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Abstract

Bažant’s microprestress theory relates the logarithmic basic creep of concrete to power-law relax-
ation of heterogeneous eigenstresses at the nanoscale. However, the link between material chemistry,
nanostructure, and microprestress relaxation, is not understood. To approach this, we use a simple
model of harmonically interacting, packed nanoparticles, relaxing with and without external stress.
Microprestresses are related to per-particle virial stress heterogeneities. Simulation results show that
logarithmic creep and power-law microprestress relaxation emerge from generic deformation kinetics in
disordered systems, which can occur in various materials and at various scales. When the interactions
are matched to some mechanical properties of C–S–H at the 100 nm scale, the predicted micropre-
stresses have similar magnitude as in Bažant’s theory. The ability of our simulations to quantitatively
link stress relaxation with nanostructure and chemistry-dependent interactions, provides a pathway to
better characterise, extrapolate, and even engineer the creep behaviour of traditional and new concretes.

Keywords: Creep, Calcium-Silicate-Hydrate (C–S–H), Microprestress Theory, Nanoscale Simulation.

1. Introduction

The long-term basic creep of concrete implies a logarithmic increase of deformations during

the service life of structures [1]. This has sometimes a beneficial effect, such as to accommodate

imposed strain, e.g. due to humidity cycles, thermal gradients, or ground settlements. However,

in most cases, creep creates problems such as loss of cable tension in prestressed concrete or

even structural collapse [2]. Current objectives are to design concrete mixes with pre-established
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creep behaviours and to extrapolate long-term creep performance from relatively short-term

experiments, to help quality control, monitoring, and management of infrastructure [1]. In both

cases, the underlying scientific challenge is to understand the microscopic mechanisms that govern

the logarithmic creep of concrete, and how these are determined by the chemical composition

and microstructure of the material.

Bazant et al. [3] proposed the microprestress relaxation theory as a mechanistic foundation

to model the logarithmic creep of concrete. The theory starts with two assumptions: (1) creep

strain originates from shear slips in water-rich layers at the nanometre scale, also called creep

sites, that are randomly oriented within calcium-silicate-hydrate (C–S–H); (2) C–S–H features

a spatially heterogeneous field of self-equilibrated (eigen)stress, originating when the material

forms from chemical and physical processes such as disjoining and cristallisation pressures. The

eigenstresses put some creep sites under local tensile stress and others under compression. Sites

under tension are more likely to slip under shear and, when this happens, the local rearrangement

triggers a broader relaxation of eigenstress across the material. In turn, this relaxation reduces

the local tensile stress at other sites, decreasing the rate of subsequent slips, and thus the creep

rate. All these assumptions align with traditional [4] and modern understanding of shear slips

in C–S–H at the molecular scale [5–7], and led to models that can fit the experimental results.

However, the mechanism of microprestress relaxation has neither been directly observed nor

simulated to date.

Recent studies have started to investigate the mechanisms of logarithmic creep in C–S–H

at the nanoscale. Nanoindentation experiments have shown that, at length scales below the

micrometre, logarithmic creep emerges already over short time scales [8]. The result has been

interpreted as viscous compaction of a nanogranular solid, using the framework of free volume

theory [9]. Molecular and nanoparticle simulations have predicted logarithmic creep to emerge

from plastic deformations in disordered structures [7, 10–13]. However, stress heterogeneities have

not been analysed in those simulations, nor they can be accessed in nanoindentation experiments.
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These recent insights are still to be reconciled with the microprestress relaxation theory.

Here we present a simple model to simulate microprestress relaxation in disordered porous

materials. The solid is discretised using particles that interact via a spherical harmonic potential,

here parametrised to reproduce the elastic properties of C–S–H at the 100 nm scale. Micropre-

stresses are expressed as functions of per-particle virial stress heterogeneities. Simulation results

predict logarithmic creep and power-law relaxation of microprestress, confirming Bažant et al.’s

theory and linking it quantitatively to the nanostructure and, via the interaction potential, to

the chemical composition of the material.

2. Methodology

2.1. Elements of microprestress relaxation theory

The microprestress theory is now summarised. Let us consider a disordered material featuring

a heterogeneous field of self equilibrated eigenstress, Σ(r), where r is the position vector. Bažant

et al. identified the microprestress with the average tensile eigenstress, S = 1
V +

∫
V + Σ(r)dV , where

V + is the portion of material’s volume under tensile eigenstress. The rationale to disregard local

compressive stresses is that they increase the activation energy for shear slips [6], thus reducing

exponentially the probability that such slips could originate at sites under compression. The

creep rate is ε̇ = τ/η(S) where τ is the external stress driving creep and η(S) is the viscosity of

the material. Bažant et al. proposed an expression for η(S) based on self-similarity and recently

confirmed by simulation [6]: 1
η(S)

= cpSp−1, where c and p are constants. A last equation governs

the temporal relaxation of S:

Ṡ

Cs
+

S

η(S)
= 0 (1)

Cs is an elastic constant. Eq. (1) assumes randomly oriented planes whose slip rate (second

term) equals the rate at which stress relaxation causes deformation at other planes via the

elastic medium (first term). The solution of Eq. (1) is a power law:

S = S0

(
t

t0

)−α

(2)
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with α = 1
p−1

and S0 being S at the arbitrary time t0. Bažant et al. originally proposed p = 2,

thus α = 1, but any α > 0 would lead to logarithmic creep when substituting S(t) into η(S) and

then into ε̇.

Hereafter, to compute strain rate and eigenstress relaxation, we develop a simple model of

dense amorphous material, impose a field of eigenstress, and then perform accelerated creep

simulations under constant shear stress.

2.2. Particle-based model description

Our simple model is a binary mixture with few large spherical particles in a matrix of smaller

ones. The particles interact via a pairwise size-dependent harmonic potential:

Uij =
1

2
k (rij −Dij)

2 − U0,ij (3)

rij is the distance between particles i and j, whose equilibrium distance is their average diameter

Dij. A cutoff is applied, such that Uij = 0 when rij ≥ ru. The term U0,ij is the separation

energy from rij = Dij to rij > ru. The potential therefore has three mechanical parameters:

k, ru, and U0,ij. Harmonic potentials are widely used in nanoscale simulations as they provide

the simplest model for inter-atomic bonds as well as inter-particle cohesion in C-S-H and other

materials [14–16].

Later we will compare results with the microprestress theory of concrete, thus we parametrise

the model to capture some mechanical properties of the C–S–H phase at the 100 nm scale.

Particle diameters D are set to 5 and 7 nm [17, 18]. Assuming perfect cohesion between particles,

we set k =
EAij

Dij
, where E = 63.6 GPa is the elastic modulus of C–S–H at the molecular scale,

and Aij = π
4
Dij

2 is the contact area between two particles [19]. The cutoff is set to ru = εuDij,

where εu = 0.03 is a reasonable strain at tensile failure for C–S–H at the molecular scale, as

indicated by molecular simulations [20–22] and consistent with experimentally measured values

of nanoindentation modulus and hardness [23, 24]. U0,ij is set to 2γAij, where γ = 87.6 mJ m−2

is the interfacial energy between C–S–H and its surrounding solution in concrete [25, 26].
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We construct six configurations starting from two statistically equivalent baseline structures,

A and B, featuring ca. 10, 000 particles each (see Appendix A for more details). The baseline

structures are amorphous, monodisperse (D = 5 nm for all particles), and dense (packing densi-

ties ηA = 0.63 and ηB = 0.62, nearing the 0.64 limit of random close packing for monodisperse

hard spheres). Their average XYZ axial stresses, computed with the virial method, are set to

zero by combining changes of XYZ box sizes with energy minimisation and random agitation

(see Appendix A for more details). The agitation also reduces the stress heterogeneities, to-

wards minimum albeit nonzero values. Subsequently, a new and intense field of eigenstress is

introduced by inflating a fraction δ of particles, whose diameters are increased to 7 nm. Particles

inflation mimics a generic set of local expansive processes, which in Bažant et al.’s theory are the

source of the microprestress: e.g. crystallization pressure from hindered precipitation of solids,

or disjoining pressure from hinderer expansion of fluid in the nanopores1. We create structures

with δ = 5%, 10%, and 20% from both baselines A and B, obtaining a total of six configurations.

Particle inflation generates a large average pressure, which is zeroed again via energy minimisa-

tions and changes of XYZ box sizes. Differently from the baseline structures, now we want to

preserve an intense field of eigenstress to be relaxed later, therefore now we do not apply random

agitation after inflation.

We measure the eigenstress per particle Σ as the hydrostatic stress 1
3
TrΣ, where Σ is the 3×3

virial stress tensor per particle [30] obtained taking V/N as volume per particle (V is the volume

of the simulation box, N the number of particles). With this definition, Σ is a measure of local

compression or tension. The average tensile eigenstress can be computed as s = 1
N+

∑
N+ Σ+

i ,

where N+ is the number of particles with Σ+
i > 0. Here s is not the same as the microprestress

S in Bažant et al. [3]; we will see later that the two are closely related, but not identical.

Fig. 1.b shows the distributions of eigenstress in the six configurations, after particle inflation

1 The pore solution is not modelled explicitly, but the interaction potential between particles is typically
considered to represent the mechanics of a water-rich interlayer space in the C–S–H [19, 27–29]. The effect of
fluid expansions, causing disjoining pressure if hindered, can therefore be modelled as an increase in equilibrium
distance between two interacting particles, i.e. an inflation of the diameter Dij in Eq. 3 as we did here.
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and stress minimisation but before simulating creep and eigenstress relaxation. The distributions

are compared to those in the two monodisperse baseline structures, just before particle inflation.

Fig. 1.b shows that particle inflation intensifies the eigenstress field, as indicated by the widening

of the distribution tails. The distributions after inflation are very similar for all δ’s. This suggests

that increasing diameters from 5 to 7 nm causes local yielding, which caps the local eigenstress

to a maximum. Smaller values of s could be obtained by inflating fewer particles (δ < 5%) or by

increasing their diameters less.

(b)
A , mono
A , ! = 5%
A , ! = 10%
A , ! = 20%
B , mono
B , ! = 5%
B , ! = 10%
B , ! = 20%

(a)

Eigenstress Σ (Mpa) 

Figure 1: (a) OVITO [31] snapshot of structure B with δ = 20% of inflated particles: blue (dark) particles have
Σ < 0, i.e. are under local compression; red (light) particles are under tension, Σ > 0. (b) Eigenstress distributions
at zero average axial stresses for configurations A and B, both before (monodisperse) and after inflating different
fractions δ of particles. The average positive Σ before inflation are sA = 101 MPa and sB = 85 MPa. After
inflation, the distributions for all δ’s almost coincide, with si all between 206 and 219 MPa. The subscript in si
indicates that these are the initial eigenstresses for subsequent simulations of creep and relaxation.

2.3. Simulating creep and eigenstress relaxation

The six numerical model structures, under intense eigenstresses, are first tested for creep.

We use an oscillatory shear protocol analogous to previous simulations of the logarithmic creep

of C–S–H [11–13]. A constant shear stress τxy = 40 MPa is imposed. Then the simulation box

is frozen and a cycle of shear strain, with ∆γxy = ±0.03, excites the system. When ∆γxy is

applied, the shear stress changes by a corresponding ∆τxy. If the system’s response to strain was

linear elastic, ∆τxy would equal G∆γxy ≈ 180 MPa, where G ≈ 6 GPa is the shear modulus (see

Appendix B). Actually, nonlinearities and even irreversible rearrangements are expected during

the strain cycle, so 180 MPa is an upper bound for ∆τxy. The values of τxy and ∆γxy are decided
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based on quasi-static shear tests (see details in Appendix B), following two principles: (i) τxy

must be significantly smaller than the yield stress, and (ii) the upper bound shear stress during a

cycle, τxy +G∆γxy, must be close but still smaller than the yield stress (a too small ∆γxy would

lead to excessively rare rearrangements, making the activation ineffective over the timescale of

a simulation; a too large ∆γxy would trigger system-spanning rearrangements, e.g. shear bands,

that are typical of yielding but that are unrealistic deformation mechanisms for creep). After

each strain cycle the interaction energy of the system is minimized, while also adjusting the XYZ

box dimensions and the XY angle, until average axial stresses are null and τxy is back to 40 MPa.

The irreversible shear strain, which increases with the number of cycles, is the creep strain γxy.

In the microprestress theory [3] relaxation occurs even when there is no external stress applied,

and this explains why the basic creep compliance of concrete decreases as the material ages. To

simulate relaxation without external load (τxy = 0), we compare two relaxation protocols: (i)

the same oscillatory strain protocol as for the creep tests above, with τxy = 0 and ∆γxy = ±0.04;

(ii) cycles of 500-1,000 steps of accelerated molecular dynamics (AMD), with a Nose-Hoover

thermostat applying random velocities consistent with average kinetic energy per particle ek =

0.15 U0 (here U0 is the separation energy for particles with D = 5 nm). The AMD cycles are

carried out at constant volume, but after each cycle the XYZ box dimensions are changed to

restore zero average axial stresses (alternatively, we could have let the box dimensions and shape

change during the AMD cycles, useing a barostat to keep the stresses constant: the results would

have been different but statistically equivalent). The values of ∆γxy and ek have been chosen to

maximise eigenstresses relaxation without causing system-wide damage (see details in Appendix

C).

3. Results and Discussion

3.1. Creep simulations and corresponding microprestress relaxation

Fig. 2 shows the results of creep simulations. In Fig. 2.a, all configurations start with an

initial logarithmic regime of strain vs. number of perturbative strain cycles, n. Following [12],
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we use n as a proxy for time by considering that strain perturbations mimic rare thermal fluc-

tuations. The curves in Fig. 2.a are all in the same range, with no trend as a function of δ. As

discussed in Section 2.2 and shown in Fig. 1.b, local plastic deformations upon inflation cap the

eigenstresses to similar values in all the considered structures, therefore similar creep behaviours

can be expected if the microprestress theory is valid.

Fig. 2.b shows that creep strain is indeed accompanied by eigenstress s relaxation. Also

here, all configurations behave similarly. Eigenstress relaxation saturates towards a minimum

value for large n, which concurs with the end of the logarithmic creep regime in Fig. 2.a, when

γxy stabilises towards a maximum. A more extended logarithmic regime could be obtained

using more advanced protocols than the simple oscillatory one used here, e.g. stress marching

[7]. Indeed, previous creep simulations on a similar model featuring more size polydispersity,

predicted logarithmic creep over n = 106 cycles [13]. Here, however, it is useful to study the

systems as they leave the logarithmic regime and see that this is accompanied by saturation of

eigenstresses. If such correspondence between regimes had not emerged, viz. if logarithmic creep

continued despite eigenstress saturation or if eigenstress relaxation proceeded as a power law

despite a change in creep regime, then the microprestress relaxation mechanism could have not

explained our simulation results.

Differently from the microprestress S in Bažant et al. [3], the eigenstress s in Fig. 2.b is

not a power law of n. Indeed, s does not tend to zero as n → ∞, but rather to a finite value

sf > 0. The impossibility to achieve s = 0 is to be expected in dense, amorphous, frustrated

systems of interacting particles. More in detail, the interaction potential in Eq. 3 generates strong

repulsive forces when rij < Dij, turning the particles into excluded volume for rearrangements,

and neglecting viscous process at the molecular scale, inside the particles, which could sustain

further relaxation below sf . The original microprestress theory, by contrast, stemmed from a

continuum-based description, where the resolution of displacements was the infinitesimal volume

element. In that context, it was consistent to assume sf = 0. The reality for C–S–H probably
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(b)

A, ! = 5%

A, ! = 10%

A, ! = 20%

B, ! = 5%

B, ! = 10%

B, ! = 20%

(a)

"xy

ncycles

# sf (MPa)(c)

ncycles

MPa

fits

S
s& − s(

0.75

0.82

0.92

0.94

0.89

0.91

117.9

119.3

119.3

122.9

109.4

109.5

Creep strain Eigenstress 
relaxation

Microprestress
relaxation

s

Figure 2: Results of creep simulations under shear: (a) strain, (b) average tensile eigenstress s, and (c) micro-
prestress S = s− sf normalised by si − sf , all as functions of the number of shear strain oscillations n. si is the
initial value of s before the strain oscillations, as discussed in the caption of Fig. 1. The logarithmic regime in (a)
corresponds to a power law regime of microprestress relaxation in (c). The table shows key parameters to fit the
curves in (b) using Eq. 4. The inset in (b) shows the good quality of the fits for configurations of type A; similar
quality holds also for types B.

falls in between, as strong repulsions causing excluded volumes are expected at the atomic

scale (ca. 0.1 nm), which is between our particles’ scale (5-7 nm) and the infinitesimal volume.

Therefore, C–S–H should feature a finite sf although smaller than our simulations predict.

To recover a measure of microprestress that tends to zero, we simply define it as S = s− sf .

In this way, we identify the microprestress S only with the part of the eigenstress s that can

relax, causing the viscosity to change and the logarithmic creep to develop. Ours is therefore

a generalisation of the original definition from Bažant et al., which is recovered when sf = 0.

Substituting our S into Eq. 2 and solving for s, one obtains an equation that should fit s(n) in

Fig. 2.b, provided that S in our simulations is indeed a power law of n:

s = S0

(
n

n0

)−α

+ sf (4)

sf , α, and S0, are three parameters that we compute by least square fitting of the curves in

Fig. 2.b.
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The excellent quality of the fits, in the inset of Fig. 2.b, confirms the assumption that our

simulated microprestress S relaxes as a power of n, as shown in Fig. 2.c. The fitted values of

α and sf are tabulated in Fig. 2; S0 is not shown because it is not informative, as it depends

on an arbitrary n0. The values of α and sf are similar for all configurations A and B, with

no trend as a function of δ. The simulated exponents α are close to α = 1, which Bažant et

al. [3] proposed by fitting creep experiments on concrete. Another quantitative agreement comes

from the total relaxed micropresesses, si − sf (si is discussed in the caption of Fig. 1), which

amounts to ca. 95 MPa for all our six configurations. This is smaller but not excessiely far from

the 150-200 MPa that Bažant et al. [3] suggested as an upper-bound for C–S–H. Overall, Fig. 2

shows that the adopted nanoscale model of amorphous material displays logarithmic creep and

power law relaxation of excess stress heterogeneities, as inferred in the microprestress theory.

3.2. Microprestress relaxation without external load (ageing)

Fig. 3 presents the results of eigenstress relaxation in the numerical simulations when the

externally applied stress is zero, τxy = 0. As detailed in Section 2.3, we employed two protocols

to carry out such simulations: accelerated molecular dynamics (AMD) and cyclic shear. The

results in Fig. 3 show that both protocols induce similar eigenstress relaxation. The results are

qualitatively similar to those in Fig. 2 and also the fitted parameters are similar, except for

some small but meaningful differences. In particular, the asymptotic minimum sf in Fig. 3 are

ca. 20% smaller than those in Fig. 2, which is expected because the simulations in Fig. 3 have

been calibrated to maximise eigenstress relaxation, as explained in Section 2.3. The smaller sf

therefore are explained by the larger strain perturbation ∆γxy and by the fact that the AMD

protocol in Fig. 3.a aims to the same state of maximum relaxation. Smaller sf in Fig. 3 entail

more relaxation of microprestress and indeed si − sf is now ca. 115 MPa, which is even closer

than before to the 150-200 MPa upper bound theorised in Ref. [3].

The power law exponents α are also ca. 17% smaller in Fig. 3 compared to Fig. 2. This

indicates differences in the deformation mechanisms during relaxation. A possible explanation

is that stronger perturbations in Fig. 3 might cause more particles to be involved in the rear-
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rangements that underpin the accumulation of irreversible deformations γxy. Another possibility

is that the external stress τxy has an effect on α. Bažant et al. argued that the external load

should only negligibly impact microprestress relaxation, but only because creep experiments on

concrete typically use loads of 10 MPa or less, which is small compared to relaxations over 100

MPa. In our creep tests, instead, τxy = 40 MPa is comparable to the eigenstress, and this might

alter the deformation mechanisms. These first results create scope for future research into the

details of the deformation mechanisms and their dependence on external stress and relaxation

protocols.

(b)(a)

s

(c)

ncycles

MPa

S
s# − s%

AMD cycles

AMD cycles (d)

s

MPa

S
s# − s%

Shear strain cycles

Shear strain cycles

ncycles

(e)

V − V#
V#

(%)

Volume strain during 
shear strain cycles

0.72 98.2
A , ' = 5%

A , ' = 10%

A , ' = 20%

B , ' = 5%

B , ' =10%

B, ' = 20%

( sf (MPa)

0.74

0.79

0.88

0.66

0.60

0.69

87.5

87.1

91.6

92.2

86.9

91.9

AMD cycles
( sf (MPa)

0.75

0.67

0.71

0.74

0.70

94.7

94.1

99.9

101.5

98.9

Shear cycles

Figure 3: Relaxation of eigenstress s and microprestress S = s − sf when no external stress is applied. Pertur-
bations induced by (a,c) accelerated molecular dynamics, AMD, and (b,d) shear strain oscillations. The table
shows key parameters to fit the curves in (a,b) using Eq. 4. (e) Volume expansion accompanying relaxation by
shear strain oscillations. Vi is the initial volume of a configuration at ncycles = 0.
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3.3. Volumetric changes accompanying microprestress relaxation

The free volume theory explains logarithmic creep of disordered porous materials as the result

of compaction, which progressively reduces the probability of further compaction to occur, thus

causing the strain rate to decrease [9, 32]. This theory has been invoked to interpret experimen-

tal measurements of logarithmic creep from short-term nanoindentation tests [8]. Interestingly,

however, Fig. 3.e shows an opposite trend: the volume increases during eigenstress relaxation,

and a similar expansion also emerged during the creep tests in Fig. 2. This result might seem

counter-intuitive, as relaxation of tensile eigenstress, taken by itself, should indeed cause com-

paction. However, the system also features compressive eigenstresses that are also relaxing to

keep constant the average axial stresses. Following the same logics as above, one should therefore

expect no volume changes at all. However, volume changes are not just reflections of eigenstress

relaxation in a linear elastic medium, but rather the result of large local deformations caused

by particle rearrangements. Such mechanisms are non-linear and their non-trivial impact on the

overall volume depends on the details of the interaction potentials.

3.4. Implications at other length scales and for other materials

Our results show that microprestress relaxation and logarithmic creep originate from collective

shear slips in C–S–H at the 100 nm scale. However, one could apply the same model and obtain

similar results using different particle diameters and interaction parameters. This means that

similar mechanisms can emerge also in other disordered materials and at other length-scales.

In the recent literature, logarithmic creep of C–S–H has been predicted both by molecular

simulations of interlayer water [7, 11, 12] (in spaces where water features glassy structure and

kinetics [33]) and by nanoparticle simulations like in the present work [10, 13]. This raises

the question of whether the decay of strain rate during creep stems from processes at the sub-

nano scale or at the nano-to-micro mesoscale. Our results supports the latter interpretation,

but the same model could be a first approximation for glassy interlayer water too, as long as

particle diameters and interaction parameters are adjusted accordingly (e.g. the model used
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in [6]). Therefore, analogous deformation mechanisms, eigenstress relaxation, and logarithmic

creep, might also emerge at the molecular scale. The methodology presented here provides an

approach to test this possibility also using more detailed models for molecular simulations of

confined water in C–S–H.

Models similar to ours are commonly used to simulate deformations in glasses, metallic alloys,

and wet granular matter, all of which display logarithmic creep in certain conditions [34–36]. The

basic deformation mechanisms in these materials are localised shear rearrangements of multiple

nano-units, which can be atoms, molecules, or particles, depending on the system. In the physics

community, these rearrangements are known as Shear Transformation Zones (STZs) [37]. STZs

were first proposed by Argon [38] and now there are specific equations of motions describing their

formation, disappearance, and activation [39]. What is not understood is how the dynamics of

STZs can produce the ε̇ ∼ t−1 scaling of logarithmic creep. Recent Kinetic Monte Carlo simula-

tions on a simple lattice model have shown that this scaling can emerge from STZs interacting

mechanically with each other via stress redistributions at the mesoscale [40]. This is analogous

to the microprestress relaxation mechanism simulated here. STZs therefore can be regarded as

a generalisation of the creep sites in C–S–H and thus the microprestress theory might actually

explain the logarithmic creep of a wider class of disordered materials.

4. Conclusion

The numerical simulations presented here have identified nanoscale rearrangements under

shear as a mechanism for power-law relaxation of eigenstress heterogeneities and logarithmic

creep, as proposed by Bažant et al. in the microprestress relaxation theory [1, 3]. Other hy-

potheses of the original theory have been confirmed as well, in particular: (i) relaxation of

microprestresses occurring also without externally applied stress, as an ageing mechanism, (ii)

the order of magnitude of microprestress relaxation, ca. 100 MPa. For the interaction poten-

tial used here, the simulations have indicated that microprestress relaxation is accompanied by

volume expansion. This means that logarithmic creep originates from large local deformations,
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causing non-linear relationships between stress and volume that are not simply associated with

compaction. Due to the generic nature of our model, the results in this manuscript can be

translated to other material systems also at other scales, as discussed for interlayer C–S–H wa-

ter at the molecular scale and the deformations of metallic alloys and glasses. In conclusion,

this manuscript has presented a pathway to investigate the relationship between creep of disor-

dered materials, relaxation of stress heterogeneities, microstructure, and chemical composition

(reflected by the interaction potentials). This provides new opportunities for understanding,

extrapolating, and even designing the creep behaviour of ordinary and new concretes.
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Appendix A. Preparation of baseline structures and particle inflation

Monodisperse baseline structures are prepared in three steps: (i) a space filling algorithm,

(ii) changes of XYZ box sizes to minimise the average axial stresses, and (iii) random agitation

to relax stress heterogeneities while also adapting the box to preserve zero axial stress.

The space filling algorithm is a loop whose generic step starts with the insertion of 2,500

trial particles at random locations (our simulation box is initially a cube with edge of 20D,

where D is the particle diameter). Only trial particles that do not excessively overlap with

previously existing particles are accepted and relabelled as “existing”; the others are rejected

and deleted. Our definition of “excessive overlap” is when the distance from any existing particle

is smaller that ξD, where ξ is a user-decided parameter. ξ = 1 would mean than only strictly

non-overlapping trial particles are accepted. By contrast, smaller ξ increase the rate of particle

acceptance, but also build up high mechanical stress. In this manuscript, we used ξ = 0.7 for

baseline structure A, and ξ = 0.75 for B. After having converted the trial particles that do not

overlap excessively into existing ones, and deleted the rest, the interaction energy of the system is

minimised at constant volume, using the conjugate gradient algorithm in LAMMPS. The loop of

trial particles insertion, acceptance, and minimisation, is repeated 1,000 times, which is sufficient

to obtain densely packed structures with the ξ we adopted, viz. structures with packing density

η > 0.64, .

The second step in the preparation procedure is to set the average axial stresses to zero in

all three directions. If ξ < 1 is used, the structure produced by the space filling algorithm is

under compressive average axial stresses σ in all directions. To relax these σ, we run a loop

where each step consists of one adjustment of all three box lengths, in X, Y, and Z directions.

The adjustment of each box edge is determined as Lj,new = Lj,old
(
1− σj

K

)
, where Lj is the box

length in direction j = X, Y, Z, and K is a user-decided constant. The equation implies that

a structure under tension in direction j, viz. σj > 0, will have its Lj reduced by a strain that

is proportional to σj. Vice versa, if σj < 0, then Lj will increase. The value of K controls
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the quality and speed of the convergence to zero stress. In our simulations, we used K = 106

MPa. Each box adjustment is accompanied by affine displacement of all particles in the box,

and is immediately followed by minimisation of the interaction energy. After one adjustment and

minimisation is performed in all three directions, the new σj are checked and the loop is broken

if σ2
x + σ2

y + σ2
z < σ2

tol. Here we used tolerance σtol = 10 MPa, which is small compared to the

hundreds of MPa of material strength (see next appendices).

The third step in preparing the baseline structures is to relax the heterogeneous local stresses

while keeping zero average axial stresses. To this end we repeat for 1,000 times a loop consisting

of two parts: 10,000 steps of accelerated molecular dynamics (AMD) with random agitation at

constant volume followed by XYZ box length changes resetting σ to zero. The random agitation

in the AMD part is applied using the Nose-Hoover thermostat in LAMMPS, targeting random

velocities consistent with average kinetic energy per particle ek = 0.3 U0 (see Section 2.3 for the

definition of U0 for particles with D = 5 nm). The XYZ box length changes follow exactly the

same protocol as in the previous paragraph.

All the described box changes alter the packing density η that the structure displayed just

after space filling. Here we targeted a final η of 0.64, which is the random close packing limit for

monodisperse hard spheres. This target drove a trial-and-error adjustment of parameters which

eventually led to ξ = 0.7-0.75, insertion of 2,500 trial particles at each of 1,000 space filling

steps, and the above-mentioned intensity ek of random agitation. A systematic exploration of

the relationship between preparation parameters and η would be interesting, but this was not

our priority here.

With monodisperse structures, spherical interactions, and random agitation, there is the risk

of inducing local crystallisation. However, this did not occur here, since we checked that the radial

pair distribution function featured the split second peak typical of amorphous monodisperse

systems, and a common neighbour analysis using OVITO showed that only 0.5% of all particles

had crystalline local environments of FCC or HCP types.
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After completing space filling and eigenstress relaxation in the monodisperse baseline struc-

tures, microprestresses are introduced by inflating a fraction δ of particles, whose diameter is

increased from 5 to 7 nm. Particle inflation is carried out at constant volume, thus it generates

high compressive stress in all directions. A minimisation at constant volume is immediately

performed, which already reduces a bit the average axial stresses, due to local particle rearrange-

ments. However, to actually recover zero axial stresses in XYZ, we must use again the protocol

of box length changes described previously in this section. Random agitation is not applied at

this stage to preserve an initial field of eigenstress.

Appendix B. Shear stress-strain curves to decide ∆γ and τ in the simulations of
creep

The shear stress-strain curves for all the constructed model structures are shown in Fig. B.4.

The same tests on similar C–S–H models from the literature[41] provided yield stress between

120 and 300 MPa and yield strain between 0.04 and 0.06, depending on the packing density of

the system. Similar values are obtained here and are plotted in Fig. B.4.

The curves in Fig. B.4 support our choice of performing creep simulations using: (i) an

applied stress τxy = 40 MPa, which is approximately one order of magnitude smaller than the

yield stress - this means that all structures are far from the plastic regime; (ii) shear strain

oscillations ∆γxy = ±0.03 that, added to the strain corresponding to the applied τxy, bring

the structure close to but not past yielding. The next section will show that strain oscillations

nearing the yield point provide indeed the most effective relaxation of eigenstress without causing

system-wide damage.

Appendix C. Regimes of relaxation and damage

As presented in Section 2.3, the undriven (τxy = 0) relaxation of eigenstress has been carried

out using specific values of random agitation or shear strain oscillations. Those values have been

chosen after exploring various possible intensities of agitations and oscillations, to understand

how these affected the final values of the eigenstress sf and the final packing density η of the
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Figure B.4: Shear stress-strain curves for all the structures tested here for creep and eigenstress relaxation. As
explained in the main manuscript, A and B indicate two statistically equivalent initial configurations, and δ is
the fraction of particles that are inflated to generate an intense field of eigenstress.

relaxed structures. Fig. C.5 shows the results of such explorations for two sample structures:

one of type A with a fraction δ = 20% of inflated particles, and one of type B with δ = 10%.

Similar results emerge also from all the other configurations in the manuscript.

Fig. C.5 shows that there are two regimes of relaxation. When perturbations are weak,

viz. small ek or ∆γxy depending on the protocol, the final eigenstress sf decreases significantly

while the packing density η does not change much. This is a desirable regime of relaxation, in

which the structural alterations are limited to small local rearrangements. Vice versa, intense

perturbations cause large changes in packing density with an evident change of regimes in the

sf (η) plots in Fig. C.5. The perturbations marking the transitions from one regime to the other,

with intensity ek = 0.15U0 in Fig. C.5.a and ∆γxy = 0.04 in Fig. C.5.b, maximise stress relaxation

without inducing extensive damage (lowest sf while keeping small changes of packing density

η). Therefore, these perturbations have been used in main manuscript to simulate undriven

relaxation.
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Figure C.5: Effect of perturbation intensity on two model structures and for the two protocols used in the main
manuscript: (a) accelerated molecular dynamics, AMD, with random agitations of intensity ek (average kinetic
energy per particle), and (b) cycles of shear strain oscillations of magnitude ∆γxy. Relationships are drawn
between final average tensile eigenstress sf and final packing density η, for various intensities of ek and ∆γxy.
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