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Abstract— The increasing of Renewable Energy Source 
(RES) generation requires power systems to become more 
flexible, in order to manage injections variability and 
uncertainty at various timeframes. Energy storage 
systems, such as electrochemical technologies, represent a 
broadly deployable asset, which could support effectively 
RES deployment. The present paper describes a Mixed 
Integer Linear-constrained Programming (MILP) model 
to simulate battery energy storage systems behavior 
within the Italian ancillary services market. The main 
purpose of the tool is to investigate the economic viability 
of storage technologies in the provision of network 
services.  

Index Terms - Ancillary Services, Battery Energy Storage 
Systems, Dispatching, Mixed-Integer-Linear-Programming, 
RES integration. 

NOMENCLATURE 

Indices 
𝑡: Index for time steps. 
𝑏: Index for BESS. 
𝑧: Index for market zones. 
𝑖: Index for discretized SoC intervals. 
𝑘: Index for energy level. 
𝑗: Index for discretized discharge efficiencies intervals. 

Parameters 
𝐼𝐶(𝑏): Investment cost [€/kWh]. 
𝐶𝑑𝑜𝑑(𝑏, 𝑛 ): Additional DoD costs [€/kWh]. 
𝐶𝑎𝑝 (𝑏): Min. capacity [kWh]. 
Ƞ (𝑏,𝑛 ): Charging efficiency. 
Ƞ (𝑏 𝑛 ): Battery discharging efficiency. 
𝜀, 𝑀: Low, high penalty factors. 
𝑛 : Number of discretized SoC intervals. 
𝑛 : Number of discretized C-rate intervals. 
𝑛 : Number of discretized discharge efficiencies intervals. 
𝑁𝑐𝑦𝑐𝑙𝑒𝑚𝑎𝑥(𝑏): BESS max. number of cycles. 
𝑁𝑐𝑦𝑐𝑙𝑒(𝑏, 𝑛 : Number of the battery cycles, function of C-rate.  
𝑃𝑚𝑎𝑥 𝑏 : BESS nominal power [kW]. 
𝑃𝑚𝑖𝑛 𝑏 : Max. battery charge power [kW]. 
𝐶𝑎𝑝 (𝑏): Nominal capacity [kWh]. 
𝑃 _  (𝑏,𝑛 ): Min. deliverable power [p.u. w.r.t. 𝑃𝑚𝑖𝑛]. 

𝑃 _  (𝑏,𝑛 ): Max. deliverable power [p.u. w.r.t. 𝑃𝑚𝑎𝑥]. 
𝑃 _ (𝑡, 𝑏 : Max. available power, function of actual SoC [kW]. 
𝑃𝑜𝑤𝑆𝑡𝑒𝑝 / 𝑛 ,t): Discretization intervals of the max. power 
vs. SoC curve. 
𝑃𝑜𝑤𝑇ℎ𝑠 𝑛 , 𝑏 : Auxiliary variable used to define the power step 
thresholds to discretize the efficiency curve. 
𝑃𝑜𝑤𝑇ℎ𝑠 𝑛 , 𝑏 : Auxiliary variable used to define the power step 
thresholds to make the battery work at different C-rate. 
𝑅𝑒𝑠_𝑠𝑒𝑐(𝑏 : Half-band available for the secondary reserve [kW]. 
𝑆𝑜𝐶 𝑗, 𝑏 : Ratio between the considered BESS nominal capacity 
and the number of SoC intervals. 

Variables 
𝑆𝑜𝐶(𝑡,𝑏): Actual battery SoC [kWh]. 
𝐶𝑀𝑎𝑥 (𝑏): Actual max. capacity of the BESS [kWh]. 
𝐵𝐸𝑆𝑆_𝑐𝑜𝑠𝑡 (t,𝑏): Penalty factor correlated to BESS lifetime 
reduction due to high DoD [€/kWh]. 
𝐸 (𝑏): Exchanged energy [kWh]. 
𝐸 (𝑡,𝑏, 𝑛 ): Exchanged energy in each 𝑛  level [kWh]. 
𝑁𝑐𝑦𝑐𝑙𝑒𝑠 (𝑏): Number actual cycles. 
𝑃 𝑡, 𝑏 : Exchanged up power [kW]. 
𝑃 𝑡, 𝑏 : Exchanged down power [kW]. 
𝑃𝑢𝑝  _ 𝑡, 𝑏 : Increasing secondary reserve contribution [kW]. 
𝑃𝑑𝑤  _  𝑡, 𝑏 : Decreasing secondary reserve contribution [kW]. 
𝑃𝑢𝑝  _ 𝑡, 𝑏 : Increasing tertiary reserve contribution [kW]. 
𝑃𝑑𝑤  _ 𝑡, 𝑏 : Decreasing tertiary reserve contribution [kW]. 
𝑃 : Auxiliary variable defining the ratio between the actual and 
the nominal power (usually called C-rate). 
𝑢(𝑡,𝑏, 𝑛 ): Binary variable defining the SoC. 
𝑢 /𝑢 𝑡, 𝑏 : Auxiliary variables defining the SoC or discharge. 
𝑢 𝑡, 𝑏, 𝑛 : Binary variable defining the charge or discharge 
efficiency. 
𝑢 𝑡, 𝑏, 𝑛 : Binary variable defining the actual C-rate 
interval. 
𝑢 𝑡, 𝑏, 𝑛 : Binary variable defining the actual C-rate interval. 

𝑤 (𝑡,𝑏): Binary variable defining the active SoC. 

I. INTRODUCTION

Worldwide, in the electricity markets, the needs for 
balancing services, rapid generation ramping, and energy 
arbitrage are expected to increase with the rising of wind and 
solar energy penetration. Consequently, energy storage 
systems are supposed to play a major role in the future, 
thanks to their ability to provide different services to the 
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electric grid, from peak shaving, load leveling, spinning 
reserve, capacity firming, up to frequency regulation 
[1][4][3]. Energy storage can also provide an economic 
alternative for relieving transmission congestion in regions 
where conventional generation and transmission expansion is 
problematic [5]. Many studies have shown that Battery 
Energy Storage Systems (BESS) economic viability is 
possible, e.g. in Germany [6] many existing BESS have 
proved successful in the ancillary services provision.  

Generally speaking, establishing a complete and accurate 
BESS model is pivotal in order to study the interaction 
between grid-connected BESS and power system, providing 
an accurate evaluation of their performance. However, a 
detailed model generally asks for a high 
elaboration/simulation time that can affect the computational 
viability of the model itself.  

BESS modelling differs for the degree of details they use 
to reproduce the battery behavior. Some of them manage the 
battery like a black-box, others reproduce the electric 
quantities seen at the battery terminals (i.e. voltage and 
current), some others go deeply into the chemical 
representation. Over the years, various models were 
developed aiming at estimating the operating conditions and 
predicting aging of a battery. It is possible group them in 
several categories [32][33][34][35]. Electrochemical models 
consider the chemical reactions taking in place a battery by 
accounting for mass, energy and momentum balances for 
each specie, phase and component of the cell. They are able 
to detail local distribution of concentration, electrical 
potential, current and temperature inside the cell. 
Unfortunately, these models need a heavy computation effort 
and are complex to be set. Electrical models adopted an 
equivalent electric circuit to represent voltage and current 
transient at the BESS external terminals. Actually, the 
accuracy of the model is correlated to complexity of the 
equivalent electric circuit and to the accuracy of the data 
adopted to set the model itself. Eventually, the complex 
electrochemical reactions inside a battery are significantly 
affected by random variables as ambient temperature and 
usage profiles, consequently mathematical stochastic models 
could be adopted [36][37]. 

The final goal of this present paper is to properly model 
BESS economic viability in the Ancillary Services Market 
(hereafter ASM). In an ASM, unsolved cross-areas 
congestions are managed and regulating reserves are 
collected on power plants. Simulating an ASM is a quite 
complex task, it requires to model many generators, loads 
and, eventually, BESSs for several market sessions, i.e. the 
total problem resulted to have a huge number of variables 
[10]. In the approach proposed, ASM has been modelled 
thanks to an ancillary market simulator named MODIS 
(Market Operation and DISpatching) [11]. It performs the 
optimal operation schedule over the simulated target year, 
with hourly detail, considering generation technical 
constraints and costs, transmission capacity limits between 

regions and operational requirements for system security 
(operating reserves).  

  Focusing on BESS representation within an ASM model, 
in order to limit the computational effort, very simplified 
models are normally adopted: constant efficiency, 
ideal/constant power and capacity bound, etc. are the most 
common assumptions. These approximations, if not managed 
properly, could cause errors in the evaluation of BESS 
performances. Unfortunately, Electrochemical or Electrical 
BESS models, i.e. model capable to provide an adequate 
accuracy in the BESS’ behavior simulation, cannot be 
directly adopted due to the computational effort required.  

In literature many papers focus on BESS contribution to 
the ancillary services market: [12] investigates the 
opportunity to control industrial loads and storage for demand 
response, day-ahead scheduling is the target of the algorithm 
proposed. [13] evaluates BESS contribution to spinning 
reserve and frequency control proposing an innovative 
operational strategy devoted to maximize the regulation 
effectiveness; a statistical approach is adopted in order to 
quantify the approach performances. [14] proposed a detailed 
model of both the energy and the ancillary services market, 
taking into account traditional power plants and BESSs; a 
robust approach is proposed in order to properly evaluate 
uncertainty. [15] approached a quite similar problem 
exploiting Nash-Cournot equilibrium model to evaluate BESS 
contribution in supporting renewable generation. Also [16] 
focuses on BESS participation in day ahead and reserve 
markets, in particular it is investigated the possibility of an 
aggregated regulation of several resources distributed in the 
grid.  

Nevertheless, as already introduced, in such works BESSs 
are evaluated adopting simplified model, i.e. numerical 
results could be affected by the assumptions adopted to limit 
the computational effort of the simulation. [17] proposes a 
preliminary investigation of the point, demonstrating how 
degradation phenomena (i.e. performances degradation) could 
strongly affects the BESS economic viability. 

The technical focus of this paper is on a new BESS model 
based on an abstract vision of the electrochemical cell 
behavior. In the model proposed, experimentally fitted 
analytical equations are adopted. The target of the approach 
proposed is to guarantee a viable computational effort but 
also to provide a proper modelling of BESS efficiency, cycle 
lifetime, SOC impact on maximum charge/discharge power. 
Eventually, such a model is adopted in a numerical simulation 
of the Italian ancillary services market in order to evaluate its 
economically feasibility. 

The paper is structured as follow. In chapter II the new 
BESS model is presented. In chapter III, the results of some 
tests aimed at validating the model are reported. Eventually, 
in chapter IV a test case based on the Italian ASM for the 
short-medium period (real-size case study with 237 thermal 
units, 6 equivalent hydro units and 10 market zones) is 
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detailed in order to validate the battery model functionalities. 
Finally, conclusions are drawn in chapter V. 

II.  MODEL FORMULATION

This paper proposes a new battery model designed to be 
integrated in the ASM simulator MODIS, a multi-area market 
simulator, specifically developed for the Italian ASM [11]. 
The tool is capable to reproduce, for a whole year, with 
hourly discretization, the balancing actions of the various 
generating units, by respecting the required security margins. 
In the model, BESS can provide different services such as 
balancing, secondary and tertiary reserve, in the same way of 
the other players in the market (thermal and hydro units). The 
unit commitment problem under security constraints (SCUC) 
is solved using a deterministic optimization approach, aiming 
at minimizing the overall costs associated with the ancillary 
services provided by the enabled units. Such a problem is 
formulated as a Mixed Integer Linear Programming (MILP) 
and it is implemented through a Branch-and-Cut search for 
finding the optimal solution. The methodology is detailed in 
[18] and results to be capable of finding the optimal solution
requiring significantly less CPU time compared to other
solvers such as SBB, DICOPT and CPLEX [19]. Other
deterministic methods proposed in literature include priority
list [20], integer mathematical programming [21], Branch-
and-Bound search [22], dynamic programming [23],
Lagrangian relaxation [24] and decomposition techniques
[25].

Because of the complexity of the model and the required 
computational time, MODIS takes advantage of an external 
library (GUROBI 7.5) that solves the optimization problem 
through the aforementioned Branch-and-Cut search 
algorithm. The algorithm requires as input the main 
characteristic (max. and min. power, fuel cost, efficiency, 
bidding strategy, max. and min. volume constraints for the 
hydro power plants) of the modeled power units, their DAM 
(Day Ahead Market) dispatching program and their bidding 
prices, the installed renewable energy sources capacity, the 
unbalance and the required reserves. The main constraints are 
[26]: 

 power balance equation between load and generation;
 secondary and tertiary reserve demand constraints;
 power unit technical constraints, such as minimum

start-up and shutdown times, operative costs and
min./max. capacity;

 start-up cost, according to Italian ASM pricing rules;
 constraints on transmission capacity;
 network integrity constraints.

All the services requested in a given area and in a given
time step could be provided by eligible units and by the 
available capacity interconnecting each area. Actually, the 
objective function consists in the minimization of costs 
associated with all the hydro-thermal balancing production, as 
shown below:   

𝑓𝑜 𝑃 , ∙ 𝐵𝑖𝑑 , 𝑃 , ∙ 𝐵𝑖𝑑 , 𝑃 , ∙ 𝐵𝑖𝑑 ,

𝑃 , ∙ 𝐵𝑖𝑑 ,  

Where 𝑃 , , 𝑃 , , 𝑃 ,  and 𝑃 ,  represent the 
balancing up and down powers of thermal- and hydro-electric 
plants, whereas 𝐵𝑖𝑑 , , 𝐵𝑖𝑑 , , 𝐵𝑖𝑑 ,  and 𝐵𝑖𝑑 ,  are 
the corresponding bidding offers.  

In such a perspective, the BESS model proposed is 
designed to take into account a set of technical and economic 
aspects, affecting the performance and profitability of its 
operation: 

 BESS investment costs;
 maximum available charge/discharge power, as a non-

linear function of the SoC (State-of-Charge) of the
battery;

 Depth of Discharge (DoD) penalty-cost, related to
BESS lifetime reduction and to the efficiency decrease
affecting BESS operated at extreme DoD conditions;

 Charge (discharge) efficiency as non-linear function
of the C-rate;

 C-rate penalty cost, related to BESS cycle life
decrease affecting BESS operated at high
charge/discharge rates;

 Capacity fade, related to linear reduction of capacity
with respect to cycles

To make the problem mathematically tractable, a 
piecewise linearization of discharge/charge power and 
efficiency curves is adopted. 

In the following diagram block the proposed model is 
schematized. 

Figure 1: ASM + BESS model diagram block. 
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The proposed BESS model is formulated as a MILP one 
in order to fit the current main model formulation and to 
effectively describe the technical constraints that characterize 
BESSs behavior. 

The overall optimization is carried out in order to 
minimize the cost of the ASM (cost given by upward and 
downward moves of thermal and hydro-electric power 
plants). In such a market BESS could reduce dispatch cost of 
providing the requested services competing with traditional 
units. BESS capital and operational costs are directly taken 
into account in the objective function, i.e. the tool activates 
BESSs only if dispatch costs of traditional units are greater 
than BESSs duty cycle costs. 

The formulation proposed is useful to investigate BESSs 
economic performance in the ASM from two different 
perspectives: 

 Transmission System Operator - not directly involved
in the investment but concerned in reducing the cost
of ancillary services, i.e. owner’s gains aren’t taken
into account.

 Market player investing in BESSs - in this case market
operator’s gain can be modelled increasing BESS
investment cost by a proper quantity, to represent the
minimum profit expectation.

BESS economics optimization is performed concurrently 
with the ASM model through the following formulation: 

∀t in time, ∀b in battery, ∀k in 𝑛𝑝𝑜𝑤: 

𝑚𝑖𝑛 ∑
,

∙ 𝐶𝑎𝑝 𝑏 ∙
, ,

∙, ,

𝐵𝐸𝑆𝑆_𝑐𝑜𝑠𝑡 𝑡, 𝑏 ∙ 𝐶𝑎𝑝 𝑏   (1) 

The first term of the objective function represents the 
battery ageing cost, function of the utilization factor of the 
battery (with respect to the nominal number of cycles 
𝑁𝑐𝑦𝑐𝑙𝑒𝑚𝑎𝑥).  

In the formula, 𝐸  is the sum of the energy exchanged 
in the charging semi-cycle and in the discharging semi-cycle. 
This energy is subdivided into 𝑛𝑝𝑜𝑤 different levels, 
according with the amount of power exchanged at different 
charge levels. A higher energy level (i.e. a higher 
charge/discharge current) would represent a higher cost for 
the system due to a reduction of the BESS lifetime. The 
optimization is carried out over a daily timeframe and results 
are function of the BESS behavior in the previous 
optimization interval. 

𝐶𝑎𝑝𝑀𝑎𝑥  represents the residual capacity 
considering a capacity fade over the optimization period as 
function of the number of cycles carried out in the previous 
simulated period. It is computed adopting a linear relationship 

between capacity and number of cycles and assuming end-of-
cycle-life reached at 80% of nominal capacity. 

The second term of the objective function is the 
economical representation of the battery degradation at high 
DoD.  

The BESS objective function (1) is subject to the 
following constraints, defined ∀t in time, ∀b in BESS, ∀i in 
𝑛 , ∀j in 𝑛 , ∀k in 𝑛 . 

Chargeable and dischargeable power 

0  𝑃 𝑡, 𝑏  𝑢 𝑡, 𝑏 ∙ 𝑃𝑚𝑎𝑥 𝑏] (2) 
 𝑢 𝑡, 𝑏 ∙ 𝑃𝑚𝑖𝑛 𝑏   𝑃 𝑡, 𝑏  0 (3)

Where: 

 𝑢 𝑡, 𝑏 𝑢 𝑡, 𝑏 1 (4)

The binary variables 𝑢 𝑡, 𝑏  and 𝑢 𝑡, 𝑏  identify the 
activated charge state, and are used in (2) and (3) to limit the 
chargeable and dischargeable power between the minimum 
and the maximum limit; eq.(4) is needed to ensure that only 
one state (charge or discharge) is active in each time step and 
for each battery. However, chargeable and dischargeable 
powers are limited not only by the minimum and maximum 
powers respectively, but they also depend on the actual BESS 
state of charge. Equations (5) and (6) are needed to model this 
dependency.  

𝑃 𝑡, 𝑏 𝑃  _ 𝑡, 𝑏 (5) 
  𝑃 𝑡, 𝑏 𝑃 _ 𝑡, 𝑏 (6) 

𝑃  _ 𝑡, 𝑏  and 𝑃 _ 𝑡, 𝑏  are respectively the 
maximum and the minimum powers that can be delivered and 
absorbed by the battery according with the actual SoC, as 
described below. 

Maximum available chargeable and dischargeable power 

In the literature, it is well known that for some storage 
technologies the (charge or discharge) power that can be 
actually exchanged depends on current SoC [8]. So, to model 
this aspect, the following constraints are introduced: 

𝑃 _ 𝑡, 𝑏 ∑ 𝑢 𝑡, 𝑏, 𝑖 ∙ 𝑃𝑜𝑤𝑆𝑡𝑒𝑝 𝑖, 𝑏  (7) 
  𝑃 _ 𝑡, 𝑏 ∑ 𝑢 𝑡, 𝑏, 𝑖 ∙ 𝑃𝑜𝑤𝑆𝑡𝑒𝑝 𝑖, 𝑏  (8) 

Where: 

𝑃𝑜𝑤𝑆𝑡𝑒𝑝 𝑖, 𝑏 𝑃 , 𝑖, 𝑏 𝑃 , 𝑖 1, 𝑏 ∙ 𝑃
(9)

𝑃𝑜𝑤𝑆𝑡𝑒𝑝 𝑖, 𝑏 𝑃 , 𝑖, 𝑏 𝑃 , 𝑖 1, 𝑏 ∙ 𝑃
(10)
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State of Charge 

𝐶𝑎𝑝  𝑆𝑜𝐶 𝑡, 𝑏  𝐶𝑎𝑝  (11) 

𝑆𝑜𝐶 𝑡, 𝑏
,

,
𝑃 𝑡, 𝑏 ∗ η t, b

𝑆𝑜𝐶 𝑡 1, 𝑏  (12) 

Equation (12) defines the battery SoC at the time step t as 
the sum of the SoC at the previous time step, the charge and 
the discharge energy.  

𝑢 𝑡, 𝑏, 𝑖 0 1 (13) 
𝑆𝑜𝐶 𝑡, 𝑏 𝑆𝑜𝐶𝑆𝑡𝑒𝑝 𝑖, 𝑏 ∙ 𝑢 𝑡, 𝑏, 𝑖 𝜀  (14) 
 𝑆𝑜𝐶 𝑡, 𝑏 𝑆𝑜𝐶𝑆𝑡𝑒𝑝 𝑖, 𝑏 𝑀 ∙ 𝑢 𝑡, 𝑏, 𝑖  (15) 

Equations (13-15) are needed to define the binary variable 
𝑢 𝑡, 𝑏, 𝑖 , which is equal to 1 only when the actual SoC of the 
BESS is higher than the minimum SoC of the considered 
interval i. 

Energy constraints 

Ecycle b ∑
Pup t,b

,
Pdown t, b ∙ η t, b (16)

The energy exchanged over the optimization period 
(t=1,…24) by the battery is computed as the sum of 
cumulated and delivered energies for each time step, 
considering charge and discharge efficiencies. According 
with this definition, energy is always a positive quantity and 
𝜂 𝑡, 𝑏  and 𝜂 𝑡, 𝑏  could be time dependent or flat on the 
base of chosen model complexity. 

Not-linear efficiency constraints 

In reality, BESS power depends also on the efficiency, 
which depends, in turn, on the C-rate (that is the ratio 
between actual charged, or discharged power, and the 
nominal power). However, as it can be noted in equations 
(16) and (17), this dependency implies the multiplication
between two continuous variables (power and efficiency),
that should be linearized to be implemented in the existing
MILPmodel. In order to linearize these products, it has been
chosen to adopt the binary expansion presented in [27].

First of all, it is necessary to introduce an auxiliary 
variable representing the C-rate: 

𝑃 𝑡, 𝑏
, ,

∗
 (17) 

Where𝛼 𝑏  is the Energy/Power ratio, that means the ratio 
between the nominal capacity and the nominal power. Then a 
logic constraint, linearized using a classic BigM approach 

using equations (18) and (19), must be introduced in order to 
link C-rate and the efficiency discretization curve: 

𝑃 𝑡, 𝑏 𝑃𝑜𝑤𝑇ℎ𝑠 𝑗, 𝑏 ∙ 𝑢 𝑡, 𝑏, 𝑗               (18) 

𝑃 𝑡, 𝑏 𝑃𝑜𝑤𝑇ℎ𝑠 𝑗, 𝑏 𝑀 ∙ 𝑢 𝑡, 𝑏, 𝑗        (19) 

 𝑃𝑜𝑤𝑇ℎ𝑠 𝑗, 𝑏  is defined as the inverse of the number of 
j intervals chosen to discretize the efficiency curve (i.e. if 𝑗
4 discretization intervals are adopted, 𝑃𝑜𝑤𝑇ℎ𝑠 1, 𝑏  would 
be 0.25). In this way,  equations (18) and (19) define the 
binary variable 𝑢 𝑡, 𝑏, 𝑗 , which is activated only when 

C-rate is higher than the j-C-rate interval. In turn,
𝑢 𝑡, 𝑏, 𝑗  is used to define another binary variable

𝑢 𝑡, 𝑏, 𝑗  that allows to select in which range of efficiency 
the battery is operating: 

𝑢 𝑡, 𝑏, 𝑗 𝑢 𝑡, 𝑏, 𝑗 𝑢 𝑡, 𝑏, 𝑗 1    (20) 

By means of binary variable 𝑢 𝑡, 𝑏, 𝑗  it is possible to 
implement the binary expansion model with equations (21) 
and (22). In this way it is finally possible to define  
𝑃𝑑𝑤 𝑡, 𝑏  and 𝑃𝑢𝑝 𝑡, 𝑏  (equations (23) and (24)) 
which represent the actual charged and discharged powers 
with efficiency already included.  

𝑃𝑑𝑤 𝑡, 𝑏, 𝑗 𝑃 𝑡, 𝑏 ∙ 𝜂 𝑗, 𝑏 ∙ 𝑢 𝑡, 𝑏, 𝑗  (21) 

𝑃𝑢𝑝 𝑡, 𝑏, 𝑗
,

,
 ∙ 𝑢 𝑡, 𝑏, 𝑗 (22) 

𝑃𝑑𝑤 𝑡, 𝑏 ∑ 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏, 𝑗  (23) 

𝑃𝑢𝑝 𝑡, 𝑏 ∑ 𝑃𝑢𝑝 𝑡, 𝑏, 𝑗  (24) 

In turn, 𝑃𝑑𝑤  and 𝑃𝑢𝑝  are defined as: 

Finally, the energy cycle over the optimization period is 
computed as: 

𝐸 𝑏 ∑ 𝑃𝑢𝑝 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏  (21) 

Battery cycle reduction 

As already introduced, the battery cycle reduction with 
the increasing of C-rate is also modeled. This constraint is 
carried out splitting BESS production in different steps 
(𝑛 ), each one characterized by a permissible power range.  
The following equations, based on BigM approach, define the 
binary variable 𝑢 𝑡, 𝑏, 𝑗 , used to select in which range 
of C-rate the battery is operating. 
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𝑃  𝑡, 𝑏 𝑃𝑜𝑤𝑇ℎ𝑠𝐸 𝑘, 𝑏 ∙ 𝑢𝑟𝑎𝑡𝑖𝑜𝐸
𝑡, 𝑏, 𝑘  (22)

𝑃 𝑡, 𝑏 𝑃𝑜𝑤𝑇ℎ𝑠𝐸 𝑘, 𝑏 𝑀 ∙ 𝑢𝑟𝑎𝑡𝑖𝑜𝐸
𝑡, 𝑏, 𝑘  (23) 

Where 𝑃𝑜𝑤𝑇ℎ𝑠 𝑘, 𝑏  is defined as the ratio between 1 
and the number of k C-rate intervals (i.e. if 𝑘 4 
discretization intervals are adopted, 𝑃𝑜𝑤𝑇ℎ𝑠 1, 𝑏  would be 
0.25). Consequently, the energy level is computed as: 

𝐸 𝑡, 𝑏, k 𝑃𝑢𝑝 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 ∙
𝑢 𝑡, 𝑏, k 𝑃𝑢𝑝 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 ∙ 𝑢 𝑡, 𝑏, k
1  (24) 

Also in this case, it is necessary to linearize the product of 
the binary 𝑢 𝑡, 𝑏, 𝑘  and the continuous variable 
𝑃𝑢𝑝 𝑃𝑑𝑜𝑤𝑛 . 

Number of cycles 

The daily effective number of cycles carried out by the 
battery is computed as the ratio between the daily exchanged 
energy and two times the residual battery capacity (two times 
because a total cycle, which is the double of the capacity, 
must be considered): 

𝑁°𝑐𝑦𝑐𝑙𝑒𝑠 𝑏
∙

(25) 

Capacity reduction 

In the presented model, the battery capacity is not 
assumed constant, but it changes day by day according with 
the energy exchanged in previous time steps, or in other 
words, according with the number of cycles already cycled. 
BESS capacity has been modeled considering a linear 
reduction, with respect to cycles, from 100% of nominal 
capacity to 80% of nominal capacity (conventionally assumed 
as BESS end of life). In each day, capacity reduction is 
computed as the product between nominal capacity and the 
ratio between the carried out cycles in that day and the cycle 
life.  

𝐶𝑀𝑎𝑥 𝑏 ∑ 𝐶𝑀𝑎𝑥 𝑏 𝐶𝑎𝑝 𝑏 ∙
∑ ° _ ,

°
∙  (26) 

Where 𝐶𝑀𝑎𝑥 𝑏  is the residual capacity at the 
previous simulation period, which is the remaining capacity 
at the end of the day ahead the considered day, and 
𝑁°𝑐𝑦𝑐𝑙𝑒𝑠 _ 𝑏, 𝑘  is the number of daily carried out cycles 
according with C-rate: 

𝑁°𝑐𝑦𝑐𝑙𝑒𝑠 𝑏
∑ 𝐸𝑙𝑒𝑣𝑒𝑙 𝑡,𝑏,k

∙
(31) 

Additional cost at high DoD 

BESS aging increases when BESS is operated at high 
Depth of Discharge (low SoC, when the battery completes the 
discharging phase). In order to model such behavior, an 
economic penalization, named 𝐶𝑜𝑠𝑡𝐷𝑜𝐷 𝑡, 𝑏 , has been 
introduced in the objective function when battery is operated 
in the first intervals of the SoC discretization curve. Such 
intervals are detected by means of a new binary variable 
𝑤 𝑡, 𝑏 , defined by equations (33-35), which is activated 
only when BESS starts a new charging phase (so at the end of 
a discharging phase) 

𝐶𝑜𝑠𝑡𝐷𝑜𝐷 𝑡, 𝑏 ∑ 𝑢 𝑡 1, 𝑏, 𝑖 ∙ 𝑐 𝑏, 𝑖 𝑀 ∙ 1
𝑤 𝑡, 𝑏  (32) 

𝑢 𝑡, 𝑏 𝑢 𝑡 1, 𝑏 𝑤 𝑡, 𝑏  (33) 
𝑢 𝑡, 𝑏 𝑤 𝑡, 𝑏  (34) 

1 𝑢 𝑡 1, 𝑏 𝑤 𝑡, 𝑏  (35) 

All the previously described BESS technical parameters 
have been set accordingly to experimental measures 
performed by Politecnico di Milano research group [28]. 

Secondary and tertiary reserve 

In the developed model, BESS are exploited in order to 
provide secondary regulation and tertiary regulation reserve. 
The equations below define the up and down powers 
available for the reserves. 

0 𝑃𝑢𝑝 𝑡, 𝑏  𝑃𝑚𝑎𝑥 𝑏  (36) 
𝑃𝑚𝑖𝑛 𝑏   𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 0 (37) 

𝑃𝑢𝑝 𝑡, 𝑏 𝑃  _ 𝑡, 𝑏 𝑃𝑢𝑝 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏  (38) 
𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 𝑃  _ 𝑡, 𝑏 𝑃𝑢𝑝 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 (39) 

𝑆𝑜𝐶 𝑡, 𝑏 𝑆𝑜𝐶 𝑡, 𝑏 𝑃𝑑𝑜𝑤𝑛 𝑡, 𝑏 ∙ 𝜂 𝑏 ,

(40) 

Where 𝑃𝑚𝑎𝑥 𝑏  and 𝑃𝑚𝑖𝑛 𝑏  are the nominal powers for 
the tertiary reserve (both zonal and pool) and the half-band 
available for the secondary reserve. In (38) and (39), the 
increasing and decreasing powers available for the reserve are 
limited according to the difference between the battery 
maximum power and the power already employed in the 
energy balance using equation (36) and (37). Reserve 
contributions are also subject to SoC constraints in (40).  

III. MODELS SET UP

The presented BESS model had been tested simulating a 
period of 7 days on a system characterized by 10 
interconnected market zones; such a model is inspired to the 
Italian system (see Fig. 2).  
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Figure 2. Model validation: network structure. 

A Li-ion battery with a nominal power equal to 20 MW, a 
nominal capacity of 20 MWh and service life at 80% of DoD 
equal to 4000 cycles [29] has been installed to this purpose in 
each market zone. This technology is characterized by an 
almost constant maximum power (both for charging and 
discharging phase) curve as function of SoC, discretized 
adopting as 𝑛  10 steps. As regarding the capital cost, 300 
€/kWh has been chosen according to [30].  

The model has been tested starting from the so-called 
“Reference Model” (hereafter Ref.Model), characterized by: 

 modelling of the capacity fade;
 constant charge and discharge efficiencies equal to

0.95;
 absence of penalties correlated to BESS lifetime

reduction due to high C-rate;
 absence of penalties correlated to BESS lifetime

reduction due to high DoD;
 BESSs are not enabled to secondary/tertiary reserve

services but can provide balancing service.

Consequently, the battery energy is simply computed with 
(16), adopting constant discharge and charge efficiencies.  

The model assessment has been carried out by 
implementing model specifics (shown in previous chapter) 
one at a time: 

 “C-rate model”, which considers a lifetime reduction
due to high C-rate. Specifically, a service life of 5250 
cycles below 0.5C and of 3500 cycles above 0.5C is 
considered. This functionality has been tested adding 
eq. (26-28). 

 “Non-Linear Efficiency model”, characterized by a
discharge/charge efficiency function of the battery C-
rate. The efficiency curve shown in Fig. 3 (blue curve)
has been discretized using as 𝑛𝜂 4 different steps (red
curve). This functionality has been tested adding
equations (17-25).

 “Complete model”: constraints of both “C-rate
model” and “Non-linear Efficiency model” have been
implemented.

 “Complete model + reserve”: BESS complete model
has been regulated in order to provide also the reserve
service on the ASM. This functionality has been tested
adding equations (36-40).

Figure 3. Charge and Discharge efficiency. 

DoD constraints (32-35) had not been analyzed due to 
lack of real laboratory measurements or reliable/detailed data 
in literature. Moreover, DoD constraints are supposed to have 
marginal impact on BESS performances. 

Table I. MODEL ASSESSMENT: SENSITIVITY REVIEW 

Sensitivity 
Resume 

Basic 
Equations  

(2-16) 

Capacity 
Fade  

(29-30) 

Cycle Life 
reduction 

with 
C-rate 
(26-28) 

Variable 
(Dis)Charge 
Efficiency   

(17-25) 

Reserve 
(36-40) 

Ref.Model   X X X 

C-rate Model    X X 
Non-linear 
Efficiency 
Model 

  X  X 

Complete 
Model     X 

Complete  
+ Reserve      

The different models had been compared in terms of 
power curve of durability, ASM objective function, 
computational time, number of constraints. The comparison 
helps to check the correct implementation of the constraints 
and the impact of modeling some aspects of the BESS. The 
chart in Fig. 3 shows the battery durability production curve; 
in order to simplify chart interpretation, only the battery of 
market zone 1 is shown. 

Applying the “C-rate model”, two levels of production 
can be distinguished because of different costs associated 
with different production levels: below and above 10 MW 
(corresponding to 0.5C, see arrows #1 in Figure 4). As a 
consequence, with “C-rate model” applied, BESS is 
frequently activated at lower power level with respect to 
“Ref.Model”. 

The “Non-linear efficiency model" reduces the maximum 
delivered power (see focus #2 in Figure 4) because of the 
average constant efficiency adopted in the “Ref model” 
(equal to 0.95) is higher than the one of the “Non-linear 
efficiency model” at 1C. Furthermore, the number of hours in 
which BESS works at medium-low power increases with 
respect to the “Ref model”, because of the higher efficiency 
at low C-rate (see focus #3 in Fig. 4).  
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0,94
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Figure 4. Battery delivered power in each model. 

The introduction of batteries reserve requirements causes 
a significant reduction on the batteries injections (see focus 
#4 in Fig. 4) because of the need to preserve an available up 
and down regulation capacity. 

The reduction of BESS production in the “Complete 
model + reserve” is consistent and is reflected in a lower 
battery objective function, quantifiable in 27.3% (from 66.05 
k€ to 48.01 k€), i.e. in lower BESS exploitation costs. 
Significant is also the impact, in terms of objective function 
variation, of the “C-rate model”: the BESS objective function 
reduces of 11% (from 66.05 k€ to 58.83 k€) against a rise of 
the production thanks to the lower cost at low C-rate.  On the 
contrary, the objective function reduction caused by the 
“Non-linear efficiency  model” is limited to 1.23% with 
respect to the “Ref.Model” (from 66.05 k€ to 65.24 k€), and it 
is mainly due to the decrease of the efficiency at high 
C-rates. Actually, over the simulation performed the C-rate
resulted quite low. ASM asks BESS to contribute for time
window equal or higher to one hour limiting, from the market
point of view, the maximum C-rate BESS could be scheduled
to; this motivate small efficiency fluctuations.

For each model, computational time and number of 
integer and continuous variables has been properly evaluated. 
The implementation of the variable efficiency as a function of 
the power exchanged (nonlinear constraints) (i.e. between 
power and variable efficiency in the “Non-linear efficiency 
model”) has a very strong impact, adding 1152 binary 
quantities and 5616 constraints with respect to the 
“Ref.Model”. Actually, affects significantly also the daily 
computational time: about three times the “Ref.Model”. 

TABLE II. ASSESSMENT RESULTS. 

Model Specifics 

BESS 
Objective 
Functions 

[k€] 

BESS 
Exchanged 

Energy 
[MWh] 

Daily 
Average 

Calculation 
Time [h] 

N° of 
Integer 

Variables 

N° of 
Constraints 

Ref.Model 66.05 1759.8 0.30 5376 44582 
C-rate Model 58.83 1878.8 0.31 5664 46886 

Non-Linear efficiency 65.24 1738.1 1.36 6528 50198 
Complete Model 60.70 1953.8 1.96 6816 52502 
Complete+Reserve 48.01 1589.5 1.41 6816 53798 

Model set up simulations validate the option to not model   
variable (dis)charge efficiency as a reasonable tradeoff, 
causing a marginal approximation in the objective function 
(1.23%) in order to achieve a strong reduction in the 
computational effort. Such a model is adopted in the study 
case reported in chapter IV. 

Lastly, it should be interesting to analyze the impact of 
capacity fade, by comparing results, in terms of power curve 
od durability and cycled energy, obtained simulating one 
whole year adopting the “Ref.Model” with and without 
capacity fade.  

Figure 5: Battery delivered power in Reference and Capacity Fade models 

As it can be noted (Fig. 5), capacity fade rightly causes a 
decrease of delivered power. Consequently, also the fluxed 
energy of a single BESS decreases from 14.1 GWh to 13.5 
GWh, causing a reduction of about 3.8 % in one single year.  

IV. CASE STUDY

Once validated, the tool proposed has been adopted in a 
realistic mid-term (2020) scenario tailored in the Italian 
system. BESS C-rate model has been adopted. Public data 
provided by Terna (Italian TSO [10]) and GME (Italian 
public company that operates power, gas and environmental 
markets [39]) were used to define the scenario in terms of: 

 need of reserve (tertiary and secondary);
 balancing market need;
 list and characteristic of the hydro-thermal fleet

enabled to participate to the ASM;
 network development.

A BESS equivalent model has been simulated in each 
geographical zone in order to investigate the economic 
benefit given by BESSs in relieving dispatching cost, from 
the point of view of the system operator (for this reason 
BESSs owner gains have not been considered). 

Regarding BESSs sizing methodology, it has been chosen 
to adopt the lifespan criterion, which means sizing batteries in 
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order to obtain a lifespan of about 12 years (adopting a 
reasonable BESSs calendar life [31]). Lifespan is function of 
the number of performed cycles, that are inversely 
proportional to the size, keeping the power constant. Different 
BESSs sizes have been considered: 5 MW, 10 MW, 20 MW, 
40 MW and 60 MW with 1 hour as Energy/Power ratio. Table 
III reports the resulting installed capacity for each market 
zone.    

TABLE III. SCENARIO CHARACTERIZATION. 

Market Zone 
Installed 
Capacity 
[MWh] 

Installed 
Power 
[MW] 

Secondary 
Reserve 

Half-Band 
[MW] 

Investment 
Cost 

[€/kWh]1 

Cycle 
Life at 
0.5C 

North 10 10 1 350 4000 

Center-North 20 20 2 350 4000 

Center-South 10 10 1 350 4000 

South 20 20 2 350 4000 

Sicily 10 10 1 350 4000 

Sardinia 10 10 1 350 4000 

The economical profitability of investments in storage 
technologies and storage-related network services in the 
defined market scenario has been investigated in terms of 
BESS timespan (the time needed to reach BESS end of life) 
and cost saving for the system. Fig. 6 shows the duration 
curve related to the production of each BESS: it is possible to 
notice the different behavior of the battery in each different 
market zone and the influence of “C-rate model” 
implementation. 

Figure 6. BESS delivered power in each zone. 

 Results, reported in Table IV, are detailed in terms of 
BESSs number of cycles carried-out in the simulated period 
and the corresponding cycle life and lifespan. It must be 
specified that the cycle life is computed taking into account 
the different degradation when battery works at various C-
rate; whereas the lifespan is simply the ratio between the 

1 Specific investment cost is equal to 350 €/kWh. 

obtained cycle life and the number of carried-out cycles. 
These results depend on the chosen BESS sizes and specific 
scenario hypothesis adopted in each zone.  

To properly access the economic benefit, in terms of cost 
saving for the system introduced by BESS deployment, the 
comparison of two different scenarios, with and without 
BESS, is reported. The system cost saving has been 
quantified in 12.1 M€ (Fig. 7), against a BESS cost of 2.4 M€ 
(this cost is related to batteries usage over a timespan of one 
year), resulting in an interesting economic viability of BESS 
exploitation. Should be noticed that this analysis disregard 
additional fix and variable costs (such as auxiliaries costs, 
operating and maintenance costs and site arrangement costs); 
actually, results obtained motivate to deepen the economic 
analysis and to evaluate regulatory framework schemes 
capable to effectively manage BESS units. 

TABLE IV. BESS CYCLE LIFE AND LIFESPAN. 

Ncycles 
[cycles] 

Cycle Life 
[cycles] 

BESS Lifespan 
[years] 

North 382.0 4967.2 13.0 
Center-North 549.4 4803.2 8.7 
Center-South 399.9 4893.8 12.2 
South 363.4 4858.3 13.4 
Sardinia 367.5 4880.4 13.3 
Sicily 273.6 4989.5 18.2 

Figure 7. Comparison between total yearly system costs with and without 
BESS. 

V. CONCLUSIONS

In this article, a MILP model suitable for evaluate BESS 
behavior and economic viability in the ASM has been 
developed and integrated in an ancillary services market 
simulator.  

The accuracy of the model has been proved implementing 
one at a time the different BESS model specifics (constraints 
shown in chapter III) and analyzing batteries behavior during 
a period of 7 days on a 10-nodes-interconnected system. The 
validation phase was helpful in order to evaluate the impact 
of the different constraints in terms of model accuracy and 
computational effort. The validation phase reveals that BESS 
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behavior associated to the C-Rate model should not be 
neglected whilst the impact of the Non-linear efficiency 
model is not significant. 

The presented model resulted suitable for investigating 
BESS impacts on ancillary services markets, in particular, in 
order to show a practical application useful in assessing 
potential cost savings associated with the deployment of 
BESS, the model has been applied to a mid-term scenario 
(2020) of the Italian ASM, simulating a whole year of 
exploitation. 

Comparing the proposed model to the one commonly 
adopted in literature, results a higher complexity and 
consequently a higher accuracy in the BESS performances 
evaluation; at the same time, the mathematical formulation 
proposed resulted in a viable computation effort. 

The presented model resulted to be useful for a BESS 
design consistent with ancillary service needs, giving to 
investors a computational tool capable to help in the decision- 
making phase. 
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