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ABSTRACT

In this paper, an improved recurrent neural network (RNN) scheme is proposed to perform the tra-
jectory control of redundant robot manipulators using remote center of motion (RCM) constraints.
Firstly, learning by demonstration is implemented to model the surgical operation skills in the Carte-
sian space. After that, considering the kinematic constraints associated with the optimization control
of redundant manipulators, we propose a novel RNN-based approach to facilitate accurate task track-
ing based on the general quadratic performance index, which includes managing the constraints on
RCM joint angle, and joint velocity, simultaneously. The results of the conducted theoretical analysis
confirm that the RCM constraint has been established successfully, and accordingly. The correspond-
ing end-effector tracking errors asymptotically converge to zero. Finally, demonstration experiments
are conducted in a laboratory setup environment using KUKA LWR4+ to validate the effectiveness
of the proposed control strategy.

1. Introduction
In the past decades, common commercial industrial se-

rial robots with redundant manipulators have been success-
fully adopted and further developed in precise automation
processes for a variety of applications [? ? ]. Thanks to their
lower cost with respect to specialized surgical robots, it has
attracted increased research interest for their applications in
the medical field, especially in minimally invasive surgery
(MIS). These surgical procedures require a small incision
in the abdominal wall allowing the insertion of a surgical
tool. A robotic implementation of these techniques provides
the prospect of an improvement in the control and precision
of the surgical tool while reducing trauma to patients [? ].
The small incision produces a constraint, commonly known
as the Remote Center of Motion (RCM) constraint, on the
inserted robot end effector [? ]. While a mechanical im-
plementation is generally considered safer but requires com-
plex structures and calibration procedures, a programmable
RCM restricting the movement by the control algorithm is
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cheaper and more flexible and is, therefore, a preferable op-
tion [? ]. However, maintaining the RCM constraint during
the surgical operations becomes a challenging problem for
the surgical robotics society.

Generally, robot-assisted surgical operations can be clas-
sified according to the following two modes: 1) a small inci-
sion is opened, and the surgical tooltip crosses the abdomi-
nal wall by hands-on insertion, and 2) a surgeon controls the
tooltip of a slave robot performing a surgical operation.

In the second mode, the physical interaction between the
trocar and the abdominal wall is inevitable [? ]. Due to the
possibility of uncertain disturbances during the physical in-
teraction, the accuracy of the surgical tip and the RCM con-
straint may be affected, while both are of vital importance
to assure the safety of the surgical operation. To comply
with the high requirements associated with accuracy, surgi-
cal robots are required to learn and adapt the interaction ac-
cording to the complex environment. Especially, in the case
when the interaction is with a rigid object, it may cause con-
siderable force and instability. Impedance control is one of
the widely used control methods to improve the robustness
of robotic systems [? ]. In the related literature, researchers
have reported on uncertainties associated with impedance
control considering adaptive control considering the envi-
ronmental dynamics in robotic systems [? ? ]. Similar to
impedance control, hybrid position/force control has been
proven as one of themost efficient controlmethods to achieve
compliancy of the robot’s behavior in the operational space,
which can modify the desired trajectory based on the exter-
nal interaction force. This type of control allows making the
interaction between the robot and the unknown environment
safer. To address the properties of the complex environment
such as uncertain disturbance, compensatory items are im-
plemented in control systems [? ? ? ].

In addition to the safety issue associated with robot ma-
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nipulation, the RCM constraint should be maintained. This
problemwas discussed in a number of related researchworks.
General kinematic formalization in the joint space to solve
the RCM constraint was presented in [? ]. The novel con-
trol architecture for redundant robots was proposed by San-
doval [? ] aiming to solve the fixed RCMconstraints through
the Cartesian admittance control without considering themove-
ment of the RCM.

In practice, in the case of the robot control systems with
RCM constraints, such as MIS, RCM is inevitably kinematic
and dynamic. Specifically, with regard to RCM constraints,
uncertain disturbances from the kinematic level and interac-
tion force are the major challenges related to providing the
accuracy and safety of the robot controller execution. Due
to nonlinearity and uncertainties [? ], neither perfect knowl-
edge of a system nor a perfect model can be presumed. RCM
constraints do not only affect the accuracy of the robot end
effector but may also lead to the instability of the robot con-
trol. Therefore, it is essential to investigate control strategies
and improve the stability and accuracy of robotic systems
aiming to resolve these challenges. Based on the robot con-
trol theory, RCM constraints have been studied with regard
to several control schemes [? ].

However, the recent results corresponding to the active
RCM constraints required to be solved are still unsatisfac-
tory, except for the several schemes that introduced adap-
tive control theory to address this problem. The efforts and
prevalence of applying adaptive control algorithms to solve
the RCM constraint are still relatively limited, basically, in
the initial stage [? ]. However, adaptive control methods [? ]
have beenwidely investigated in general. Comparedwith the
traditional control methods, the adaptive controls are char-
acterized by the powerful approximation ability [? ]. In [?
], the adaptive neural network-based controller is proposed
to approximate uncertainties and nonlinearity aiming to im-
prove dynamically sub-structured systems. In [? ], complex
functions are estimated using a fuzzy logic system employed
together with the backstepping control approach to optimize
its performance. When it comes to the self-learning opti-
mal problem for discrete-time nonlinear systems, an adap-
tive critic scheme was investigated in [? ], where an iter-
ative dual heuristic dynamic programming (DHP) strategy
was employed to the event-based mechanism. Besides, in
order to improve the performance of the reinforcement learn-
ing, an approximate neural optimal control scheme was pre-
sented in [? ] for the continuous-time nonlinear systems.

Application of quadratic programming (QP) problem in
practice is still a major challenge. The distributed meth-
ods of discrete-time and continuous-time have validated the
effectiveness for solving the QP scheme. For example, a
network model combined with the supervised learning and
deep reinforcement learning was discussed in [? ]. In order
to achieve the guaranteed convergence and flexible struc-
ture, an iterative low-complexity scheme was proposed to
comply with the quadratic program in [? ]. In addition, to
solve the active-set with the tight bound more effectively,
an active-set approach was applicable to the QP problem in

term of the low cost in [? ]. However, these methods are
too complicated in calculation, and are not suitable for the
fast response in robot system. Therefore, this paper presents
a novel RNN-based algorithm to facilitate accuracy for the
general quadratic performance.

In recent years, neural learning enhanced by adaptive
control schemes have attracted great attention [? ]. The non-
linear terms of kinematics have been compensated by apply-
ing the Nussbaum function and a well defined smooth func-
tion in [? ]. In [? ], the adaptive neural impedance control
scheme has been designed for an n-link robotic manipulator
with uncertainties generated by the kinematic constraints.
An auxiliary system has been introduced in the controller
design to cope with the effect of the predefined constraints.

In the present research, a neural-learning enhancedCarte-
sian admittance control scheme based on the recurrent neural
network (RNN) approximation is proposed to improve the
accuracy of the end effector and to comply with the active
RCM constraint. The main contributions of this paper are
highlighted as follows:

1. Learning by demonstration is adopted to model the
surgical operation skills in the Cartesian space.

2. The uncertainties existing in the robotic system due
to the RCM constraints are compensated by using a
RNN-based adaptive controller scheme.

3. Experimental demonstration using KUKA LWR4+ is
performed to evaluate the applicability of the improved
RNN controller.

The remainder of this paper is organized as follows. Prob-
lem statement and preliminaries are presented in Section 2.
In Section 3, the control development using neural networks
in the presence of RCM constraints is discussed. Finally,
experimental results are provided in Section 4, and the con-
clusions are drawn in Section 5.

2. Preliminaries and Problem Description
In MIS surgical procedures, a surgeon needs to manage

the end-effector applied to the patient’s organs, such as a 5
mm incision or suturing according to the desired trajectory.
One of the key issues associated with skill transfer is to es-
tablish the accurate representation of the actuator trajectory.
In this section, we discuss the process of skill transfer, focus-
ing on the dynamic movement primitive (DMP), Gaussian
mixtureModeling (GMM), andGaussianmixture regression
(GMR). In addition, the RCMand its kinematic control prob-
lem investigated in this paper are also described.

2.1. Dynamic Movement Primitive
At present, DMP is a general approach used in artificial

and biological systems that implies identifying movement
primitives for the motor control in robotics and biology [? ].
The DMP method is represented as a set of equations, and it
can be used to model different linear or nonlinear motions,
which is convenient to imitate the learning of the complex
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movement fusion. The DMP is expressed as follow:
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where
[

t, ̇t, ̈t
]

is the Cartesian space trajectory; 0 and
g denote the initial and goal positions of an attractor point
in the Cartesian space, respectively; Kp andKv are the stiff-
ness matrix, and the damping term of DMP in the 3D Carte-
sian space, respectively; ! is the shape parameter of DMP;
�v is the scale parameter of the canonical system, where vt
asymptotically decays from 1 to 0; �i and ci are the width
and center of the i -th Gaussian kernel.

It should be noted that DMP consists of the following
two parts: a linear spring damper part Kp (g − t

)

− Kv̇t
and a onlinear part F

(

vt
)

, which can be applied to model
the trajectories based on learning by demonstrations even in
the case of a nonlinear system. Therefore, DMP is deemed
applicable to imitate the human motions owing to its feature
of convergence to the attractor point g.

2.2. Gaussian Mixture Model
In this subsection, the GMM is presented to encode the

trajectories obtained from learning. GMM is a probability-
based statistical model that can be used to describe the prob-
ability density distribution of a high-dimensional dataset by
the sum ofweights corresponding tomultiple Gaussianmod-
els [31]. In the present study, GMM is used to describe the
position density in the Cartesian space and to obtain the non-
linear items in DMP by regression corresponding to each
GMM. The DMP framework of multi-demonstrations de-
fined in (1) is reformulated in terms of the K component
Gaussian model as follows:

̈ =
K
∑

k=1
ℎk
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Kp
k
(
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−Kv
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(3)

where �Sk and ℎk are the mean and weighted of the k-th com-
ponent in Gaussian mixture model. Kp

k and Kv
k are the k-th

item stiffness, and the damping matrix of DMP in the Carte-
sian space, respectively. The Cartesian space data points
obtained from demonstrations are defined as follows: vj =
(

vt,j , v ,j
)

(j = 1,… , N),whereN is the length of a dataset.
Each data point includes the time temporal value vt,j and the
position value v ,j . To encode the dataset of the position dis-
tribution P

(

vt, v
)

, the following GMM model is defined
as below:

p
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where K is the number of the Gaussian model; p(k) de-
notes the prior probability, and p

(

vj|k
)

is the conditional
probability density function.

The manipulator operates in the 3D space, so that the
parameters in (4) can be denoted as follows:
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We define theGMMparameters asΘ =
{

�k, �k,
∑

k, Ek
}

where �k, �k,
∑

k, andEk are the prior probability, mean vari-
able, covariance variable, and the cumulated posterior prob-
ability, respectively. According to the Bayes theorem, the
cumulated posterior probability Ek can be expressed as fol-
lows:
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N
∑

j=1
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p(k)p
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Then, the log-likelihood of the GMM model Θ is de-
fined,

Θ =
1
N

N
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j=1
log

(

p
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vj
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(7)

where p
(

vj
)

=
∑K
k=1 p(k)P

(

vj|k
)

. To estimate GMM pa-
rameters Θ =

{

�k, �k,
∑

k, Ek
}

, the expectation maximiza-
tion algorithm described in [32−33] is employed to train the
model parameters, and therefore, we obtain the model pa-
rameters after their convergence. The iteration is completed

when
(t+1)Θ

(t)Θ
≤ 0.01.

2.3. Gaussian Mixture Regression
In fact, the aim of training is to obtain the regression pa-

rameter F from the target dataset. As soon as the GMM ob-
tains the multi-demonstration probability distributions, the
GMR is applied to reconstruct the general form of the dataset.

To estimate the conditional expectation value, the ob-
servation parameters are defined as follows: v =

{

vt, v
}

where v is the spatial variable at the time step vt. Therefore,
the purpose of the regression is to estimate the conditional
expectation of v when the time step vt is firstly initiated.

With regard to the multi-demonstrations obtained from
learning, the GMM Θ encodes the set of trajectories in the
Cartesian space obtained from a robot. The k component of
GMM is defined as follows,

�k =
{

�t,k, � ,k
}

, Σk =
(

Σtt,k Σt ,k
Σt,k

∑

 ,k

)

(8)

where�k andΣk are themean and covariancematrices of
the k-component GMM, respectively. When the time step vt
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is set, the expected distribution v ,k of the k -th component
is expressed as below:

p
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)
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where v̂ ,k and Σ̂ ,k are derived on the basis of the proba-
bility. According to theGMMparametersΘ =
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,
the condition probability density is obtained as follows:
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From (8) and (9), estimation of the condition expectation
s and the covariance matrix are derived as follows:

v̂ =
K
∑

k=1
ℎkv̂ ,k , Σ̂ =

K
∑

k=1
ℎ2kΣ̂ ,k (12)

Therefore, the movement v̂ =
{

v̂t, v̂
}

can be generated
by estimating

{

v̂ , Σ̂
}

at the time step vt.

2.4. Manipulator Kinematics Model
The forward kinematics model of a redundant manipula-

tor is formulated as follows:

r = f (�) (13)

where r ∈ ℝm is the Cartesian space position; and f (⋅) repre-
sents the nonlinear mapping function, which is used to map
the joint space to the Cartesian space. Generally, the joint
angle � of a manipulator is physically constrained; however,
there exists strong nonlinearity at the position level.

The equation (13) is nonlinear and difficult to solve, as
the mapping is not performed in a point-to-point manner.
However, it is possible to obtain the linear mapping between
the desired velocity ṙd ∈ ℝm and the joint velocity q̇ ∈ ℝn.
The time derivative of (13) is defined as below:

J q̇ = ṙd (14)

where J ∈ ℝm×n is the Jacobian matrix. Let the joint con-
straints be described as follows:

�− ≤ � ≤ �+ (15)

�̇− ≤ �̇ ≤ �̇+ (16)

where �− and �+ denote the lower and upper bounds of the
corresponding element of the joint angle vector �, respec-
tively; �̇− and �̇+ denote the lower and upper bounds of the
joint velocity vector, respectively.

Figure 1: Remote center of motion: a robot tool passes
through a small incision rrcm on the obstacle surface. During
the robot manipulation, the tool-tip position needs to follow
the desired reference trajectory, while the tool shaft should
respect the kinematic constraint of the RCM.

Then, we convert the position limit to the velocity limit,
which is consistent with optimization objective function as
follows:

� (�− − �) ≤ �̇ ≤ �
(

�+ − �
)

(17)

where � > 0 is the constant coefficient. Therefore, by com-
bining (16) and (17), the joint limits can be reformulated as
below:

�− ≤ �̇ ≤ �+, �̇ ∈ Ω (18)
�−i = max

{

�̇−i , �
(

�−i − �i
)}

�+i = min
{

�̇+i , �
(

�+i − �i
)}

For the Cartesian space control of a redundant robot, the
inverse kinematics is expressed as follows:

� = f−1 (r) (19)

where f−1 (r) denotes the inverse nonlinear mapping from
the Cartesian space to the joint space. It should be noted
that the joint trajectory � is difficult to be obtained by the in-
verse kinematics provided in (19), due to the high computa-
tional complexity. To address this issue, we propose a novel
dynamic neural network based method aiming to solve the
problem associated with the redundant degree of freedom,
as described in Section. 3.

The nonlinear function f (⋅) corresponding to serial ma-
nipulators can be obtained using theDenavit-Hartenberg con-
vention. In the case of the redundant manipulators control,
there exists n > m. Therefore, the first optimization problem
F1(r(t), �(t)) associated with task tracking can be defined as
follows:

min 1
2
�TW � (20)

s.t. f (�) = rd (21)
�− ≤ � ≤ �+ (22)

where rd is the desired trajectory of a surgical task;W = I .

2.5. Remote Center of Motion
During a surgical tracking task, the surgical tooltip of the

robot needs to pass through the RCM. Figure 1 represents the
assumption that the tool should always be inserted into the
patient’s body at the point rrcm, without affecting the main
surgical task.

For an n-DoF robot manipulator, the mapping from its
joint space to the Cartesian coordinate rn−1 ∈ ℝm of its end-
effector position rn ∈ ℝm can be described by a nonlinear
function as follows:

rn−1 = fn−1(�)
rn = fn(�)

(23)
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To comply with the RCM constraint, rrcm should be al-
ways on the straight line between rn−1 and rn, where rn is
the position of the tooltip and rn−1 is the joint position of
holding the tool. In an actual surgical operation, we seel to
keep the error of RCM equal to zero. The vectors of line
1 and line 2 are defined as follows: ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn = rn − rn−1,
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rrcm = rrcm − rn−1, respectively.

According to the geometric relationship, the relation is
derived as below:

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rrcm × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn = 0 (24)

From the relationship between the RCM error ercm and
the vector projection, the error of RCM can be further rep-
resented as follows:

ercm =
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗r1rrcm × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗rn−1rn

L

=

(

rrcm − rn−1
)

×
(

rn − rn−1
)

L
(25)

where L = ‖

‖

rn − rn−1‖‖ is the length of the last link.
We define the Cartesian coordinates rn−1 = [xn−1, yn−1, zn−1]T ,

rn = [xn, yn, zn]T and rrcm = [xrcm, yrcm, zrcm]T . From (25),
the RCM error model can be expanded as follows:

ercm ⋅ L =

⎡

⎢

⎢

⎢

⎢

⎣

(yn − yn−1)(zn−1 − zrcm) − (yn−1 − yrcm)(zn − zn−1)

(xn−1 − xrcm)(zn − zn−1) − (xn − xn1)(zn−1 − zrcm)

(xn − xn−1)(yn−1 − yrcm) − (xn−1 − xrcm)(yn − yn−1)

⎤

⎥

⎥

⎥

⎥

⎦

(26)

With regard to the RCMconstraint task, we seek tomain-
tain the distance of the RCM error ercm at the minimum
value. Therefore, the second optimization problemF2(ercm(t), �(t))
of the RCM constrains are defined as,

min 1
2
�TW � (27)

s.t. ercm = 0 (28)

where the matrixW = I .
Assumption 2.1: In the actual experiment, the RCM con-

straint rrcm is known or can be identified by optical tracking.

2.6. Problem Reformulation in Terms of
Quadratic Programming

In this subsection, we focus on the kinematic control of
serial manipulators considering forward kinematics, and fo-
cusing on the RCM (28) and joint velocity level constraints
(14). The end task and RCM constraints should be consid-
ered simultaneously. We expected to find the optimization
solution at the velocity level such that the coordinate tooltip
tracking error ‖

‖

fn (�) − rn‖‖
2 asymptotically converges to zero

and the RCM deviation error ‖
‖

ercm‖‖
2 remains constrained

within a predefined area.
Considering the RCM and end task constraints and end

tasks constraints simultaneously, the new optimization prob-
lem based on F1

(

rn(t), �(t)
)

and F2
(

rrcm(t), �(t)
)

is defined
as follows:

min F = F1
(

rn(t), �(t)
)

+ F2
(

rrcm(t), �(t)
)

(29)
s.t. �− ≤ � ≤ �+

�̇− ≤ �̇ ≤ �̇+

However, it is difficult to obtain the optimization solution
for the problem (29), as the objective function is non-convex
with regard to variable �. Therefore, it is necessary to con-
vert this non-convex optimization problem to a convex one.

Firstly, the optimization problem (29) can be the con-
verted as velocity level optimization problem defined as fol-
lows:

1
2
�̇TW �̇ (30)

J �̇ = ṙnd
�− ≤ �̇ ≤ �

Then, the time derivative of the RCM error model in (26)
is reformulated as below:

Jrcmq̇ = ėrcm (31)

where Jrcm ∈ ℝm×n is the Jacobian matrix corresponding to
the RCM error model.

Therefore, the multi-tasks optimization problem can be
reformulated as follows:

min 1
2
�̇TW �̇ (32)

s.t. J �̇ = vd
Jrcm�̇ = 0
�− ≤ �̇ ≤ �+

where vd = ṙnd .
The angle joint drift can occur due to the loss of explicit

information on rn and ercm. Therefore, we design the feed-
back controller to restrict the movement of the robot in terms
of the end effector and RCM velocity constraint in (36) as
follows:

J �̇ = −k1
(

fn (�) − rnd
)

+ ṙnd (33)
Jrcm�̇ = −k2

(

rrcm
)

(34)

where vd = −k1
(

fn (�) − rnd
)

+ ṙnd , vrcm = −k2
(

rrcm
)

.
The optimization problem in (32) is rewritten as,

min 1
2
�̇TW �̇ (35)

s.t. J �̇ = vd
Jrcm�̇ = vrcm
�− ≤ �̇ ≤ �+
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Figure 2: Framework of the proposed RNN.

It should be noted that the multi-tasks have different pri-
orities, which are scaled by corresponding weights. Finally,
the multi-tasks optimization scheme defined in (32) can be
reformulated as below:

min
c0
2
�̇T �̇ +

c1
2
‖

‖

J �̇ − vd‖‖
2 +

c2
2
‖

‖

Jrcm�̇ − vrcm‖‖
2

(36)
s.t. J �̇ = vd

Jrcm�̇ = vrcm
�− ≤ �̇ ≤ �+

where c0 > 0, c1 > 0 and c2 > 0 are the constants used to
balance the different priorities of multi-tasks.

3. Neural Network Design and Stability
Analysis
In this section, the RNN [? ? ] is applied to solve

the multi-tasks optimization problem according to the RCM
constraints defined in (36). We first transfer the quadratic
programming problem formulated in (36) to the equivalent
relationship problem, and then design the RNN to solve it.

3.1. Recurrent neural network for the Quadratic
Programming Problem

To obtain the equivalent relationship problem from (36),
the Lagrange function is constructed as follows:


(

�̇, �1, �2
)

=
c1
2
‖

‖

J �̇ − vd‖‖
2 +

c2
2
‖

‖

Jrcm�̇ − vrcm‖‖
2

c0
2
�̇T �̇ + �T1

(

vd − J �̇
)

+ �T2
(

vrcm−Jrcm�̇
)

(37)

where �1 ∈ ℝm and �2 ∈ ℝm. The gradient of  is defined

as ∇ =
[

)
)�̇ ,

)
)�1
, ))�2

]T
. Therefore, the gradient ∇ can

be derived as follow,

∇ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

)
)�̇ = c1J

T (J �̇ − vd
)

+ c2JTrcm
(

Jrcm�̇ − vrcm
)

+c0�̇ +
(

−JT
)

�1 +
(

−JTrcm
)

�2

)
)�1

= J �̇ − vd

)
)�2

= Jrcm�̇ − vrcm
(38)

According to the Karush–Kuhn–Tucker (KKT) condi-
tion defined in [? ], if ∇ is continuous, the solution of (38)
should satisfy the following requirement,

∇ = 0 (39)

Considering joint angle constraints �̇ ∈ Ω, the equation
)
)�̇ in (38) can be equivalently reformulated as the following
form:

�̇ = PΩ

(

�̇ − )
)�̇

)

(40)

where PΩ (⋅) denotes the projection operator on set Ω.
Then, substituting equation (40) by (39), the nonlinear

equations for the two constraint optimization problems can
be reformulated as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 = −�̇ + PΩ
{

�̇−
(

c0�̇ + c1JT
(

J �̇ − vd
)

+ c2JTrcm
(

Jrcm�̇ − vrcm
)

+
(

−JT
)

�1 +
(

−JTrcm
)

�2
)}

0 = J �̇ − vd

0 = Jrcm�̇ − vrcm
(41)

With regard to the equivalence optimization problem de-
fined in (40), the neuro-dynamics method is applied to solve
the multi-task optimization problem. The RNNs [? ] are
constructed as follows,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇ = −�̇ + PΩ
{

�̇−
(

c0�̇ + c1JT
(

J �̇ − vd
)

+

c2JTrcm
(

Jrcm�̇ − vrcm
)

+
(

−JT
)

�1 +
(

−JTrcm
)

�2
)}

�1 = J �̇ − vd

�2 = Jrcm�̇ − vrcm
(42)

where  is the constant and positive value used to scale the
convergence rate. In the actual experiment,  should be set
within an appropriate range, as setting too large a value may
lead to a slow convergence rate [? ]. The framework of the
proposed RNN is represented in Figure. 2, where the green
line denotes the connection between RCM constraint and
state variable �; the red lines denotes the connection between
end-tasks constraint and state variable �.

3.2. Convergence Analysis
As mentioned above, the quadratic programming prob-

lem defined in (36) is equivalent to the nonlinear equation
in (40). Therefore, in this subsection, we prove the stability
and convergence of the RNN in terms of the quadratic pro-
gramming problem optimization defined in (42). Firstly, we
define the decision variable u =

[

�̇, �1, �2
]T ∈ ℝn+2m.

Theorem 1. If there exists the optimal solution u∗ =
[

�̇∗, �∗1 , �
∗
2
]T ,

starting from any initial state u(0), then ut =
[

�̇, �1, �2
]T

globally converges to the KKT theoretical point u∗.
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Figure 3: Learning tumor resection from human demonstra-
tions.

Figure 4: Gaussian components of GMM.

Proof. The RNN defined in (42) is reformulated using the
state variable u ,

u̇ = −u + PΩ {u − G (u)} (43)

where the projection operator is defined as follows: PΩ ∈

ℝn+2m, G(u) =
[

)
)�̇ ,

)
)�1
, ))�2

]T
.

Based on the equation (39), G(u) can be expressed as
follows:

G (u) =
⎡

⎢

⎢

⎣

G1
J �̇ − vd

Jrcm�̇ − vrcm

⎤

⎥

⎥

⎦

∈ ℝn+2m

whereG1 = c0�̇+c1JT
(

J �̇ − vd
)

+c2JTrcm
(

Jrcm�̇ − vrcm
)

+
(

−JT
)

�1 +
(

−JTrcm
)

�2. The gradient of G (u) is obtained
as following,

∇G (u) =
⎡

⎢

⎢

⎣

)G1
)�̇

)G1
)�1

)G1
)�2

J 0 0
Jrcm 0 0

⎤

⎥

⎥

⎦

(44)

where
)G1
)�̇ = c0In + c1JT J + c2JTrcmJ

)G1
)�1

= −JT

)G1
)�2

= −JTrcm

Evidently, ∇G (u) exists, and it can be concluded that
G (u) is continuously differentiated. Moreover, we can fur-
ther obtain the following:

1
2

(

∇G (u) + ∇GT (u)
)

=

⎡

⎢

⎢

⎢

⎢

⎣

c0In + c1JT J + c2JTrcmJ 0 0

0 0 0

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0

It can be further concluded that the gradientmatrix∇G (u)
is a semi-definitematrix. Therefore, the variablematrixG (u)
is monotone. The proof is completed.

RCM: the robot tool passes through a small incision (RCM)
on the obstacle surface. During the robot manipulation, the
tooltip position r1 is required to follow the desired reference
trajectory, while the tool shaft should comply with the kine-
matic constraint on the obstacle surface.

Figure 5: Regression results corresponding to the nonlinear
item F .

Figure 6: Motion trajectories obtained using the KUKA simu-
lator.

Figure 7: Motion trajectories.

Figure 8: RNN optimization results obtained using the skills
derived from learning.

4. Experiment
The parameters of RNN is chosen as: c0 = 0.1, c1 = 20,

c2 = 20,  = 0.01, k1 = 7, k2 = 7. In order to evaluate
the proposed control scheme, comparison experiments are
carried out. The magnitude of the Cartesian position error
Eend and the RCM constraint error ‖Ercm‖ are recorded for
analysis. For the null space based solution, the parameters
can be found in our previous works [? ].

Firstly, there are six samples of tumor resection collect-
ing from human demonstrations, and the learning results are
shown in Figure. 3–Figure. 5. Then, as it is shown in Fig-
ure. 6, a demonstration using the KUKA simulator is per-
formed to check the feasibility of the proposed optimization
framework.

To consider somemethods described in the relatedworks,
the experiment performance are displayed in Figure 13. The
detailed description of the configuration and development of
the system can be found in our previous works [? ].

The operative procedure is organized as follows:

1. The subject uses the hands-on control tomove the robot
to perform the multiple demonstrated surgical tasks;

2. The skill learning is activated to learn surgical opera-
tions;

3. The robot autonomously tracks the set trajectory rd
using different optimization solutions to reproduce the
learned surgical tasks.

The approaches described in the related works are also
implemented and applied to the same trajectory for the pur-
pose of comparison. Figures 7 and 8 represent the motion
trajectories and the Cartesian trajectory of the real experi-
ments, respectively. It should be noted that the real trajectory
converges quickly to the desired trajectory. Figures 9 and 10
represent the comparison of the performance in terms of the
tracking error and RCM error estimated real time during the
tracking task. In Figure. 9, it can be seen that all errors of
the end effector are constrained within the acceptable error
range of 4 mm; however, it should be outlined that the pro-
posed RNN achieves the lowest error within 4 mm compared
with other considered approaches. Figure 10 demonstrates
that the proposed RNN has the appropriate performance to
ensure compliance with the RCM constraint within 3 mm.
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Figure 9: Results of the comparative experiments: the tracking
error of the end effector.

Figure 10: Results of the comparison experiments: distribution
of the RCM constraint error.

Figure 11: Joint position of the manipulator.

Figure 12: Joint velocity of manipulator.

The joint position and joint velocity are represented in Fig-
ures 11 and 12, respectively.

5. Discussion and Conclusion
In this paper, we present a novel optimization control

method based on RNN for a manipulator in the autonomous
laparoscopic robotic surgery. It can be used to enable con-
ductingmultiple tasks simultaneously, including surgical op-
eration tracking, controlling RCM, and joint limits, etc.. The
robot manipulator is developed in such a way to learn tumor
resection skills in the Cartesian space from human demon-
strations. To control the hierarchical tasks efficiently using
the learning skills to comply with RCM constraint, the hi-
erarchical operational space formulation corresponding to a
surgical task is investigated. The new optimization problem
is formulated as the real-time resolution for the given tasks.
We observe that it achieves the acceptable convergence per-
formance even in the case of a random initial position. Fi-
nally, an experimental evaluation has been performed to test
the proposed method on the virtual surgical tasks related to
a kidney phantom. In future work, in order to improve the
robustness and accuracy, we will consider the global manip-
ulability optimization combinedwith the RCMconstraint for
the surgical robot.

Figure 13: Experimental setup scene: 1) hands-on control to
enable the robot manipulator to learn how to remove tumors
by demonstrations; 2) autonomous tracking is activated to run
the application.
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