
Seeing the Invisible

Forensic Uses of Anomaly Detection and Machine Learning

Federico Maggi
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34-5, I-20133
Milano, Italy

federico.maggi@polimi.it

Stefano Zanero
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34-5, I-20133
Milano, Italy

stefano.zanero@polimi.it

Vincenzo Iozzo
Dipartimento di Elettronica e

Informazione
Politecnico di Milano

Via Ponzio 34-5, I-20133
Milano, Italy

vincenzo.iozzo@mail.polimi.it

ABSTRACT
Anti-forensics is the practice of circumventing classical foren-
sics analysis procedures, making them unreliable or impos-
sible. In this paper we propose the use of machine learning
algorithms and anomaly detection to cope with a wide class
of definitive anti-forensics techniques. We test the proposed
system on a dataset we created through the implementation
of an innovative technique of anti-forensics, and we show
that our approach yields promising results in terms of de-
tection.

Categories and Subject Descriptors
K.5.m [Legal Aspects of Computing]: Miscellaneous—com-
puter forensics; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection—Unauthorized
access (e.g., hacking, phreaking)

General Terms
Documentation, Experimentation, Legal Aspects

Keywords
Computer forensics; Host-based anomaly detection

1. INTRODUCTION
Computer forensics is usually defined as the process of ap-
plying scientific (repeatable) analysis processes to data and
computer systems, with the objective of producing evidence
that can be used in an investigation or in a court of law.
More in general, it is the set of techniques that can be ap-
plied to understand if, and how, a system has been used or
abused to commit mischief [?]. The increasing use of foren-
sic techniques has led to the development of “anti-forensic”
techniques that can make this process difficult, or impossible
[?, ?, ?].

If the identification phase is targeted, we have transient anti-
forensics techniques, which make the acquired evidence dif-
ficult to analyze with a specific tool or procedure, but not
impossible to analyze in general. If instead the acquisition
phase is targeted, we have the more effective class of defini-
tive anti-forensics techniques, which effectively deny once
and forever any access to the evidence. In this case, the evi-
dence may be destroyed by the attacker, or may simply not
exist on the media. This is the case of in-memory injection
techniques, which we will investigate in this paper.

In particular, we propose the use of machine learning al-
gorithms and anomaly detectors to circumvent such tech-
niques. We illustrate a prototype of anomaly detector which
analyzes the sequence and the arguments of system calls to
detect intrusions. We also use this prototype to detect in-
memory injections of executable code, and in-memory exe-
cution of binaries (the so-called “userland exec” technique,
which we reimplement in a reliable way). This creates a us-
able audit trail, without needing to resort to complex mem-
ory dump and analysis operations [?, ?].

The remainder of this work is organized as follows: in Sec-
tion 2 we introduce the problem of anti-forensics, and ref-
erence related works in this young area. In Section 3 we
introduce the key concepts and structure of our prototype
for system call anomaly detection. In Section 4 we describe
the experimental setup we used to test its usefulness in a
forensic environment. In Section 5 we report the results we
obtained in an experimental evaluation of the usefulness of
the prototype in the test environment. In Section 6 we draw
our conclusions and outline future research perspectives.

2. PROBLEM STATEMENT
As we observed in Section 1, anti-forensics is defined by sym-
metry on the traditional definition of computer forensics:
it is the set of techniques that an attacker may employ to
make it difficult, or impossible, to apply scientific analysis
processes to the computer systems he penetrates, in order
to gather evidence [?, ?, ?]. The final objective of anti-
forensics is to reduce the quantity and spoil the quality [?]
of the evidence that can be retrieved by an investigation and
subsequently used in a court of law.

Following the widely accepted partition of forensics [?] in
acquisition, identification, evaluation, and presentation, the
two phases where technology can be critically sabotaged are
both acquisition and identification. Therefore, we can define
“anti-forensics” as comprising all the methods that make ac-
quisition, preservation and analysis of computer-generated
and computer-stored data difficult, unreliable or meaning-
less for law enforcement and investigation purposes.

Even if more complex taxonomies have been proposed [?],
we can use the traditional partition of the forensic process
to distinguish among two types of anti-forensics:

• Transient anti-forensics, when the identification phase
is targeted, making the acquired evidence difficult to
analyze with a specific tool or procedure, but not im-
possible to analyze in general.

• Definitive anti-forensics, when the acquisition phase is
targeted, ruining the evidence or making it impossible
to acquire.

Examples of transient anti-forensics techniques are the fuzzing
and abuse of filesystems in order to create malfunctions or
to exploit vulnerabilities of the tools used by the analyst, or
the use of log analysis tools vulnerabilities to hide or modify
certain information [?, ?]. In other cases, entire filesystems
have been hidden inside the metadata of other filesystems
[?], but techniques have been developed to cope with such
attempts [?]. Other examples are the use of steganography
[?], or the modification of file metadata in order to make
filetype not discoverable. In these cases the evidence is not
completely unrecoverable, but it may escape any quick or
superficial examination of the media: a common problem
today, where investigators are overwhelmed with cases and
usually undertrained, and therefore overly reliant on tools.

Definitive anti-forensics, on the other hand, effectively de-
nies access to the evidence. The attackers may encrypt it, or
securely delete it from filesystems (this process is sometimes
called“counter-forensics”) with varying degrees of success [?,
?]. Access times may be rearranged to hide the time correla-
tion that is usually exploited by analysts to reconstruct the
events timeline. The final anti-forensics methodology is not
to leave a trail: for instance, modern attack tools (commer-
cial or open source) such as Metasploit [?], Mosdef or Core
IMPACT[?] focus on pivoting and in-memory injection of
code: in this case, nothing or almost nothing is written on
disk, and therefore information on the attack will be lost as
soon as it is powered down, which is usually standard operat-
ing procedure on compromised machines. These techniques
are also known as “disk-avoiding” procedures.

Memory dump and analysis operations have been advocated
in response to this, and tools are being built to cope with the
complex task of the reliable acquisition [?, ?] and analysis
[?, ?, ?] of a modern system’s memory. However, even in the
case that the memory can be acquired and examined, if the
process injected and launched has already terminated, once
more, no trace will be found of the attack: these techniques
are much more useful against in-memory resident backdoors
and rootkits, which by definition are persistent.

3. SYSTEM CALL ANOMALY DETECTION
USING SEQUENCE AND PARAMETERS

Most of the actions that an aggressor would try to perform
(e.g., accessing the host file system, sending or receiving a
packet over the network, executing another program, etc.)
require the use of a system call. Thus, it is reasonable to
monitor such calls in order to analyze the behavior of a pro-
cess. In particular, we propose to use anomaly detection
techniques to flag anomalous or suspicious executions and
record them for review in order to create a trail (i.e., the
alert logs) that would otherwise be lost. We will use a tech-
nique we introduced in [?, ?] which makes use of both the

. . .exit

<args> (arg1, arg2, ..., argN)execve

ArgModelNArgModel2ArgModel1

C
o
m
p
re
s
s
o
r
(c
lu
st
er
in
g
)

<args> (arg1, arg2, ..., argN)<syscall>
ArgModel1 ArgModel2 ArgModelN

.

C
lu
s
te
rM
a
n
a
g
e
r

O
p
en
B
S
M
 a
u
d
it
 t
ra
il
s ...

...

In
p
u
tM
a
n
a
g
e
r

BehaviorModeler

MarkovManager

clu
sters =

 m
o
d
el sta

tes

Alert

Manager
Detection

syslog/IDMEF

Figure 1: The architecture of our HIDS prototype

sequence and the content of system calls to detect anoma-
lies. This has been shown to be more efficient than using
sequences of syscalls only, something which has been studied
for a long time since the seminal work [?]. We re-engineered
and extended the proposal found in [?, ?] to use Markov
models of the sequence (as in, e.g., [?]) complemented with
an analysis of the arguments of the system calls.

The resulting system is shown in Figure 1, and it is syn-
thetically described in the following. Each execution of
an application is modeled as a sequence of system calls,
S = [s1, s2, s3, . . .], logged by the operating system audit-
ing facilities. Each system call si is characterized by a type
(e.g. read, write, exec, etc.), a list of arguments (e.g., the
path of the file to be opened by open), a return value, and
a timestamp. The return value is not taken into account,
neither the absolute timestamp (the sequence of the system
calls is considered instead).

Our system must be trained in order to “learn” a model of
the normal behavior of the monitored applications. During
this phase, the system builds a profile for each application
(e.g. sendmail, telnetd, etc.). A two-phase process of ma-
chine learning is then applied to each type of system call
separately. Firstly, a single-linkage, bottom-up agglomera-
tive hierarchical clustering algorithm [?] is used to find, for
each type of system call, sub-clusters of invocations with
similar arguments. We are interested in creating models on
these clusters, and not on the general system call, in order to
better capture normality and deviations on a more compact
input space. This is important because some system calls,
most notably open, are used in very different ways. Indeed,
open is probably the most used system call on UNIX-like
systems, since it opens files or devices in the file system
creating a descriptor for further use. Only by careful aggre-
gation over its parameters (i.e., the file path, a set of flags
indicating the type of operation, and an opening mode) we
can de-multiplex the general system call into “sub-groups”
that are specific to a single function. In order to do this, we
must define a way to measure “distance” among arguments,
as we will show.

Afterwards, the system builds models of the parameters in-
side each cluster. The type of models, as well as the type
of distances used for agglomeration, depends on the type of
parameter, as shown in Table 1. In our framework, the

Table 1: Association of models to Syscall arguments in our prototype
Syscall Model used for the arguments

open pathname → Path Name
flags → Discrete Numeric
mode → Discrete Numeric

execve filename → Path Name
argv → Execution Argument

setuid, setgid uid, gid → User/Group
setreuid, setregid ruid, euid → User/Group
setresuid, setresgid ruid, euid, suid → User/Group
symlink, link oldpath → Path Name
rename newpath → Path Name
mount source, target → Path Name

flags → Discrete Numeric
umount target → Path Name

flags → Path Name
exit status → Discrete Numeric
chown path → Path Name
lchown group, owner → User/Group
chmod, mkdir path → Path Name
creat mode → Discrete Numeric
mknode pathname → Path Name

mode, dev → Discrete Numeric
unlink, rmdir pathname → Path Name

distance among two system calls, si and sj , is the sum
of distances between corresponding arguments D(si, sj) =∑

a∈As
dmodel(a)(s

a
i , s

a
j) (being As the shared set of system

call arguments). For each couple of corresponding argu-
ments a we compute the distance as:

da =

{
K(·) + α(·)δ(·) if the elements are different
0 otherwise

(1)

where K(·) is a fixed quantity which creates a “step”between
different elements, while the second term is the real distance
between the arguments δ(·), normalized by a parameter α(·).
We use “(·)” to denote that such variables are parametric
w.r.t. the type of argument.

Since hierarchical clustering does not offer a concept anal-
ogous to the “centroid” of partitioning algorithms that can
be used for classifying new inputs, we also created, for each
cluster, a stochastic model that can be used to cluster (or
classify) further inputs. These models generate a probability
density function that can be used to state the probability
with which the input belongs to the model. It is important
to note that it is not strictly necessary for the model and
its distance or probability functions to be the same distance
function that is used for clustering purposes.

As can be seen in Table 1, at least 4 different types of argu-
ments are passed to system calls: path names and file names,
discrete numeric values, arguments passed to programs for
execution, users and group identifiers (UIDs and GIDs).

Path names and file names are very frequently used in sys-
tem calls. They are complex structures, rich of useful in-
formation, and therefore difficult to model properly. For
the clustering phase, we chose to use a very simple model,
the directory tree depth. This is easy to compute, and ex-

perimentally leads to fairly good results. Thus, in Equa-
tion 1 we set δa to be the difference in depth, e.g. let
Kpath = 5 and αpath = 1; comparing /usr/lib/libc.so

and /etc/passwd we obtain da = 5 + (3− 2) ∗ 1 = 6, while
comparing /usr/lib/libc.so and /usr/lib/libelf.so.1

we obtain da = 0. The stochastic model for path names is a
probabilistic tree which contains all the directories involved
with a probability weight for each. Filenames are often too
variable to be considered, so we consider the leaves of the
tree and if they are too different we simply ignore them for
that specific model.

Discrete numeric values such as flags, opening modes, etc.
are usually chosen from a limited set. Therefore we can store
all of them along with a discrete probability. Since in this
case two values can only be “equal” or “different”, we set up
a binary distance model for clustering, where the distance
between x and y is:

da =

{
Kdisc if x 6= y
0 if x = y

and Kdisc, as usual, is a configuration parameter. In this
case, the generation of probability for a new input to belong
to the model is straightforward.

We also noticed that execution argument (i.e. the arguments
passed to the execve syscall) are difficult to model, but we
found the length to be an extremely effective indicator of
similarity of use. Therefore we set up a binary distance
model, where the distance between x and y is:

da =

{
Karg if |x| 6= |y|
0 if |x| = |y|

denoting with |x| the length of x and with Karg a config-
uration parameter. In this way, arguments with the same

open24execve0

0.50

0.33

0.33

0.33

0.50

setuid0rename0

open3 exit0

open45open12

Figure 2: A sample of the resulting Markov model with the
clusters of system calls as states

length are clustered together. For each cluster, we compute
the minimum and maximum value of the length of argu-
ments. Fusion of models and incorporation of new elements
are straightforward. The probability for a new input to be-
long to the model is 1 if its length belongs to the interval,
and 0 otherwise.

We developed an ad-hoc model for users and groups iden-
tifiers. These discrete values have three different meanings:
UID 0 is reserved to the super-user, low values usually are
for system special users, while real users have UIDs and GIDs
above a threshold (usually 1000). So, we divided the input
space in these three groups, and computed the distance for
clustering using the following formula:

da =

{
Kuid if belonging to different groups
0 if belonging to the same group

and Kuid, as usual, is a user-defined parameter. Since UIDs
are limited in number, they are preserved for testing, with-
out associating a discrete probability to them. Fusion of
models and incorporation of new elements are straightfor-
ward. The probability for a new input to belong to the
model is 1 if the UID belongs to the learned set, and 0 oth-
erwise.

In order to take into account the execution context of each
system call, we use a first order Markov chain to represent
the program flow. The model states represent the system
calls, or better they represent the various clusters of each
system call, as detected during the clustering process. For
instance, if we detected three clusters in the open syscall,
and two in the execve syscall, then the model will be consti-
tuted by five states: open1, open2, open3, execve1, execve2.
Each transition will reflect the probability of passing from
one of these groups to another through the program. A sam-
ple of such a model is shown in Figure 2. This approach was
investigated in former literature [?, ?, ?, ?, ?, ?], but never
in conjunction with the handling of parameters and with a
clustering approach.

During training, each execution of the program in the train-
ing set is considered as a sequence of observations. Using the
output of the clustering process, each syscall is classified into
the correct cluster, by computing the probability value for
each model and choosing the cluster whose models give out
the maximum composite probability along all known mod-
els: max(

∏
i∈M Pi). The probabilities of the Markov model

are then straightforward to compute.

During the detection phase, each system call is considered
in the context of the process. The cluster models are once
again used to classify each syscall into the correct cluster:
the probability value for each model is computed and the
stored cluster whose models give out the maximum compos-
ite probability (Pc = max(

∏
i∈M Pi)) is chosen being repre-

sentative of the “system call class”. Three distinct proba-
bilities can be taken into account in order to build proper
anomaly thresholds:

• Ps, the probability of the execution sequence to fit the
Markov model up to now;

• Pc, the probability of the system call to belong to the
best-matching cluster;

• Pm, the latest transition probability in the Markov
model.

We fuse the last two into a probability value of the single
syscall, Pp = Pc · Pm. A second, separate value for the
sequence probability Ps is kept. Using the training data, ap-
propriate threshold values are calculated by considering the
lowest probability over all the dataset for that single pro-
gram (for both Ps and Pp). We then choose a sensitivity
parameter for scaling such value, giving the final anomaly
threshold. A process is flagged as malicious if either Ps or
Pp = Pc · Pm are lower than the anomaly threshold. For
avoiding a Ps which quickly decreases to zero for long se-
quences, we introduced a “scaling” of the probability calcu-
lation based on the geometric mean, by introducing a sort

of “forgetting factor”: Ps(l) = 2l

√∏l
i=1 Pp(i)i. In this case,

we demonstrated [?] that P [liml→+∞ Ps(l) = 0] = 1, but
it converges much more slowly (l is the sequence length).
Experimentally, this latter scaling function leads to much
better results in terms of false positive rate.

4. EXPERIMENTAL SETUP
A well-known problem in IDS research is the lack of re-
liable sources of test data, except for the well-known and
abused datasets created by the Lincoln Laboratory at MIT,
also known as “DARPA IDS Evaluation dataset” [?]. These
datasets contain BSM auditing data for Solaris systems, di-
rectory tree snapshots and the content of sensitive directo-
ries, and inode data where available. However, their gen-
eration method makes them unsuitable for testing systems
dedicated to forensic analysis and incident response. In fact,
many authors already analyzed the network datasets, find-
ing many shortcomings and regularities [?, ?]. We analyzed
host-based logs, and concluded that they are artificially sim-
ple and regular, as they contain only a handful of executions,
all very similar among themselves since they are generated
through simple, scripted sequences. This can cause the over-
fitting of any anomaly model. Various other anomalies we
have found are reported in [?, ?].

We tried to avoid repeating such shortcomings in our exper-
iments. In order to show that our system is also capable of
detecting the in-memory injection of code, and of creating
an audit trail which can be used for forensics purposes, while
at the same time reducing the logged data to the bare min-
imum that is needed, we generated an experimental dataset

Attacker Victim

(1) Exploit code + SELF payload
(2) SELF auto-loader + arbitrary ELF

SELF loader
ready

alignm.
envp str
argv str
Envp[]
Argv[]

alignm.
Argc

(3) arbitrary ELF response/output ELF's SP

V
uln. code's stack

Figure 3: An illustration of the in-memory execution technique we developed and used for this paper

for two console applications: bsdtar and eject. Our testing
platform is an Intel x86 machine running a basic installation
of FreeBSD 6.2, on which we recompiled the kernel enabling
auditing capabilities. Since our systems, and other host-
based anomaly detectors [?, ?], accept input in the BSM
format, the OpenBSM [?] auditing tools collection has been
used for collecting audit trails (i.e., system calls sequences
and their details). We audited vulnerable releases of eject

and bsdtar, namely: mcweject 0.9 (which is an alternative
to the eject which is bundled with FreeBSD 6.2) and the
release of bsdtar distributed with FreeBSD 6.2.

The eject executable has a small set of command line option
and a very plain execution flow. For the simulation of a
legitimate user, we simply chose different permutations of
flags and different devices. For this executable, we manually
generated 10 executions, which are remarkably similar (as
expected).

Creating a dataset of normal activity for the bsdtar program
is more challenging. It has a large set of command line op-
tions, and in general is more complex than eject. While the
latter is generally called with an argument of /dev/*, the
former can be invoked with any argument string, for instance
bsdtar cf myarchive.tar /first/path /second/random/path

is a perfectly legitimate command line. Using a process sim-
ilar to the one used for creating the IDEVAL dataset, and
in fact used also in other works such as [?], we prepared a
shell script which re-creates the pseudo-random behavior of
an user who creates or extracts archives. The randomiza-
tion takes into account the different usage of flags by dif-
ferent users: for instance, many users prefer to uncompress
an archive using tar xf archive.tar, many others still use
the dash tar -xf archive.tar, and may use the “verbose”
option as well. Running inside a snapshot of a real-world
desktop filesystem, our tool randomizes such variations and
similar aspects. To simulate user activity, it randomly cre-
ates files of various size and content both around the system
(in the case of superusers), and into an user’s own home di-
rectory. Once the filesystem has been populated, our tool
randomly walks around the system directory tree and cre-
ates TAR archives, with random sets of command line flags
and target directories. Similarly, archives are expanded us-
ing the above explained flag randomization procedures.

In such a setup, the audit trails keep changing, along with
the simulated user behavior. It is important to underline
that normal users would never use really random names for
their files and directories, they usually prefer to use words

from their tongue plus a limited set of characters (e.g., .,
-, _) for concatenating them. Therefore, we rely on a large
dictionary of words for generating filenames.

We have chosen these two applications because they have
been recently found to be vulnerable to two different buffer
overflow vulnerabilities that allow to execute arbitrary code.
In the case of mcweject 0.9, the vulnerability [?] is a very
simple stack overflow, caused by improper bounds checking.
By passing a long argument on the command line, an ag-
gressor can execute arbitrary code on the system with root
privileges. There is a public exploit for the vulnerability [?]
which we modified slightly to suit our purposes and execute
our own payload. The attack against bsdtar is based on a
publicly disclosed vulnerability in the PAX handling func-
tions of libarchive 2.2.3 and earlier [?], where a function
in file archive_read_support_format_tar.c does not prop-
erly compute the length of a buffer when processing a mal-
formed PAX archive extension header (i.e., it does not check
the length of the header as stored in a header field), resulting
in a heap overflow which allows code injection through the
creation of a malformed PAX archive which is subsequently
extracted by an unsuspecting user on the target machine. In
this case, we developed our own exploit, as none was avail-
able online, probably due to the fact that this is a heap over-
flow and requires a slightly more sophisticated exploitation
vector. In particular, the heap overflow allows to overwrite a
pointer to a structure which contains a pointer to a function
which is called soon after the overflow. So, our exploit over-
writes this pointer, redirecting it to the injected buffer. In
the buffer we craft a clone of the structure, which contains
a pointer to the shellcode in place of the correct function
pointer.

In the tests conducted we used a modified version of SELF
[?], which we improved in order to reliably run under FreeBSD
6.2 and ported to a form which could be executed through
code injection (i.e., to shellcode format). This tool imple-
ments a technique known as“Userland Exec”: by overwriting
the program headers of any statically linked ELF binary, and
by building a specially-crafted stack it allows an attacker to
load and run that ELF in the memory space of a target
process without calling the kernel and, more importantly,
without leaving any trace on the hard disk of the attacked
machine. This is done through a two-stage attack where a
shellcode is injected in the vulnerable program, and then
retrieves a modified ELF from a remote machine, and sub-
sequently injects it into the memory space of the running
target process, as shown schematically in Figure 3.

With a regular shellcode
FPR DR

eject 0% 75%
bsdtar 7.81% 71%

With userland exec
FPR DR

eject 0% (unchanged) 100%
bsdtar 7.81% (unchanged) 100%

Table 2: Experimental results with a regular shellcode and
with our userland exec implementation.

5. RESULTS
In the setup detailed above, we performed several experi-
ments with both eject and bsdtar. We trained our anomaly
detector with ten different execution of eject and more than
a hundred executions of bsdtar (using our random activity
generator). We also audited eight instances of the activity
of eject under attack, while for bsdtar we logged seven
malicious executions. We repeated the tests both with a
simple shellcode which opens a root shell (a simple execve

of /bin/sh) and with our implementation of the userland
exec technique.

The overall results are summarized in Table 2. Let us con-
sider the effectiveness of the detection of the attacks them-
selves. The attacks against eject are detected with no false
positive at all. The exploit is detected in the very begin-
ning: since a very long argument is passed to the execve,
this triggers the argument model. The detection accuracy is
similar in the case of bsdtar, even if in this case there are
some false positives. The detection of the shellcode happens
with the first open of the unexpected special file /dev/tty.
It must be underlined that most of the true alerts are cor-
rectly fired at system call level; this means that malicious
calls are flagged by our IDS because of their unexpected
arguments, for instance.

On the other hand, exploiting the “Userland Exec” an at-
tacker launches an otherwise normal executable, but of course
such executable has different system calls, in a different or-
der, and with different arguments than the ones expected
in the monitored process. This reflects in the fact that we
achieved a 100% detection rate with no increase in false pos-
itives, as each executable we have run through SELF has
produced a Markov model which significantly differs from
the learned one for the exploited host process.

6. CONCLUSIONS
In this paper we analyzed the wide class of definitive anti-
forensics techniques which try to eliminate evidence by avoid-
ing disk usage. In particular, we focused on in-memory injec-
tion techniques. Such techniques are widely used by modern
attack tools (both commercial and open source).

As memory dump and analysis is inconvenient to perform,
often not part of standard operating procedures, and does
not help except in case of in-memory resident backdoors and
rootkits, we proposed an alternative approach to circum-
vent such techniques. We illustrated how a prototype which
analyzes (using learning algorithms) the sequence and the

arguments of system calls to detect intrusions can be used
to detect in-memory injections of executable code, and in-
memory execution of binaries.

We proposed an experimental setup using vulnerable ver-
sions of two widely used programs on the FreeBSD platform,
eject and bsdtar. We described the creation of a train-
ing and testing dataset, how we adapted or created exploits
for such vulnerabilities, and how we recorded audit data.
We also developed an advanced in-memory execution pay-
load, based on SELF, which implements the “userland exec”
technique through an injectable shellcode and a self-loading
object (a specially-crafted, statically linked ELF file). The
payload executes any statically linked binary in the mem-
ory space of a target process without calling the kernel and,
more importantly, without leaving any trace on the hard
disk of the attacked machine.

We performed several experiments, with excellent detection
rates for the exploits, but even more importantly with a
100% detection rate for the in-memory execution payload
itself. We can positively conclude that our technique yields
promising results for creating a forensic audit trail of other-
wise“invisible” injection techniques. Future developments of
this work will include a more extensive testing with different
anti-forensics techniques, and the development of a specifi-
cally designed forensic output option for our prototype.

Acknowledgments
The authors would like to thank, for a number of ideas and
discussions, Dr. Matteo Matteucci, co-author of a related
paper. We also thank Luigi Drago and Orlando Bassotto
for their helpful suggestions.

7. REFERENCES

