
Improved formulations and algorithmic components for the electric

vehicle routing problem with nonlinear charging functions∗

Aurélien Froger1 Jorge E. Mendoza1 Ola Jabali2 Gilbert Laporte3

June 2018

1 Université de Tours, LIFAT (EA 6300), ROOT (ERL CNRS 7002), Tours, France

2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

3 Canada Research Chair in Distribution Management, HEC Montréal, Montréal, Canada H3T 2A7

Abstract

Electric vehicle routing problems (E-VRPs) are receiving growing attention from the operations research

community. Electric vehicles differ substantially from internal combustion engine vehicles, the main differ-

ence lying in their limited autonomy, which can be recovered at charging stations. Modeling the charging

functions is a focal point of E-VRPs. Most of the research has focused on constant or linear charging

functions. The E-VRP with nonlinear charging function (E-VRP-NL) was recently introduced to account

for the more realistic nonlinear relationship between the time spent charging and the amount of energy

charged. We propose two new formulations for this problem. We first develop an arc-based tracking of

the time and the state of charge which, according to our experiments, outperforms the classical node-based

tracking of these values. To avoid replicating the charging stations nodes, as done for both node and arc

based formulations, we also introduce a path-based model. We develop an algorithm to generate a tractable

number of these paths. This path-based model outperforms the classical models in our experiments. We

also propose a new model, a heuristic, and an exact labeling algorithm for the problem of finding the op-

timal charging decisions for a given route. Extensive computational results show that charging decisions

considerably impact the quality of the E-VRP-NL solutions. Indeed, we improve 23 out of 120 best known

E-VRP-NL solutions by solely revising the charging decisions.

1 Introduction

Electric vehicles (EVs) offer a viable alternative to internal combustion engine vehicles (ICEVs), and their

market share is steadily increasing, partly as a result of several governmental and private policies. In parallel,

the study of problems rising from using EVs by operational researchers has gained importance in recent years,

and has given a rise to a new class of problems called electric vehicle routing problems (E-VRPs). These

problems differ from the classical vehicle routing problem (VRP) in several ways since the EV technological

constraints need to be accounted for. Indeed, the driving autonomy of EVs is limited by their battery capacity,

which can be recovered at charging stations (CSs). These are much scarcer than conventional refueling stations

for ICEVs, which means that EVs often may need to perform detours to reach a CS. The latter is especially

true in the context of mid-haul or long-haul routing (Montoya, 2016; Schiffer, 2017). In addition, charging the

battery of an EV takes much longer than refilling the tank of an ICEV. Therefore, E-VRPs involve additional

decisions such as where and how long to charge.

The charging infrastructure, which includes the CSs used to recuperate energy of EVs, can be either public

or private. The use of the former by private companies may result in uncertainty with respect to CS availability.

∗Under review since June 18, 2018

1

Therefore, the use of public infrastructure to charge EVs in a routing context has received little attention. We

refer the reader to Sweda et al. (2017) and Kullman et al. (2018) for further details. Since the uncertainty with

respect to CS availability is neglected in the majority of the E-VRP literature, we conclude that most of the

research on E-VRPs implicitly assumes that the charging infrastructure is privately owned by the EV operator.

We adopt this assumption in this paper as well.

Research on E-VRPs primarily started with the green vehicle routing problem (Green VRP) introduced by

Erdoğan and Miller-Hooks (2012). In the Green VRP, a fleet of homogeneous alternative fuel vehicles must visit

a set of customers from a single depot while traveling a minimum total distance, subject to a route duration

constraint. The vehicles have a limited fuel tank capacity but can detour to CSs to extend their driving range.

The tank is fully recharged in constant time at each visit to a CS, an assumption that is appropriate for

the vehicles operating on alternative fuels such as biofuels and liquid nitrogen. With respect to EVs, such

an assumption makes sense if batteries are replaced by fully loaded batteries at swapping stations. To our

knowledge, however, battery swapping does not seem to be on the path of massive adoption. Indeed, the

company Better Place that offered battery swapping services declared bankruptcy in 20131 and Tesla’s only

battery swapping station (part of a pilot program) shut down in 20162. Several variants of the Green VRP

have been studied. Thus Schneider et al. (2014) defined the electric routing problem with time windows and

cargo capacity constraints (E-VRPTW). In the E-VRPTW, the batteries are fully recharged at CSs. However,

the charging time is no longer assumed to be constant, it is linearly dependent on the state of charge (SoC)

of the EV upon its arrival at the CS. Finally, no route duration limit is considered. In the remainder of this

paper we use the term SoC to refer to the battery level in the EV.

The above problems assume that whenever a charging activity is performed, it is concluded only when the

battery is fully charged. This assumption yields more tractable models, which is partly the reason behind its

adoption by earlier versions of E-VRPs. Nonetheless, assuming that the battery is fully charged whenever a

charging operation takes place is rather conservative. In view of the fact that the time needed to reach a fully

charged battery may be substantial when charging operations occur en route, Felipe et al. (2014) introduced

a partial recharging policy. Compared to a full charging policy, a partial charging policy allows savings in

both energy consumption and time. The authors assumed a linear charging process and considered CSs with

multiple technologies. Each technology has a distinct charging rate, which reflects the variety of chargers one

can encounter in practice (e.g., slow, medium, and fast). They also considered capacitated vehicles and route

duration constraints. Furthermore, Desaulniers et al. (2016) tackled a version of the E-VRPTW in which the

fleet size is fixed and partial charging is allowed.

In reality, battery charging functions of EVs are not linear (see Pelletier et al. (2017) for further details). In

order to model a more realistic charging process, Montoya et al. (2017) introduced the electric vehicle routing

problem with nonlinear charging function (E-VRP-NL). In addition to considering a partial charging policy, the

authors proposed a piecewise linear approximation of the charging process. They also showed that previously

adopted linear charging functions yield infeasible routes with respect to route maximum-duration limit, when

projected on the more realistic nonlinear charging functions. Moreover, even if the routes produced under

linear charging functions are feasible, when subjected to nonlinear charging functions they tend to be of poor

quality. The objective in the E-VRP-NL is to minimize the total time needed to serve all the customers, which

is influenced by the charging decisions because it accounts for the time spent at CSs and for the nonlinear

nature of the charging process. Using a temporal-based objective is all the more relevant since CSs may offer

multiple technologies which impact the duration of the charging operations. To solve the E-VRP-NL, Montoya

et al. (2017) developed a hybrid metaheuristic that combines an iterated local search heuristic with the solution

of a set partitioning problem. Specifically, the first stage of the algorithm aims to build a high-quality and

1https://en.wikipedia.org/wiki/Better_Place_(company) - Retrieved 2018-04-10
2http://www.teslarati.com/tesla-shuts-down-battery-swap-program-for-superchargers/ - Retrieved 2018-04-10

2

https://en.wikipedia.org/wiki/Better_Place_(company)
http://www.teslarati.com/tesla-shuts-down-battery-swap-program-for-superchargers/

diverse pool of routes, while the second stage assembles solutions by selecting a subset of routes from the pool.

Research on the E-VRPs is now moving towards more accurate representations of EV characteristics which

pose new modeling and algorithmic challenges. One of the most challenging issues when solving E-VRPs is

making good charging decisions. In general, charging operations influence feasibility and in many cases they

also increase costs, due to detours to CSs and the time spent at those CSs. Depending on the underlying

E-VRP, deciding where to charge and how much to charge can be very complex. To better deal with these

decisions, some authors have studied the fixed route vehicle charging problem (FRVCP). Given a fixed sequence

of customers, the FRCVP consists in optimally inserting charging operations within it. As such, the FRVCP

can be viewed as a subproblem of E-VRPs, which is pivotal to many heuristics that must compute the cost of

a given route. Montoya et al. (2016) solved a FRVCP with the full charging policy and constant charging time.

They formulated the problem as a constrained shortest path problem and solved it using the Pulse algorithm

(Lozano and Medaglia, 2013). Roberti and Wen (2016) described a labeling algorithm to solve the FRVCP

arising in the case where all the CSs have the same charging technology, the charging function is linear, and

partial charging is allowed. Hiermann et al. (2016) proposed a labeling algorithm for a special version of the

problem where at most one CS can be visited between any pair of non-CS nodes. These authors considered a

full charging policy, a single charging technology, and a linear charging function. Finally, Montoya et al. (2017)

considered the FRVCP as a subproblem of the E-VRP-NL. They presented a mixed integer linear programming

(MILP) model in which they assume that an EV can visit at most one CS between any pair of non-CS nodes

and a heuristic.

The scientific contribution of this paper is twofold. First, we propose two new mixed integer linear pro-

gramming (MILP) models for the E-VRP-NL, which is central to the E-VRP literature in that it realistically

models the EV charging operations via piecewise linear approximations of nonlinear functions, while account-

ing for various charging technologies and allowing partial recharge. The first model results from replacing the

node-based tracking of the time and SoC from the Montoya et al. (2017) model by an arc-based tracking of

these quantities. We demonstrate that this new formulation provides an equal or better LP relaxation bound.

To avoid replicating the CS nodes, as was the case in both previously discussed models, we then define the

problem on a multigraph, which allows us to derive a second model for the E-VRP-NL. We explain why this for-

mulation better fits the problem from a modeling perspective, and we also demonstrate its superiority through

extensive computational experiments. Building on the second new E-VRP-NL model, the second scientific

contribution of this paper lies in the development of three new algorithms for the FRVCP: a direct approach

that solves a MILP formulation of the problem, a heuristic algorithm, and an exact labeling algorithm. These

three algorithms are compared through an extensive set of computational experiments.

The remainder of this paper is organized as follows. We formally describe the E-VRP-NL in Section 2. In

Section 3, we present a new MILP model for the problem based on its “classical” definition on a simple digraph.

In Section 4, we introduce an alternative MILP model for the E-VRP-NL using the concept of paths visiting

sequences of CSs. In Section 5, we describe a new MILP model, a heurisitic and an exact labeling algorithm

for the FRVCP. We present computational results in Section 6, followed by conclusions in Section 7.

2 The electric vehicle routing problem with nonlinear charging func-

tion

The electric vehicle routing problem with nonlinear charging function, introduced by Montoya et al. (2017), is

defined as follows. Let I be the set of customers and let F be the set of CSs at which the vehicles can fully

or partially recharge their battery. Each customer i P I has a service time gi. The customers are served by

an homogeneous fleet of EVs, which is unlimited. Each EV has a battery of capacity Q (expressed in kWh)

and a maximum tour duration Tmax. At the start of the planning horizon, the EVs are located at a single

3

depot (denoted by node 0), from which they leave fully charged. Traveling from a location i (the depot, a

customer, or a CS) to another location j incurs a driving time tij ¥ 0 and an energy consumption eij ¥ 0. The

triangular inequality holds for both the driving time and the energy consumption. Each CS i has a charging

technology (e.g., slow, moderate, fast) associated with a piecewise linear concave charging function Φip∆q that

maps, for an empty battery, the time ∆ spent charging at i to the SoC of the vehicle when it leaves i. If q is

the SoC of an EV when arriving at i, then the SoC of the EV upon departing from i after charging during a

time equal to ∆ is given by Φip∆ � Φ�1
i pqqq. We denote by Bi � t0, . . . , biu the ordered set of breakpoints of

the piecewise linear approximation of the charging curve of CS i. Let cik and aik be the charging time and the

SoC of breakpoint k P Bi of the CS i. Let ρik be the slope of the segment joining the points pci,k�1, ai,k�1q

and pcik, aikq (i.e., ρik � paik � ai,k�1q{pcik � ci,k�1q. Figure 1 shows the piecewise linear approximation for a

CS i yielding a power of 22 kW charging a vehicle equipped with a 16 kWh battery.

Figure 1: Piecewise linear approximation for a CS yielding a power of 22 kW charging a 16 kWh battery.

Adapted from Montoya et al. (2017).

Feasible solutions to the E-VRP-NL satisfy the following conditions: 1) each customer is served exactly once

by a single vehicle, 2) each route starts and ends at the depot, 3) each route satisfies the maximum-duration

limit Tmax, and 4) each route is energy-feasible (i.e., the battery level of an EV upon arriving at a location or

departing from it lies between 0 and Q). The objective of the E-VRP-NL is to minimize the total time needed

to serve all customers, including driving, service, and charging time.

3 Two CS replication-based models for the E-VRP-NL

The E-VRP-NL is defined on a digraph G � pV,Aq, where V � t0uY IYF 1 is the set of nodes and A � tpi, jq :

i, j P V, i � ju is the set of arcs connecting nodes of V . Node 0 represents the single depot. The set F 1 contains

βi copies of each CS i P F (i.e., |F 1| �
°
iPF

βi). The value of βi corresponds to an upper bound on the number

of times i can be visited. These copies are introduced for modeling convenience: each visit of an EV to a CS

is modeled as a visit to a distinct copy of the CS, i.e., each node in F 1 can be restricted to be visited at most

once. Therefore, the use of CS copies facilitates the tracking of the SoC and of the time. We denote by F 1
i � F 1

the set containing the βi copies of CS i (i.e., |F 1
i | � βi and F 1 �

�
iPF F

1
i). We assume that F 1

i is an ordered set

and that its elements are numbered from 1 to βi. In the remainder of this paper, depending on the context,

we refer to an element of F 1 or F 1
i as a CS copy. Furthermore, the graph G is not necessary complete, since

some arcs cannot be traversed due to the SoC constraints. Therefore, we apply a preprocessing procedure to

reduce its size (see A).

For the sake of completeness and clarity, we recall in §3.1 the model introduced in Montoya et al. (2017).

In §3.2 we introduce an alternative formulation, which uses a different approach to model the time and SoC

4

tracking.

3.1 First model for the E-VRP-NL

The formulation of Montoya et al. (2017) involves the following decision variables. The binary variable xij is

equal to 1 if and only if an EV travels on arc pi, jq P A. The continuous variables τj and yj track the time

and SoC of the EV when it departs from node j P V . The continuous variables qi and oi specify (according

to the piecewise linear approximation of the charging function of i) the SoC of an EV when it enters and

leaves CS copy i P F 1. The variables si and di are the scaled arrival and departure times, according to the

charging function of CS copy i. The continuous variable ∆i � di � si represents the duration of the charging

operation performed at CS copy i. The binary variables zik and wik are equal to 1 if and only if the SoC is

between ai,k�1 and aik, with k P Bizt0u, when the EV enters and leaves CS copy i, respectively. Finally, the

continuous variables αik and λik are the coefficients associated with the breakpoint pcik, aikq in the piecewise

linear approximation, when the EV enters and leaves CS copy i, respectively. Specifically, the αik variables

enable the expression of psi, qiq as a convex combination of the breakpoints pcik, aikq, where k P Bi. Similarly,

the λik variables enable the expression of pdi, oiq as a convex combination of the breakpoints pcik, aikq, where

k P Bi. The Montoya et al. (2017) model for the E-VRP-NL, denoted as rFCS rep
Node s, is as follows:

rFCS rep
Node s minimize

¸
pi,jqPA

tijxij �
¸
iPF 1

∆i (1)

subject to ¸
pi,jqPA

xij � 1 i P I (2)

¸
pi,jqPA

xij ¤ 1 i P F 1 (3)

¸
pj,iqPA

xji �
¸

pi,jqPA

xij � 0 i P V (4)

eijxij � p1� xijqQ ¤ yi � yj ¤ eijxij � p1� xijqQ pi, jq P A : i P V, j P I (5)

eijxij � p1� xijqQ ¤ yi � qj ¤ eijxij � p1� xijqQ pi, jq P A : i P V, j P F 1 (6)

yi ¥ ei0xi0 pi, 0q P A (7)

yi � oi i P F 1 (8)

y0 � Q (9)

qi ¤ oi i P F 1 (10)

qi �
¸
kPBi

αikaik i P F 1 (11)

si �
¸
kPBi

αikcik i P F 1 (12)

¸
kPBi

αik �
¸

kPBizt0u

zik i P F 1 (13)

¸
kPBizt0u

zik �
¸

pi,jqPA

xij i P F 1 (14)

αi0 ¤ zi1 i P F 1 (15)

αik ¤ zik � zi,k�1 i P F 1, k P Bizt0, biu (16)

αibi ¤ zibi i P F 1 (17)

oi �
¸
kPBi

λikaik i P F 1 (18)

5

di �
¸
kPBi

λikcik i P F 1 (19)

¸
kPBi

λik �
¸

kPBizt0u

wik i P F 1 (20)

¸
kPBizt0u

wik �
¸

pi,jqPA

xij i P F 1 (21)

λi0 ¤ wi1 i P F 1 (22)

λik ¤ wik � wi,k�1 i P F,1 k P Bizt0, biu (23)

λibi ¤ wibi i P F 1 (24)

∆i � di � si i P F 1 (25)

τi � ptij � gjqxij � Tmaxp1� xijq ¤ τj pi, jq P A : i P V, j P I (26)

τi �∆j � tijxij � pSmax � Tmaxqp1� xijq ¤ τj pi, jq P A : i P V, j P F 1 (27)

τj � tj0 ¤ Tmax j P V (28)

τ0 � 0 (29)

τl �∆l ¥ τj �∆j i P F, j, l P F 1
i , j l (30)¸

ph,jqPA

xhj ¥
¸

ph,lqPA

xhl i P F, j, l P F 1
i , j l (31)

xij P t0, 1u pi, jq P A (32)

τi ¥ 0, yi ¥ 0 i P V (33)

zik P t0, 1u, wik P t0, 1u i P F 1, k P Bizt0u (34)

αik ¥ 0, λik ¥ 0 i P F 1, k P Bi (35)

qi ¥ 0, oi ¥ 0,∆i ¥ 0, si ¥ 0, di ¥ 0 i P F 1 (36)

The objective function (1) minimizes the total driving and charging time. Constraints (2) ensure that each

customer is served once, while constraints (3) state that every CS copy is visited at most once. Constraints

(4) impose the flow conservation conditions. Constraints (5) and (6) track the SoC of an EV at each node.

Constraints (7) ensure that if an EV travels between a customer or CS copy and the depot, then it has sufficient

energy to reach its destination. Constraints (8) reset the battery tracking to oi upon departure from CS copy

i. Constraint (9) states that the SoC of an EV leaving the depot is Q. Constraints (10) couple the SoC of an

EV upon arrival at a CS with its SoC at departure. Constraints (11)–(17) define the SoC and the charging

time of an EV upon arrival at CS copy i, based on the piecewise linear approximation of its charging function.

Similarly, constraints (18)–(24) define the SoC and charging time of an EV upon departure from CS copy i.

Constraints (25) define the time spent at any CS copy. Constraints (26) and (27) track the departure time

from each node. The parameter Smax � maxiPF tcibiu corresponds to the maximum charging time, i.e., the

time to fully charge an empty battery at the slowest CS. Constraints (28) and (29) ensure that the EVs return

to the depot no later than Tmax. Even if they are not necessary, constraints (30) and (31) avoid potential

symmetries between the CS copies. These constraints ensure that the copies of CS i are visited in the order in

which they appear in Fi (i.e, a charging operation at j P F 1
i must start after a charging operation at l P F 1

i if

j ¡ l). Finally, constraints (32)–(36) define the domains of the decision variables.

In order to strengthen the previous formulation, we add the following valid inequalities:

yi ¥ min
lPFYt0u

teilu i P V zt0u. (37)

These inequalities state that the SoC of an EV upon departing from a node must be sufficient to reach the

depot or the nearest CS.

6

3.2 Second model for the E-VRP-NL

We now introduce a modeling alternative for the E-VRP-NL. Formulation rFCS rep
Node s tracks the time and the

SoC of the EVs with node-indexed variables. We therefore refer to constraints (5)–(9), (26)–(29), (31), (33),

and (37) as node-based tracking constraints. Here we will model the time and SoC tracking by introducing arc-

based variables. More precisely, we replace variables τj and yj with the continuous variables τij and yij , which

respectively represent the time and SoC of an EV when it departs from node i P V to travel on arc pi, jq P A.

If no vehicle travels on arc pi, jq, then both variables are 0. We model the time and SoC tracking through the

following arc-based tracking constraints which replace the node-based tracking constraints in rFCS rep
Node s. The

second model for the E-VRP-NL, denoted as rFCS rep
Arc s, is as follows:

rFCS rep
Arc s minimize

¸
pi,jqPA

tijxij �
¸
iPF 1

∆i

subject to

(2)� (4), (10)� (25), (31), (32), (34)� (36)

y0j � Qx0j p0, jq P A (38)¸
pi,jqPA

yij �
¸

pi,jqPA

eijxij �
¸

pj,lqPA

yjl j P I (39)

¸
pi,jqPA

yij �
¸

pi,jqPA

eijxij � qj j P F 1 (40)

¸
pj,lqPA

yjl � oj j P F 1 (41)

yij ¤

�
Q� min

lPFYt0u
teliu

xij pi, jq P A (42)¸

pi,jqPA

pτij � ptij � gjqxijq �
¸

pj,lqPA

τjl j P I (43)

¸
pi,jqPA

pτij � tijxijq �∆j �
¸

pj,lqPA

τjl j P F 1 (44)

τij ¤ pTmax � tij � gj � tj0qxij pi, jq P A, j P I (45)

τij ¤
�
Tmax � tij �∆min

j � tj0
�
xij pi, jq P A, j P F 1 (46)¸

pj,hqPA

τjh �∆j ¥
¸

pl,hqPA

τlh �∆l i P F, j, h P F 1
i : j l (47)

τij ¥ 0, pi, jq P A (48)

yij ¥ 0 pi, jq P A. (49)

Constraints (38) state that the EVs leave the depot fully charged. Constraints (39) track the SoC of an

EV at each customer. Similarly, constraints (40) track the SoC of an EV when it arrives at a CS copy, and

constraints (41) track the SoC of the EV when it leaves a CS copy. Constraints (42) couple the variables yij

and xij . Constraints (43) and (44) track the departure time from each customer and CS copies, respectively.

Constraints (45) and (46) couple the τij and xij variables. Specifically, if an EV traverses an arc pi, jq, then

its departure time must guarantee that it returns to the depot without exceeding the tour maximum-duration

limit. The parameter ∆min
j represents the minimum duration of a charging operation at j P F 1, and is equal to

the time needed to charge the energy quantity min
l,l1PV ztju:pl,jqPA^pj,l1qPA

telj � ejl1 � ell1u if the EV has an empty

battery. It is a lower bound on the time spent charging to recover the energy consumed to make the detour

to j. Constraints (47) break symmetries created by the introduction of CS copies. Constraints (48) and (49)

define the domains of the newly introduced decision variables.

7

In order to strengthen the previous formulation, we add the following valid inequalities:

yij ¥

�
eij � min

lPFYt0u
tejlu

xij pi, jq P A : i � 0. (50)

Constraints (50) state that if an EV traverses arc pi, jq, then its SoC when leaving i must be sufficient to

traverse the arc and then reach the closest CS or depot.

According to the experiments conducted by Ascheuer et al. (2001) on the asymmetric traveling salesman

problem with time windows, MILP solvers tend to perform better on arc-based tracking constraints, similar to

(39)–(49), than on those based on node-based tracking constraints when there are few time windows. Therefore,

there is ground to believe that reformulating the time and SoC tracking in rFCS rep
Node s using this new model may

yield a better computational performance. Proposition 3.1 supports this claim for the two previously presented

formulations.

Proposition 3.1. Let Parc denote the polyhedron associated with the linear relaxation of rFCS rep
Arc s, and let

Let Pnode denote the polyhedron associated with the linear relaxation of rFCS rep
Node s. Then Parc � Pnode.

Proof. See B.

3.3 Valid inequalities for the first two models

We introduce a new set of valid inequalities to strengthen the previous rFCS rep
Node s and rFCS rep

Arc s formulations.

Let ecminl be the minimum amount of energy that an EV must charge at CS copy l. This corresponds to

the charge needed to recover the minimum energy consumed to make a detour to l. Specifically, ecminl �

min
i,jPV ztlu:pi,lqPA^pl,jqPA

teil�elj�eiju. Assuming an empty battery upon arrival at the CS, we can therefore state

the following valid constraints:

∆i ¥ Φipec
min
i q

¸
pi,jqPA

xij i P F 1. (51)

4 Path-based model without CS copies for the E-VRP-NL

A major drawback of the two previous formulations defined on a digraph is the need to replicate CS nodes.

Indeed, to ensure that no optimal solutions are cut off, the number of copies may have to be very large, which

affects the solution time. We can find examples where this value is equal to 4|I| (see C). However, working with

an order of |I| copies for each CS is impractical. Despite this limitation, the vast majority of MILP models for

E-VRPs listed in the literature are based on the CS-replication paradigm. To our knowledge, only Montoya

et al. (2017) proposed a procedure to set the number of CS copies needed to be used in their model. They

used the same number β of CS copies for every CS. Starting with β � 0, they solved the MILP formulation

to optimality with a time limit of T̄ (set to 100 hours in their experiments); β was then incremented and the

resulting MILP was solved. If β ¥ 1 and either the time limit was reached or the optimal solution obtained

with β � l had the same value as the one obtained with β � l�1, they stopped the procedure and set β � l�1.

This procedure is not optimal when the time limit is reached. Moreover, even when an instance is solved to

optimality, this procedure is not optimal (see D for examples).

We propose an alternative model that does not use CS copies. This new model is based on enumerating the

sequence of CS nodes that can be visited by an EV between each pair of customer or depot nodes. Given two

nodes (customer or depot) i and j, we call a CS path (CSP) a simple path starting from i visiting a sequence

of CSs (possibly empty) and ending at j.

CSPs were introduced in the context of the Green VRP, where it is assumed that a vehicle fully charges

its battery upon visiting a CS in constant time using a single technology. They were called refuel paths by

8

Bartolini and Andelmin (2017) and were used as the main building block of an exact algorithm for the Green

VRP, and were also applied by Roberti and Wen (2016) to the electric traveling salesman problem. Koç and

Karaoglan (2016) and Leggieri and Haourari (2017) employed a similar concept. In the two latter studies,

however, only one CS can be visited between any pair of nodes. This assumption may cut off optimal solutions

to the Green VRP (see Bartolini and Andelmin (2017) for an example). Because in the Green VRP the vehicles

are fully charged in constant time upon visiting a CS, the SoC of an EV after traversing a refuel path and the

time spent traveling on a path can then be computed a priori. Allowing partial charging, like in the E-VRP-NL,

necessitates deciding how much to charge at each CS and thus tracking the time and SoC throughout the CSPs.

We develop the concept of CSP for the E-VRP-NL. We redefine the problem on a directed multigraphrG � prV , rAq, where rV � t0u Y I, and rA is the set of arcs connecting the nodes of rV . More specifically, an arc

in Ã represents a CSP p, starting in oppq P Ṽ and ending in dppq P Ṽ . Let np denote the number of CSs in p

and let Lp � t0, 1, � � � , np � 1u be the ordered set of CS positions in p. We denote by µpplq the CS at position

l P Lp. We note that Lp � H indicates that p does not visit any CS between oppq and dppq. Let also ep and

tp be the energy consumption and the driving time associated with CSP p P P . Given two nodes i, j P rV , we

define Pij as the set of CSPs connecting i to j, and we define P �
�
i,jP rV ,i�j Pij as the set of all CSPs.

4.1 Third model for the E-VRP-NL

Our path-based formulation of the E-VRP-NL involves the following decisions variables. The binary variable

xp is equal to 1 if and only if an EV travels on CSP p P P . The continuous variables τp and yp track the time

and SoC of an EV when it departs from node oppq to node dppq on CSP p. If no vehicle travels on the CSP,

then both variables take the value of 0. For a path p, the continuous variables qpl and opl specify the SoC of an

EV when it enters and leaves µpplq, respectively. We model the piecewise linear approximation of the charging

function following the same principle as in the first two models. The variables spl and dpl are the scaled arrival

and departure times, according to the charging function of CS µpplq. The continuous variable ∆pl represents

the duration of the charging operation performed at µpplq. The binary variables zplk and wplk are equal to 1

if and only if the SoC is between aµpplq,k�1 and aµpplq,k, with k P Bizt0u, when the EV enters and leaves CS

µpplq, respectively. The continuous variables αplk and λplk are the coefficients associated with the breakpoint

pcµpplq,k, aµpplq,kq in the piecewise linear approximation, when the EV enters and leaves CS µpplq, respectively.

The path-based formulation of the E-VRP-NL, denoted as rFPathArc s, is as follows:

rFPathArc s min
¸
pPP

��tpxp � ¸
lPLp

∆pl

� (52)

subject to ¸
jP rV ,i�j

¸
pPPij

xp � 1 i P I (53)

¸
jP rV ,i�j

¸
pPPji

xp �
¸

jP rV ,i�j

¸
pPPij

xp � 0 i P rV (54)

¸
jP rV ,j�i

¸
pPPji

��yp � epxp �
¸
lPLp

popl � qplq

�� ¸
jP rV ,j�i

¸
pPPij

yp i P I (55)

yp � eoppq,µpp0qxp � qp0 p P P : |Lp| � 0 (56)

op,l�1 � eµppl�1q,µpplqxp � qpl p P P, l P Lpzt0u (57)

yp � Qxp i P rV zt0u, p P P0i (58)

yp � epxp �
¸
lPLp

popl � qplq ¥ 0 i P rV zt0u, p P Pi0 (59)

9

yp ¤ Qxp p P P (60)

¸
jP rV zt0u,j�i

¸
pPPji

τp �
¸

jP rV ,j�i

¸
pPPji

��tpxp � ¸
lPLp

∆pl

�� gi �
¸

jP rV ,j�i

¸
pPPij

τp i P I (61)

τp �
¸
lPLp

∆pl ¤
�
Tmax � tp � gdppq � tdppq,0

�
xp p P P (62)

qpl �
¸

kPBµpplq

αplkaµpplqk p P P, l P Lp (63)

spl �
¸

kPBµpplq

αplkcµpplqk p P P, l P Lp (64)

¸
kPBµpplq

αplk �
¸

kPBµpplqzt0u

zplk p P P, l P Lp (65)

¸
kPBµpplqzt0u

zplk � xp p P P, l P Lp (66)

αpl0 ¤ zpl1 p P P, l P Lp (67)

αplk ¤ zplk � zpl,k�1 p P P, l P Lp, k P Bµpplqzt0, bµpplqu (68)

αplbµpplq ¤ zplbµpplq p P P, l P Lp (69)

opl �
¸

kPBµpplq

λplkaµpplqk p P P, l P Lp (70)

dpl �
¸

kPBµpplq

λplkcµpplqk p P P, l P Lp (71)

¸
kPBµpplq

λplk �
¸

kPBµpplqzt0u

wplk p P P, l P Lp (72)

¸
kPBµpplqzt0u

wplk � xp p P P, l P Lp (73)

λi0 ¤ wpl1 p P P, l P Lp (74)

λplk ¤ wplk � wpl,k�1 p P P, l P Lp, k P Bµpplqzt0, bµpplqu (75)

λplbµpplq ¤ wplbµpplq p P P, l P Lp (76)

∆pl � dpl � spl p P P, l P Lp (77)

xp P t0, 1u p P P (78)

τp ¥ 0, yp ¥ 0 p P P (79)

spl, dpl, qpl, opl,∆pl ¥ 0 p P P, l P Lp (80)

zplk P t0, 1u, wplk P t0, 1u p P P, l P Lp, k P Bizt0u (81)

αplk ¥ 0, λplk ¥ 0 p P P, l P Lp, k P Bi. (82)

The objective function (52) minimizes the total driving and charging time. Constraints (53) ensure that

each customer is served once. Constraints (54) impose the flow conservation conditions. Constraints (55) track

the SoC of the EVs at each customer. Constraints (56) track the SoC of the battery upon arrival at the first

CS of each CSP. For each CSP, constraints (57) couple the SoC of an EV upon departing from a CS with the

SoC upon arriving at the next CS of the CSP. Constraints (58) state that every EV leaves the depot with a

fully charged battery. Constraints (59) ensure that if the EV travels a path between a customer node and the

depot, then it has sufficient energy to reach its destination. Constraints (60) couple the SoC tracking variable

with the arc travel variables. Constraints (61) track the departure time from each node. Constraints (62)

couple the time tracking variable with the arc travel variables, and impose the route maximum-duration limit.

Constraints (63)–(76) are related to the piecewise linear approximation of the charging function. Specifically,

10

constraints (63)–(69) define the SoC and the charging time of an EV upon arrival at each CS of the CSPs, and

constraints (70)–(76) define the SoC and charging time of an EV upon departure from each CS of the CSPs.

Constraints (77) define the time spent charging at every CS. Finally, constraints (78)–(82) define the domains

of the decision variables.

4.2 Dominated paths

Theoretically the set rA contains a very large number of arcs that grows quickly with the number of CSs and

the number of customers. However, many of these arcs will not be part of an optimal solution. Hence, this

section is devoted to identifying CSPs that can be eliminated using dominance rules. Defining these rules is a

complex task since we need to account for the partial charging policy, the various charging technologies, and

the piecewise linearity of the charging functions.

We first introduce the concept of recharging path (RP). We call an RP a CSP for which the SoC of the EV

upon departing from each CS is known. We denote by xp, φy an RP associated with CSP p where φ is a vector

specifying the SoC of the EV upon departing from every CS in p. Specifically, φl is the SoC of the EV upon

departing from CS µpplq, with l P Lp. We refer to φ as the SoC target vector. A SoC target vector is said to

be feasible for a CSP with respect to a given SoC at the origin if it leads to an energy-feasible path, that is a

path in which the SoC is non-negative and less than Q when the vehicle enters or leaves any of its nodes.

Let us now assume that the SoC of the EV at the origin of each CSP is known. We denote this SoC by q

and refer to it as the initial SoC. Considering traveling on RP xp, φy, let SoC
q

xp,φy and Dur
q

xp,φy be the SoC of

the EV upon arriving at destination dppq and the total duration of this RP, respectively. In what follows we

define dominance rules between the RPs.

Definition 4.1. Let xp1, φ1y and xp2, φ2y be two RPs with the same origin o � opp1q � opp2q and the same

destination d � dpp1q � dpp2q, and let min
lPFYt0u

teolu ¤ q ¤ Q� min
lPFYt0u

telou be the initial SoC of the EV (q � Q

if o � 0). RP xp1, φ1y dominates RP xp2, φ2y with respect to q if Dur
q

pp1,φ1y ¤ Dur
q

xp2,φ2y ^ SoC
q

xp1,φ1y ¥

SoC
q

xp2,φ2y. This is denoted by xp1, φ1y ¡q xp2, φ2y.

The previous definition implies that an RP dominates another one if it yields a larger SoC at the destination

within a shorter time. We only need to consider a CSP p1 if there exists at least a non-dominated RP xp1, φ1y

for a feasible q1. Nonetheless, applying this dominance rule in a straightforward fashion in order to restrict

the number of CSPs is intractable since the number of RPs associated with a CSP is unbounded due to the

continuous nature of the variables that track the charging quantities.

It is possible to restrict the number of RPs that should be considered by applying rules based on the following

key observations. Note that the SoC required at the end of an RP is unknown, because the destination of the

EV after traveling the RP is itself unknown. Modifying the SoC of the EV upon arrival at the last CS in an

RP changes the duration of the path and the SoC of the EV on arrival to the destination. The latter may

affect the dominance relationship between RPs. Taking these remarks into account, we introduce the concept

of quasi-path (QP). Let �CS be a CS other than the last on a CSP. A QP is an RP for which the SoC of the

EV upon departing from the last visited CS of the CSP (if any) is not defined. We denote by pp, φq the QP

associated with RP xp, φy. Since the SoC target at the �CSs of a QP is infinite, there are still an unbounded

number of QPs associated with a given CSP that contains two or more CSs. However, Zündorf (2014) showed

that for a given sequence of CS visits between two non-CS nodes, we only need to consider a limited number

of SoC targets for the �CSs. This is due to the piecewise linearity of the charging functions. Specifically, the

number of SoC targets that should be considered at a �CS is restricted by the number of breakpoints of its

charging function. The possibilities are the following: 1) One can leave a �CS with just enough energy to arrive

to the next CS with an empty battery. 2) One can also stop charging at a �CS at any breakpoint of the charging

11

function (if the associated SoC is larger than the SoC of the EV upon arriving at the �CS). Therefore, we apply

these results to QPs, and by so doing we limit the number of QPs associated with every CSP.

We now define a dominance rule between two QPs. To this end, we exploit the concept of SoC functions

introduced by Zündorf (2014) to solve an electric vehicle shortest path problem, which consists in finding a

minimum duration route satisfying battery constraints and allowing the EV to recharge en route. A SoC

function SoCqpp,φq, for a QP pp, φq and a given initial SoC q, maps the duration of the path t to the final SoC

of the EV at destination dppq.

Since we assume that all charging functions are piecewise linear, a SoC function can be defined by an

ordered set of supporting points tpt1, y1q, � � � , ptk, ykqu sorted in non-decreasing order of duration. These points

are derived from the breakpoints of the charging function of the last CS in a QP according to p, φ and q.

The value t1 represents the minimal time required by an EV to travel on the QP according to the battery

constraints (no undercharging or overcharging is allowed and the SoC is sufficient to travel on each arc) and q.

A SoC function represented by tpt1, y1q, � � � , ptn, ynqu is defined as follows:

SoCqpp,φqptq �

$'''&'''%
�8 if 0 ¤ t t1
pt� tk�1qpyk � yk�1q

tk
� yk�1 if tk�1 ¤ t tk, k P t2, 3, ..., nu

yn if t ¥ tn.

(83)

1 2 3 4 5 6 7 8

-8

0

1

2

3

4

5

Duration

S
o
C

Figure 2: Example of a SoC function associated with the supporting points (1, 1.5), (2, 3), and (5, 4).

Figure 2 depicts a SoC function. In this example, the first supporting point of the curve is (1, 1.5). This means

that the minimum duration to travel on the QP is equal to 1, and in this case, the SoC at the destination of

the EV is equal to 1.5. If the SoC needed at dppq is 3, the duration of the corresponding path is equal to 2

(the duration is increased due to a larger amount of energy charged at a CS previously visited by the QP). A

dominance rule between QPs having the same origin and destination can then be defined as follows:

Definition 4.2. Let pp1, φ1q and pp2, φ2q be two QPs with the same origin o � opp1q � opp2q and the same

destination d � dpp1q � dpp2q, and let q be the initial SoC of the EV at o. QP pp1, φ1q dominates QP

pp2, φ2q with respect to q if SoCqpp1,φ1q
ptq ¥ SoCqpp2,φ2q

ptq for every t ¥ 0. We denote this dominance by

pp1, φ1q ¡q pp2, φ2q.

This definition states that a QP dominates another only if for every possible duration the EV reaches the

destination with higher or equal SoC. The dominance of QP pp1, φ1q over QP pp2, φ2q can be established by

comparing the value of SoCqpp1,φ1q
and SoCqpp2,φ2q

for all abscissas of the supporting points of both functions.

For convenience, we also provide an equivalent definition to Definition 4.2 based on the comparison of the

inverse of the SoC function. Let Θ
q

pp,φq and Θq
pp,φq be the maximum and minimum SoC that can be achieved

at the destination of QP pp, φq if the initial SoC is equal to q. The inverse of function SoCqpp,φq, denoted

12

pSoCqpp,φqq
�1, exists only in the interval rΘq

pp,φq,Θ
q

pp,φqs. We define its extension, denoted InvSoCqpp,φq, over the

interval r0, Qs as follows:

InvSoCqpp,φqpq̃q �

$''&''%
pSoCqpp,φqq

�1pΘq
pp,φqq if 0 ¤ q̃ Θq

pp,φq

pSoCqpp,φqq
�1pq̃q if Θq

pp,φq ¤ q̃ ¤ Θ
q

pp,φq

8 if Θ
q

pp,φq q̃ ¤ Q

. (84)

Note that since it is not possible to achieve a SoC 0 ¤ q̃ Θq
pp,φq, the first case assumes that the time required

to reach such a q̃ is equivalent to the time needed to reach Θq
pp,φq. An equivalent definition to Definition of 4.2

then reads:

Definition 4.3. Let pp1, φ1q and pp2, φ2q be two QPs with the same origin o � opp1q � opp2q and the same

destination d � dpp1q � dpp2q, and let q be the initial SoC of the EV. QP pp1, φ1q dominates QP pp2, φ2q with

respect to q if InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q for every q̃. This is also denoted by pp1, φ1q ¡q pp2, φ2q.

This definition states that a QP dominates another only if for every possible SoC at the destination it has a

shorter or equal duration. As in Definition 4.2, the dominance of QP pp1, φ1q over QP pp2, φ2q can be established

by comparing the value of InvSoCqpp1,φ1q
and InvSoCqpp2,φ2q

for all abscissas of the supporting points of both

functions.

Definition 4.4. CSP p1 is said to be non-dominated if there exists at least one QP pp1, φ1q and an initial

SoC q, such that for every QP pp2, φ2q with the same origin o � opp1q � opp2q and the same destination

d � dpp1q � dpp2q we have pp2, φ2q £q pp1, φ1q (i.e., pp2, φ2q does not dominate pp1, φ1q for an initial SoC q).

The initial SoC q can be restricted for a QP pp, φq to take its value in the interval rqMIN
pp,φq , q

MAX
pp,φq s. Let

%pp,φqplq denote the SoC upon arrival at CS µpplq for QP pp, φq (with l P Lpzt0u). This quantity does not

depend on the initial SoC q. The values of qMIN
pp,φq and qMAX

pp,φq can then be defined as follows:

qMIN
pp,φq �

$''&''%
Q if oppq � 0

eoppq,µpp0q if np � 0^ oppq � 0

ep � min
lPFYt0u

edppq,l if np � 0^ oppq � 0

qMAX
pp,φq � mintQ� min

lPFYt0u
el,oppq, min

lPLpzt0u
t%pp,φqplq � eoppq,µpplquu

The value qMIN
pp,φq corresponds to the minimum SoC needed at the origin to make QP pp, φq energy-feasible. The

first element in the definition of qMAX
pp,φq corresponds to the maximum SoC achievable at the origin of the QP.

The second element considers that if the initial SoC allows the EV to reach a CS with a SoC larger than or

equal to that achievable by visiting previous CSs, then the QP that goes directly from the origin to that CS

dominates the current QP (because the driving time and energy consumption satisfy the triangular inequality).

It is impractical to compute the non-dominated QPs for every possible initial SoC using Definition 4.4,

since there is an infinite number of possible initial SoCs (except at the depot). To resolve this issue, we show in

Lemma 4.1 how given a SoC function and an initial SoC q, we are able to compute the SoC functions for other

initial SoCs q1 for a given QP. Based on this result, we demonstrate in Proposition 4.1 how the dominance

relationship between two different QPs with the same origin and destination can be efficiently verified.

Lemma 4.1. Let pp, φq be a QP and let q P rqMIN
pp,φq , q

MAX
pp,φq s. If the initial SoC at oppq is equal to q1 with

q ¤ q1 ¤ qMAX
pp,φq , then the inverse of the SoC function InvSoCq

1

pp,φq can be computed as follows:

• If np � 0 (i.e., p contains at least one CS)

@ q̃ P r0, Qs, InvSoCq
1

pp,φqpq̃q �

#
InvSoCqpp,φqpq̃q � λpqq1 if q̃ ¥ q1 � ep

InvSoCqpp,φqpq
1 � epq � λpqq1 if q̃ q1 � ep

(85)

13

where λpqq1 � Φ�1
µpp0q

pq1 � eoppq,µpp0qq � Φ�1
µpp0q

pq � eoppq,µpp0qq corresponds to the difference in time spent

charging q1 � q at the first CS of the path.

• If np � 0 (i.e., p does not contain any CS)

@ q̃ P r0, Qs, InvSoCq
1

pp,φqpq̃q �

#
tp if q1 � ep ¥ q̃

8 if q1 � ep q̃
(86)

Proof. See B.

For each pair of values q1 and q2 such that qMIN
pp1,φ1q

¤ q1 ¤ qMAX
pp1,φ1q

and qMIN
pp2,φ2q

¤ q2 ¤ qMAX
pp2,φ2q

, we define

two functions, denoted by T
pp1,φ1q
pp2,φ2q and T

pp1,φ1q
pp2,φ2q

. Intuitively, these functions tend represent the maximum and

minimum differences in time for the two QPs to reach the same SoC at the destination. They are defined as

follows:

• If np1
¡ 0 and np2

¡ 0, we have

T
pp1,φ1q
pp2,φ2qpq, q1, q2q � max

$&% max
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq
tInvSoCq1pp1,φ1q

pq̃q � InvSoCq2pp2,φ2q
pq̃qu

InvSoCq1pp1,φ1q
pmaxt0, q �mintep1 , ep2uuq � InvSoCq2pp2,φ2q

pmaxt0, q � ep2uq

,.-
T
pp1,φ1q
pp2,φ2q

pq, q1, q2q � min

$&% min
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq
tInvSoCq1pp1,φ1q

pq̃q � InvSoCq2pp2,φ2q
pq̃qu

InvSoCq1pp1,φ1q
pmaxt0, q � ep2uq � InvSoCq2pp2,φ2q

pmaxt0, q �mintep1 , ep2uuq

,.-
• If np1 � 0 and np2 ¡ 0, we have

T
pp1,φ1q
pp2,φ2qpq, q1, q2q � max

$&% max
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq
ttp1 � InvSoCq2pp2,φ2q

pq̃qu

tp1 � InvSoCq2pp2,φ2q
pmaxt0, q � ep2uq

,.-
• If np1

¡ 0 and np2
� 0, we have

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q � min

$&% min
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq
tInvSoCq1pp1,φ1q

pq̃q � tp2u

InvSoCq1pp1,φ1q
pmaxt0, q � ep2uq � tp2

,.-
where Ω

pp1,φ1q
pp2,φ2q

pqq is an interval equal to rmaxt0, q �mintep1 , ep2uu,mintΘ
q1
pp1,φ1q,Θ

q2
pp2,φ2qus.

We note that for a CSP with np � 0, since there are no charging decisions involved, there is a single QP. This

QP cannot be dominated for every possible value of the initial SoC by other QPs, which are associated with

other CSPs, because of the triangular inequality. We therefore never verify if a QP p with np � 0 is dominated.

However, such a QP may dominate other QPs. In this case, the initial SoC of QP p with np � 0 must be such

that the SoC at the destination is larger than the maximum SoC attainable at the destination by the other

QPs. We also note that given two QPs pp1, φ1q and pp2, φ2q with the same origin and the same destination,

such that qMIN
pp1,φ1q

¤ qMIN
pp2,φ2q

, the dominance for these two QPs must be verified only for q ¥ qMIN
pp2,φ2q

. Finally, we

note that for a QP pp, φq such that np ¡ 0, reaching the maximum SoC at the destination is established when

the EV is fully charged at the last CS of p. We note that this is independent of the value of the initial SoC q.

Hence for simplicity we denote Θ
q

pp,φq by Θpp,φq. Based on these observations, the dominance test between the

two QPs (where qMIN
pp1,φ1q

¤ qMIN
pp2,φ2q

) needs to be carried for q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs (when the first element is less

than or equal to the second element) where Qpp1,φ1q
pp2,φ2q

and Q
pp1,φ1q
pp2,φ2q are defined as follows:

Qpp1,φ1q
pp2,φ2q

�

$''&''%
qMIN
pp2,φ2q

if np1
¥ 1^ np2

¥ 1

maxtqMIN
pp2,φ2q

,Θpp2,φ2q � eopp1q,dpp1qu if np1
� 0^ np2

¥ 1

maxtqMIN
pp2,φ2q

,Θpp1,φ1q � eopp2q,dpp2qu if np1
¥ 1^ np2

� 0

14

Q
pp1,φ1q
pp2,φ2q � mintqMAX

pp1,φ1q
, qMAX

pp2,φ2q
u

Observe that if Qpp1,φ1q
pp2,φ2q

¡ Q
pp1,φ1q
pp2,φ2q, then we cannot derive any dominance relationship. Moreover, if np1

¡ 0

and Θpp1,φ1q Θpp2,φ2q, then the EV can have a higher SoC after traversing pp2, φ2q compared to the one

obtained after traversing pp1, φ1q, which means that there does not exist q such that pp1, φ1q ¡q pp2, φ2q.

Similarly, if np2 ¡ 0 and Θpp2,φ2q Θpp1,φ1q, then there does not exist q such that pp2, φ2q ¡q pp1, φ1q. The

following result allows us to compute intervals for the initial SoC for which there may exist a dominance between

QPs.

Proposition 4.1. Let pp1, φ1q and pp2, φ2q be two QPs with the same origin o � opp1q � opp2q and the same

destination d � dpp1q � dpp2q such that qMIN
pp1,φ1q

¤ qMIN
pp2,φ2q

. For k P t1, 2u, let qk be a parameter equal to Qpp1,φ1q
pp2,φ2q

if npk � 0 and qMIN
ppk,φkq

otherwise. If Qpp1,φ1q
pp2,φ2q

¤ Q
pp1,φ1q
pp2,φ2q, the following statements hold:

• If np1
� 0 or Θpp1,φ1q ¥ Θpp2,φ2q, then for every initial SoC q P rQpp1,φ1q

pp2,φ2q
, Q

pp1,φ1q
pp2,φ2qs such that T

pp1,φ1q
pp2,φ2qpq, q1, q2q ¤

∆p1pqq �∆p2pqq, we have pp1, φ1q ¡q pp2, φ2q.

• If np2 � 0 or Θpp2,φ2q ¥ Θpp1,φ1q, then for every initial SoC q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs such that T

pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥

∆p1
pqq �∆p2

pqq, we have pp2, φ2q ¡q pp1, φ1q.

where ∆ppqq is defined as follows:

∆ppqq �

#
Φ�1
µpp0q

pq � eoppq,µpp0qq if np ¥ 1

0 if np � 0
.

Proof. See B.

Using this proposition, we design an algorithm that enumerates all non-dominated CSPs between any

pair of nodes i, j P rV belonging to the multigraph. We first build a directed graph Ĝij � pNij , Aijq, where

Nij � ti, ju Y F . For each CS node l P F , we create the arcs pi, lq and pl, jq. For each pair of CSs l, l1, we

also create the arc pl, l1q. We also consider the arc pi, jq. We apply the preprocessing rules described in A on

Ĝij . We then solve on this graph a multi-objective constrained shortest path problem from i to j where 1)

the two objectives are the minimization of the total duration of the path (driving + charging time) and the

maximization of the final SoC; 2) there is a constrained resource: the energy (i.e., the SoC of the EV must

always be in the interval r0, Qs); and 3) the SoC upon leaving i and the SoC needed upon reaching j are

unknown. To this end, we use a label-correcting algorithm where each label represents a QP. A SoC function

is associated with each QP pp, φq assuming that the initial SoC is equal to qMIN
pp,φq . Non-dominated CSPs are

then associated with Pareto optimal QPs. We outline the pseudo-code of our label-correcting algorithm in

Algorithm 1.

We initialize the algorithm with one label at node j representing a QP associated with arc (i,j). We also

initialize the algorithm with one label for each l P F such that pi, lq P Aij . This label represents a partial

QP associated with partial CSP (i,l). At each iteration of the algorithm, we select the label (among the

unprocessed labels) with the minimum duration and we extend it along the arcs of Ĝij . Selecting this specific

label is intended to reduce the number of labels the algorithm generates. If we extend a label along an arc

pl, l1q, then the new label consists of the translation of the SoC function along the vector (tll1 , �ell1). Note

that some supporting points of the new SoC function (after the extension along arc pl, l1q) can have a negative

y-coordinate, which implies violating a resource constraint. Therefore, we do not consider these points. If

all the supporting points of the new SoC function have a negative y-coordinate, then traversing the arc is

impossible. If l1 is a CS, we need to set the SoC target value at the previous CS (if there is any in the current

path). We note that setting this SoC target value requires knowing the successive CS (if it exists). Stopping

charging at the previous CS encountered in the path and starting charging at the current CS is only relevant

15

Algorithm 1: ComputeCSPs(i,j)

input : Ĝij

output: a set containing all the non-dominated CSPs between i and j

1 forall l P Nijztiu do L1plq Ð H (L1plq stores the unprocessed labels associated with node l) ;

2 forall l P Nijztiu do L2plq Ð H (L2plq stores the processed labels associated with node l) ;

3 Add to L2pjq the QP associated with arc pi, jq

4 RÐH (R stores nodes from Nijztiu with unprocessed labels)

5 forall l P F such that pi, lq P Aij do

6 Add to L1plq the label corresponding to the QP starting at i and going directly to l

7 end

8 RÐ tl P F : pi, lq P Aiju

9 while R � H do

10 lÐ minElement(R) (gets from R the node which has associated the unprocessed label with the minimum total time)

11 ppl, φlq Ð deleteMin(L1plq) (removes from L1plq the label with the minimum total time)

12 if L1plq � H then RÐ Rztlu ;

13 Update(L2plq, ppl, φlq)

14 forall pl, l1q P Ĝij do

15 if IsExtendable(ppl, φlq,l
1) then (checks if QP pp, φq can be extended to node l1)

16 ppl1 , φl1 q ÐExtendpppl, φlq, l
1q (extends QP ppl, φlq to node l1)

17 K ÐCreateLabelspppl1 , φl1 qq (if l1 is a CS and pl1 contains more than a CS, then it creates the relevant labels

according to the supporting points of the SoC function associated with QP ppl1 , φl1 q, otherwise K only

contains ppl1 , φl1 q)

18 forall pp, φq P K do

19 Update(L1pl1q, pp, φq) (inserts QP pp, φq in L1pl1q if it is not dominated according to Proposition 4.1, and

verifies if previously inserted labels become dominated)

20 end

21 if L1pl1q has changed and l1 R R then RÐ RY tl1u ;

22 end

23 end

24 end

25 P ÐH

26 forall ppj , φjq P L2pjq do

27 if pj R P then P Ð P Y tpju ;

28 end

29 return P

at a supporting point of the current SoC function (Zündorf, 2014). Hence we create one new label for each

supporting point of the current SoC function in order to explore the possibility of switching over to the new CS

at that point: Note that we can restrict the creation of new labels to the case where the slope of the charging

function at the new CS is larger than that of the current SoC function. For each of these labels, the new SoC

function is derived from the charging function associated with the new CS. Moreover, whenever we obtain a

new label at a node, we check whether the corresponding partial QP is non-dominated before accepting it and

we verify if previously generated labels associated with the same node become dominated. Specifically, using

the result of Proposition 4.1 we can identify intervals for the SoC at the departure from i for which the newly

generated label is dominated by or dominates a processed or an unprocessed label associated with the same

node. If a QP pp, φq becomes dominated for every SoC q P rqMIN
pp,φq , q

MAX
pp,φq s, then it can be safely removed from

the set of labels. The algorithm terminates when there are no more labels to set at the destination node.

To speed up the algorithm, we do not extend a label pp, φq associated with a node l to a node l1 if at least

one of the following conditions is met: 1) the sum of the minimum duration associated with the SoC function

at the current label (i.e., the x-coordinate of the first supporting point), the driving time tll1 , and the quantity

t0i � tl1j � tj0 is larger than the sum of the duration limit Tmax and the quantity Φ�1
µpp0q

pQq; 2) If l1 is a CS

node, then while scanning the nodes of the route backwards we encounter the same node l1 without having

scanned before a CS with a faster technology (note that a CS can be visited more than once in a path). The

latter condition is due to the positivity of the energy consumption and driving time.

16

5 The fixed route vehicle charging problem

Building on the insights obtained by the previous sections, we now focus on the fixed route vehicle charging

problem (FRVCP) which is a subproblem of the E-VRP-NL. We recall that FRVCPs are fundamental sub-

problems of the E-VRPs. Let Π be a route that does not visit any CS. The objective of the FRVCP is to

determine the charging operations (where to insert the CSs and how much to charge), in order to minimize the

total route duration while satisfying the following conditions: the customers in the resulting route are visited

in the initial order, and the resulting route is energy-feasible and satisfies the maximum-duration limit. We

restrict our attention to routes that cannot be traveled by an EV without the need to recharge the battery. We

therefore need to insert CSs in the route to make it energy-feasible. Figure 3 shows an example of the FRVCP

with a route serving four customers and the possibility of visiting two CSs (as many times as necessary). In

the FRVCP we allow an EV to visit several CSs between two successive non-CS nodes. Many studies focus

on a more restricted version of the FRVCP in which an EV can visit at most one CS between two successive

non-CS nodes. We denote this restricted version by FRVCP-1.

Figure 3: Example of a fixed route vehicle charging problem with route (0,2,7,5,3,0).

Here we propose three alternative algorithms to solve the FRVCP. Let Π � p πp0q, πp1q, � � � , πpiq, � � � ,

πpnpΠq � 1q, πpnpΠqq q be a fixed route, where πp0q and πpnpΠqq represent the depot and the remaining πpiq

are the visited customers. We first describe in §5.1 a preprocessing procedure to reduce the size of the search

space. We then present in §5.2 a MILP formulation for the problem. Contrary to the formulation by Montoya

et al. (2017), our model accounts for visits to multiple CSs between any pair of non-CS nodes. Finally, we

present in §5.3 an exact labeling algorithm for this formulation.

Montoya et al. (2017) also introduced a greedy heuristic for the FRVCP. Contrary to their formulation,

their heuristic allows visiting a number of CSs between two successive nodes of Π. Building on their work, we

develop in §5.4 a new FRVCP heuristic.

5.1 Preprocessing procedure

Our preprocessing procedure works as follows. We first compute, according to Π and Tmax, the maximum

time that is possible to spend detouring and charging at CSs. Using this value, we identify a priori the set of

feasible CS insertions and the set of feasible consecutive CS visits between every pair of consecutive nodes of

Π. We also remove additional infeasible connections between the nodes of Π and the CSs. More specifically,

we perform the following preprocessing steps: 1) Let ∆tpΠq � Tmax �
°npΠq�1
i�0 tπpiq,πpi�1q be the maximum

time that is possible to spend detouring and charging at CSs; 2) Let πpiq be the ith node in Π and j a CS. For

i P t0, . . . , npΠq � 1u, if tπpiq,j � tj,πpi�1q � tπpiq,πpi�1q ¡ ∆tpΠq, then we forbid the insertion of CS j between

nodes πpiq and πpi� 1q; 3) Let j, j1 be two different CSs. If tπpiq,j � tj,j1 � tj1,πpi�1q� tπpiq,πpi�1q ¡ ∆tpΠq, then

we forbid visiting CS j1 after j between nodes πpiq and πpi� 1q; 4) Let i, j be two nodes that belong to Π or

to F . If minlPFYt0uteliu� eij �minlPFYt0utejlu ¡ Q, then we forbid visiting node j directly after node i (since

it violates the battery constraints).

17

5.2 A path-based model for the FRVCP

Building on the path-based formulation proposed in Section 4, we now propose a MILP formulation for the

FRVCP. Let P pΠq be the set of CSPs between two consecutive nodes of route Π. To generate these paths,

we use the labeling algorithm described in Algorithm 1. The construction of the underlying graph takes into

account the results of the preprocessing procedure. We use the same decisions variables as in formulation

rFPathArc s but we define them only for paths belonging to P pΠq. The binary variable xp is equal to 1 if and only

if an EV travels on CSP p P P pΠq. For a path p, continuous variable yp track the time at which the EV leaves

oppq. Continuous variables qpl and opl specify (according to the piecewise linear approximation of the charging

function) the SoC of an EV when it enters and leaves µpplq, i.e., the CS at position l P Lp. The continuous

variable ∆pl represents the duration of the charging operation performed at µpplq. The continuous variable

φplk represents the amount of energy charged on the segment lying between the points pcµpplq,k�1, aµpplq,k�1q

and pcµpplq,k, aµpplq,kq at the CS µpplq. The binary variables ωplk is equal to 1 if and only if an EV charges at

the CS at position l in path p on the segment between the points pcµpplq,k�1, aµpplq,k�1q and pcµpplq,k, aµpplq,kq.

Let ep and tp be the energy consumption and the driving time associated with path p P P . A formulation of

the FRVCP for a route Π, denoted as rFRPathpΠqs, is as follows:

rFRPathpΠqs minimize
¸

pPP pΠq

��tpxp � ¸
lPLp

∆pl

� (87)

subject to ¸
pPPπpiq,πpi�1q

xp � 1, i P t0, � � � , npΠq � 1u (88)

¸
pPPπpi�1q,πpiq

��yp � epxp �
¸
lPLp

popl � qplq

�� ¸
Pπpiq,πpi�1q

yp, i P t1, � � � , npΠq � 1u (89)

yp � eoppq,µpp0qxp � qp0, p P P pΠq : |Lp| � 0 (90)

op,l�1 � eµppl�1q,µpplqxp � qpl, p P P pΠq, l P Lpzt0u (91)

¸
pPPπpnpΠq�1q,πpnpΠqq

��yp � epxp �
¸
lPLp

popl � qplq

�¥ 0, (92)

yp � Qxp, p P Pπp0q,πp1q (93)

yp ¤ Qxp, p P P pΠq (94)

¸
pPP pΠq

��tpxp � ¸
lPLp

∆pl

�� npΠq�1¸
i�1

gπpiq ¤ Tmax (95)

qpl �
¸

kPBµpplq

αplkaµpplqk p P P pΠq, l P Lp (96)

spl �
¸

kPBµpplq

αplkcµpplqk p P P pΠq, l P Lp (97)

¸
kPBµpplq

αplk �
¸

kPBµpplqzt0u

zplk p P P pΠq, l P Lp (98)

¸
kPBµpplqzt0u

zplk � xp p P P pΠq, l P Lp (99)

αpl0 ¤ zpl1 p P P pΠq, l P Lp (100)

αplk ¤ zplk � zpl,k�1 p P P pΠq, l P Lp, k P Bµpplqzt0, bµpplqu (101)

αplbµpplq ¤ zplbµpplq p P P pΠq, l P Lp (102)

18

opl �
¸

kPBµpplq

λplkaµpplqk p P P pΠq, l P Lp (103)

dpl �
¸

kPBµpplq

λplkcµpplqk p P P pΠq, l P Lp (104)

¸
kPBµpplq

λplk �
¸

kPBµpplqzt0u

wplk p P P pΠq, l P Lp (105)

¸
kPBµpplqzt0u

wplk � xp p P P pΠq, l P Lp (106)

λi0 ¤ wpl1 p P P pΠq, l P Lp (107)

λplk ¤ wplk � wpl,k�1 p P P pΠq, l P Lp, k P Bµpplqzt0, bµpplqu (108)

λplbµpplq ¤ wplbµpplq p P P pΠq, l P Lp (109)

∆pl � dpl � spl p P P pΠq, l P Lp (110)

xp P t0, 1u, p P P pΠq (111)

yp ¥ 0 p P P pΠq (112)

spl, dpl, qpl, opl,∆pl ¥ 0 p P P pΠq, l P Lp (113)

zplk P t0, 1u, wplk P t0, 1u p P P, l P Lp, k P Bizt0u (114)

αplk ¥ 0, λplk ¥ 0 p P P, l P Lp, k P Bi. (115)

The objective function (87) minimizes the total driving and charging time in the route. Constraints (88)

ensure the selection of a CSP between each pair of successive non-CS nodes. The remaining constraints are

similar to those introduced for model rFPathArc s.

5.3 An exact labeling algorithm for the FRVCP

We now present an exact labeling algorithm for the FRVCP. We apply it on a directed graph GpΠq that contains

the nodes of the initial route Π and the CS nodes. To enforce the order of the visits of the nodes that belong

to Π, we replicate the CS nodes in such a way that one copy of every CS is associated with one arc of the

initial route Π. Specifically, for every value of i between 0 and npΠq � 1, we create a copy lpiq of CS l P F .

We then create the arc pπpiq, πpi� 1qq, the arcs pπpiq, lpiqq and plpiq, πpi� 1qq for each CS l P F , and the arcs

plpiq, l1piqq for each pair of CS l, l1 P F . It is worth mentioning that we only add these arcs to the graph if they

still exist after running the preprocessing routines introduced in §5.1. Figure 4 depicts the graph considered

for the example of Figure 3.

Figure 4: Graph considered when applying the labeling algorithm to solve the fixed route vehicle charging

problem with route (0,2,7,5,3,0).

The FRVCP can then be defined as a constrained shortest path problem from πp0q to πpnpΠqq on GpΠq.

The objective is to minimize the path duration while the SoC acts as a resource constraint (i.e., the SoC must

always be in the interval r0, Qs). To solve this problem, we propose the label-setting algorithm described in

Algorithm 3, which shares many similarities with Algorithm 1. Algorithm 3 uses QPs as labels and exploits

19

the concept of SoC functions presented in §4.2. Relaxing an arc and setting a label at a CS follows the same

procedure as the one described in in §4.2. The algorithm terminates as soon as a label for node npΠq is set.

The quantity of energy charged at the last CS of this QP is computed such that the EV reaches the depot with

an empty battery.

To improve the efficiency of the algorithm, we apply two different strategies. We make use of lower bounds.

Since we know the sequence of nodes to visit, we compute beforehand at each node j P GpΠq lower bounds

using Dijkstra’s algorithm. We first compute a lower bound
ÝÑ
tj on the time and a lower bound ÝÑej on the

energy required to finish the route by running a backward search from πpnpΠqq. If ÝÑej is larger than Q, we can

increase the value of
ÝÑ
tj by assuming that the difference Q�ÝÑej will be charged using the fastest charging rate.

Specifically, we set the value of
ÝÑ
tj to

ÝÑ
tj �maxt0,ÝÑej �Qu{ρ� where ρ� corresponds to the steepest slope for a

segment of the piecewise linear approximation of the charging functions. We also compute a lower bound ÐÝej on

the energy consumption from the departing depot to node j by running a forward search from πp0q. Then, we

do not extend a label associated with a node i to a node j if one of the following four conditions is met: 1) the

maximum SoC an EV can have upon departure from j is strictly less than the energy needed to reach to the

nearest CS according to the energy consumption, or is less than the SoC it could have attained by traveling on

the route to j without visiting any CS. Specifically, the difference between the maximum of the SoC function

and the energy consumed eij is strictly smaller than maxt min
lPFY0

tejlu, Q � ÐÝej u; 2) The sum of the minimum

duration associated with the SoC function at the current label (i.e., the x-coordinate of the first supporting

point), the driving time tij , and
ÝÑ
tj is larger than the duration limit Tmax; 3) If j is a CS node, then while

scanning the nodes of the route backward we encounter the same node j without having scanned before the

depot, a customer, or a CS with a faster technology; 4) If j is a CS node, the value of the inverse of the SoC

function evaluated in ÝÑej is less than the sum of the minimum time associated with the current label and the

time increase due to the detour to j.

Finally, to avoid enumerating all the QPs from i to j, we use the dominance criterion introduced in Definition

4.2 (for a SoC upon departing to the depot equal to Q) to discard dominated QPs throughout the algorithm.

5.4 A heuristic algorithm for the FRVCP

The goal of this section is to design an effective and efficient heuristic algorithm, which could be periodically

called inside a local search algorithm. Such an algorithm would prevent the search from ignoring regions of the

search space that are feasible with respect to route duration constraints. The algorithm borrows some ideas

from the FRVCP heuristic of Montoya et al. (2017). We describe the general framework of our heuristic in

Algorithm 2. We refer the reader to E.2 for the algorithmic details on the different procedures of the heuristic.

We note that this heuristic inserts CSs into Π.

Throughout the algorithm, we compute the SoC Y pΠ, iq of the EV upon arrival at node i P Π assuming the

following heuristic (H) charging policy: at each CS, the EV is charged in such a way that its departure SoC is

equal to the minimum between the battery capacity Q and the energy required to reach the next depot or CS

in Π. We then define the energy deficit at node i as maxt0,�Y pΠ, iqu.

The algorithm starts with procedure locateCS1(�) that scans the nodes in the route (see Algorithm 4). If

the arc connecting two successive nodes does not exist (this rarely happens but it requires special attention),

then the algorithm tries to insert a CS between these nodes by calling procedure insertCS(�) (see Algorithm

5). Inserting a CS between two nodes follows the same scheme throughout the algorithm. We evaluate the

insertion of each CS by calling function getLBTime(�) which computes a lower bound on the duration to travel

the resulting route. The lower bound value is the sum of two components: the driving time and a lower bound

on the time to charge the energy deficit observed upon arrival at CSs and at the return to the depot. This

latter bound is computed by dividing the energy deficit by the fastest charging rate of the instance. The

energy deficit, computed using function getEnergyDeficit(�), is equal to
°
iPΠXpFYt0uq maxt0,�Y pΠ, iqu. We

20

retain the insertion that leads to the minimum lower bound value. We forbid any insertion if after executing

it the energy deficit computed at the inserted CS and at the next CS that is part of the route, if any, or the

depot is larger than 0. Note that it may happen that the algorithm selects an insertion leading to an energy

infeasible route rather than an insertion leading to an energy-feasible route. Throughout the execution of the

algorithm, we therefore store the energy-feasible route with the minimum duration, assuming the H charging

policy, returned by function getTime(�).

Whenever there exists an arc between each pair of successive nodes, we try to insert additional CSs by

calling procedure locateCS2(�) (see Algorithm 6). Here, we iteratively test the insertion of a CS between two

successive nodes in the current route and we proceed to the insertion yielding the minimum lower bound on

the duration to travel the route. We try to insert additional CSs until we cannot improve the duration of the

current route. Specifically, this procedure terminates when the lower bound on the duration of the current

route is larger than or equal to the duration of the best energy-feasible route.

We then consider the best energy-feasible route computed during the previous steps of the algorithm.

Calling procedure defineChargingAmount(�) (see Algorithm 7), we check whether it is possible to transfer

some charge between the CSs of the route. Indeed, it may be profitable in some cases to charge at a CS more

than the energy required to reach the next CS. To this end, we scan the CSs starting by the end of the route,

and we try to transfer some energy from a CS to the CS that precedes it. A transfer of energy reduces the

duration of the route if the slope of the charging function associated with the departure SoC of the EV at the

previous CS is larger than the slope of the charging function associated with the arrival SoC of the EV at the

current CS. Finally, we check whether the maximum-duration limit is exceeded by the optimized route.

Algorithm 2: ProcedureFRVCP(Π0)

input : A route Π0 � tπp0q, πp1q, � � � , πpiq, � � � , πpjq, � � � , πpnpΠq � 1q, πpnpΠqqu

output: A couple (f, Π) where the route Π is an energy-feasible route whose duration does not exceed the duration limit

Tmax if boolean f is equal to true, or the initial route Π0 if boolean f is equal to false

1 Apply preprocessing rules on the multigraph induced by Π and F

2 pf,Π,Πbestq Ð locateCS1(Π0)

3 if f � true ^ getLBTime(Π)¤ Tmax then

4 Πbest Ð locateCS2(Π,Πbest)

5 if Πbest � null then

6 (f, Πbest) Ð reviseChargingAmount(Πbest)

7 if f�true then

8 return (true, Πbest)

9 end

10 end

11 end

12 return (false, Π0)

6 Computational experiments

We used Gurobi 7.5.0 (through its Java API) to solve the MILP models. All tests were performed on a single

thread with 12 GB and on a cluster of 27 computers, each having 12 cores and two Intel(R) Xeon X5675 3.07

GHz processors. In all the tables, the CPU time is rounded to the nearest integer.

The first aim of our computational experiments is to assess and compare the performance of the CS

replication-based and the path-based models, which are presented in Sections 3 and 4, for solving small size

instances to the E-VRP-NL. These results are presented in §6.1. The second aim of our computational ex-

periments is to assess the quality of the algorithms developed in Section 5 for the FRVCP. These results are

presented in §6.2.

21

6.1 Results for E-VRP-NL formulations

For the E-VRP-NL we considered the twenty 10-customer and the twenty 20-customer instances of the Montoya

et al. (2017) testbed (publicly available at http://vrp-rep.org). We ran the MILP models with a three-hour

time limit.

6.1.1 CS replication-based models

We first tested the CS replication-based models rFCS rep
Node s and rFCS rep

Arc s presented in Section 3. The number

of copies of each CS i P F was set to an integer value β ¥ 1 (i.e., βi � β, @i P F).

Table 1 reports for each model and each value of β the number of instances proven infeasible by the solver

within the time limit (#Inf), the number of instances reaching the time limit without finding any feasible

solution (#Unk), the number of instances with a feasible solution not proven to be optimal (#Opt), the

number of instances with a feasible solution proven to be optimal (#Opt), the average CPU time in seconds

(Time (s)) for the instances in (#Opt), and the average gap (Gap) for the instances in (#Opt). We compute

the gap as pz � zLBq{z, where z is the objective function value of the best integer solution returned by the

solver, and zLB is the best lower bound retrieved by the solver running the corresponding model. The detailed

results for all the tested instances are reported in F.

We first observe that for small values of β the rFCS rep
Arc s model cannot always prove the infeasibility of some

instances. This may be due to the relatively large number of variables it contains (around twice as many as

the rFCS rep
Node s model for the tested instances). Second, the results confirm that the value of β influences the

feasibility of the instances. Since we do not know any procedure for fixing β, while guaranteeing optimality,

we can only compare models for identical values of β. The best results are obtained with arc-based tracking

constraints for which the number of optimal solutions is larger and the solution time is significantly reduced,

compared to node-based tracking. Moreover, when the time limit is reached, the best solution returned by the

arc-based models has a better quality. Finally, our results illustrate the difficulty of optimally solving even

small instances with the CS replication-based models.

Table 1: Detailed computational results for the CS replication-based models on the 10-customer and 20-

customer instances

|I| β Model #Inf #Unk #Opt #Opt Time (s) Gap

10

1
rFCS rep

Arc s 10 0 0 10 5 -

rFCS rep
Node s 10 0 0 10 252 -

2
rFCS rep

Arc s 5 0 0 15 433 -

rFCS rep
Node s 5 0 4 11 699 31.8%

3
rFCS rep

Arc s 0 0 0 20 821 -

rFCS rep
Node s 0 0 8 12 1289 32.6%

4
rFCS rep

Arc s 0 0 4 16 215 14.4%

rFCS rep
Node s 0 0 11 9 1423 34.0%

20

1
rFCS rep

Arc s 8 1 5 6 632 16.4%

rFCS rep
Node s 3 6 11 0 1274 24.8%

2
rFCS rep

Arc s 2 4 8 6 1323 8.8%

rFCS rep
Node s 1 5 13 1 5663 24.0%

3
rFCS rep

Arc s 2 3 10 5 2233 9.8%

rFCS rep
Node s 0 5 14 1 8706 28.9%

4
rFCS rep

Arc s 0 5 10 5 1200 10.9%

rFCS rep
Node s 0 5 15 0 - 27.0%

Proposition 3.1 demonstrates that the LP relaxation value of rFCS rep
Arc s can never be less than that of

rFCS rep
Node s. In our experiments, we computed the average relative gap between the linear relaxation value and

the best lower bound provided by the linear relaxation of any of the formulations. The models with arc-based

tracking variables yields tighter bounds than those with node-based tracking variables. Specifically, let zLBArc and

22

http://vrp-rep.org

zLBNode correspond to the average LP relaxation of rFCS rep
Arc s and rFCS rep

Node s. We observe that pzLBArc�z
LB
Nodeq{z

LB
Arc

is approximately 57%. This seems to explain why the solver yields a better performance running on arc-based

models.

6.1.2 Path-based model

We also tested the path-based model rFPathArc s presented in Section 4. We first assessed the impact of the

dominance rule described in §4.2. Applying this rule reduces the average number of paths by a factor of two

for the 10-customer instances (on average 647 paths were generated without the dominance rule versus 270

with it), and by a factor of five for the 20-customer instances (on average 6512 paths were generated without

the dominance rule versus 1314 with it). This leads to more tractable instances: the average number of

paths between each couple of non-CS nodes is approximately 2.4 and 3.2 for the 10-customer and 20-customer

instances, respectively. Table 2 reports the same measures as in Table 1 for the path-based model. See F for

the detailed results for each instance.

Table 2: Computational results for the path-based model on the 10-customer and 20-customer instances

|I| #Inf #Unk #Opt #Opt Time (s) Gap

10 0 0 0 20 229 -

20 0 0 15 5 489 14.0%

Our results show that the MILP solver can optimally solve all the 10-customer instances within an average

time of seven minutes. The solver fails to solve most of the instances with 20 customers due to the large size

of the models. Doubling the number of customers from 10 to 20 multiplies the number of paths by five (from

270 to 1314, on average).

Figure 5 compares the CS replication-based and path-based models. Specifically, the figure shows the

number of 10-customer instances optimally solved according to the solution time for the different models. We

conclude that the MILP solver performs better on the path-based model than on the CS replication-based

models. Moreover, we recall that using the path-based model ensures that optimal solutions are not cut off.

0 1800 3600 5400 7200 9000 10800
0

10

20

Time (s)

N
u
m

b
er

o
f

in
st

a
n
ce

s
o
p
ti

m
a
ll
y

so
lv

ed

rFCS rep
Arc s (β � 3)

rFCS rep
Node s (β � 3)

rFCS rep
Arc s (β � 4)

rFCS rep
Node s (β � 4)

rFPath
Arc s

Figure 5: Performance charts of the different models on the 10-customer instances

6.2 Results for FRVCP algorithms

Since the FRVCP problem is typically solved within local search algorithms, we wanted to compare the speed

of the algorithms we developed and the quality of the routes they provide. We tested the three algorithms

described in Section 5 to solve the FRVCP: our formulation rFRPathpΠqs with the MILP solver, our labeling

algorithm, and our heuristic (referred to as MILP PATH, LABEL, and HEURISTIC). As a basis of comparison,

23

we also implemented the FRVCP heuristic of Montoya et al. (2017) (referred to as HEURISTIC M2017).

Moreover, in order to assess the relevance of considering the insertion of multiple CSs between each pair of

non-CS nodes of the initial route, we also solved the FRVCP-1. To this end, we adapted our path-based MILP

formulation by only considering paths with at most one CS. We also adapted the graph on which we applied

our labeling algorithm. These modifications yield a new MILP model and a new labeling algorithm (referred

to as MILP PATH 1 and LABEL 1) for this special version of the FRVCP. We also implemented the FRVCP

formulation of Montoya et al. (2017) (referred to as MILP M2017). No computational time limit was imposed

on these tests.

We first tested the algorithms on the pool of routes used by Montoya et al. (2017) in the second phase of

their metaheuristic. This pool consists of all routes encountered at each local optima solution found by an

iterated local search procedure. The pool contains a total of 29,443 routes having between three and 15 nodes,

which may visit between two and 24 CSs. For each algorithm, in Table 3 we report the number of routes

for which the duration is below the duration limit Tmax (#Feas), the number of routes solved to optimality

(#Opt), the average CPU time in milliseconds (Time (ms)), the average gap (Gap), and the maximum observed

gap over all routes (Gap max).

Considering the detailed results presented in F.2 and F.3, we conclude that for all algorithms the number

of CSs and the number of nodes have a relatively small impact on the solution time and quality. We note that

the two exact algorithms for the FRVCP, i.e., MILP PATH and LABEL, were able to solve all 29,443 routes

to optimality within an average runtime of less than 100 milliseconds. LABEL is more than 90 times faster

than MILP PATH. HEURISTIC produces competitive results with a small average gap in a very short time.

It also outperforms HEURISTIC M2017 in terms of gap. However, both heuristics may fail to find existing

feasible solutions. Such failures are due to the fact that feasibility often coincides with optimality. Since our

heuristic found many more optimal solutions, compared to the FRVCP heuristic of Montoya et al. (2017), it

found more feasible solutions. In particular, HEURISTIC failed to produce a feasible solution in 2.1% of the

routes, whereas the HEURISTIC M2017 failed to produce a feasible solution in 13.7% of the routes.

We observe that MILP PATH 1 solves FRVCP-1 much faster than MILP M2017. However, LABEL 1

substantially outperforms both of these formulations. Comparing FRVCP with FRVCP-1, we notice that

restricting the insertion of at most one CS between any pair of non-CS nodes does not impact the quality of

the solutions in most cases. Specifically, for 28,085 out of the 29,443 routes, the optimal objective function

value considering either the FRVCP or the FRVCP-1 are the same. However, for the remaining 1358 routes,

the charging decisions obtained by solving the FRVCP-1 are not optimal and in the worst case they can be

quite far from the optimal ones. Specifically, let z� and z�1 correspond to the average optimal objective function

value obtained when solving the FRVCP and the FRVCP-1 on these 1358 routes. We observe that pz�1 �z
�q{z�1

is approximately 0.01%. However, in the worst case (i.e., for a particular route), the deviation between the two

optimal objective function values is 7.68%.

Table 3: Computational results for the different algorithms on 29,443 routes

FRVCP FRVCP-1

Algorithm #Feas #Opt Time (ms) Gap Gap max Algorithm #Feas #Opt Time (ms)

MILP PATH 29,443 29,443 96.7 0.00% 0.00% MILP PATH 1 29,443 29,443 30.1

LABEL 29,443 29,443 1.0 0.00% 0.00% LABEL 1 29,443 29,443 0.6

HEURISTIC 28,815 23,792 0.2 0.19% 14.00% MILP M2017 29,443 29,443 55.0

HEURISTIC M2017 25,398 19,104 0.2 0.83% 36.32%

We also tested our labeling algorithm of §5.3 on the 1426 routes making up the best solutions reported

by Montoya et al. (2017) for 120 instances with 10, 20, 40, 80, 160, or 320 customers (20 instances for each

instance size). We recall that the charging decisions for these routes were found using the FRVCP formulation

of Montoya et al. (2017), which assumes at most one CS visit between two successive non-CS nodes. Therefore,

24

we want to assess if the results can be improved by solving the more general version of the FRVCP, which

allows multiple consecutive visits to CSs. We report in Table 4 the name of the instances for which a better

solution has been identified, the number of routes (#R�) for which the charging decisions have been revised

over the number of routes (#R) in the initial solution. We show the maximum gap improvement between a

route that has been revised and the initial route (Max Gap R�). We also report the average gap with respect

to the previous best known solution (Gap). We found 23 new best E-VRP-NL solutions. On these instances,

taking optimal charging decisions improved the solutions of Montoya et al. (2017) by approximately 0.09%.

This shows that charging decisions are critical in the E-VRP-NL. Therefore, there is ground to believe that the

use of the labeling algorithm inside a metaheuristic algorithm deserves further study.

Table 4: E-VRP-NL solutions of (Montoya et al., 2017) improved by applying the labeling algorithm on each

route

Instance #R�/#R Max Gap R� Gap

tc0c40s8cf0 2/7 -4.48% -0.765%

tc2c40s5cf2 1/6 -0.20% -0.024%

tc2c40s8cf2 1/6 -0.20% -0.025%

tc0c80s8cf1 1/10 -0.03% -0.003%

tc1c80s12cf2 1/8 -0.24% -0.038%

tc2c80s8cf4 1/10 -1.86% -0.235%

tc2c80s8ct3 1/9 -0.08% -0.009%

tc0c160s16cf4 3/18 -0.43% -0.074%

tc0c160s16ct4 3/18 -0.31% -0.052%

tc0c160s24cf4 3/18 -0.44% -0.076%

tc0c160s24ct4 4/18 -3.37% -0.197%

tc1c160s16cf3 1/17 -5.64% -0.347%

Instance #R�/#R Max Gap R� Gap

tc1c160s24cf3 1/17 -1.03% -0.066%

tc1c320s24cf2 2/36 -1.00% -0.045%

tc1c320s24cf3 1/30 -0.46% -0.011%

tc1c320s38cf2 1/33 -0.34% -0.008%

tc1c320s38ct3 1/30 -0.31% -0.008%

tc2c320s24cf0 1/38 -0.01% -0.0004%

tc2c320s24ct4 1/32 -2.57% -0.096%

tc2c320s38cf4 1/32 -0.19% -0.006%

tc2c320s38ct0 2/41 -0.31% -0.006%

tc2c320s38ct1 1/28 -0.02% -0.001%

tc2c320s38ct4 1/32 -0.09% -0.004%

The results presented in this section open an interesting research avenue. Local search-based algorithms for

E-VRPs need to revise charging decisions every time they evaluate a move. This is a daunting task because it

implies solving one (inter route moves) or more (intra route moves) FRVCPs. As Montoya et al. (2017) pointed

out, exactly evaluating the moves using MILPs is intractable (our findings only confirm their observation). For

this reason, most existing approaches use fast-to-compute proxy move evaluations. As a matter of fact, only

the most sophisticated approaches, use MILPs at certain points (e.g., every time they reach a local optimum)

to improve the charging decisions. Our results suggest that because of its good computational performance, our

labeling algorithm may be used to exactly evaluate a large number of moves (if not all) in local search-based

methods without penalizing the overall performance of the method.

7 Conclusions

We have compared three MILP formulations for the electric vehicle routing problem with nonlinear charging

function (E-VRP-NL), two of which are new. The first formulation was proposed by Montoya et al. (2017),

where tracking the time and the SoC of each route was achieved through the use of node-based variables. We

have first proposed a new formulation that uses arc-based tracking variables. Computational experiments have

shown that this alternative tracking strategy drastically improves the results. This can be explained by the fact

that the arc-based formulation had a much tighter LP relaxation gap, compared to the node-based formulation.

Most of the available E-VRP models, as well as the arc-based formulation, are based on pre-setting the number

of CS copies. We have demonstrated that generating a limited number of copies compromises the quality of the

solution by possibly eliminating optimal solutions or by yielding an infeasible model. With more copies, the

models become larger and more difficult to solve, even for small-size instances. To overcome these drawbacks,

we have proposed a third formulation for the E-VRP-NL based on the concept of CSPs between non-CS nodes.

Using dominance rules to discard unpromising paths, we have shown through our computational experiments

25

that this third formulation systematically yields better results than the first two formulations. All 10-customer

instances could be solved to optimality within a much shorter time. As expected, solving our models using

a commercial solver allows us to solve only small-size instances. However, most E-VRPs have been handled

by node-based formulations, and for these cases the arc-based model provides a highly relevant alternative

formulation. Furthermore, the introduction of the path-based model provides a new promising avenue for the

development of exact and heuristic algorithms for the E-VRP-NL.

Building on the formulations we have developed for the E-VRP-NL, we have also introduced heuristic and

exact algorithms to solve the fixed route vehicle charging problem (FRVCP). Given an initial energy infeasible

route, this problem consists in finding the charging decisions that minimize the total duration of the route. We

have proposed a new MILP formulation, an exact labeling algorithm, and a heuristic algorithm. Computational

experiments have shown that taking optimal or near-optimal charging decisions is crucial in producing high

quality E-VRP-NL solutions. Indeed, we have improved 23 out of 120 best known E-VRP-NL solutions by

allowing the visit of multiple CSs between two non-CS nodes. Since the labeling algorithm is able to optimally

solve the FRVCP within a very short time, it can be easily embedded in future E-VRP-NL heuristics.

Acknowledgments

The authors would like to thank Alejandro Montoya for providing the solutions and the pool of routes used

in the experiments reported in §6.2. This research was partly funded by the French Agence Nationale de la

Recherche through project e-VRO (ANR-15-CE22-0005-01) and by the Canadian Natural Sciences and Engi-

neering Research Council under grants 436014-2013 and 2015-06189. This support is gratefully acknowledged.

References

References

Ascheuer, N., Fischetti, M., and Grötschel, M. (2001). Solving the Asymmetric Travelling Salesman Problem

with time windows by branch-and-cut. Mathematical Programming, 90(3):475–506.

Bartolini, E. and Andelmin, J. (2017). An exact algorithm for the green vehicle routing problem. Transportation

Science, 51(4):1288–1303.

Desaulniers, G., Errico, F., Irnich, S., and Schneider, M. (2016). Exact Algorithms for Electric Vehicle-Routing

Problems with Time Windows. Operations Research, 64(6):1388–1405.

Erdoğan, S. and Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E:

Logistics and Transportation Review, 48(1):100–114.

Felipe, A., Ortuo, M., Righini, G., and Tirado, G. (2014). A heuristic approach for the green vehicle routing

problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and

Transportation Review, 71:111 – 128.

Hiermann, G., Puchinger, J., Ropke, S., and Hartl, R. F. (2016). The electric fleet size and mix vehicle routing

problem with time windows and recharging stations. European Journal of Operational Research, 252(3):995

–1018.

Koç, Ç. and Karaoglan, I. (2016). The green vehicle routing problem: A heuristic based exact solution approach.

Applied Soft Computing, 39:154 – 164.

26

Kullman, N., Goodson, J., and Mendoza, J. E. (2018). Dynamic Electric Vehicle Routing with Mid-route

Recharging and Uncertain Availability. In ODYSSEUS 2018 - Seventh International Workshop on Freight

Transportation and Logistics, Cagliari, Italy.

Leggieri, V. and Haourari, M. (2017). A practical solution approach for the green vehicle routing problem.

Transportation Research Part C: Emerging Technologies, 104:97–112.

Lozano, L. and Medaglia, A. L. (2013). On an exact method for the constrained shortest path problem.

Computers & Operations Research, 40(1):378–384.

Montoya, A. (2016). Electric Vehicle Routing Problems: models and solution approaches. PhD thesis, Université

dAngers, France.

Montoya, A., Guéret, C., Mendoza, J. E., and Villegas, J. G. (2016). A multi-space sampling heuristic for the

green vehicle routing problem. Transportation Research Part C: Emerging Technologies, 70:113–128.

Montoya, A., Guéret, C., Mendoza, J. E., and Villegas, J. G. (2017). The electric vehicle routing problem with

nonlinear charging function. Transportation Research Part B: Methodological, 103:87 – 110.

Pelletier, S., Jabali, O., Laporte, G., and Veneroni, M. (2017). Battery degradation and behaviour for electric

vehicles: Review and numerical analyses of several models. Transportation Research Part B: Methodological,

103:158 – 187.

Roberti, R. and Wen, M. (2016). The electric traveling salesman problem with time windows. Transportation

Research Part E: Logistics and Transportation Review, 89:32–52.

Schiffer, M. (2017). Logistics Networks with Intermediate Stops: Designing Innovative and Green Solutions.

PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen.

Schneider, M., Stenger, A., and Goeke, D. (2014). The electric vehicle-routing problem with time windows and

recharging stations. Transportation Science, 48(4):500–520.

Sweda, T. M., Dolinskaya, I. S., and Klabjan, D. (2017). Adaptive routing and recharging policies for electric

vehicles. Transportation Science, 51(4):1326–1348.

Zündorf, T. (2014). Electric vehicle routing with realistic recharging models. Master’s thesis, Karlsruhe Institute

of Technology, Karlsruhe, Germany.

27

A Graph preprocessing

Some arcs from the arc set A can be removed without cutting off the optimal solution. Specifically, we introduce

the following preprocessing steps to reduce the size of the arc set:

1. Considering i, j P V , if minlPFYt0uteliu � eij � minlPFYt0uteilu ¡ Q then we infer that the maximum

possible SoC at i the EV is not sufficient for traversing arc pi, jq and reaching the nearest CS or the

depot. Therefore, such an arc is removed from A.

2. Let t�ij be the duration of a shortest path from i to j in G (after applying preprocessing rule 1) with

respect to arc duration tij . Let ecminij be the minimum charging amount necessary to build a route

traversing arc pi, jq. Then ecminij � maxt0, pe0i � eij � ej0q�Qu. We also define tchargeij as a lower bound

on the charging time necessary to perform a route traversing the arc pi, jq. Namely, tchargeij is equal to 0

if ecminij � 0. Otherwise, tchargeij is equal to

tchargeij � min
lPF

$'''&
'''%

min

$'''&
'''%

�
ecmin

ij � e0l � eli � e0i

	
{ρ�,�

ecmin
ij � eil � elj � eij

	
{ρ�,�

ecmin
ij � ejl � el0 � ej0

	
{ρ�

,///.
///-

,///.
///-

The value of ρ� corresponds to the steepest slope for a segment of the piecewise linear approximation of

the charging functions (i.e., ρ� � maxlPF tρl1u). Using this parameter, we compute tchargeij by exploring

the three mutually exclusive detour options. If t�0i � t�ij � t�j0 � tchargeij ¡ Tmax, we remove the arc pi, jq

from set A, since traversing the arc pi, jq leads to a violation of the route maximum-duration limit.

3. We also remove all the arcs between CS copies of the same CS. More specifically, for every i P F and

j, l P F 1
i , we remove the arc pj, lq from set A.

28

B Proofs

� Proof of Proposition 3.1. Assume that the arc-based tracking constraints are satisfied by setting every vari-

able xij , yij , qj , oj , τij , and ∆j to x̄ij , ȳij , q̄j , ōj , τ̄ij , and ∆̄j , respectively. We now prove that the node-based

tracking constraints are satisfied if: 1) the variables xij are set to values x̄ij for every pi, jq P A, 2) the variables

qj , oj , ∆j are set to values q̄j , ōj , ∆̄j for every j P F , and 3) the variables yi, τi are set
°

pi,lqPA ȳil and°
pi,lqPA τ̄il for every i P V zt0u. We also set the value of τ0 to 0 and the value of y0 to Q.

• Let pi, jq P A such that j P I. Then,

– if i P V zt0u,

yi � yj �
¸

pi,lqPA

ȳil �
¸

pj,lqPA

ȳjl

yi � yj �
¸

pi,lqPA

ȳil �
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (39)

yi � yj � eij x̄ij �
¸

pi,lqPA:l�j

ȳil �
¸

pl,jqPA:l�i

pȳlj � elj x̄ljq

yi � yj ¤ eij x̄ij �
¸

pi,lqPA:l�j

ȳil

yi � yj ¤ eij x̄ij �
¸

pi,lqPA:l�j

pQ� min
l1PFYt0u

tel1iuqx̄il from constraints (42)

yi � yj ¤ eij x̄ij �Q
¸

pi,lqPA:l�j

x̄il

yi � yj ¤ eij x̄ij �Qp1� x̄ijq from constraints (2)

and

yi � yj �
¸

pi,lqPA

ȳil �
¸

pj,lqPA

ȳjl

yi � yj �
¸

pi,lqPA

ȳil �
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (39)

yi � yj � eij x̄ij �
¸

pl,jqPA:l�i

ȳlj �
¸

pi,lqPA:l�j

ȳil �
¸

pl,jqPA:l�i

elj x̄lj

yi � yj ¥ eij x̄ij �
¸

pl,jqPA:l�i

ȳlj

yi � yj ¥ eij x̄ij �
¸

pl,jqPA:l�i

pQ� min
l1PFYt0u

tel1luqx̄lj from constraints (42)

yi � yj ¥ eij x̄ij �Q
¸

pl,jqPA:l�i

x̄lj

yi � yj ¥ eij x̄ij �Qp1� x̄ijq. from constraints (2)

– if i � 0,

y0 � yj � Q�
¸

pj,lqPA

ȳjl

y0 � yj � Q�
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (39)

y0 � yj � Q� e0j x̄0j � ȳ0j �
¸

pl,jqPA:l�0

pȳlj � elj x̄ljq

y0 � yj ¤ e0j x̄0j �Q�Qx̄0j from constraints (38)

29

y0 � yj ¤ e0j x̄0j �Qp1� x̄0jq from constraints (2)

and

y0 � yj � Q�
¸

pj,lqPA

ȳjl

y0 � yj � Q�
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (39)

y0 � yj � Q� e0j x̄0j �
¸

pl,jqPA

ȳlj �
¸

pl,jqPA:l�0

elj x̄lj

y0 � yj ¥ Q� e0j x̄0j �Q
¸

pl,jqPA

x̄lj from constraints (42)

y0 � yj ¥ Q� e0j x̄0j �Q from constraints (2)

y0 � yj ¥ e0j x̄0j

y0 � yj ¥ e0j x̄0j �Qp1� x̄0jq.

Constraints (5) are therefore satisfied.

• Let pi, jq P A such that j P F 1. Then,

– if i P V zt0u,

yi � qj �
¸

pi,lqPA

ȳil �
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (40)

yi � qj � eij x̄ij �
¸

pi,lqPA:l�j

ȳil �
¸

pl,jqPA:l�i

pȳlj � elj x̄ljq

yi � qj ¤ eij x̄ij �
¸

pi,lqPA:l�j

ȳil

yi � qj ¤ eij x̄ij �Q
¸

pi,lqPA:l�j

x̄il from constraints (42)

yi � qj ¤ eij x̄ij �Qp1� x̄ijq from constraints (3)

and

yi � qj �
¸

pi,lqPA

ȳil �
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (40)

yi � qj � eij x̄ij �
¸

pl,jqPA:l�i

ȳlj �
¸

pi,lqPA:l�j

ȳil �
¸

pl,jqPA:l�i

elj x̄lj

yi � qj ¥ eij x̄ij �
¸

pl,jqPA:l�i

ȳlj

yi � qj ¥ eij x̄ij �Q
¸

pl,jqPA:l�i

x̄lj from constraints (42)

yi � qj ¥ eij x̄ij �Qp1� x̄ijq. from constraints (3)

– if i � 0,

y0 � qj � Q�
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (40)

y0 � qj � Q� e0j x̄0j � ȳ0j �
¸

pl,jqPA:l�0

pȳlj � elj x̄ljq

y0 � qj ¤ e0j x̄0j �Q�Qx̄0j from constraints (38)

30

y0 � qj ¤ e0j x̄0j �Qp1� x̄0jq from constraints (3)

and

y0 � qj � Q�
¸

pl,jqPA

pȳlj � elj x̄ljq from constraints (40)

y0 � qj � Q� e0j x̄0j �
¸

pl,jqPA

ȳlj �
¸

pl,jqPA:l�0

elj x̄lj

y0 � qj ¥ Q� e0j x̄0j �Q
¸

pl,jqPA

x̄lj from constraints (42)

y0 � qj ¥ Q� e0j x̄0j �Q from constraints (3)

y0 � qj ¥ e0j x̄0j

y0 � qj ¥ e0j x̄0j �Qp1� x̄0jq.

Constraints (6) are therefore satisfied.

• Let i P F 1, then

yi �
¸

pi,lqPA

ȳil

yi � ōi. from constraints (41)

Constraints (8) are therefore satisfied.

• Let pi, 0q P A, then

yi �
¸

pi,lqPA

ȳil

yi ¥ ȳi0

yi ¥ ei0x̄i0. from constraints (50)

Constraints (7) are therefore satisfied.

• Let pi, jq P A such that j P I. Then,

– if i P V zt0u,

τj � τi �
¸

pj,lqPA:j�0

τ̄jl �
¸

pi,lqPA:i�0

τ̄il

τj � τi �
¸

pl,jqPA:l�0

pτ̄lj � ptlj � gjq x̄ljq �
¸

pi,lqPA:i�0

τ̄il from constraints (43)

τj � τi � ptij � gjq x̄ij �
¸

pl,jqPA:l�0^l�i

pτ̄lj � ptlj � gjq x̄ljq �
¸

pi,lqPA:i�0,l�j

τ̄il

τj � τi ¥ ptij � gjq x̄ij �
¸

pi,lqPA:i�0,l�j

τ̄il

τj � τi ¥ ptij � gjq x̄ij � Tmax
¸

pl,jqPA:l�i

x̄lj from constraints (45)

τj � τi ¥ ptij � gjq x̄ij � Tmaxp1� x̄ijq. from constraints (2)

– if i � 0,

τj � τ0 �
¸

pj,lqPA:j�0

τ̄jl

31

τj � τ0 �
¸

pl,jqPA:l�0

pτ̄lj � ptlj � gjq x̄ljq from constraints (43)

τj � τ0 � pt0j � gjq x̄0j �
¸

pl,jqPA:l�0^l�0

pτ̄lj � ptlj � gjq x̄ljq

τj � τ0 ¥ pt0j � gjq x̄0j

τj � τ0 ¥ pt0j � gjq x̄0j � Tmaxp1� x̄0jq. from constraints (2)

Constraints (26) are therefore satisfied.

• Let pi, jq P A such that j P F 1. Then,

– if i P V zt0u,

τj � τi �
¸

pj,lqPA:j�0

τ̄jl �
¸

pi,lqPA:i�0

τ̄il

τj � τi �
¸

pl,jqPA:l�0

pτ̄lj � tljxljq � ∆̄j �
¸

pi,lqPA:i�0

τ̄il from constraints (44)

τj � τi � tij x̄ij � ∆̄j �
¸

pl,jqPA:l�0^l�i

pτ̄lj � tljxljq �
¸

pi,lqPA:i�0,l�j

τ̄il

τj � τi ¥ tij x̄ij � ∆̄j �
¸

pi,lqPA:i�0,l�j

τ̄il

τj � τi ¥ tij x̄ij � ∆̄j � Tmax
¸

pi,lqPA:l�j

x̄il from constraints (45)

τj � τi ¥ tij x̄ij � ∆̄j � Tmaxp1� x̄ijq from constraints (2)

τj � τi ¥ tij x̄ij � ∆̄j � pTmax � Smaxqp1� x̄ijq.

– if i � 0,

τj � τ0 �
¸

pj,lqPA:j�0

τ̄jl

τj � τ0 �
¸

pl,jqPA:l�0

pτ̄lj � tljxljq � ∆̄j from constraints (44)

τj � τ0 � t0j x̄0j � ∆̄j �
¸

pl,jqPA:l�0^l�i

pτ̄lj � tljxljq

τj � τ0 ¥ tij x̄0j � ∆̄j

τj � τ0 ¥ tij x̄ij � ∆̄j � pTmax � Smaxqp1� x̄ijq.

Constraints (27) are therefore satisfied.

• Let j P V zt0u. Then, if j P I,

τj � tj0 �
¸

pj,lqPA

τ̄jl � tj0

τj � tj0 ¤
¸

pj,lqPA

pTmax � tjl � pl � tl0q x̄jl � tj0

τj � tj0 ¤
¸

pj,lqPA

pTmax � tjl � tl0q x̄jl � tj0 from the triangular inequality

τj � tj0 ¤
¸

pj,lqPA

pTmax � tj0q x̄jl � tj0

τj � tj0 ¤ Tmax � tj0 � tj0 from constraints (2)

τj � tj0 ¤ Tmax

32

and if j P F 1,

τj � tj0 �
¸

pj,lqPA

τ̄jl � tj0

τj � tj0 ¤
¸

pj,lqPA

�
Tmax � tjl � tl0 �∆min

j

�
x̄jl � tj0

τj � tj0 ¤
¸

pj,lqPA

pTmax � tj0q x̄jl � tj0 from the triangular inequality

τj � tj0 ¤ Tmax � tj0 � tj0 from constraints (2)

τj � tj0 ¤ Tmax.

Constraints (28) are therefore satisfied. By definition of the values τ̄j , constraints (29) and (30) are also

satisfied. The non-negativity constraints (33) are satisfied. Hence all the node-based tracking constraints are

satisfied.

� Proof of Lemma 4.1. Let us now consider a QP pp, φq containing at least one CS. If the SoC of the EV upon

departing from the origin is equal to q1 rather than q ¤ q1, then the EV arrives at the first CS µpp0q with a

SoC equal to q1 � eoppq,µpp0q rather than q � eoppq,µpp0q. The inverse of the SoC function InvSoCqpp,φq includes

the time charging the EV from q� eoppq,µpp0q up to φp0q, which is larger than or equal to q1 � eoppq,µpp0q. Since

the EV arrives with a larger SoC at µpp0q when starting with a SoC equal to q1, the time spent by the EV to

reach a given SoC is reduced by the time spent at µpp0q charging the EV from q� eoppq,µpp0q to q1 � eoppq,µpp0q.

This time is equal to λpqq1 � Φ�1
µpp0q

pq1 � eoppq,µpp0qq � Φ�1
µpp0q

pq � eoppq,µpp0qq. The inverse of the SoC function

InvSoCq
1

pp,φq can therefore be built from the function InvSoCqpp,φq by subtracting λpqq1 from the time needed to

reach a given SoC. For a SoC that is smaller than the minimum SoC that can be reached at the destination,

the time is consistently set (according to the definition of the inverse of the SoC function) to the time needed

to reach that minimum.

Now consider a QP pp, φq that does not contain any CS. The inverse of the SoC function is equal to tp if

the SoC q̃ is less than or equal to the SoC of the EV upon arriving at the destination dppq. Otherwise, the EV

can never reached this SoC and therefore the value of the SoC function is set to 8.

� Proof of Proposition 4.1. If np1 � 0 or Θpp1,φ1q ¥ Θpp2,φ2q, we have to consider two cases: np1 ¡ 0 and

np1
� 0 (note that np2

¡ 0 since we never check the dominance of a QP that does not contain any CS).

• Case 1: np1 ¡ 0 (q1 � eopp1q,µp1
p0q and q2 � eopp2q,µp2

p0q)

Let q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs be such that T

pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1pqq �∆p2pqq.

First, observe that we have:

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ max
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq

tInvSoCq1pp1,φ1q
pq̃q � InvSoCq2pp2,φ2q

pq̃qu ¤ Φ�1
µp1 p0q

pq � eo,µp1 p0q
q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � InvSoCq2pp2,φ2q

pq̃q ¤ Φ�1
µp1 p0q

pq � eo,µp1 p0q
q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,mintΘ
q1
pp1,φ1q,Θ

q2
pp2,φ2qus, InvSoCqpp1,φ1q

pq̃q ¤ InvSoCqpp2,φ2q
pq̃q

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,Θ
q2
pp2,φ2qs, InvSoCqpp1,φ1q

pq̃q ¤ InvSoCqpp2,φ2q
pq̃q (116)

If q is such that Qpp1,φ1q
pp2,φ2q

¤ q ¤ mintep1 , ep2u, then Equation (116) is equivalent to @q̃ P r0,Θpp2,φ2qs,

InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q pp2, φ2q. Otherwise, we consider the

two following subcases:

33

1. If q is such that mintep1 , ep2u q ¤ maxtep1 , ep2u, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � InvSoCq2pp2,φ2q

p0q ¤ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¤ InvSoCq2pp2,φ2q
p0q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P r0, q � ep1s, InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (116) is equivalent to @q̃ P rq � ep1 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ InvSoCq1pp1,φ1q
pq � ep2q � InvSoCq2pp2,φ2q

pq � ep2q ¤ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ InvSoCq1pp1,φ1q
pq � ep2q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (116) is equivalent to @q̃ P rq � ep2 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

2. If q is such that maxtep1 , ep2u q ¤ Q
pp1,φ1q
pp2,φ2q, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � InvSoCq2pp2,φ2q

pq � ep2q ¤ Φ�1
µp1 p0q

pq � eo,µp1 p0q
q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep2 , q � ep1s, InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep2 , q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q

Equation (116) is equivalent to @q̃ P rq�ep1 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We therefore

have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q pp2, φ2q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ InvSoCq1pp1,φ1q
pq � ep2q � InvSoCq2pp2,φ2q

pq � ep2q ¤ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ InvSoCq1pp1,φ1q
pq � ep2q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q

34

Equation (116) is equivalent to @q̃ P rq�ep2 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We therefore

have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q pp2, φ2q.

• Case 2: np1 � 0 (q2 � eopp2q,µp2 p0q
)

Let q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs be such that T

pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq.

Observe that we have:

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ max
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq

ttp1 � InvSoCq2pp2,φ2q
pq̃qu ¤ �Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, tp1 � InvSoCq2pp2,φ2q
pq̃q ¤ �Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, tp1 ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,mintΘ
q1
pp1,φ1q,Θ

q2
pp2,φ2qus, InvSoCqpp1,φ1q

pq̃q ¤ InvSoCqpp2,φ2q
pq̃q

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,Θ
q2
pp2,φ2qs, InvSoCqpp1,φ1q

pq̃q ¤ InvSoCqpp2,φ2q
pq̃q (117)

If q is such that Qpp1,φ1q
pp2,φ2q

¤ q ¤ mintep1 , ep2u, then Equation (117) is equivalent to @q̃ P r0,Θpp2,φ2qs,

InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q pp2, φ2q. Otherwise, we consider the

two following subcases:

1. If q is such that mintep1 , ep2u ¤ q ¤ maxtep1 , ep2u, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ tp1 � InvSoCq2pp2,φ2q
p0q ¤ �Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ tp1 ¤ InvSoCq2pp2,φ2q
p0q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep1s, tp1 ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (117) is equivalent to @q̃ P rq � ep1 ,Θpp2,φ2qsInvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1pqq �∆p2pqq

ñ tp1 � InvSoCq2pp2,φ2q
pq � ep2q ¤ �Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ tp1 ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (117) is equivalent to @q̃ P rq � ep2 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

2. If q is such that maxtep1 , ep2u ¤ q ¤ Q
pp1,φ1q
pp2,φ2q, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1pqq �∆p2pqq

35

ñ tp1 � InvSoCq2pp2,φ2q
pq � ep2q ¤ �Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ tp1 ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep2 , q � ep1s, tp1 ¤ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P rq � ep2 , q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q

Equation (117) is equivalent to @q̃ P rq � ep1 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2qpq, q1, q2q ¤ ∆p1

pqq �∆p2
pqq

ñ tp1 � InvSoCq2pp2,φ2q
pq � ep2q ¤ �Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ tp1 ¤ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (117) is equivalent to @q̃ P rq � ep2 ,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp2,φ2qs, InvSoCqpp1,φ1q
pq̃q ¤ InvSoCqpp2,φ2q

pq̃q, which means that pp1, φ1q ¡q

pp2, φ2q.

If np2 � 0 or Θpp2,φ2q ¥ Θpp1,φ1q, we have to consider two cases: np2
¡ 0 and np2

� 0 (note that np1
¡ 0

since we never check the dominance of a QP that does not contain any CS).

• Case 1: np2 ¡ 0 (q1 � eopp1q,µp1
p0q and q2 � eopp2q,µp2

p0q)

Let q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs be such that T

pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq.

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1pqq �∆p2pqq

ô min
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq

tInvSoCq1pp1,φ1q
pq̃q � InvSoCq2pp2,φ2q

pq̃qu ¥ ∆p1pqq � Φ�1
µp2

p0qpq � eo,µp2
p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � InvSoCq2pp2,φ2q

pq̃q ¥ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,mintΘ
q1
pp1,φ1q,Θ

q2
pp2,φ2qus, InvSoCqpp1,φ1q

pq̃q ¥ InvSoCqpp2,φ2q
pq̃q

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,Θ
q1
pp1,φ1qs, InvSoCqpp1,φ1q

pq̃q ¥ InvSoCqpp2,φ2q
pq̃q (118)

If q is such that Qpp1,φ1q
pp2,φ2q

¤ q ¤ mintep1 , ep2u, then Equation (118) is equivalent to @q̃ P r0,Θpp1,φ1qs,

InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q pp1, φ1q. Otherwise, we consider the

two following subcases:

1. If q is such that mintep1 , ep2u ¤ q ¤ maxtep1 , ep2u, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1pqq �∆p2pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � InvSoCq2pp2,φ2q

pq � ep1q ¥ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

36

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep1q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep1s, InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (118) is equivalent to @q̃ P rq � ep1 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq

ñ InvSoCq1pp1,φ1q
p0q � InvSoCq2pp2,φ2q

pq � ep2q ¥ Φ�1
µp1 p0q

pq � eo,µp1 p0q
q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ InvSoCq1pp1,φ1q
p0q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (118) is equivalent to @q̃ P rq � ep2 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

2. If q is such that maxtep1 , ep2u ¤ q ¤ Q
pp1,φ1q
pp2,φ2q, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1pqq �∆p2pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � InvSoCq2pp2,φ2q

pq � ep1q ¥ Φ�1
µp1

p0qpq � eo,µp1
p0qq � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep1q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep2 , q � ep1s, InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¥ InvSoCq2pp2,φ2q
pq̃q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ @q̃ P rq � ep2 , q � ep1s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q

Equation (118) is equivalent to @q̃ P rq�ep1 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We therefore

have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q pp1, φ1q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � InvSoCq2pp2,φ2q

pq � ep2q ¥ Φ�1
µp1 p0q

pq � eo,µp1 p0q
q � Φ�1

µp2 p0q
pq � eo,µp2 p0q

q

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ InvSoCq2pp2,φ2q
pq � ep2q � Φ�1

µp2
p0qpq � eo,µp2

p0qq

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q

Equation (118) is equivalent to @q̃ P rq�ep2 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We therefore

have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q pp1, φ1q.

• Case 2: np2 � 0 (q1 � eopp1q,µp1 p0q
)

Let q P rQpp1,φ1q
pp2,φ2q

, Q
pp1,φ1q
pp2,φ2qs be such that T

pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq.

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq

37

ô min
q̃PΩ

pp1,φ1q

pp2,φ2q
pqq

tInvSoCq1pp1,φ1q
pq̃q � tp2u ¥ ∆p1pqq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � tp2 ¥ Φ�1

µp1
p0qpq � eo,µp1

p0qq

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqq, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P Ω
pp1,φ1q
pp2,φ2q

pqInvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,mintΘ
q1
pp1,φ1q,Θ

q2
pp2,φ2qus, InvSoCqpp1,φ1q

pq̃q ¥ InvSoCqpp2,φ2q
pq̃q

ñ @q̃ P rmaxt0, q �mintep1 , ep2uu,Θ
q1
pp1,φ1qs, InvSoCqpp1,φ1q

pq̃q ¥ InvSoCqpp2,φ2q
pq̃q (119)

If q is such that Qpp1,φ1q
pp2,φ2q

¤ q ¤ mintep1 , ep2u, then Equation (119) is equivalent to @q̃ P r0,Θpp1,φ1qs,

InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q pp1, φ1q. Otherwise, we consider the

two following subcases:

1. If q is such that mintep1 , ep2u ¤ q ¤ maxtep1 , ep2u, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1pqq �∆p2pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � tp2 ¥ Φ�1

µp1
p0qpq � eo,µp1

p0qq

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P r0, q � ep1s, InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¥ tp2

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (119) is equivalent to @q̃ P rq � ep1 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq

ñ InvSoCq1pp1,φ1q
p0q � tp2 ¥ Φ�1

µp1 p0q
pq � eo,µp1 p0q

q

ñ InvSoCq1pp1,φ1q
p0q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P r0, q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

Equation (119) is equivalent to @q̃ P rq � ep2 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

2. If q is such that maxtep1 , ep2u ¤ q ¤ Q
pp1,φ1q
pp2,φ2q, then

– If mintep1 , ep2u � ep1 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1
pqq �∆p2

pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � tp2 ¥ Φ�1

µp1 p0q
pq � eo,µp1 p0q

q

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P r0, q � ep1s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

38

Equation (119) is equivalent to @q̃ P rq � ep1 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

– If mintep1 , ep2u � ep2 , then

T
pp1,φ1q
pp2,φ2q

pq, q1, q2q ¥ ∆p1pqq �∆p2pqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � tp2 ¥ Φ�1

µp1
p0qpq � eo,µp1

p0qqq

ñ InvSoCq1pp1,φ1q
pq � ep1q � Φ�1

µp1
p0qpq � eo,µp1

p0qq ¥ tp2

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCq1pp1,φ1q
pq̃q � Φ�1

µp1 p0q
pq � eo,µp1 p0q

q ¥ tp2

ñ @q̃ P rq � ep1 , q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q from lemma 4.1

ñ @q̃ P r0, q � ep2s, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q

Equation (119) is equivalent to @q̃ P rq � ep2 ,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q. We

therefore have @q̃ P r0,Θpp1,φ1qs, InvSoCqpp1,φ1q
pq̃q ¥ InvSoCqpp2,φ2q

pq̃q, which means that pp2, φ2q ¡q

pp1, φ1q.

C Example requiring a large number of CS copies

Figure 6 depicts an example in which a CS is visited 4|I| times in the optimal solution. In this example, we

have one depot (denoted by 0), one customer (denoted by 1), and two CSs (denoted by 2 and 3). The service

time at the customer is equal to 0.5, the battery capacity of the EVs is equal to 10, and Tmax is set to 40.

The optimal solution to the E-VRP-NL contains one route (0, 2, 3, 2, 1, 2, 3, 2, 0) and the total time is equal

to 37.7. In this solution, the SoC of the EV upon arriving for the first time at CS 2 is equal to 1. To visit

customer 1, the EV must necessarily leave CS 2 with a fully charged battery. Fully recharging the battery from

1 to full capacity at CS 2 takes 11.2 time units. However, by detouring to CS 3, the EV can obtain a fully

charged battery in less time. Indeed, if the EV charges one energy unit at CS 2, 10 energy units at CS 3, and

finally two energy units at CS 2, then the EV is fully charged in 11 time units (taking the round trip time to

CS 3 into account). Moreover, after visiting customer 1, the EV arrives at CS 2 with an empty battery. To

return to the depot, the EV must necessarily leave CS 2 with a SoC equal to 90%. Charging nine energy units

at CS 2 takes in that case 10.4 time units. However, if the EV charges two energy units at CS 2, 10 energy

units at CS 3, and finally one energy unit at CS 2, then the target SoC for the EV at CS 2 is obtained in 10.2

time units. In this example with only one customer, CS 2 is visited four times.

Figure 6: Example for which a CS is visited 4|I| times in the optimal solution

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

Charging time

S
o
C

(%
)

CS 2
CS 3

39

D Examples showing the non-optimality of the Montoya et al. (2017)

procedure

Here we introduce two examples showing that the procedure proposed by Montoya et al. (2017) to set the

number β of CS copies is not necessarily optimal. We show this for both the case with nonlinear (example 1)

and the case with linear (example 2) charging function approximations.

In the first example (denoted example 1), we have one depot (denoted by 0), two customers (denoted by 1

and 2), and one CS (denoted by 3). The service time at the customers is equal to 0.5, the battery capacity of

the EVs is equal to 10 and Tmax is set to 20. Tables 5a and 5b show the driving time and energy consumption

between the nodes. Figure 5c depicts the charging function at the CS.

Table 5: Data of example 1.

i\j 0 1 2 3

0 0 4 4 2

1 4 0 5 3

2 4 5 0 3

3 2 3 3 0

(a) Driving times ptijq.

i\j 0 1 2 3

0 0 5 5 3

1 5 0 7 2.5

2 5 7 0 5

3 3 2.5 5 0

(b) Energy consumption peijq.

0 1 2 3 4
0

20

40

60

80

100

Charging time

S
o
C

(%
)

(c) Charging function associated with CS 3

For β � 0 (i.e., the CS cannot be visited) and β � 1 (i.e., the CS can be visited at most once), the optimal

solutions contains two routes p0, 1, 0q and p0, 2, 0q and the total time is equal to 17. According to the Montoya

et al. (2017) procedure, β will then be fixed to 0. However, for β � 2 (i.e., the CS can be visited at most twice),

the optimal solution contains one route p0, 2, 3, 1, 3, 0q and the total time is equal to 16.8. In this solution, the

EV arrives at CS 3 with an empty battery. We charge the battery up to 50% and 30% during the first and

second visits, which takes 0.5 and 0.3 time units, respectively.

Now consider the case where the charging function is linear. We introduce another example (denoted as

example 2). We have one depot (denoted by 0), four customers (denoted by 1, 2, 3, and 4), and one CS

(denoted by 5). The service time at the customers is equal to 0.5, the battery capacity of the EVs is equal to

10 and Tmax is set to 10. Tables 6a and 6b show the driving times and energy consumption between the nodes.

Figure 6c shows the charging function at the CS 5.

For β � 0 and β � 1, the optimal solutions contains two routes p0, 1, 4, 0q and p0, 2, 3, 0q and the total time

is equal to 10. According to the Montoya et al. (2017) procedure, β will then be fixed to 0. However, for β � 2,

the optimal solution contains one route p0, 1, 5, 2, 3, 5, 4, 0q and the total time is equal to 9.65. At the first visit

to the CS, the arrival SoC is 35% and we charge the battery up to 100%, which takes 0.325 time units. At the

second visit to the CS, the arrival SoC of the EV is 0 and we charge the battery up to 65%, which takes 0.325

time units.

40

Table 6: Data of example 2.

i\j 0 1 2 3 4 5

0 0 1 2 2 1 1

1 1 0 1 1 1 1

2 2 1 0 1 1 1

3 2 1 1 0 1 1

4 1 1 1 1 0 1

5 1 1 1 1 1 0

(a) Driving times ptijq.

i\j 0 1 2 3 4 5

0 0 2.5 3 3 2.5 6

1 2.5 0 5 5.5 5 4

2 3 5 0 2 5.5 4

3 3 5.5 2 0 5 4

4 2.5 5 5.5 5 0 4

5 6 4 4 4 4 0

(b) Energy consumption peijq.

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Charging time

S
o
C

(%
)

(c) Charging function associated with CS 5

Note that if we assume a full charging policy and a constant charging time δ ¥ 0 in Example 2, the solutions

remain the same. The solution for β � 0 or 1 has an objective value equal to 10. The solution for β � 2 is

equal to 9� 2δ. Therefore a better solution is found as soon as δ 0.5.

In conclusion, the procedure of Montoya et al. (2017) is not guaranteed to be optimal for constant, linear,

and nonlinear charging functions.

E Algorithmic details

E.1 Algorithmic details on the labeling algorithm for the FRVCP

41

Algorithm 3: LabelingAlgo(Π)

input : a route Π that is not energy-feasible

output: a route Π1 that is energy-feasible if found, the initial route otherwise

1 forall l P ΠY tF u do L1plq Ð H (L1plq stores the unprocessed labels associated with node l) ;

2 forall l P ΠY tF u do L2plq Ð H (L2plq stores the processed labels associated with node l) ;

3 Add to L1pΠp0qq the label corresponding to a QP containing only the departing depot Πp0q

4 RÐ tΠp0qu (R stores nodes with unprocessed labels)

5 while R � H do

6 lÐ minElement(R) (removes from R the node associated with a QP pp, φq with the minimum total time)

7 ppl, φlq Ð deleteMin(L1plq) (removes from L1plq the label with the minimum total time)

8 if l � ΠpnpΠqq then

9 if pl contains a CS then

10 Set the SoC target value at the last CS of pl in such a way the EV arrives with an empty battery at l

11 end

12 Let Π1 be the route corresponding to label ppl, φlq

13 return Π1

14 end

15 if L1plq � H then RÐ Rztlu ;

16 Update(L2plq, ppl, φlq)

17 forall pl, l1q P Ĝij do

18 if IsExtendable(ppl, φlq,l
1) then (checks if QP pp, φq can be extended to node l1)

19 ppl1 , φl1 q ÐExtendpppl, φlq, l
1q (extends QP ppl, φlq to node l1)

20 K ÐCreateLabelspppl1 , φl1 qq (if l1 is a CS and pl1 contains more than a CS, then it creates relevant labels

according to the supporting points of the SoC function associated with QP ppl1 , φl1 q, otherwise K only

contains ppl1 , φl1 q)

21 forall pp, φq P K do

22 Update(L1pl1q, pp, φq) (inserts QP pp, φq in L1pl1q if it is not dominated according to the dominance rule

introduced in Definition 4.2, and verifies if previously inserted labels become dominated)

23 end

24 if L1pl1q has changed and l1 R R then RÐ RY tl1u ;

25 end

26 end

27 end

28 return Π

42

E.2 Algorithmic details on the heuristic algorithm to solve the FRVCP

Algorithm 4: locateCS1(Π0)

input : A route Π0 � tπp0q, πp1q, � � � , πpiq, � � � , πpnpΠq � 1q, πpnpΠqqu

output: (f, Π, Πbest) where Π is the best route obtained if if boolean f is equal to true, or the initial route Π0 otherwise.

Πbest represents the current best energy-feasible route with the minimum duration (under the H charging policy)

that may have been computed during the procedure

1 Π Ð Π0

2 Πbest Ð null

3 iÐ 0, nÐ npΠq

4 while i n do

5 if the arc connecting πpiq and πpi� 1q was eliminated during the preprocessing procedure then

6 pf,Π,Πbestq Ð insertCS(i,Π,Πbest)

7 if f � false then

8 return (false, Π0, Πbest)

9 end

10 nÐ n� 1

11 else

12 iÐ i� 1

13 end

14 end

15 return (true, Π, Πbest)

43

Algorithm 5: insertCS(i, Π0, Πbest)

input : A route Π0 � tπp0q, πp1q, � � � , πpiq, � � � , πpn� 1q, πpnqu

A position i where to insert a CS of set F

The current best energy-feasible route Πbest

output: (f, Π, Πbest). Π is the route yielding the minimum lower bound on the duration to travel it if f is equal to true, or

the initial route Π0 otherwise. Πbest represents the current best energy-feasible route and may have been updated

by the procedure

1 Π Ð Π0

2 sÐ getEnergyDeficit(Π0)

3 tbest Ð mintTmax, getTime(Πbest)u

4 t̃Ð �8, f Ð false

5 for j P F do

6 if the arcs connecting πpiq to j and j to πpi� 1q were not eliminated during the preprocess then

7 Π
1
Ð copyAndInsert(Π0, j, i)

8 s1 Ð getEnergyDeficit(Π
1
)

9 t̃1 Ð getLBTime(Π
1
)

; /* Let nextpΠ, jq be the first CS or depot node following node j in route Π */

10 if t̃1 tbest ^ s1 s^
�
Y pΠ

1
, jq ¥ 0_ Y pΠ

1
, nextpΠ

1
, jqq ¥ 0

	
then

11 if t̃1 t̃ then

12 t̃Ð t̃1

13 Π Ð Π
1

14 f Ð true

15 end

16 if s1 � 0 then

17 t1 Ð getTime(Π
1
)

18 if t1 tbest then

19 tbest Ð t1

20 Πbest Ð Π
1

21 end

22 end

23 end

24 end

25 end

26 return (f,Π,Πbest)

Algorithm 6: locateCS2(Π0, Πbest)

input : A route Π0 � tπp0q, πp1q, � � � , πpiq, � � � , πpjq, � � � , πpn� 1q, πpnqu

The current best energy-feasible route Πbest

output: Πbest where Πbest represents the energy-feasible route with the minimum duration under the H charging rule

policy

1 Π Ð Π0

2 tÐ �8

3 f Ð false

4 while true do

5 for i � 0 � � �npΠq � 1 do

6 (f’, Π
1
, Πbest) Ð insertCS(i,Π,Πbest)

7 if f’ � true then

8 f Ð true

9 t1 Ð getLBTime(Π
1
)

10 if t1 t then

11 tÐ t1

12 Π Ð Π
1

13 end

14 end

15 end

16 if f � true then

17 Π Ð Π

18 else

19 return Πbest

20 end

21 end

22 return null

44

Algorithm 7: reviseChargingAmount(Π0)

input : A route Π0 visiting m CS(s) numbered in the order of visits from 1 to m (let fpiq be the i-th CS visited)

output: (f, Π) where Π is an energy-feasible route derived from Π0 after optimizing the charging decisions, and f is equal

to true if the maximum-duration limit is not exceeded, false otherwise.

1 Π Ð Π0

; /* Let SoC1piq, SoC2piq, and chpiq be the arrival and departure SoC and the amount of energy charged at the

i-th CS visited */

; /* Let b1piq and b2piq be the segment associated with the SoC SoC1piq and SoC2piq for the i-th CS visited */

2 iÐ m� 1, tÐ getTime(Πbest)

3 while i ¥ 1 do

4 while ρfpiq,b2piq ¡ ρfpi�1q,b1pi�1q ^ chpi� 1q ¡ 0 do

5 Transfer from the pi� 1q-th to the i� th CS of route Π the amount of energy mintchpi� 1q, afpiq,b2piq � SoC2piqu

6 Update accordingly SoC1pi� 1q, SoC2piq, chpi� 1q, b2piq, b1pi� 1q and the duration t

7 end

8 iÐ i� 1

9 end

10 if t ¤ Tmax then

11 return (true, Π)

12 end

13 return (false, Π0)

F Detailed computational results

F.1 E-VRP-NL

We represent each instance using the code tcγ1cγ2sγ3cγ4#, where γ1 is the method used to place the customers

(i.e., 0) randomization, 1) combination of randomization and clustering, 2) clustering), γ2 is the number of

customers, γ3 is the number of CSs, γ4 is “t” if we use a p-median heuristic to locate the CSs and “f” otherwise,

and # is the number of the instance for each combination of parameters (i.e., # = 0 , 1 , 2 , 3 , 4). The symbol

“Inf” means that the instance was proven infeasible, whereas the symbol “-” means that no feasible solution

was found by the solver but the instance was not proven infeasible. The CPU time reported in column “Time

(s)” in the following tables is in seconds and rounded to the nearest integer.

F.1.1 CS replication-based models

Table 7: Detailed computational results on the 10-customer instances for the CS replication-based models

(β � 1)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c10s2cf1 Inf Inf Inf 0 Inf Inf 6.02 0
tc0c10s2ct1 12.30 12.30 9.05 1 12.30 12.30 6.33 2
tc0c10s3cf1 Inf Inf 12.06 0 Inf Inf 6.02 0
tc0c10s3ct1 10.80 10.80 7.72 1 10.80 10.80 5.13 5
tc1c10s2cf2 9.03 9.03 6.72 1 9.03 9.03 5.56 27
tc1c10s2cf3 Inf Inf Inf 0 Inf Inf 3.42 2
tc1c10s2cf4 Inf Inf Inf 0 Inf Inf 6.47 0
tc1c10s2ct2 10.76 10.76 6.73 6 10.76 10.76 4.58 829
tc1c10s2ct3 Inf Inf 9.83 0 Inf Inf 3.18 4
tc1c10s2ct4 Inf Inf Inf 0 Inf Inf 6.23 0
tc1c10s3cf2 9.03 9.03 6.72 1 9.03 9.03 5.56 15
tc1c10s3cf3 Inf Inf Inf 0 Inf Inf 3.42 1
tc1c10s3cf4 14.95 14.95 10.58 1 14.95 14.95 5.80 4
tc1c10s3ct2 9.20 9.20 6.36 11 9.20 9.20 4.46 1107
tc1c10s3ct3 13.02 13.02 7.14 4 13.02 13.02 3.16 1076
tc1c10s3ct4 13.21 13.21 8.85 4 13.21 13.21 6.09 6
tc2c10s2cf0 Inf Inf 9.48 0 Inf Inf 1.04 1
tc2c10s2ct0 Inf Inf 4.67 13 Inf Inf 0.89 103
tc2c10s3cf0 Inf Inf 9.48 0 Inf Inf 1.04 1
tc2c10s3ct0 11.51 11.51 4.21 63 11.51 11.51 0.89 1859

45

Table 8: Detailed computational results on the 10-customer instances for the CS replication-based models

(β � 2)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c10s2cf1 Inf Inf 11.74 2 Inf Inf 6.02 1
tc0c10s2ct1 12.30 12.30 8.94 19 12.30 12.30 6.33 142
tc0c10s3cf1 20.50 20.50 11.55 42 20.50 20.50 6.02 24
tc0c10s3ct1 10.80 10.80 7.69 3 10.80 10.80 5.13 157
tc1c10s2cf2 9.03 9.03 6.72 3 9.03 9.03 5.56 102
tc1c10s2cf3 Inf Inf 10.79 72 Inf Inf 3.42 194
tc1c10s2cf4 16.14 16.14 12.15 5 16.14 16.14 6.47 11
tc1c10s2ct2 10.75 10.75 6.73 34 10.75 9.29 4.58 10800
tc1c10s2ct3 Inf Inf 8.52 38 Inf Inf 3.18 82
tc1c10s2ct4 13.83 13.83 10.68 5 13.83 13.83 6.23 9
tc1c10s3cf2 9.03 9.03 6.72 3 9.03 9.03 5.56 184
tc1c10s3cf3 16.94 16.94 10.71 81 16.94 16.94 3.42 5430
tc1c10s3cf4 14.90 14.90 10.57 15 14.90 14.90 5.80 149
tc1c10s3ct2 9.20 9.20 6.36 57 9.2 8.21 4.46 10800
tc1c10s3ct3 13.02 13.02 7.07 36 13.08 6.80 3.16 10800
tc1c10s3ct4 13.21 13.21 8.75 22 13.21 13.21 6.09 375
tc2c10s2cf0 Inf Inf 8.94 255 Inf Inf 1.04 40
tc2c10s2ct0 13.84 13.84 4.67 1165 13.84 13.84 0.89 3944
tc2c10s3cf0 Inf Inf 8.94 6156 Inf Inf 1.04 340
tc2c10s3ct0 11.51 11.51 4.2 654 11.51 5.17 0.89 10800

Table 9: Detailed computational results on the 10-customer instances for the CS replication-based models

(β � 3)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c10s2cf1 19.75 19.75 11.74 21 19.75 19.75 6.02 9
tc0c10s2ct1 12.30 12.30 8.94 21 12.30 12.30 6.33 389
tc0c10s3cf1 19.75 19.75 11.55 1685 19.75 19.75 6.02 1718
tc0c10s3ct1 10.80 10.80 7.69 9 10.80 10.80 5.13 500
tc1c10s2cf2 9.03 9.03 6.72 4 9.03 9.03 5.56 559
tc1c10s2cf3 16.37 16.37 10.79 39 16.37 16.37 3.42 5310
tc1c10s2cf4 16.10 16.10 12.14 10 16.10 16.10 6.47 69
tc1c10s2ct2 10.75 10.75 6.73 108 10.75 8.42 4.58 10800
tc1c10s2ct3 13.17 13.17 8.48 11 13.17 13.17 3.18 1049
tc1c10s2ct4 13.83 13.83 10.68 17 13.83 13.83 6.23 54
tc1c10s3cf2 9.03 9.03 6.72 6 9.03 9.03 5.56 611
tc1c10s3cf3 16.37 16.37 10.71 529 16.37 12.76 3.42 10800
tc1c10s3cf4 14.90 14.90 10.57 37 14.90 14.90 5.80 1159
tc1c10s3ct2 9.20 9.20 6.36 80 9.20 7.82 4.46 10800
tc1c10s3ct3 13.02 13.02 7.07 504 13.02 4.90 3.16 10800
tc1c10s3ct4 13.21 13.21 8.75 34 13.21 13.21 6.09 4040
tc2c10s2cf0 22.12 22.12 8.94 3647 22.12 19.56 1.04 10800
tc2c10s2ct0 12.45 12.45 4.67 334 12.45 7.14 0.89 10800
tc2c10s3cf0 22.12 22.12 8.94 8604 22.12 16.95 1.04 10800
tc2c10s3ct0 11.51 11.51 4.20 712 11.51 4.34 0.89 10800

Table 10: Detailed computational results on the 10-customer instances for the CS replication-based models

(β � 4)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c10s2cf1 19.75 19.75 11.74 96 19.75 19.75 6.02 25
tc0c10s2ct1 12.30 12.30 8.94 81 12.30 12.30 6.33 133
tc0c10s3cf1 19.75 17.68 11.55 10800 19.75 14.47 6.02 10800
tc0c10s3ct1 10.80 10.80 7.69 37 10.80 10.80 5.13 445
tc1c10s2cf2 9.03 9.03 6.72 12 9.03 9.03 5.56 791
tc1c10s2cf3 16.37 16.37 10.79 82 16.37 13.86 3.42 10800
tc1c10s2cf4 16.10 16.10 12.14 26 16.10 16.10 6.47 144
tc1c10s2ct2 10.75 10.75 6.73 122 10.75 8.33 4.58 10800
tc1c10s2ct3 13.17 13.17 8.48 41 13.17 13.17 3.18 6136
tc1c10s2ct4 13.83 13.83 10.68 17 13.83 13.83 6.23 98
tc1c10s3cf2 9.03 9.03 6.72 10 9.03 9.03 5.56 1784
tc1c10s3cf3 16.37 16.37 10.71 1663 16.37 11.95 3.42 10800
tc1c10s3cf4 14.90 14.90 10.57 76 14.90 14.90 5.80 3250
tc1c10s3ct2 9.20 9.20 6.36 137 9.20 7.66 4.46 10800
tc1c10s3ct3 13.02 13.02 7.07 207 13.08 5.28 3.16 10800
tc1c10s3ct4 13.21 13.21 8.75 45 13.21 11.56 6.09 10800
tc2c10s2cf0 21.77 19.62 8.94 10800 21.77 12.70 1.04 10800
tc2c10s2ct0 12.45 12.45 4.67 789 12.45 6.32 0.89 10800
tc2c10s3cf0 21.77 16.86 8.94 10800 21.83 11.98 1.04 10800
tc2c10s3ct0 11.51 9.83 4.20 10800 11.56 4.90 0.89 10800

46

Table 11: Detailed computational results on the 20-customer instances for the CS replication-based models

(β � 1)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c20s3cf2 Inf Inf Inf 0 Inf Inf 6.89 61
tc0c20s3ct2 Inf Inf 11.65 460 - - 6.96 10800
tc0c20s4cf2 Inf Inf Inf 0 Inf Inf 6.86 3763
tc0c20s4ct2 Inf Inf 10.89 10800 - - 6.62 10800
tc1c20s3cf1 20.75 17.76 14.00 10800 20.78 14.68 8.02 10800
tc1c20s3cf3 16.80 16.10 9.81 10800 16.84 11.55 5.20 10800
tc1c20s3cf4 Inf Inf 13.21 18 Inf Inf 9.52 0
tc1c20s3ct1 24.42 19.23 14.85 10800 24.42 16.20 8.02 10800
tc1c20s3ct3 12.60 12.60 9.35 189 12.67 10.12 5.45 10800
tc1c20s3ct4 16.24 16.24 13.62 33 16.24 14.55 10.18 10800
tc1c20s4cf1 19.29 15.82 11.85 10800 19.68 12.97 7.63 10800
tc1c20s4cf3 16.80 16.80 9.81 6474 16.91 10.02 5.19 10800
tc1c20s4cf4 19.09 19.09 13.18 226 19.09 18.15 9.52 10800
tc1c20s4ct1 23.19 17.59 12.74 10800 23.19 14.54 7.65 10800
tc1c20s4ct3 14.43 14.43 9.69 553 14.43 10.54 5.23 10800
tc1c20s4ct4 17.14 17.14 13.00 51 17.14 16.41 10.08 10800
tc2c20s3cf0 Inf Inf 11.32 1 - - 2.03 10800
tc2c20s3ct0 Inf Inf 11.56 12 - - 1.95 10800
tc2c20s4cf0 Inf Inf 11.13 813 - - 2.03 10800
tc2c20s4ct0 Inf Inf 11.43 18 - - 1.94 10800

Table 12: Detailed computational results on the 20-customer instances for the CS replication-based models

(β � 2)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c20s3cf2 Inf Inf 14.89 4 - - 6.89 10800
tc0c20s3ct2 17.08 15.34 11.64 10800 17.31 12.45 6.96 10800
tc0c20s4cf2 Inf Inf 14.54 6 Inf Inf 6.86 2841
tc0c20s4ct2 16.99 14.92 10.87 10800 17.21 11.97 6.62 10800
tc1c20s3cf1 17.53 17.53 13.91 8909 17.63 14.25 8.02 10800
tc1c20s3cf3 16.44 14.21 9.72 10800 16.53 10.07 5.19 10800
tc1c20s3cf4 17.00 17.00 13.21 87 17.00 17.00 9.41 8484
tc1c20s3ct1 19.49 19.00 14.74 10800 19.71 15.73 8.02 10800
tc1c20s3ct3 12.60 12.60 9.24 1086 12.60 9.29 5.45 10800
tc1c20s3ct4 16.21 16.21 13.35 94 16.21 14.44 10.17 10800
tc1c20s4cf1 16.40 15.42 11.8 10800 16.48 12.92 7.63 10800
tc1c20s4cf3 16.44 14.30 9.72 10800 16.94 10.04 5.19 10800
tc1c20s4cf4 17.00 17.00 13.17 174 17.01 15.18 9.41 10800
tc1c20s4ct1 18.36 17.25 12.6 10800 18.98 13.53 7.65 10800
tc1c20s4ct3 14.43 13.42 9.53 10800 14.43 10.43 5.23 10800
tc1c20s4ct4 17.00 17.00 12.78 222 17.00 15.73 10.02 10800
tc2c20s3cf0 - - 11.18 10800 - - 2.03 10800
tc2c20s3ct0 - - 11.04 10800 - - 1.95 10800
tc2c20s4cf0 - - 11.02 10800 - - 2.03 10800
tc2c20s4ct0 - - 10.97 10800 - - 1.94 10800

Table 13: Detailed computational results on the 20-customer instances for the CS replication-based models

(β � 3)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c20s3cf2 Inf Inf 14.89 9074 - - 6.89 10800
tc0c20s3ct2 17.25 15.06 11.63 10800 17.33 12.32 6.96 10800
tc0c20s4cf2 Inf Inf 14.54 3619 - - 6.86 10800
tc0c20s4ct2 16.99 14.76 10.87 10800 17.04 10.25 6.62 10800
tc1c20s3cf1 17.49 16.98 13.91 10800 17.49 14.31 8.02 10800
tc1c20s3cf3 16.44 14.04 9.72 10800 16.48 9.94 5.19 10800
tc1c20s3cf4 17.00 17.00 13.21 110 17.00 17.00 9.41 8706
tc1c20s3ct1 19.38 18.78 14.73 10800 20.06 15.36 8.02 10800
tc1c20s3ct3 12.60 12.60 9.24 1748 12.60 9.24 5.45 10800
tc1c20s3ct4 16.21 16.21 13.24 239 16.21 14.16 10.17 10800
tc1c20s4cf1 16.38 15.62 11.8 10800 16.40 12.96 7.63 10800
tc1c20s4cf3 16.44 13.83 9.72 10800 16.48 9.67 5.19 10800
tc1c20s4cf4 17.00 17.00 13.17 215 17.87 14.83 9.41 10800
tc1c20s4ct1 18.02 17.17 12.59 10800 18.45 13.64 7.65 10800
tc1c20s4ct3 14.43 13.34 9.52 10800 14.43 10.41 5.23 10800
tc1c20s4ct4 17.00 17.00 12.78 626 18.36 14.41 10.02 10800
tc2c20s3cf0 - - 11.18 10800 - - 2.03 10800
tc2c20s3ct0 25.79 20.90 10.91 10800 25.84 10.17 1.95 10800
tc2c20s4cf0 - - 11.02 10800 - - 2.03 10800
tc2c20s4ct0 - - 10.87 10800 - - 1.94 10800

47

Table 14: Detailed computational results on the 20-customer instances for the CS replication-based models

(β � 4)

Instance
rFCS rep
Arc s rFCS rep

Node s
Obj Bound LP Bound Time (s) Obj Bound LP Bound Time (s)

tc0c20s3cf2 - - 14.89 10800 - - 6.89 10800
tc0c20s3ct2 17.08 14.96 11.63 10800 17.31 12.19 6.96 10800
tc0c20s4cf2 - - 14.54 10800 - - 6.86 10800
tc0c20s4ct2 16.99 14.63 10.87 10800 17.72 10.16 6.62 10800
tc1c20s3cf1 17.49 16.94 13.91 10800 17.49 14.25 8.02 10800
tc1c20s3cf3 16.44 13.99 9.72 10800 16.95 9.36 5.19 10800
tc1c20s3cf4 17.00 17.00 13.21 126 17.00 16.82 9.41 10800
tc1c20s3ct1 18.94 18.42 14.73 10800 19.68 14.93 8.02 10800
tc1c20s3ct3 12.60 12.60 9.24 4177 12.67 9.29 5.45 10800
tc1c20s3ct4 16.21 16.21 13.14 357 16.23 13.70 10.17 10800
tc1c20s4cf1 16.38 15.17 11.8 10800 16.38 12.91 7.63 10800
tc1c20s4cf3 16.80 13.41 9.72 10800 16.89 10.30 5.19 10800
tc1c20s4cf4 17.00 17.00 13.17 463 17.00 14.99 9.41 10800
tc1c20s4ct1 17.81 16.60 12.59 10800 17.87 13.73 7.65 10800
tc1c20s4ct3 14.43 13.28 9.51 10800 14.50 10.40 5.23 10800
tc1c20s4ct4 17.00 17.00 12.78 876 17.17 14.31 10.02 10800
tc2c20s3cf0 - - 11.18 10800 - - 2.03 10800
tc2c20s3ct0 25.79 20.85 10.91 10800 26.24 10.13 1.95 10800
tc2c20s4cf0 - - 11.02 10800 - - 2.03 10800
tc2c20s4ct0 - - 10.87 10800 - - 1.94 10800

F.1.2 Path-based model

Table 15: Detailed computational results on the 10-customer instances for the path-based model

Instance #CSPs
rFPathArc s

Obj Bound LP Bound Time (s)
tc0c10s2cf1 197 19.75 19.75 12.26 11
tc0c10s2ct1 245 12.30 12.30 9.36 10
tc0c10s3cf1 197 19.75 19.75 12.26 11
tc0c10s3ct1 358 10.80 10.80 8.25 7
tc1c10s2cf2 192 9.03 9.03 6.81 4
tc1c10s2cf3 204 16.37 16.37 11.26 56
tc1c10s2cf4 253 16.10 16.10 12.74 10
tc1c10s2ct2 283 10.75 10.75 6.99 118
tc1c10s2ct3 249 13.17 13.17 9.01 4
tc1c10s2ct4 259 13.83 13.83 11.15 4
tc1c10s3cf2 192 9.03 9.03 6.81 4
tc1c10s3cf3 218 16.37 16.37 11.25 48
tc1c10s3cf4 336 14.90 14.90 11.17 13
tc1c10s3ct2 448 9.20 9.20 6.61 45
tc1c10s3ct3 350 13.02 13.02 7.33 27
tc1c10s3ct4 317 13.21 13.21 8.99 10
tc2c10s2cf0 238 21.77 21.77 10.96 348
tc2c10s2ct0 265 12.45 12.45 4.94 794
tc2c10s3cf0 238 21.77 21.77 10.96 350
tc2c10s3ct0 366 11.51 11.51 4.41 2716

48

Table 16: Detailed computational results on the 20-customer instances for the path-based model

Instance #CSPs
rFPathArc s

Obj Bound LP Bound Time (s)
tc0c20s3cf2 939 27.49 22.9 15.34 10800
tc0c20s3ct2 1284 17.08 14.93 11.66 10800
tc0c20s4cf2 1036 27.47 22.97 15.34 10800
tc0c20s4ct2 1350 16.99 14.98 11.40 10800
tc1c20s3cf1 1189 17.49 17.13 14.08 10800
tc1c20s3cf3 1491 16.48 13.28 9.92 10800
tc1c20s3cf4 1257 17.00 17.00 14.95 111
tc1c20s3ct1 1255 18.94 18.55 14.98 10800
tc1c20s3ct3 1373 12.60 12.60 9.39 1529
tc1c20s3ct4 1104 16.21 16.21 13.91 163
tc1c20s4cf1 1304 16.38 16.05 12.58 10800
tc1c20s4cf3 1607 16.84 13.19 9.92 10800
tc1c20s4cf4 1322 17.00 17.00 14.69 134
tc1c20s4ct1 1516 18.02 16.67 13.72 10800
tc1c20s4ct3 1645 14.43 13.60 9.69 10800
tc1c20s4ct4 1330 17.00 17.00 14.54 506
tc2c20s3cf0 1437 24.68 18.31 11.95 10800
tc2c20s3ct0 1318 25.80 21.29 11.74 10800
tc2c20s4cf0 1353 24.67 17.78 11.81 10800
tc2c20s4ct0 1195 26.02 20.45 11.46 10800

F.2 FRVCP

The average CPU time reported in column “Time (ms)” in the following tables is in milliseconds and rounded

up to the nearest tenth.

Table 17: Computational results for the different algorithms on 29,443 routes according to the number of CSs

|F | Algorithm #Feas #Opt Gap Time (ms)
2 MILP PATH 440 440 0.000% 14.2

LABEL 440 440 0.000% 0.8
HEURISTIC 440 435 0.006% 0.3
HEURISTIC M2017 418 339 0.599% 0.2

3 MILP PATH 1569 1569 0.000% 27.7
LABEL 1569 1569 0.000% 0.7
HEURISTIC 1559 1475 0.055% 0.3
HEURISTIC M2017 1498 1229 0.692% 0.2

4 MILP PATH 1079 1079 0.000% 27.1
LABEL 1079 1079 0.000% 0.7
HEURISTIC 1078 1047 0.025% 0.3
HEURISTIC M2017 1046 876 0.807% 0.1

5 MILP PATH 1982 1982 0.000% 24.0
LABEL 1982 1982 0.000% 0.6
HEURISTIC 1948 1763 0.154% 0.2
HEURISTIC M2017 1737 1422 0.903% 0.1

|F | Algorithm #Feas #Opt Gap Time (ms)
8 MILP PATH 5316 5316 0.000% 178.4

LABEL 5316 5316 0.000% 0.7
HEURISTIC 5225 4466 0.174% 0.3
HEURISTIC M2017 4412 3221 1.453% 0.2

12 MILP PATH 3218 3218 0.000% 76.6
LABEL 3218 3218 0.000% 1.0
HEURISTIC 3202 2687 0.199% 0.3
HEURISTIC M2017 2996 2110 0.959% 0.2

16 MILP PATH 7861 7861 0.000% 69.0
LABEL 7861 7861 0.000% 0.9
HEURISTIC 7613 5971 0.236% 0.2
HEURISTIC M2017 6424 4894 0.690% 0.2

24 MILP PATH 7978 7978 0.000% 123.1
LABEL 7978 7978 0.000% 1.5
HEURISTIC 7750 5948 0.228% 0.3
HEURISTIC M2017 6867 5013 0.534% 0.3

49

Table 18: Computational results for the different algorithms on 29,443 routes according to the number of nodes

in the initial route (including the depot at the beginning and at the end)

|npΠq| Algorithm #Feas #Opt Gap Time (ms)
3 MILP PATH 58 58 0.000% 19.7

LABEL 58 58 0.000% 0.5
HEURISTIC 58 51 0.285% 0.1
HEURISTIC M2017 58 49 0.926% 0.1

4 MILP PATH 298 298 0.000% 23.4
LABEL 298 298 0.000% 0.6
HEURISTIC 298 278 0.090% 0.2
HEURISTIC M2017 292 246 1.303% 0.1

5 MILP PATH 710 710 0.000% 29.4
LABEL 710 710 0.000% 0.7
HEURISTIC 706 613 0.250% 0.2
HEURISTIC M2017 678 512 2.028% 0.1

6 MILP PATH 1227 1227 0.000% 43.6
LABEL 1227 1227 0.000% 0.9
HEURISTIC 1193 1010 0.298% 0.3
HEURISTIC M2017 1158 825 2.431% 0.2

7 MILP PATH 2084 2084 0.000% 59.5
LABEL 2084 2084 0.000% 0.9
HEURISTIC 2051 1648 0.291% 0.3
HEURISTIC M2017 1825 1159 1.911% 0.2

8 MILP PATH 3411 3411 0.000% 76.8
LABEL 3411 3411 0.000% 0.9
HEURISTIC 3318 2543 0.309% 0.3
HEURISTIC M2017 2571 1659 1.753% 0.2

9 MILP PATH 5030 5030 0.000% 104.0
LABEL 5030 5030 0.000% 0.9
HEURISTIC 4893 3624 0.314% 0.3
HEURISTIC M2017 3678 2420 1.077% 0.2

|npΠq| Algorithm #Feas #Opt Gap Time (ms)
10 MILP PATH 5828 5828 0.000% 99.9

LABEL 5828 5828 0.000% 1.0
HEURISTIC 5631 4427 0.193% 0.2
HEURISTIC M2017 4843 3505 0.541% 0.2

11 MILP PATH 4991 4991 0.000% 166.6
LABEL 4991 4991 0.000% 1.0
HEURISTIC 4905 4250 0.105% 0.2
HEURISTIC M2017 4640 3658 0.284% 0.2

12 MILP PATH 3942 3942 0.000% 77.5
LABEL 3942 3942 0.000% 1.1
HEURISTIC 3907 3579 0.040% 0.3
HEURISTIC M2017 3813 3322 0.139% 0.2

13 MILP PATH 1523 1523 0.000% 77.5
LABEL 1523 1523 0.000% 1.2
HEURISTIC 1515 1441 0.023% 0.2
HEURISTIC M2017 1501 1425 0.020% 0.2

14 MILP PATH 318 318 0.000% 55.2
LABEL 318 318 0.000% 1.3
HEURISTIC 317 306 0.012% 0.2
HEURISTIC M2017 318 301 0.012% 0.2

15 MILP PATH 23 23 0.000% 16.8
LABEL 23 23 0.000% 1.9
HEURISTIC 23 22 0.007% 0.2
HEURISTIC M2017 23 23 0.000% 0.2

F.3 FRVCP 1

The average CPU time reported in column “Time (ms)” in the following tables is in milliseconds and rounded

up to the nearest tenth.

Table 19: Computational results for the different algorithms on 29,443 routes according to the number of CSs

|F | Algorithm #Feas #Opt Gap Time (ms)
2 MILP PATH 1 440 440 0.000% 9.9

LABEL 1 440 440 0.000% 0.3
MILP M2017 440 440 0.000% 13.1

3 MILP PATH 1 1569 1569 0.000% 14.4
LABEL 1 1569 1569 0.000% 0.4
MILP M2017 1569 1569 0.000% 19.7

4 MILP PATH 1 1079 1079 0.000% 14.8
LABEL 1 1079 1079 0.000% 0.3
MILP M2017 1079 1079 0.000% 21.4

5 MILP PATH 1 1982 1982 0.000% 14.0
LABEL 1 1982 1982 0.000% 0.3
MILP M2017 1982 1982 0.000% 23.3

|F | Algorithm #Feas #Opt Gap Time (ms)
8 MILP PATH 1 5316 5316 0.000% 23.1

LABEL 1 5316 5316 0.000% 0.3
MILP M2017 5316 5316 0.000% 39.2

12 MILP PATH 1 3218 3218 0.000% 30.2
LABEL 1 3218 3218 0.000% 0.5
MILP M2017 3218 3218 0.000% 57.6

16 MILP PATH 1 7861 7861 0.000% 31.7
LABEL 1 7861 7861 0.000% 0.6
MILP M2017 7861 7861 0.000% 58.4

24 MILP PATH 1 7978 7978 0.000% 43.5
LABEL 1 7978 7978 0.000% 1.0
MILP M2017 7978 7978 0.000% 82.8

50

Table 20: Computational results for the different algorithms on 29,443 routes according to the number of nodes

in the initial route (including the depot at the beginning and at the end)

|npΠq| Algorithm #Feas #Opt Gap Time (ms)
3 MILP PATH 1 58 58 0.000% 8.1

LABEL 1 58 58 0.000% 0.2
MILP M2017 58 58 0.000% 14.1

4 MILP PATH 1 298 298 0.000% 9.0
LABEL 1 298 298 0.000% 0.2
MILP M2017 298 298 0.000% 18.7

5 MILP PATH 1 710 710 0.000% 11.1
LABEL 1 710 710 0.000% 0.2
MILP M2017 710 710 0.000% 28.6

6 MILP PATH 1 1227 1227 0.000% 14.1
LABEL 1 1227 1227 0.000% 0.3
MILP M2017 1227 1227 0.000% 41.3

7 MILP PATH 1 2084 2084 0.000% 19.6
LABEL 1 2084 2084 0.000% 0.4
MILP M2017 2084 2084 0.000% 58.7

8 MILP PATH 1 3411 3411 0.000% 24.7
LABEL 1 3411 3411 0.000% 0.4
MILP M2017 3411 3411 0.000% 67.6

9 MILP PATH 1 5030 5030 0.000% 30.2
LABEL 1 5030 5030 0.000% 0.5
MILP M2017 5030 5030 0.000% 70.3

|npΠq| Algorithm #Feas #Opt Gap Time (ms)
10 MILP PATH 1 5828 5828 0.000% 33.4

LABEL 1 5828 5828 0.000% 0.6
MILP M2017 5828 5828 0.000% 64.9

11 MILP PATH 1 4991 4991 0.000% 36.3
LABEL 1 4991 4991 0.000% 0.7
MILP M2017 4991 4991 0.000% 53.7

12 MILP PATH 1 3942 3942 0.000% 36.7
LABEL 1 3942 3942 0.000% 0.8
MILP M2017 3942 3942 0.000% 38.1

13 MILP PATH 1 1523 1523 0.000% 33.4
LABEL 1 1523 1523 0.000% 0.9
MILP M2017 1523 1523 0.000% 22.2

14 MILP PATH 1 318 318 0.000% 30.8
LABEL 1 318 318 0.000% 1.0
MILP M2017 318 318 0.000% 17.1

15 MILP PATH 1 23 23 0.000% 13.8
LABEL 1 23 23 0.000% 0.8
MILP M2017 23 23 0.000% 5.5

F.4 E-VRP-NL

Table 21: New BKS obtained for the E-VRP-NL by applying the labeling algorithm on each route of the

solutions reported by Montoya et al. (2017)

Instance Old BKS New BKS
tc0c40s8cf0 31.282 31.045
tc2c40s8cf2 27.147 27.141
tc2c40s5cf2 27.543 27.536
tc0c80s8cf1 45.227 45.225
tc1c80s12cf2 29.544 29.532
tc2c80s8cf4 49.287 49.171
tc2c80s8ct3 32.315 32.312
tc0c160s16cf4 82.924 82.863
tc0c160s16ct4 82.365 82.323
tc0c160s24ct4 80.956 80.796
tc0c160s24cf4 81.442 81.380
tc1c160s16cf3 71.757 71.509
tc1c160s24cf3 68.558 68.512
tc1c320s24cf2 152.131 152.063
tc1c320s24cf3 117.475 117.462
tc1c320s38cf2 141.631 141.620
tc1c320s38ct3 116.075 116.065
tc2c320s24cf0 182.454 182.453
tc2c320s24ct4 121.936 121.820
tc2c320s38cf4 122.325 122.318
tc2c320s38ct0 190.974 190.963
tc2c320s38ct1 94.534 94.533
tc2c320s38ct4 121.662 121.657

51

	Introduction
	The electric vehicle routing problem with nonlinear charging function
	Two CS replication-based models for the E-VRP-NL
	First model for the E-VRP-NL
	Second model for the E-VRP-NL
	Valid inequalities for the first two models

	Path-based model without CS copies for the E-VRP-NL
	Third model for the E-VRP-NL
	Dominated paths

	The fixed route vehicle charging problem
	Preprocessing procedure
	A path-based model for the FRVCP
	An exact labeling algorithm for the FRVCP
	A heuristic algorithm for the FRVCP

	Computational experiments
	Results for E-VRP-NL formulations
	CS replication-based models
	Path-based model

	Results for FRVCP algorithms

	Conclusions
	Graph preprocessing
	Proofs
	Example requiring a large number of CS copies
	Examples showing the non-optimality of the Montoya et al. (2017) procedure
	Algorithmic details
	Algorithmic details on the labeling algorithm for the FRVCP
	Algorithmic details on the heuristic algorithm to solve the FRVCP

	Detailed computational results
	E-VRP-NL
	CS replication-based models
	Path-based model

	FRVCP
	FRVCP_1
	E-VRP-NL

