
0 0.0584

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,14 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0005
0.0008 0.0507
0 0.0584

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,15 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0013
0.0003 0.0507
0 0.0576

0.0513 0

⎤

⎥

⎥

⎥

⎥

⎦

Bu,16 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0576 0.0013
0.0008 0.0507
0 0.0576

0.0507 0

⎤

⎥

⎥

⎥

⎥

⎦

Bw,1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0438 0 0.0002 0
0 0.0316 0 0.0001
0 0 0.0226 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,2 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0447 0 0.0002 0
0 0.0377 0 0.0004
0 0 0.0226 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,3 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0541 0 0.0008 0
0 0.0291 0 0.0001
0 0 0.0336 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,4 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0521 0 0.0008 0
0 0.0375 0 0.0004
0 0 0.0336 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,5 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0430 0 0.0002 0
0 0.0366 0 0.0001
0 0 0.0226 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,6 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0437 0 0.0002 0
0 0.0430 0 0.0004
0 0 0.0226 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,7 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0557 0 0.0008 0
0 0.0372 0 0.0001
0 0 0.0336 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,8 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0484 0 0.0008 0
0 0.0402 0 0.0004
0 0 0.0336 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,9 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0489 0 0.0002 0
0 0.0302 0 0.0001
0 0 0.0226 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,10 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0486 0 0.0002 0
0 0.0377 0 0.0004
0 0 0.0226 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,11 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0617 0 0.0008 0
0 0.0308 0 0.0001
0 0 0.0336 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,12 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0629 0 0.0008 0
0 0.0362 0 0.0004
0 0 0.0336 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,13 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0501 0 0.0002 0
0 0.0370 0 0.0001
0 0 0.0226 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,14 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0495 0 0.0002 0
0 0.0393 0 0.0004
0 0 0.0226 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

Bw,15 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0589 0 0.0008 0
0 0.0346 0 0.0001
0 0 0.0336 0
0 0 0 0.0159

⎤

⎥

⎥

⎥

⎥

⎦

Bw,16 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0575 0 0.0008 0
0 0.0449 0 0.0004
0 0 0.0336 0
0 0 0 0.0238

⎤

⎥

⎥

⎥

⎥

⎦

f1 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0213
0.0152
−0.1550
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f2 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0210
−0.0727
−0.1550
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f3 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.1043
0.0135
−0.0168
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f4 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.1023
−0.0737
−0.0168
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f5 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0201
0.1081
−0.1550
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f6 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0209
0.0218
−0.1550
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f7 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.1045
0.1091
−0.0168
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f8 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.1010
0.0169
−0.0168
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f9 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1467
0.0149
−0.1550
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f10 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1467
−0.0738
−0.1550
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f11 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0287
0.0152
−0.0168
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f12 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0322
−0.0722
−0.0168
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f13 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1492
0.1079
−0.1550
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f14 =

⎡

⎢

⎢

⎢

⎢

⎣

0.1496
0.0175
−0.1550
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

f15 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0280
0.1043
−0.0168
−0.1091

⎤

⎥

⎥

⎥

⎥

⎦

f16 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0278
0.0227
−0.0168
−0.0119

⎤

⎥

⎥

⎥

⎥

⎦

.
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Specs are defined by the sets {sp,t}Nt=1 given by:

sp,t = {(x1, x2, x3, x4) ∶ 0.7t ≤ x1 ≤ 5 + t, 0.15t ≤ x2 ≤ 2 +
t2

25
, 4 ≤ x3 ≤ 13, 4 ≤ x4 ≤ 11}, t = 1,… , 10,

sp,t = [3, 10]4, t = 11,… , N.

Our aim is to estimate the time required for the three methods presented in Section 2.1 to generate an admissible switching
sequence for the nominal system associated to (25) initialized at cx,0 and to evaluate the robustness level of the obtained sequence
with respect to the uncertainty sets 0 = cx,0 ⊕ [−0.3, 0.3]2 × [−0.1, 0.1]2 and  as illustrated in Section 2.2. Note that
the reachability analysis based approach and the randomized method embed the admissibility and robustness level evaluation
in a single stage, while in MILP approach the two computations are performed separately. However, the computation of the
robustness level with MILP is performed only once, on an admissible switching sequence, while the other two methods may
require multiple switching sequences evaluations until an admissible one is found.
We consider Ns = 100 values of cx,0 extracted at random according to a uniform distribution from the set 0 = [0.7, 1.3] ×

[0.7, 1.3] × [11.9, 12.1] × [6.9, 7.1], and determine an admissible switching sequence and its robustness level with the three
methods. Tables 1-3 report the maximal and minimal computing time, its average and standard deviation, for increasing values
of the time-horizon lengthN . The problem was feasible for each extracted initial nominal state cx,0.

TABLE 1MILP method: computing time (in seconds) as a function of the time horizon lengthN .

N 10 50 100 500 1000

tmax 0.0268 0.2507 1.7545 203.25 1976.5

tmin 0.0188 0.2213 1.0825 87.882 682.17

tmean 0.0212 0.2341 1.1879 113.53 982.88

� 0.0011 0.0050 0.1131 20.777 236.73

TABLE 2 Set-based reachability analysis method: computing time (in seconds) as a function of the time horizon lengthN .

N 10 50 100 500 1000

tmax 0.3565 1.0647 4.1210 154.57 1745.8

tmin 0.2160 0.8716 2.0225 69.266 500.02

tmean 0.2482 0.9460 2.3086 87.351 639.39

� 0.0227 0.0377 0.2778 15.866 185.07

TABLE 3 Randomized method: computing time (in seconds) as a function of the time horizon lengthN .

N 10 50 100 500 1000

tmax 0.0446 0.5650 1.5409 303.37 2446.7

tmin 0.0083 0.1129 0.6087 63.290 491.53

tmean 0.0137 0.1538 0.8088 98.078 827.09

� 0.0060 0.0703 0.2695 43.858 392.93
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By comparing the values in Tables 1-3, one can easily see that, as long as small values of N are adopted (up to N = 100),
the randomized method provides the smallest computation times. The MILP method exhibits good performance, providing an
admissible switching sequence with its robustness level in about a second. However, when larger values of N are considered
(N ≥ 500), the method based on reachability analysis dominates the MILP method and shows better performance also with
respect to the randomized method. The randomized method performs better than the MILP one on average, but exhibits a higher
standard deviation. This is because as N increases, the probability of getting an admissible switching sequence decreases, and
thus robustness level evaluation is repeated multiple times, increasing the computational load. The method based on reacha-
bility analysis, instead, takes into account the specs while searching for a sequence, leading to a higher chance of obtaining an
admissible sequence with respect to the randomized method.

4.2 State-feedback controller design
We consider a PWA system with a two-dimensional state x and a two-dimensional control input u, The system is subject to an
additive two-dimensional disturbance w taking values within = [−dw, dw]2.
The modes of the system are associated with the elements of the state partition shown in Figure 1, which is generated by the

half-spaces

1 ∶ 0.5 x1 − x2 ≤ −2, 2 ∶ x1 + x2 ≤ 10, 3 ∶ 3 x1 − x2 ≤ −15.

Since the intersection c
1 ∩c

2 ∩3 is empty, the actual number of modes is s = 7.

FIGURE 1 PWA modes partition of Example 4.2.

The system dynamics is described by:

xt+1 = Aixt + Bu,iut + Bw,iwt + fi, xt ∈i, i = 1,… , s,

where

A1 = O2, A2 =

[

1
3

1
2

− 1
2

1
3

]

, A3 = −I2, A4 =
[

1 2
2 −1

]

, A5 = I2, A6 =

[

− 1
2

1
4

4
5
− 1
2

]

, A7 =

[

1
2

1
3

0 1
2

]

,

Bu,i =
[

1 bu
bu 1

]

, Bw,i = I2, fi =
[

0
0

]

, i = 1,… , s.

Note that the control input matrix Bu,i depends on some parameter bu.
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The initial state of the system is uncertain and belongs to 0 = cx,0 ⊕ [−1, 1]2. The control input u is constrained within
 = [−du, du]2.
The goal is to design a static state-feedback control law in the horizon [0, N − 1] with N = 8 so as to robustly keep the

closed-loop system trajectories inside the polyhedral set sp defined by the H-representation (X
sp
a , x

sp
b ) with

Xsp
a =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0990 −0.0990
0.0305 −0.1221
−0.0919 −0.0306
−0.1246 0.1039
−0.0632 0.1896
0.1161 0.1161
0.1322 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, xspb =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.7426
0.6867
0.9188
1.2466
1.4538
1.7767
0.9912

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let cx,0 =
[

−6 5
]T be the nominal initial state, and dw = 0.3.

By setting bu = 1, the two-dimensional control input is reduced to a scalar input, in that each component of the term Bu,i u
equals u1 + u2, taking values in [−2du, 2du]. If we set du = 5, an admissible switching sequence over [0, N − 1] for the nominal
system is found to be S[0,7] = (7, 6, 2, 2, 3, 2, 6, 2) through the randomized method. Its robusteness level, evaluated by solving
problem (15) in Section 2.2, is %(�∗0 , �

∗
w) = 1 and corresponds to �

∗
0 = �

∗
w =

[

1 1
]T .

This reveals that an open-loop controller (which acts only on the centers of the controlled system zonotopic state sets and not on
its generators) can be designed to keep the state evolution inside the intersection ofsp with themodes ofS[0,7] for the full amount
of uncertainty entering the system. Consequently, we expect the state-feedback controller (which acts also on the generators
of the zonotopic reach sets of the controlled system) to be able to keep the state evolution inside the intersection of sp with
the modes of the switching sequence S[0,7], as long as recursive feasibility is guaranteed. This is actually achieved by applying
the control design procedure of Section 2.3, setting as prediction horizon length M = 3 and as cost weights 
c =

[

0 0 0
]

,

� = 
g =

[

0.45 0.025 0.025
]

. The resulting closed-loop reach sets are depicted in Figure 2 together with the open-loop ones.
One can see that the designed state-feedback controller is actually able to keep the closed-loop system trajectories inside sp
and the modes of the switching sequence S[0,7] for each t = 1,… , 7, thus avoiding splitting.
However, if we reduce the actuation capabilities of the controller by setting e.g. du = 3, we have the same admissible switching

sequence S[0,7] but the closed-loop system reach sets cannot be contained anymore inside all the modes of S[0,7], since a splitting
occurs at time t = 6 (see Figure 3). Indeed, the switching sequence S[0,7] has a robustness level %(�∗0 , �

∗
w) = 0.7266, which shows

a reduced capability of the open-loop controller to deal with uncertainty. A new switching sequence is computed at t = 6 for the
time horizon [6, 7] for each zonotopic outer-approximation of the split set parts. If we set %min = 0.7, we obtain an admissible
switching sequence with unitary value of % for each branch, and thus the state-feedback controller is able to robustly satisfy the
specifications without generating additional splits. This, however, does not occur if we set %min = 0.5, since a different admissible
switching sequence is computed for the second branch, leading to another split at time t = 7 along the second branch. The two
situations are depicted in Figure 4.
We finally show the feedback controller performances when full actuation capabilities are available and splitting occurs at

some time instants. To this aim, we set bu = 0 and du = 9. We set cx,0 =
[

0 5
]T and dw = 1. The applied switching sequence

is now S (1)[0,7] = (6, 3, 2, 2, 2, 3, 6, 2), whose robustness level is %(�∗0 , �
∗
w) = 0.6696 and corresponds to �∗0 =

[

0.8468 1
]T and

�∗w =
[

0 0.8315
]T . By applying the control design procedure of Section 2.3 (with the same values ofM , 
c , 
� and 
g), we obtain

the sets depicted in Figure 5, where it can be seen that although multiple splitting occurs along the considered time horizon,
all the generated branches of sets can be kept by the controller inside the specifications set sp. Note that the computed sets at
each time instant coincide with , which means that the controller completely compensates the effect of past uncertainty. Note
also that the generated splits are due to bad choices of the switching sequences, which force the controller to steer sets towards
regions where avoiding splitting is complicated by the small size of their intersection with sp. In fact, if we apply the sequence
S (2)[0,7] = (6, 6, 2, 2, 2, 3, 6, 2), then splitting is avoided for all modes of S (2)[0,7], as shown in Figure 6. This is because S

(2)
[0,7] does not

require the controller to steer the state inside mode 3 starting from 0. We finally highlight that the robustness level of S (2)[0,7] is
%(�∗0 , �

∗
w) = 0.7093 and corresponds to �

∗
0 =

[

1 1
]T and �∗w =

[

0 0.8373
]T , and thus is not very different from S (1)[0,7].
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FIGURE 2 State-space sets of the open-loop control system and of the closed-loop control system of Example 4.2 with reduced
actuation capabilities when splitting is avoided: in red the modes partition, in blue the set sp, in black the closed-loop sets and
in green the open-loop sets.
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FIGURE 3 State-space set at time t = 6 of the closed-loop system of Example 4.2 with reduced actuation capabilities when
splitting occurs: in red the modes partition, in blue the set sp, in black the closed-loop set and in magenta the zonotopic
outer-approximations of the split set parts. The numbers near the sets indicate the branches to which they belong.

FIGURE 4 State-space sets at time t = 7 of the closed-loop system of Example 4.2 with reduced actuation capabilities when
splitting occurs and we set %min = 0.7 (left) and %min = 0.5 (right): in red the modes partition, in blue the set sp, in black the
closed-loop sets and in magenta the zonotopic outer-approximations of the split set parts. The numbers near the sets indicate the
branches to which they belong.

4.3 A comparison with a tube-based controller
In this section we describe an alternative static state-feedback controller and compare its performance with that of the zonotopic
law proposed in Section 2.3. The comparative analysis is performed with reference to the problem of making the state of the
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FIGURE 5 State-space sets along S (1)[0,7] of the closed-loop system of Example 4.2 with full actuation capabilities: in red the
modes partition, in blue the set sp, in black the closed-loop sets and in magenta the zonotopic outer-approximations of the split
sets parts. The numbers near the sets indicate the branches to which they belong.
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FIGURE 6 State-space sets along S (2)[0,7] of the closed-loop system of Example 4.2 with full actuation capabilities: in red the
modes partition, in blue the set sp and in black the closed-loop sets.
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system (1) evolve inside a given set sp along the time horizon [0, N], while accounting for the actuation limits . We assume
that the switching sequence S[0,N−1] = (i0,… , iN−1) along the time horizon [0, N − 1] is assigned, and that the system is
initialized within 0 ⊂i0 .

4.3.1 Tube-based controller design
The considered state-feedback controller17 is built starting from a parametrized tube of polytopes {x,t}Nt=0 in the state space
bounding the uncertain dynamics of (1). More precisely, the section of the tube at each time t depends on a vector zt and a
rescaling factor �t ≥ 0 as follows:

x,t = zt ⊕ �tsℎ,t,
where {sℎ,t}Nt=0 are predefined polytopes setting the tube geometry. At each time t = 0,… , N − 1, the controller applies to
the current state value xt a convex combination of the control actions {utj}

nvt
j=1 assigned to the nvt vertices {xtj}

nvt
j=1 of the tube

section x,t. The coefficients of such a convex combination are those defining the position of the current state inside the current
tube section. In symbols:

ut =
nvt
∑

j=1
�j(xt)utj , xt =

nvt
∑

j=1
�j(xt)xtj .

Coefficients �∗(xt) are computed online based on the current state value xt, as the (unique) solution of the following convex
quadratic program:

�∗(xt) = arg min
�∈

{

�∈ℝnvt∶xt=
∑nvt
j=1 �jxtj , �j≥0,

∑nvt
j=1 �j=1

}

‖�‖22.

We start from t = 0 and fix a look-ahead time horizon lengthM ≤ N . At each time t = 0,… , N−1, we design the controllers
in the horizon [t, t+H −1], whereH = min{M,N − t}, and obtain both the control input zonotopes {u,t+k}H−1k=0 together with
the (zonotopic) reach sets {x,t+k}Hk=1 of the control system, and the control input polytopes {u,t+k}H−1k=0 together with the tube
sections {x,t+k}Hk=1. Then, we retain only the designed controllers at t and move computations at time t + 1, where controllers
are designed in the horizon [t + 1, t + H] starting from sets x,t+1 and x,t+1. Note that, only at time t = 0, we also have to
compute sets x,0 and x,0 so as to include 0.
During control design at time t, the control actions {ut+k,j}

nv,t+k
j=1 applied to the vertices {xt+k,j}

nv,t+k
j=1 of x,t+k, k = 0,… ,H −1,

jointly with parameters zt+k+1 and �t+k+1, are decision variables to be suitably chosen so as to minimize the size of x,t+k+1 while
robustly satisfying the constraints on state and input. More precisely, starting for t = 0 from 0 and for t ≥ 1 from the tube
section x,t computed at time t − 1, we minimize the cost:

Jtb,t =
H
∑

k=1

�k�t+k

where 
�k ≥ 0, and impose the following constraints:

x,t+k ⊆ sp ∩it+k , k = 1,… ,H

u,t+k ⊆  , k = 0,… ,H − 1
(Ait+kxt+k,j + Bu,it+kut+k,j + fit+k)⊕Bw,it+k ⊆ x,t+k+1, j = 1,… , nv,t+k, k = 0,… ,H − 1

xt+k,j = zt+k + �t+kvt+k,j , j = 1,… , nv,t+k, k = 1,… ,H,

where iN = ℝn, u,t+k = conv({ut+k,j}
nv,t+k
j=1 ), and sℎ,t+k = conv({vt+k,j}

nv,t+k
j=1 ). At time t = 0, since variables z0 and �0 are

additional degrees of freedom, we impose the additional constraint 0 ⊆ x,0 and add to cost Jtb,0 a term 
�0�0, with 
�0 ≥ 0.
Since both the switching sequence and the tube geometry are fixed, computation of the tube sections with the corresponding
feedback laws can be reduced to the solution of a Linear Program (LP).

4.3.2 Comparative analysis
Consider now the problem instance of Section 4.2 with the following parameter settings:

N = 5, M = 3, bu = 1, du = 5, cx,0 =
[

−6 5
]T .
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The aim is to track the modes associated to the switching sequence S[0,4] = (7, 6, 2, 3, 2), while robustly keeping the state inside
sp and the input inside  . The geometry of the tube sections is defined by the sets:

sℎ,0 = [−1, 1]2, sℎ,t =
⟨

02,
[

0.5 0 −0.5
0 0.5 0.5

]⟩

, t = 1,… , 5,

which resemble the structure of the zonotopic reach sets as in Section 4.2. The set sp and the weights 
�, 
g and 
c are the
same as in the previous section, while for the tube-based controller we set 
� with all unitary components. In Figures 7-9 we
represented (when available) the state sets computed with the two methods: for dw = 0.4 and dw = 0.45, both approaches
provide a feasible solution, while for dw = 0.5 only the zonotopic control law provides feasibility. This is because of the lack of
flexibility of the tube-based approach, which imposes a fixed structure to the over-approximation of the reach sets. As a result,
when constraints become tighter and tighter, this leads prematurely to infeasibility (see Figure 10).

5 CONCLUSIONS

We proposed a reachability-based solution to the problem of robustly controlling an uncertain PWA system over a finite horizon
so as to satisfy state specifications and actuation limits. The designed controller is easy to store and apply, since it is described
as a collection of control input zonotopes defined over zonotopic reach sets, and the control input can be determined by solving
online a convex quadratic program.
The proposed control design method can be combined with some hybridization technique so as to cope with nonlinear dynam-

ics by space gridding and a PWA approximation of the nonlinear function describing the system dynamics. In this case, however,
some adaptation is required since the additive disturbance represents the unmodeled dynamics and takes values in a mode-
dependent set. More importantly, some guided refinement of the PWA approximation is needed to obtain a solution to the control
design problem while avoiding a too fine state space gridding leading to an exponential growth of the number of modes.
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FIGURE 7 State-space sets along S[0,4] of the control systems of Example 4.3 for dw = 0.4: in red the modes partition, in blue
the set sp, in white the tube sections and in black the zonotopic reach sets.

FIGURE 8 State-space sets along S[0,4] of the control systems of Example 4.3 for dw = 0.45: in red the modes partition, in blue
the set sp, in white the tube sections and in black the zonotopic reach sets.
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FIGURE 9 State-space sets along S[0,4] of the control system of Example 4.3 for dw = 0.5: in red the modes partition, in blue
the set sp and in black the zonotopic reach sets.

FIGURE 10 State-space sets at time t = 3 of the control systems of Example 4.3 for dw = 0.4 (left), dw = 0.45 (center) and
dw = 0.5 (right): in red the modes partition, in blue the set sp, in white the tube sections and in black the zonotopic reach sets.
Note that for dw = 0.5 we could only compute the zonotopic reach set.


	Robust constrained control of piecewise affine systems through set-based reachability computations
	Abstract
	Introduction
	Control design based on reachability computations
	Generating an admissible switching sequence for the nominal PWA
	A mixed integer linear programming approach
	A reachability analysis based approach
	A randomized approach

	Evaluating the robustness level of a switching sequence
	Static state-feedback design based on reach-set computations
	Online control law implementation

	Complexity analysis of the offline control design procedure
	Numerical examples
	Generation of an admissible switching sequence and assessment of its robustness level
	State-feedback controller design
	A comparison with a tube-based controller
	Tube-based controller design
	Comparative analysis


	Conclusions
	References


