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This study investigates the complex interplay between the cardiac and respiratory
systems in 268 healthy neonates born between 35 and 40 weeks of gestation. The
aim is to provide a comprehensive description of the developing cardiorespiratory
information transfer mechanisms as a function of gestational age (GA). This report
proposes an extension of the traditional Transfer Entropy measure (TE), which employs
multiple lagged versions of the time series of the intervals between two successive
R waves of the QRS signal on the electrocardiogram (RR series) and respiration
time series (RESP). The method aims to quantify the instantaneous and delayed
effects between the two processes within a fine-grained time scale. Firstly, lagged
TE was validated on a simulated dataset. Subsequently, lagged TE was employed on
newborn cardiorespiratory data. Results indicate a progressive increase in information
transfer as a function of gestational age, as well as significant differences in terms
of instantaneous and delayed interactions between the cardiac and the respiratory
system when comparing the two TE directionalities (RR→RESP vs. RESP→RR). The
proposed investigation addresses the role of the different autonomic nervous system
(ANS) branches involved in the cardiorespiratory system, since the sympathetic and
parasympathetic branches operate at different time scales. Our results allow to infer
that the two TE directionalities are uniquely and differently modulated by both branches
of the ANS. TE adds an original quantitative tool to understanding cardiorespiratory
imbalance in early infancy.

Keywords: Transfer Entropy, cardiorespiratory regulation, multivariate modeling, sleep regulation, autonomic
nervous system, prematurity

INTRODUCTION

Premature birth and related complications are the leading cause of death under 5 years of age
across the world (Liu et al., 2016). According to the March of Dimes, in the United States, the
percentage rate of preterm birth in 2019 was 10.00%, marking the third consecutive year of
increase after 7 years of decline (March of Dimes, 2019). Epidemiological studies have shown that
late preterm [LPT: 340/7–366/7 weeks of gestational age (GA)] infants have significantly more
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medical problems, resulting in markedly increased hospital
costs compared with full term infants (FT: 390/7–406/7 GA)
(Wang et al., 2004). Data from a population study from 2006
to 2014 in the United States showed that LPT birth rate
was 6%, while early term (ET: 370/7–386/7 GA) rate was
26.9% (Richards et al., 2016). Late preterm and early term
birth are associated with adverse neonatal outcomes, such as
higher incidence of respiratory distress syndrome, temperature
instability, hypoglycemia, hyperbilirubinemia, apnea, feeding
problems, as well as higher rates of re-hospitalization and a
two-fold increase in Sudden Infant Death Syndrome (SIDS)
(Thompson and Mitchell, 2006; Loftin et al., 2010; Adamkin,
2013). Limited sleep state regulation, frequent episodes of apneas,
periodic breathing, altered pulmonary function, bradycardia, and
diminished autonomic control of heart rate (HR) have been
documented in these populations (Hunt, 2006; Scher et al., 2011;
McEvoy et al., 2013; Lucchini et al., 2018).

Starting from a concept introduced by the new field of
Network Physiology, the human organism can be viewed as
a network of integrated and interacting physiological systems
(Ivanov and Bartsch, 2014; Ivanov et al., 2016). Thus, given
the described adverse conditions related to imbalances of both
cardiac and respiratory systems, investigation of risks associated
with late prematurity should include a focus on the dynamic
interaction in the cardiorespiratory network. Regulation and
autonomic control of respiratory and cardiovascular interactions
are crucial for the maintenance of homeostasis during sleep
(Harper et al., 1988). In adults, many studies have shown evidence
that cardiorespiratory imbalance is associated with obstructive
sleep apnea and heart failure, resulting in higher sympathetic
tone and potentially ultimately triggering life-threatening events
(Harper et al., 2012). Similarly, it has been reported that nocturnal
perturbations of cardiac and respiratory systems in newborns
play a crucial contributory role in SIDS (Schechtman et al.,
1991). Despite the high clinical relevance there is a paucity of
research data about the mechanisms related to cardiorespiratory
interactions early in life when the primary control systems are
still developing.

Many approaches have been proposed in the past to address
the complex interaction of the cardiorespiratory system, from
simple time and frequency domain measures (Horne, 2014) to
more complex ones, such as those based on information theory
(Frasch et al., 2007; Bartsch et al., 2012; Penzel et al., 2016). These,
in particular Transfer Entropy (TE), are progressively gaining
interest as model-free approaches which quantify directional
interaction between subsystems and are thus sensitive to both
linear and non-linear interactions. In prior publications the
existence of several co-existing forms of cardio-respiratory
coupling (Bartsch et al., 2014) has been shown, and our group has
also addressed this topic analyzing cardiorespiratory interaction
with regards to entropy and phase locking (Lucchini et al., 2017,
2018). In the current report, we propose a new application of
TE measure to provide an estimation of information transfer
between the cardiac and the respiratory system at various lags.
The focus on the timing of such interactions will augment
descriptive approaches for assessing cardiorespiratory interplay
at various time scales.

Specifically, we are interested in characterizing such system
crosstalk in a population of LPT, ET, and FT infants. This
investigation aims to provide insight into developing control
systems involved in the cardiorespiratory regulation and how
prematurity affects this complex interaction. This could inform
interventions aimed at reducing risk for morbidities and
mortality in this population.

MATERIALS AND METHODS

Lagged Transfer Entropy
For our proposed framework, we modeled a dynamical system
composed of two interacting sub-systems (M = 2), whose visited
states can be represented by discrete-time stationary stochastic
processes, namely X and Y. In this context, TE aims at evaluating
the information transfer by the past states of the process X
about the present of the process Y, that is not already provided
by the past states of Y (directionality X→Y) and vice versa
(directionality X→Y) (Schreiber, 2000).

We define xn, yn as the stochastic variables representing the
present states of the processes X and Y at a given time point n,
with n < N and N = length of the signals, and x1:n−1, y1:n−1 the
vectors of their respective past states.

Transfer Entropy is defined accordingly to Eq. 1:

TEX→Y =
∑

p
(
y1:n, x1:n−1

)
log

p
(
yn|x1:n−1, y1:n−1

)
p
(
yn|y1:n−1

) (1)

where the sum incorporates all states visited by the subsystems.
Similarly, the formulation of TE can be expressed in terms of

the difference between two Conditional Entropy (CE) terms as
shown in Eq. 2:

TEX→Y = H
(
yn|y1:n−1

)
−H

(
yn|x1:n−1, y1:n−1

)
(2)

The previously reported TE formulations encompassed an
aggregate measure of information transfer which is not
candidate-specific, where candidate refers to one of the elements
contained in the vectors employed to reconstruct the past of
processes X or Y at the instant n defined as x1:n−1 and y1:n−1.

In this work, to disambiguate the contribution of different
candidates toward the estimate of TE, we employed the approach
described in Faes et al. (2014). Given the TE formulation
expressed in Eq. 2, we computed TE based on a sequential
procedure for non-uniform conditioning, where the conditioning
vector is updated progressively by selecting the candidate which
reduced the most uncertainty in explaining the target variable.
The initial set of candidates was defined including a predefined
maximum number of past states, i.e., � = {Xn−1, Xn−2,..,
Xn−Lmax, Yn−1, Yn−2,.., Yn−Lmax}. In this work, the maximum
number of candidates (Lmax) was set equal to 10. Candidates were
progressively selected among the elements of � as described in
Faes et al. (2014). Once the selection procedure has terminated,
the vectors of candidates for both X and Y processes were
produced and defined as Vk = [Vk

X , Vk
Y ]. Thus, they were

suitable to be employed as conditioning vectors for further TE
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estimations. Given the reported notation, Eq. 2 can be rewritten
employing conditioning vector formulation as reported in Eq. 3:

TEX→Y = H
(
yn, VY

k
)
−H

(
VY
k
)
−H

(
yn, Vk

)
+H

(
Vk
)

(3)

The final step to TE estimation relied on the computation
of probability density functions to approximate the
interrelationship between X and Y, based uniquely on single
realizations of the two processes. The practical estimation of
terms in Eq. 3 was based on the previously defined embedding
vector (Vk) and it employed a Nearest Neighbor (NN) estimator.
The combination of non-uniform embedding and NN estimator
(NN NUE) has been reported to be optimal for TE estimation
(Kugiumtzis, 2013). Furthermore, the statistical significance of
computed TE was assessed using surrogate data implemented by
time shift procedure. In this analysis, the number of employed
surrogate series was equal to 100, with a maximum allowed time
shift of 20 samples. The significance threshold was set above the
95th percentile of the surrogate series distribution.

Transfer Entropy has been usually employed for a global
measure of information transfer between time series. This work
proposes a novel approach toward the quantification of the
instantaneous and delayed effects among two interacting systems
based on TE notion. This application lies its foundations on the
previously described TE implementation, yet it considers several
lagged versions of the original series (Pini et al., 2019).

In order to quantify TEX→Y at a lag value (τ) equal to one,
the target series was shifted forward of one sample so that x(n)
was aligned with y(n–1). The lagged version of TE proposed in
this approach aims at quantifying the information provided by
the past of X on the shifted portion of the process Y, that is not
already provided by the past of Y as reported in Eq. 4:

TEX→Y

=

∑
p
(
y1−τ:n−τ, x1:n−1

)
log

p
(
yn−τ|x1:n−1, y1−τ:n−1−τ

)
p
(
yn−τ|y1−τ:n−1−τ

) (4)

The underlying idea is to quantify the source series effects on
the target and the instantaneous and delayed effects between
the two processes. The previously described computational
implementations for TE are again employed for this proposed
lagged version. For this analysis the maximum lag between
X and Y series was set to 15. The statistical significance of
TE estimations for each lag was tested with surrogate data, as
previously described.

Validation
To provide validation of the proposed methodology, lagged TE
was computed based on a dynamical system composed by M = 2
stochastic dynamic subsystems, namely X and Y, defined by Eq. 5:

Xn = a1Xn−1 + a2Xn−2 + 0.07Yn−1 + Un

Yn = C1Xn−1 + C2Xn−2 + C3Xn−5 + Vn (5)

where Un and Vn are independent white noises with zero mean
and unitary variance. The autoregressive parameters a1, a2, C1,
C2, and C3 were set as described in Faes et al. (2014). Process X

simulates a self-sustained rhythm with a characteristic frequency
centered at f = 0.1 Hz. Parameters and delay settings were chosen
to simulate two different types of interaction: one which is, lasting
and strong taking into consideration the directionality X→Y,
the other which is transient and weak for Y→X. The simulated
series length was set to N = 300 points, and the total number
of generated series was equal to 100 for each lag, ranging from
the unlagged version (lag = 0) of the series to their maximum
lagged version (lag = 15). As previously described in the Methods
section, the statistical significance of TE estimations for each
lag was tested with surrogate data. Two one-way ANOVAs were
performed to test the interaction between the fixed factor lag and
each dependent variable (TEX→Y or TEY→X).

Experimental Protocol and Data
Preprocessing
For this analysis our dataset included 268 infants born at the
Morgan Stanley Children’s Hospital of New York between 350/7

and 406/7 weeks of GA. No participating newborn was admitted
to the Neonatal Intensive Care Unit, and there was no evidence
of major illness, genetic disorders. Also, there was no past/present
medicated/non-medicated psychiatric complaints in the mothers.
A minimum Apgar score of 8 after 5 min of life was required.
Mothers signed informed consent forms prior to enrollment in
the study. The Institutional Review Boards of the New York State
Psychiatric Institute and Columbia University Medical Center
approved all consent and data acquisition procedures.

Subjects who met inclusion criteria were tested 12–84 h after
birth (mean and standard deviation of hours of life = 48 ± 12 h).
Infants were grouped based on GA: LPT (N = 67), ET (N = 91),
and FT (N = 110). Within ∼30 min after feeding, infants were
put supine to sleep and data acquisition lasted 10 min. ECG
and respiration signals were acquired at 500 Hz and 200 Hz,
respectively. ECG was recorded with three leads, placed on the
infant’s chest (left abdomen, left and right scapula) and the
signal was amplified and recorded using the DATAQ Instruments
ECG system (Medelex, New York City, NY, United States).
A respiratory inductance belt (Ambulatory Monitoring Inc.,
Ardsley, NY, United States) was placed around the infant’s
abdomen to measure the respiration signal. Sleep states were
classified into active sleep (AS) and quiet sleep (QS) based on
respiratory variability and confirmed by behavioral codes entered
throughout the study to determine when infants were awake,
crying, or fussy (Stefanski et al., 1984; Isler et al., 2016).

The R peaks were detected on the ECG with proprietary
software (Gmark, Ledano Solutions) based on the Pan–Tompkins
algorithm and subsequently checked by visual inspection. The
respiration signal was bandpass filtered (0.05–3.5 Hz). The
thresholds of acceptance for RR interval were set as 0.3–0.667 s,
with an absolute variation between consecutive RR intervals of
10%, while for respiration thresholds were 0.5–2.5 s (absolute
change 40%). Segments with more than 5% rejected samples were
discarded from further analysis. The RR series was then defined
so that RR(n), was the time interval between the n-th R peak
and the successive one at a time (n + 1)-th. Similarly, the n-
th sample of resampled respiration series RESP(n) was obtained
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by resampling the original respiration series at the onset of the
n-th R peak which coincides with the time previously defined for
RR(n). Within the same sleep state, segments of 300 consecutive
RR intervals (RR) and 300 respiration samples (RESP) were
identified. The resulting series, RR(n) and RESP(n) with n = 1,
. . ., 300, were normalized to zero mean and unit variance to be
employed for further analysis. The segments length was chosen
based on previous studies, reporting 300 samples as appropriate
for a reliable TE estimation as fulfilling the requirement of
stationarity (Faes et al., 2014; Lucchini et al., 2017). The described
preprocessing pipeline was necessary to avoid potential bias in
the further analysis. Specifically, the effect of non-stationarities
over entropy measures and estimators due to artifacts has been
extensively shown in Xiong et al. (2017).

The total number of analyzed segments was 661, 392 in AS
and 269 in QS. The MuTE toolbox was employed for computing
Transfer Entropy (Montalto et al., 2014).

Two-way ANOVAs tested the effect of fixed factors lag (0:15)
and GA (LPT, ET, FT) on TERR→RESP and TERESP→RR for
each sleep state. Sex, mode of delivery (MoD), and hours of
life (HoL) were included in the statistical model as covariates.
Significance for fixed factors as well as their interactions were
tested. A series of post hoc tests were performed: simple main
effects and specific group differences. Statistical analysis was
conducted with IBM SPSS Statistics for Windows, Version 25.0.
Armonk, NY: IBM Corp.

RESULTS

Validation Data
The top panel of Figure 1 shows TEX→Y as a function of lag,
computed on a simulated dataset. The behavior of TEX→Y is in
accordance with the simulated interaction between subsystems X
and Y. Specifically, TEX→Y exhibits a strong and stable influence
of process X over process Y for lags 0 to 5, where the information
transfer between the two series is expected to be maximum
given that Xn−1, Xn−2, and Xn−5 are effectively contributing
to modulate the target series Y. The rapid reduction in TE
at lags equal to 6 and 9 are consistent with the set delays.
Specifically, at lag 6, the past state Xn−5 of process X cannot be
included in the conditioning vector anymore, given the chosen
maximum candidate delay L = 10. Accordingly, a net decrease in
TE is noticed when passing from lag = 5 to lag = 6. Analogous
reasoning applies when moving from lag = 8 to lag = 9. Lastly,
from lag = 10 on, the mutual influence in the directionality
X→Y becomes negligible given the loss of interaction between
the two sub-systems, thus resulting in TE estimates close to zero.
Statistical analysis reveals a significant effect of lag over TEX→Y
(p-value < 0.001). Bonferroni post hoc tests showed significant
differences of lag 0–5 vs. lag 6–15, lag 11–15 vs. lag 0–10, and lags
6, 7, 8, 9, 10 are significantly different from each other.

Distribution of selected RR candidates included in the
conditioning vector Vk

X referring to TE at lag = 0 is displayed
in the top panel of Figure 2. The frequency of selected candidates
is in accordance with the simulated interaction delay between the
two series, namely Xn−1, Xn−2, and Xn−5.

FIGURE 1 | TE estimates for the directionality X→Y (top) and Y→X (bottom)
computed on simulate dataset. TEX→Y exhibit a marked influence as lags are
progressively increasing. On the contrary, no influence of lags over TEY→X is
detected.

With regard to TEY→X , values are stable across all the
lags and noticeable lower when compared with estimates for
TEX→Y , as presented in the bottom panel of Figure 1. The
absence of any TEY→X significant differences by lags reflects
the weak and transient influence of the information transfer for
this directionality. Uniformly, only Yn−1 results the preferred
candidate as it effectively contributing to modulate the target
series X as a standalone past sample of series Y, as shown in the
bottom panel of Figure 2.

Cardiorespiratory Data
Using the same approach described in see section “Validation”
for the simulated dataset, TE estimations across lag and GA, as
well as RR and RESP candidate distributions were computed.
Additionally, the statistical significance of TE estimations for
each lag was tested employing surrogate data.

The subsystems’ interaction for the directionality RR→RESP
exhibited a long-lasting and steady effect of cardiac system
modulation over the respiratory system, as shown in the top two
panels of Figure 3. No differences were found when comparing
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FIGURE 2 | X (top) and Y (bottom) series candidate distributions employed
for TE computations considering lag = 0. RR series candidate distribution
shows a proper selection of the simulated delays. On the other hand, RESP
candidate distribution reflects the weak modulation effect of series Y on X.

TERR→RESP across lags in the interval 0–9, consistently for both
QS and AS. Analogous behavior was displayed in the interval
10–15. In contrast, post hoc tests revealed significant differences
comparing each lag in the interval 0–9 vs. 10–15. Significant
GA group differences were found when considering estimates
of TERR→RESP in AS only. Specifically, we observed an average
increase in information flow across GA. This was confirmed by
the post hoc test comparing LPT vs. ET (p < 0.001), LPT vs. FT
(p < 0.001), and ET vs. FT (p < 0.001). RR candidates employed
in estimating TERR→RESP at lag = 0 exhibit a similar frequency of
selection for both QS and AS. Moreover, when investigating the
role of GA for candidate frequency of selection, no differences are
found across age.

In contrast to what previously reported for TERR→RESP,
TERESP→RR exhibited, the current study demonstrated a decrease
in information transfer from RESP to RR as lags were
progressively increasing in both QS and AS states. As confirmed
by statistical analysis and shown in the two bottom panels of
Figure 3, no significant differences among lags were found for

lags >3. Given this finding we limited the analysis to a restricted
poll of lags, specifically 0–3, with the aim of avoiding over-
representing similar class distributions in the successive analysis.
The statistical analysis performed on the subgroups of lags for
TERESP→RR showed a significant effect of lag as a fixed factor.
Specifically, each lag was consistently different from each other
for both QS and AS. Analyses among GA groups report no
differences for TERESP→RR in AS. Significant differences were
evident in QS. A summary of statistical results is reported in
Table 1. The candidate analysis reported a behavior characterized
by a prevalent selection of Yn−1 and Yn−2 candidates for both
sleep states as displayed in Figure 4.

Given the differences of TERR→RESP and TERESP→RR as a
function of GA, we decided to investigate the role of breathing
rate for our model. The rationale for investigating breathing
frequency was based on previous studies showing differences
by sleep state (higher breathing rate in AS) but not by GA
(Lucchini et al., 2018). Thus, we hypothesized that breathing
rate is partly mediating the interaction between sleep states
and TE.

In this analysis, we first tested (Sobel test) a model having
sleep states as the independent variable (IV), TE as the dependent
variable (DV) and breathing frequency as a mediator (M). Partial
mediation analysis quantifies the decrease in correlation strength
among two factors, once a specific mediator is introduced in
the model. Specifically, when considering TERR→RESP as DV, the
correlation between IV and DV was significant (p-value < 0.001)
and the mediation effect of breathing frequency was equal to
11%, similar results were obtained considering TERESP→RR as
DV (p-value = 0.001 and 14%). On the other hand, when testing
GA as the DV, no significant mediation was reported in either
TE directionality.

DISCUSSION

The goal of this study was to analyze the maturation of
the cardiorespiratory networks in terms of information flow
dynamics in a population of newborns during sleep. Gaining
insight on such interactions attains the potential for assessing
individual differences in neonatal control mechanisms and
vulnerability for the reported higher morbidity and mortality
rates in LPT and ET newborns (Richards et al., 2016).
Investigation of the neurophysiological mechanisms responsible
for cardiorespiratory regulation is challenging, due to their
intrinsic complexity and the requirement to employ non-
invasive monitoring. Quantitative analysis of cardiorespiratory
interactions in the newborn nursery represents a valuable
investigation tool. Moreover, the derived parameters provide
a window of opportunity to observe non-invasively the
interaction between sympathetic and parasympathetic nervous
systems and their capability to timely respond to internal and
external challenges.

In this study, we propose TE as an optimal method to
investigate the above-mentioned interaction (Kugiumtzis, 2013).
The advantages of the proposed approach are multiple. Firstly,
it is model-free, i.e., it does not require any a priori assumption
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FIGURE 3 | TE estimates computed for cardiorespiratory dataset considering the three GA groups: LPT, ET, and FT, separately for QS and AS. The behavior of
TERR→RESP resembles a longer and stable effect of RR modulation over RESP. On the contrary, TERESP→RR exhibit a transient and rapidly decreasing interaction
between the subsystems.

regarding the systems generating the observed data. This is
crucial in the neonatal context, given that control systems at birth
are still developing and the typical cardiorespiratory models for
adults thus cannot be applied. Even in the context of integrated
system physiology in adult subjects, general models cannot be
directly employed but often need to be modified and adapted
in accordance with the observed dynamics. Secondly, TE is a

measure encompassing the dynamics of information transfer
and thus it provides an indication of directionality (Schreiber,
2000). This is particularly important as it is well documented
that respiratory and cardiovascular rhythms influence each other
due to central as well as peripheral nervous mechanisms of
interaction (Bartsch et al., 2015). Despite these two important
advantages there is one intrinsic limitation of traditional TE
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TABLE 1 | Results of two-way ANOVA tests on cardiorespiratory data.

Directionality Fixed factor Quiet sleep Active sleep

RR→RESP Lag <0.001 <0.001

GA 0.120 <0.001

Lag*GA 1.000 0.897

RESP→RR Lag <0.001 <0.001

GA 0.050 0.183

Lag*GA 0.627 0.953

techniques, namely the reliance on a single global measure
of information. Thus, TE lacks information about different
time scales of information flow across subsystems. Gaining an
understanding of the different time scales at which the vagal and
sympathetic mechanisms operate would augment the description
of ANS modulating action over cardiorespiratory interaction
(Faes et al., 2014).

To specifically address this issue, this paper proposes an
extension of traditional TE formulation. It complements the
estimates of magnitude and directionality of information flow
with that of timing between the two coupled processes.
Accordingly, TE was calculated on several lagged versions of the
original series.

To provide validation for the proposed methodology,
computation of lagged TE was performed based on a dynamical
system composed of two stochastic subsystems simulating two
different types of interaction: a lasting and strong one considering
the directionality X→Y, paired with a transient and weak one
for Y→X. The validation procedure performed on simulated
data confirmed the ability of lagged TE to track the information
transfer at different time scales.

The resulting application of lagged TE on neonatal
cardiorespiratory data showed two distinct interaction profiles
as a function of directionality: a fast and quickly decaying
information transfer from RESP to RR, and a slower but more
stable transfer from RR to RESP. Convergent findings with
regard to the directionality from RESP to RR were obtained
by Faes et al. (2014), showing that the fast information flow
from breathing to HR is associated with the respiratory sinus
arrhythmia. Furthermore, the timing of activation of the
information flow profile is comparable to the known latencies of
activation for the sympathetic and parasympathetic arms of the
nervous system. Specifically, the sympathetic branch intervenes
on a slower time scale but its effect on the target system lasts
longer whereas the parasympathetic has a punctate, yet rapidly
vanishing action. Thus, the reported lagged TE dynamics might
reflect that information transfer directionalities are driven
by different autonomic branches of the ANS (Hoyer et al.,
2005). This is relevant in the context of possible approaches for
quantification of sympathetic activation. A state of sympathetic
hyperactivity has been in fact reported as associated with an
increase in cardiovascular morbidity and mortality (Brook and
Julius, 2000; Nakamura et al., 2016). Thus, while several heart
rate variability parameters can assess parasympathetic activity,
consensus about quantification of sympathetic nervous system
activity is still pending.

FIGURE 4 | RR (top two panels) and RESP (bottom two panels) series
candidate distributions employed for TE computations of cardiorespiratory
data. RR candidates are selected uniformly among all possible candidates. On
the opposite considering the respiratory signal, the first two possible RESP
candidates are selected with higher probability.
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Regarding the differences as a function of GA, we reported
a significant decrease of information flow in LPT from RESP to
RR in quiet sleep, and for LPT and ET a reduced information
flow from RR to RESP in active sleep. Interestingly, there was
no difference in the candidates selected for the reconstruction
of the past states. In line with our findings, previous work
addressing other forms of cardiorespiratory interaction in
newborn population highlighted that the direction of coupling
between cardiovascular and respiratory systems varies with age
over the first 6 months of life, with a tendency to change
from a nearly symmetric bidirectional interaction to primarily
unidirectional mode from RESP to RR (Rosenblum et al., 2002;
Lucchini et al., 2016). These findings strengthen the assumption
that GA-related differences are due to intrinsic differences in the
interactions between subsystems, given the reported candidate
selection employed for the reconstruction of RR series past
vector. The reported GA-related results constitute a plausible
explanation for cardiorespiratory differences in the newborn
period and might pave the way to a possible explanation for the
increased risk of LPT and ET populations.

To extend these findings, we explored the role of breathing
rate on the modulation of the information flow. Our partial
correlation model confirmed the role of breathing rate as a
mediator for the interaction between sleep states and TE, but
not between GA and TE. These results mirror our previous
findings regarding cardiorespiratory interactions. We previously
reported the absence of a change in breathing frequency
as a function of GA. However, a significant modification
of directionality of the cardiorespiratory coupling had been
observed (Lucchini et al., 2018).

One limitation of the presented investigation is the absence
of arterial blood pressure (ABP) included in the model.
The availability of this additional signal would lead to a
more comprehensive investigation of the complex physiological
interactions of the cardiovascular systems as a function of state
and age (Xiao et al., 2005). Lastly, larger scale studies are
needed to investigate neonatal ANS regulation in the context of
diverse factors, e.g., ethnicity, socio-economic status, maternal
conditions, psychosocial stressors.

In conclusion, the utilization of a lagged version of TE
might lead to a novel approach to investigate physiologic
networks, selectively assessing horizontal information transfer
at different time scales. This particular investigation of the
interaction between the cardiac and respiratory systems aimed
at characterizing the different regulatory profiles of the
two branches of the ANS and at ultimately providing an
indication of altered patterns of physiological behavior. Findings
presented in this paper are convergent with previous published
findings (Frasch et al., 2007; Faes et al., 2014). The novel

contribution of this study is the characterization of the
dynamics of the cardiorespiratory network across sleep states
and gestational ages. Ultimately, application of TE in assessment
of network physiology affords an opportunity for early risk
stratification in a high risk population (Bartsch et al., 2015).
In the near future, we envision the application of TE
methodology for the characterization of other interacting
subsystems such as brain-brain and brain-heart to provide
a more comprehensive picture of the complex mechanisms
characterizing neonatal development.
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