
A Privacy-Preserving Reinforcement Learning
Algorithm for Multi-Domain Virtual Network

Embedding
Davide Andreoletti1, 3, Tanya Velichkova2, Giacomo Verticale3, Massimo Tornatore3, and Silvia Giordano1

1Networking Laboratory, University of Applied Sciences of Southern Switzerland, Manno, Switzerland, Email: {name.surname}@supsi.ch
2Networking Laboratory, University of Applied Sciences of Southern Switzerland, Manno, Switzerland, Email: {name.surname}@student.supsi.ch

3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy, Email: {name.surname}@polimi.it

Abstract—The problem of optimally deploying a virtual net-
work onto a substrate physical network is referred to as Virtual
Network Embedding (VNE). In general, this embedding is
requested by a customer to an Internet Service Provider (ISP),
which performs the VNE over its physical telecom network.
In several situations, the physical substrate infrastructure is
composed of multiple independent ISPs. In this scenario, ISPs
are concerned about exposing to a third-party entity (e.g., the
customer) sensitive infrastructural details that are needed to
perform an effective embedding. Following a common privacy-
preserving approach, known as Limited Information Disclosure
(LID), the embedding may be performed by the customer
based on a limited and abstracted view of the multi-domain
infrastructure that ISPs accept to expose. With this approach,
embedding is sub-optimal (e.g., embedding cost is not minimized)
in comparison with the case where all information is available,
i.e., Full Information Disclosure (FID). In this work, we propose
a Reinforcement-Learning-based algorithm able to process data
that the customer and ISPs cipher under the Shamir Secret
Sharing (SSS) scheme. This approach guarantees total privacy
to both the customer and the ISPs (e.g., details about a virtual
function are only revealed to the ISP in charge of hosting it) and
achieves comparable embedding cost of an existing FID heuristic,
as observed from extensive simulations. The main drawback of
our algorithm is the high overhead of data that ISPs and the
customer need to exchange with each other to execute it. Hence,
we also explore the trade-off between embedding cost and data
overhead resulting from the reduction of operations done by the
RL. In general, intermediate embedding costs between the FID
and LID heuristics can be obtained at a significant reduction of
data overhead, while not sacrificing any privacy guarantees.

Index Terms—Reinforcement Learning, Virtual Network Em-
bedding, Privacy-Preserving Strategies

I. INTRODUCTION

The decoupling of the software implementation of a service
from its underlying hardware, known as Network Function
Virtualization (NFV) [1], brings several advantages, such
as increased service flexibility and scalability, and reduced
CapEx and OPEX expenses. A virtualized service can be
represented as a Virtual Graph (VG), i.e., a set of Virtual
Nodes (VNs) and relative Virtual Paths (VPs), that a third-
party entity (e.g., a customer) provisions to its users exploiting
the physical infrastructure of an Internet Service Provider
(ISP).

D. Andreoletti & T. Velichkova contributed equally to this work.

The problem of embedding this graph into the physical net-
work towards some optimization objective (e.g., minimization
of the deployment cost) is referred to as Virtual Network
Embedding (VNE) and has received considerable attention
in literature [1]. In particular, the general VNE problem
was proved to be NP-hard [2]; hence, many heuristics have
been proposed to efficiently solve it [3]. VNE is a well-
studied problem when a single network operator is considered,
but, to the extent of our knowledge, the case where the
underlying infrastructure is composed of several independent
ISPs’ networks has only been scarcely explored so far. In
such case, the customer may benefit from an extended covered
geographical area, an increased heterogeneity of the available
infrastructures and, eventually, also from reduced embedding
costs.

However, the multi-domain scenario introduces new chal-
lenges that increase the complexity to effectively solve the
VNE. In fact, ISPs may be concerned about the exposure
of business-critical and privacy-sensitive details of their net-
works, which are required for the execution of embedding
algorithms. A possible approach proposed in literature [4]
to guarantee ISPs’ privacy requirements while not preventing
embedding consists of limiting the information available to the
entity performing the optimization. Following this approach,
referred to as Limited Information Disclosure (LID), the
customer optimizes the assignment of portions of the VG to
each involved ISP based on an abstracted view of the multi-
domain infrastructure (e.g., typically, only the peering links
and the cost of traversing them are visible to the customer)
and, based on this assignment, each ISP embeds its sub-graph
on the physical infrastructure. The main drawback of the LID
approach is a sub-optimal embedding with respect to the Full
Information Disclosure (FID) approach, in which the customer
performs the optimization based on a complete view of the
substrate multi-domain infrastructure.

In this work, we aim to guarantee a privacy level typical
of LID approaches, while also achieving costs comparable to
a FID strategy. Towards this objective, we initially propose
a RL algorithm that a customer and the ISPs can execute in
a distributed manner to solve the VNE problem in a cost-
effective way. We observe, however, that this approach is

still vulnerable in means of privacy. To address this problem,
we then propose the privacy-preserving version of this RL
algorithm.

More specifically, we subdivide the VNE problem into
several main sub-tasks, and we define a RL environment for
each of them. Customer and ISPs perform operations on their
environments and, based on that, receive rewards through
which they learn how to efficiently solve the associated
sub-task. To set a common optimization objective, rewards
are properly designed and exchanged among participants.
Specifically, rewards contain information about the embedding
of VNs and VPs inside the single ISPs’ domains, such as
their embedding cost and constraints violation (e.g., nodes’
capacity). We compare our RL-based algorithm with the LID
and FID heuristics proposed in [4], considering the overall
embedding cost. Our approach generally achieves a cost
that is slightly lower than the cost obtained with FID, and
significantly lower than the cost obtained with LID. However,
to converge to an optimal solution of the VNE, participants
need to exchange with each other a high amount of rewards,
from which sensitive information can be leaked.

To solve this issue, we then propose a privacy-preserving
version of the RL algorithm that is based on the Shamir
Secret Sharing (SSS) scheme. By using this approach, the
customer and the ISPs only learn information relative to the
final embedding, and no sensitive information is leaked during
the optimization process (e.g., the computational demand of a
VN is only disclosed to the ISP selected to host it). The main
drawback is the high volume of data that participants must
exchange with each other to execute the privacy-preserving
algorithm. Hence, we show how to reduce the introduced data
overhead by limiting the number of expensive operations, and
we evaluate the corresponding increase of embedding cost
for several levels of this limitation. Results show that, even
when this limitation is significant, the privacy-preserving RL
generally outperforms the LID approach while achieving a
reduction of the overhead of at least two orders of magnitudes.

The rest of the paper is structured as follows: in Section
II we review several existing works, mainly relative to multi-
domain VNE and privacy-preserving cooperation with ISPs;
Section III provides the technical background to understand
the proposed solution; in Section IV we formally define the
problem and describe the privacy requirements of customer
and ISPs; Section V presents the proposed RL algorithm; in
Section VI we describe the building blocks of the privacy-
preserving version of this algorithm, which is then presented
in Section VII. Illustrative numerical results that validate
our approach are shown in Section VIII. Finally, Section IX
concludes the paper.

II. RELATED WORK

The problem of VNE has been extensively studied [1],
[5]. In particular, several heuristics have been proposed to
solve it efficiently, as reviewed in [2]. To our knowledge, less
attention has been devoted to VNE in multi-domain scenarios,
in which ISPs do not expose sensitive information needed

for the optimization. Two main classes of approaches have
been proposed to solve the multi-domain VNE problem, i.e.,
distributed and centralized.

Examples of the former category are the works presented
in [6], [7]. In [6], ISPs address privacy issues by exposing
information only to other network operators they have a
mutual agreement with. The main drawback of a distributed
approach is that the optimization is not performed based on a
global view of the overall network. On the other hand, existing
centralized approaches generally divide the VNE problem
into two sub-tasks: in the first, a VG is partitioned over the
participants ISPs; in the second, each ISP performs the VNE
of the received portion of the graph. The first sub-task is
executed by a centralized entity, e.g., a customer or a broker
acting on behalf of it [8], [9]. In these approaches, privacy
issues are addressed as the first sub-task is executed based on
the limited information about network infrastructures that the
ISPs provide to the centralized entity. For example, in [4], only
the peering links and the cost of embedding a given VN on a
physical peering node are exposed. The main drawback of this
approach is that this reduction of available information leads
to a sub-optimal VNE solution. In our work, we propose a
RL-based method that achieves better embedding performance
with respect to such limited-information approaches, while
guaranteeing total privacy.

In existing literature, a RL algorithm has already been
proposed in the context of VNE over a multi-ISP network
[10]. In such work, however, RL is executed by the ISPs
to find the optimal embedding costs and not, as we do, to
actually perform the VNE task. In general, RL has been
extensively used as a tool to perform optimization in telecom
networks, e.g., for QoS-driven network slicing [11], resource
allocation in cloud [12] and traffic prediction [13]. A general-
purpose multi-agent RL algorithm has then be proposed in
[14]. This solution, however, does not fulfill the privacy
requirements considered in our work and, for this reason,
we do not employ it. Instead, we design a privacy-preserving
RL algorithm able to process data encrypted under the SSS
scheme, and we employ it to perform VNE over a multi-
domain infrastructure. To the best of our knowledge, our work
is the first attempt to solve the VNE problem over encrypted
data and contributes to the literature on privacy-preserving
strategies for cooperative service delivery (e.g., other secure
multiple-party computations and SSS-based approaches have
been used in the context of cooperative video content delivery
in [15]–[17]).

III. BACKGROUND

a) Reinforcement Learning: RL is a type of machine
learning technique employed to learn a model of an initially-
unknown environment E , which describes the solution space
of the problem that the RL aims to solve. The solution space is
represented as a set of states S which is explored by an entity
referred to as agent. The agent moves within the environment
by performing actions and, based on that, it receives feed-
backs (i.e., rewards). In the case of multiple environments

and/or multiple agents (as in our work), the approach is often
referred to as multi-agent RL. The objective of a RL algorithm
is to learn the best action to perform according to the state in
which the agent is, i.e., the action that maximizes the overall
received rewards.

b) Q - learning: Q-learning is a type of RL algorithm
that models an environment as a matrix referred to as Q-table,
whose sa-th entry represents to goodness of performing action
a from state s. The model of the environment is learned by
iteratively updating the Q-table as follows:

Q(s, a)← Q(s, a) + lr ·
(
r + γ ·max

â
Q(s, â)−Q(s, a)

)
(1)

where lr is the learning rate, r is the reward that the agent
receives based on having performed action a from state s, and
γ is the discount factor.

c) Shamir Secret Sharing: The SSS scheme [18] allows
several parties to hold portions of a secret in such a way that
secret reconstruction is made possible only by the cooperation
of a sufficiently-large subset of them. Specifically, in a (σ, ψ)
SSS scheme, the secret is divided into σ shares and can be
reconstructed only if such subset is composed of at least ψ
parties. In SSS, secret s and the corresponding set of shares
JsK are defined in Zq , where q is a prime number greater than
all the possible secrets.

d) Heuristics for VNE: We consider two existing heuris-
tics approaches to solve the multi-domain VNE problem,
namely the Limited Information Disclosure (LID) and the
Full Information Disclosure (FID). These heuristics have been
proposed in [4] and are based on a relaxed linear programming
formulation. LID is executed in two main phases: in the first,
portions of a virtual graph are assigned to the ISPs by a
centralized entity (e.g., a customer) that has a limited view
of the multi-domain infrastructure. In the second, each ISP
performs the optimal deployment of the received sub-graph
within its network. FID is more privacy intrusive than LID,
as the centralized entity performs the optimization based on a
full view of the underlying infrastructure. A deeper description
of both heuristics is provided in [4].

IV. PROBLEM STATEMENT

A. Problem Statement and Motivation

The formal statement of the VNE problem is the following:

min
∑
u∈M

∑
i∈VN

wiudic
i
ux

i
u +

∑
(i,j)
i6=j

∑
(u,v)∈L

yijuvdijcuv (2)

subject to: ∑
u∈M

xiu = 1 ,∀i ∈ VN (3)

∑
v∈M

yijuv −
∑
v∈M

yijvu = xiu − xju,∀(i, j) ∈ VP,∀(u, v) ∈ L

(4)

∑
i∈VN

dix
i
u ≤ ζ(nodes)

u ,∀u ∈M (5)

∑
(i,j)∈VP

yijuvdij ≤ ζ(links)
uv ,∀(u, v) ∈ L (6)

where M and L are the sets of physical nodes and links,
respectively. u and v are the indexes of generic substrate nodes
∈ M, while (u, v) indicates the link ∈ L having u and v as
end-points. During the rest of the paper, we may indicate a
generic link also as l. VN is the set of virtual nodes, di is the
computational requirement of the generic V Ni, wiu ∈ {1,∞}
is a variable indicating the feasibility of embedding V Ni into
node u, ciu is the cost of embedding a computational unit of
V Ni in node u and xiu ∈ {0, 1} is the corresponding decision
variable. VP is the set of virtual paths, dij is the bandwidth
requirement of V Pij , cuv is the cost of embedding a unit of
bandwidth on the link connecting nodes u and v and yijuv ∈
{0, 1} is the decision variable corresponding to the embedding
of V Pij in link uv. Eqs. 3, 4, 5, 6 prescribe that each VN
is embedded onto exactly one physical node, the requirement
of flow consistency, the fulfillment of node capacity and link
capacity constraints, respectively (being ζ(nodes)

u the capacity
of node u and ζ(links)

uv the capacity of link uv).
The main motivation of this work is to minimize the

embedding cost while guaranteeing the fulfilment of stringent
privacy requirements to both customer and ISPs. Whilst the
minimization of the cost is a plausible objective for the
customer, the same cannot be said, in general, for the ISPs,
whose goal is to increase their revenues. As explained in [4],
however, in a multi-ISP domain the customer only pays the
cost of the embedding performed based on the information
that ISPs expose. Indeed, a limited exposure of information
induces an extra cost that ISPs pay to actually embed the
received portion of virtual graph in their networks. Hence, we
assume that both customer and ISPs are interested to minimize
the overall embedding cost.

B. Privacy Requirements and Security Models

We consider a customer and K ISPs, whose objectives and
privacy requirements are discussed in the following.

1) Customer: The customer aims to deploy a VG over the
multi-domain infrastructure. The computational demands of
the N VNs and the bandwidth requirements of the relative
VPs are represented as a vector ~d and a matrix D, respectively.
Moreover, the types of VNs are represented as a binary matrix
∆ with N rows and a number of columns equal to the number
of available VNs’ types (e.g., a virtual firewall).

a) Privacy Requirements: computational demand of
V Ni (i.e., di) and its type (i.e., δi) can only be disclosed
to the ISP that hosts V Ni,∀i and the bandwidth requirement
dij only to the ISPs that are traversed by V Pij ,∀ij.

2) Internet Service Providers: The generic ISPk owns a
physical infrastructure composed of a set ofMk nodes which
are interconnected by Lk links. Each node (resp., link) has a
computational (resp., bandwidth) capacity, which are encoded

Fig. 1: Overview of the information visible to ISPs and
Customer

in vectors ζ(nodes)
k and ζ

(links)
k , respectively. Moreover, the

uf -th entries of matrices Fk and ηk indicate if node u can host
a VN of type f and the cost of hosting it, respectively. Vector
C(links) indicates the cost of embedding a unit of bandwidth
in each link.

a) Privacy Requirements: the following information
can only be known to the owner ISP: (i) capacity ~ζ(nodes),
embedding costs η and feasibility F of the physical nodes;
(ii) capacity ~ζ(links) and cost C(links) of the physical links;
(iii) interconnection of the internal nodes, i.e., the information
if two generic nodes u, v are connected by a link. On the other
hand, the interconnection of the peering nodes is assumed to
be known to all the participants.

In Fig. 1, we show an overview of the information visible to
the considered entities. In this figure, it is possible to identify
three main layers. Going bottom-up, the first layer shows the
information visible only to the owner ISPs (e.g., the topology
of their networks and the cost of embedding a type of VN
into their nodes); the intermediate layer represents the peering
interconnection, which is visible to all the participants; the top
layer represents the information about the virtual graph, which
are known to the customer only.

Both the customer and the ISPs are modeled as honest-but-
curious entities, who do not deviate from the licit execution
of the protocol, but try to obtain as much information as
possible from it (e.g., the ISPs may be interested in the
infrastructure details of their competitors). We justify this
assumption in subsection VII-E, where we also elaborate on
how the proposed approach fulfills the aforementioned privacy
requirements.

V. THE RL ALGORITHM FOR MULTI-DOMAIN VNE

In this Section we describe our RL-based approach to
solve the VNE problem in a multi-ISPs scenario. Initially, we
identify four sub-tasks in which the problem can be divided,
i.e., selection of (i) the ISPs that host the VNs, (ii) the peering
links that the VPs traverse, (iii) the physical nodes that embed
the VNs and (iv) the intra-ISP links that embed the VPs.
Note that the decisions taken in sub-task (iii) are conditioned
by the output of sub-task (i). For instance, a VN can be
embedded into a physical node only if that node belongs to the
infrastructure of the ISP to which the VN has been assigned
in task (i).

A. Environments

In this subsection, we define four types of RL environments
that model the execution of the aforementioned sub-tasks.
Each environment E is characterized by its state vector S
and its Q matrix. S is a binary vector with a number of
components equal to the number of states (where the only
component equal to 1 is the state currently occupied by the
agent), while Q has a row for each state and 3 columns,
corresponding to the actions that the agent can perform, i.e.,
left, stay and right. As an example, if an agent is in state
[0, 1, 0, 0] and it performs the action right, the new state
becomes [0, 0, 1, 0]. An action is represented as a binary
vector ~α (e.g., ~α = [0, 0, 1] for action right). The proposed
environments are the following:
• An environment E(i)

CUST that models the selection of the
ISP in which V Ni has to be embedded, ∀i. S(i)

CUST is a
vector with K components, one for each ISP to which
V Ni can be assigned.

• An environment E(i)
ISPk

that models the selection of the
physical node in which V Ni has to be embedded, ∀i, k.
S(i)
ISPk

is a vector with |Mk| components, where Mk is
the set of physical nodes ∈ ISPk.

• An environment E(kk′,ij)
CUST that models the selection of the

path of peering nodes connecting ISPk and ISPk′ in
which V Pij has to be embedded, ∀k, k′, i, j. S(kk′,ij)

CUST

is a vector with |Pkk′| components, where |Pkk′| is the
number of peering paths between ISPk and ISPk′.

• An environment E(uv,ij)
ISPk

that models the selection of the
path (between nodes u and v ∈ ISPk) to embed V Pij ,
∀u, v, i, j. S(uv,ij)

ISPk
is a vector with |Puv| components,

one for each path that interconnects nodes u and v.
As this number may be very high, practically we can
consider the |Puv| shortest paths between u and v.

We propose in Tab. I an overview of the notations used in
this paper. Then, in the following two subsections we describe
the main operations performed in the proposed RL approach.
Notice that such operations are carried out in a distributed
fashion by Customer and ISPs. We use the subscripts Cust
and ISPk,∀k to indicate the participant that executes a
given operation (e.g., operations in environment E(i)

ISPk
,∀i are

executed by ISPk). For the ease of explanation, we provide
also a pseudo-code in Algorithm 1, in which the operations

TABLE I: Table of Notations

Variable Description Variable Description
N Number of VNs K Number of ISPs
~d,D

Computational (resp., bandwidth) demand of the
VNs (resp., VPs) Puv

k , Puv
k

Matrix representing the (resp., Set of) paths
connecting nodes u and v ∈ ISPk

W
Feasibility matrix (ui-th entry is 1 if node u can
embed ∈ V Ni and ∞ otherwise) Fk

Matrix whose uf -th entry is 1 if node u ∈ ISPk

can embed VN of type f (and 0 otherwise)

C
(nodes)
k

Matrix of Nodes’ costs (the ui-th entry is the cost
of embedding a computational unit of V Ni in node
u ∈ ISPk)

ηk

Matrix whose uf -th entry is the cost of embedding
a computational unit of VN of type f in node u
∈ ISPk

~ζ
(nodes)
k Computational Capacity of nodes ∈ ISPk ∆

VNs’ types Matrix (th if -th entry is 1 if V Ni

is of type f , and 0 otherwise)

Mk,Lk Set of physical nodes (resp, links) ∈ ISPk
~ζ
(links)
k , ~c

(links)
k

Link capacity (resp., cost) vector indicating the
capacity (resp., cost of embedding a unit of
bandwidth) for links ∈ ISPk

l Index of the generic link l u, U Index of the generic internal (resp., peering) node

E(i)CUST , S(i)CUST

~α
(i)
CUST , r(i)CUST

Environment, state vector, action vector and reward
associated with the selection of the ISP that embeds
V Ni,∀i

E(kk′,ij)CUST , S(kk′,ij)CUST

~α
(kk′,ij)
CUST , r(kk′,ij)

Environment, state vector, action vector and reward
associated with the selection of the peering path
between ISPk and ISPk′ that embeds
V Pij , ∀kk′, ij

E(i)ISPk
, S(i)ISPk

~α
(i)
ISPk

, r(i)ISPk

Environment, state vector, action vector and reward
associated with the selection of the ISP that embeds
V Ni,∀i

E(uv,ij)ISPk
, S(uv,ij)CUST

~α
(uv,ij)
ISPk

, r(uv,ij)CUST

Environment, state vector, action vector and reward
associated with the selection of the path between
nodes u and v ∈ ISPk that embeds V Pij , ∀uv, ij

performed by each ISP are further highlighted by means
of curly brackets. All the remaining operations presented in
Algorithm 1 are executed by the Customer.

B. Action Selection and State Updating

After the initialization of the main variables (e.g., vectors
states and Q-tables), an action is performed in environment
E(i)
CUST and state vector S(i)

CUST is changed accordingly. This
operation is aimed to find the ISP in which V Ni has to be
embedded, and it is repeated ∀i. Let us assume that V Ni has
been assigned to ISPk. An action is then performed in the
environment E(i)

ISPk
and the corresponding state is changed

accordingly to select the physical node in which V Ni has to
be embedded.

We now consider the operations relative to the selection of
the peering paths on which V Pij has to be embedded. As-
suming that ISPk and ISPk′ are the ISPs that, at the current
iteration of the RL algorithm, are required to embed V Ni and
V Nj , respectively, the considered environment is E(kk′,ij)

CUST . An
action selection and successive state updating are performed
in this environment to select the peering path traversed by
V Pij ,∀i, j. The selected peering path is composed of a set of
peering nodes (e.g., Uk, ..., Uk′). As mentioned in subsection
IV-B2, all the involved participants are aware of the peering
nodes that interconnect the ISPs (while the cost of traversing
them is only known to the owner ISPs).

Once V Ni and V Nj have been assigned to their physical
nodes and the peering links traversed by V Pij has been
chosen, operations are executed to embed V Pij within the
intra-ISP physical links consistently with the decisions that
have been previously taken. Specifically, the flow consistency
constraint of Eq. 4 must be fulfilled. To this end, four different
scenarios must be considered: (i) ISPk is assigned both V Ni
(which is embedded in node u) and V Nj (which is embedded
in node v). In this case, V Pij has to be embedded within a
path between nodes u, v ∈ ISPk. To do so, action selec-

tion and state update are performed within the environment
E(uv,ij)
ISPk

; (ii) ISPk is assigned only V Ni (which is embedded
in node u) and operations are executed in E(uUk,ij)

ISPk
, where Uk

is assumed to be the first peering node of the peering path that
was selected in environment E(kk′,ij)

CUST ; (iii) ISPk is assigned
only V Nj (which is embedded in node v) and operations are
performed in the environment E(Uk′v,ij)

ISPk′
, where Uk′ is the last

node of such peering path; (iv) ISPk is assigned neither one of
the two V Ns and operations are performed in the environment
E(UxUx+1,ij)
ISPk∗

, where Ux and Ux+1 are two adjacent peering
nodes of the considered peering path, which are assumed to
belong to the infrastructure of ISPk∗.

Fig. 2: High-Level representation of the reward exchange
process performed by the proposed RL algorithm (being r(i)

ISPk

the reward associated with the embedding of V Ni into ISPk)

To efficiently explore the solution space, each agent re-
ceives a reward providing a feedback on the goodness of the
performed action. In our approach, actions are executed in

Algorithm 1 Reinforcement Learning Algorithm for Multi-Domain Virtual Network Embedding

Input: Patience, Q(i)
CUST ,S

(i)
CUST ,Q

kk′,ij
CUST ,S

kk′,ij
CUST ,Q

(i)
ISPk

,S(i)
CUST ,Q

uv,ij
ISPk

,Suv,ijISPk
,∀i,∀uv, ij, i 6= j,∀k, ∀k′

Output: S(i)
CUST ,S

kk′,ij
CUST ,S

(i)
CUST ,S

uv,ij
ISPk

,∀i,∀uv, ij, i 6= j,∀k, ∀k′

1: Variable Initialization Costfinal = ∞, epoch =

0, Nunimproved
epochs = 0

2: while Nunimproved
epochs ≤ Patience do

3: if epoch ≡ 0 mod T V FCUST then
4: for 1 ≤ i ≤ N do
5: ~α

(i)
CUST ← Action

(
S(i)
CUST ,Q

(i)
CUST

)
6: S(i)

CUST ← UpdateState
(
S(i)
CUST , ~α

(i)
CUST

)
7: r

(i)
CUST ← GetReward

(
S(i)
CUST , ~α

(i)
CUST

)
8: end for
9: end if

10: if epoch ≡ 0 mod T V PCUST then
11: for 1 ≤ i, j ≤ N, i 6= j do
12: k ← GetState

(
S(i)
CUST

)
13: k′ ← GetState

(
S(j)
CUST

)
14: ~α

V Pkk′,ij
CUST ← Action

(
Skk′,ijCUST ,Q

(kk′,ij)
CUST

)
15: S(kk′,ij)

CUST ← UpdateState
(
S(kk′,ij)
CUST , ~α

(kk′,ij)
CUST

)
16: r

(kk′,ij)
CUST ← GetReward

(
S(kk′,ij)
CUST , ~α

(kk′,ij)
CUST

)
17: end for
18: end if
19: if epoch ≡ 0 mod T V FISP then
20: for 1 ≤ i ≤ N do
21: k ← GetState

(
S(i)
CUST

)
22: ~α

(i)
ISPk

← Action
(
S(i)
ISPk

,Q(i)
ISPk

)
23: S(i)

ISPk
← UpdateState

(
S(i)
ISPk

, ~α
(i)
ISPk

)
24: r

(i)
ISPk

← GetReward
(
S(i)
ISPk

, ~α
(i)
ISPk

)
25: end for
26: end if
27: for 1 ≤ i, j ≤ N, i 6= j do
28: k ← GetState

(
S(i)
CUST

)
29: k′ ← GetState

(
S(j)
CUST

)
30: Path

(kk′,ij)
peering ← GetPeeringPath

(
S(kk′,ij)
ISPCUST

)
31: for Linkpeering ∈ Pathpeering do
32: u, v ← EndPoints (Linkpeering)
33: k ← OwnerISP (u, v)

34: ~α
(uv,ij)
ISPk

← Action
(
S(uv,ij)
ISPk

,Q(uv,ij)
CUST

)
35: S

(uv,ij)
ISPk

← UpdateState
(
S(uv,ij)
ISPk

, ~α
(uv,ij)
ISPk

)

36: r
(uv,ij)
ISPk

← GetReward

(
S(uv,ij)
ISPk

, ~alpha
(uv,ij)

ISPk

)
37: Q(uv,ij)

ISPk
← UpdateQ

(
Q(uv,ij)
ISPk

, ~alpha
(uv,ij)

ISPk

)
38: end for
39: end for
40: if epoch ≥ 1 & epoch ≡ 0 mod T V FISP − 1 then
41: for 1 ≤ i ≤ N do
42: k ← GetState

(
S(i)
CUST

)
43: r

(i)
ISPk

← r
(i)
ISPk

+
∑
u,v r

(uv,ij)
ISPk

44: Q(i)
ISPk

← UpdateQ

(
Q(i)
ISPk

, ~alpha
(i)

ISPk

)
45: end for
46: end if
47: if epoch ≥ 1 & epoch ≡ 0 mod T V PCUST − 1 then
48: for 1 ≤ i, j ≤ N, i 6= j do
49: k ← GetState

(
S(i)
CUST

)
50: k′ ← GetState

(
S(j)
CUST

)
51: r

(kk′,ij)
CUST ← r

(kk′,ij)
CUST +

∑
k

∑
u,v r

(uv,ij)
ISPk

52: Q(kk′,ij)
CUST ← UpdateQ

(
Q(kk′,ij)
CUST , r

(kk′,ij)
CUST

)
53: end for
54: end if
55: if epoch ≥ 1 & epoch ≡ 0 mod T V NCUST − 1 then
56: for 1 ≤ i ≤ N do
57: Q(i)

CUST ← UpdateQ
(
Q(i)
CUST , r

(i)
CUST

)
58: end for
59: end if
60: Currentcost ← ComputeCost (SCUST ,SISPk

∀k)
61: if Currentcost ≤ Finalcost then
62: FinalCost = Currentcost
63: Nunimproved

epochs = 0
64: else
65: Nunimproved

epochs ← Nunimproved
epochs + 1

66: end if
67: epoch← epoch+ 1
68: if Nunimproved

epochs ≥ Patience then
69: break
70: end if
71: end while

ISPk

ISPk

ISPk

ISPk

return S(i)
CUST ,S

kk′,ij
CUST ,S

(i)
CUST ,S

uv,ij
ISPk

,∀i,∀uv, ij, i 6= j,∀k, ∀k′

isolated environments. To make all the agents behave towards
a common optimization objective, it is crucial to carefully
craft the rewards and to properly exchange them between
different environments. In the next subsection, we describe
the proposed reward signals, and we illustrate a high-level
representation of their exchange in Fig. 2.

C. Rewards Computation and Q-table Updating

1) Embedding a VN into a physical node: The reward
associated with E(i)

ISPk
is defined as r(i)

ISPk
= −di·ciu−vu−wiu,

where di is the computational demand of V Ni and ciu is the
cost of embedding V Ni in node u; vu ∈ {0,∞} indicates
if the node capacity constraint is fulfilled; wiu ∈ {1,∞}
indicates if node u is eligible to host V Ni.

2) Embedding a VP into an intra-ISP physical path:
The reward associated with E(uv,ij)

ISPk
is defined as r(uv,ij)

ISPk
=

−
∑
l∈Pij

uv
(dijcl + vl)+r

(i)
ISPk

+r
(j)
ISPk

, where l is the generic
link belonging to the path Pijuv connecting nodes u and v
and traversed by V Pij ; cl is the cost of embedding a unit of
bandwidth in link l and vl ∈ {0,∞} is a penalty value that
describes the fulfillment of the link capacity constraint. r(i)

ISPk

and r(j)
ISPk

are the rewards associated with the embedding of
V Ni and V Nj (i.e., the end-points of the considered VP),
which have been described in the previous subsection.

3) Assigning a VN to an ISP: The reward associated with
E(i)
CUST is defined as r

(i)
CUST =

∑K
k=1

∑N
j=1 r

(j)
ISPk

. This
reward is the same for all the VNs, i.e., ∀i, to provide a
feedback that considers the current embedding of all the VNs.

4) Assigning a VP to a peering path: The re-
ward associated with E(kk′,ij)

CUST is defined as r
(kk′,ij)
CUST =∑

(u,v)

∑K
k=1 r

uv,ij
ISPk

. This reward is the summation of the
single rewards relative to the embedding of the V Pij within
all the K ISPs.

Once the reward relative to an environment has been
computed, the corresponding Q-table is updated according
to Eq. 1. Since the considered sub-tasks can be solved at
different time scales (e.g., the selection of the ISP in which
a VN is embedded can be performed less frequently than
the selection of the embedding node), we define the periods
of execution of such sub-tasks (measured in number of RL
iteration) as T V NCUST , T V PCUST , T V NISP , T V PISP . At every iteration
of the RL algorithm, the current embedding cost is computed
based on Eq. 2 and all the described operations are repeated
until no improvement to the embedding cost is observed for
a number of iterations equal to patience.

As it may be noticed, we design rewards that are strictly re-
lated to the embedding costs. Therefore, from their exchange,
the participants obtain information about other parties’ data
that, if properly analyzed, can be used to violate the privacy
requirements in subsection VII-E. To address this issue, we
propose a privacy-preserving version of the RL approach,
which is built on the elements that we describe in the
following Section.

TABLE II: Data Overhead

Operation Bits exchanged between each pair of parties
Name Online Offline

Random 0 B
Mult B 4B

MultDec (m+ 1) ·B m ·B
EQ B2 6B2

GE 9B2 0

VI. BUILDING BLOCKS FOR PRIVACY-PRESERVING RL

A. Representation of Data Suitable for Secure Computation

As presented in subsection VII-E, data owned by the
customer and the ISPs are arranged in vector/matrix form
(e.g., vector ~d to represent computational requirements). Each
element of these vectors and matrices can be distributed
among the participants as a set of shares, thus allowing secure
computation on them. In addition, we represent the paths
connecting two generic nodes u and v as a matrix Puv , with
a number of rows equal to the number of paths connecting
nodes u and v (i.e., |Puvk |) and a number of columns equal
to the total number of links of the infrastructure (i.e., |Lk|).
Each path can be represented as a binary vector, whose l-th
element is 1 if the path contains the l-th link of the ISP’s
infrastructure. An example of this representation is shown in
the following:

Link1 · · · Linkl · · · Link|Lk| Path1 0 0 0 1 1
· · · 0 1 0 0 1
Path|Puv

k | 1 0 0 1 1

and it is defined for each possible pair of nodes, i.e.,
∀u, v, u 6= v.

B. Existing Privacy-Preserving Primitives

In this subsection, we describe several existing operators
and we show in Table II the amount of data that each pair
of participants need to exchange to execute them (being B
the bit-length of the shares). By on-line, we refer to a data
exchange done contextually to the execution of the operation
and cannot be performed in advance (as in the off-line case).

1) Secure generation of the shares of a random number:
By executing Random, a share JrvK of a random variable is
learnt by each participant (none of which knows the secret
rv). We employ the implementation described in [19].

2) Secure multiplication: Mult takes in input the shares
JxK, JyK and returns JzK, where z = x · y. We employ the
protocol presented in [20].

3) Secure multiplication with a decimal number: MultDec
takes in input a share JxK and a plain decimal value λ, and
returns the share of their product Jλ · xK. We realize this sub-
routine based on the protocol presented in [21].

4) Secure equality test and greater-or-equal: EQ (resp.,
GE) takes in input the shares JxK and JyK and returns the
share JbeqK (resp., JbgeK), where beq = 1 (resp., bge = 1) iff
x = y (resp., x ≥ y) and 0 otherwise. In this study, we employ
the implementations of EQ and GE described in [19].

In the following subsection, we describe the new operators
that we built based on the aforementioned existing ones and
that are used to develop our privacy-preserving RL algorithm.

C. New Privacy-Preserving Operators

1) Secure computation of the maximum element of a vector
and corresponding index: Max (resp., ArgMax) takes as
input a vector of shares ~x = [Jx1K, Jx2K, ..., JxΦK] and returns
Jmax (~x)K (resp., Ji∗K = Jarg max

i
(~x)K). This module is based

on the recursive application of the GE operator. Details are
omitted due to space constraints.

2) Secure update of the states vector: UpdateState takes
as input the current vector state ~s = [Js1K, Js2K, ..., JsΦK] and
outputs the new state ~s′, according to the action executed by
the agent (e.g., JleftK = J1K, JstayK = J0K and JrightK = J0K
if the agent chooses the action left). The β-th component of
the updated state is derived as Js′βK = Jsβ−1K ·JrightK+JsβK ·
JstayK + Jsβ+1K · JleftK.

a) Masked Secure Update of the states vector: The
MaskedUpdateState is employed in case the participants
are not aware of the vector state to modify and only know
JmaskK, where the binary value mask is 1 if the considered
state has to be updated. This subroutine updates the output of
UpdateState as Js′βK← JmaskK · Js′βK + (1− JmaskK) · JsβK.

3) Secure Selection of the row of a matrix: RowSelec-
tion takes as input a matrix ~M ∈ ZΦXΩ

q and a vector
~x = [Jx1K, Jx2K, ..., JxΦK]. All the components of ~x are J0K,
except the one corresponding to the row to select that is
J1K (say Jxβ∗K = J1K). RowSelection returns a vector ~Mβ∗
corresponding to the selected row. The χ-th component of this
vector is given by JMβ∗(χ)K =

∑Φ
β=1J ~M(β, χ)K · JxβK.

4) Secure Action Selection: SelectAction takes as input
a Q-table matrix Q ∈ ZΦX3

q , a decimal number υ ∈ [0, 1]
and a vector representing the current state of an agent (i.e.,
~s = [Js1K, Js2K, ..., JsΦK]). This subroutine returns the action α
that the agent should perform as [JleftK, JstayK, JrightK] (where
only one component is J1K and the others are J0K). Notice
that υ (resp., 1 − υ) is the probability that the action is
chosen to perform exploitation (resp., exploration). The two
approaches require different operations, that we omit due to
space limitation.

5) Secure Computation of VN Embedding Cost: CostEm-
beddingVN takes as input the state vector S(i)

ISPk
, the cost

vector ~c(nodes) and the computational demand of V Ni, i.e.,
JdiK and returns Jdi · c(nodes)u K corresponding to the u-th
node in which V Ni is embedded. An element-wise secure
multiplication of vectors S(i)

ISPk
and ~c(nodes) is executed. The

obtained products are then summed up, and the result is
securely multiplied with JdiK to get Jdi · c(nodes)u K.

6) Secure Computation of VP Embedding Cost: CostEm-
beddingVP takes as input the state vector Suv,ijISPk

, which en-
codes the physical path connecting nodes u and v (belonging
to ISPk) that is currently traversed by V Pij , the matrix Puv

k ,
which encodes all the paths connecting nodes u and v, as
described in Subsection VI-A, the cost of traversing the links

of ISPk, i.e., ~c(links)k and the amount of traffic exchaged
between V Ni and V Nj , i.e., JdijK. The subroutine returns∑
l∈Pij

uv
Jdij · clinksl K, i.e., the cost of embedding V Pij in its

current physical path. The RowSelection operator is applied
to matrix Puv

k and to state vector Suv,ijISPk
to select the path

belonging to ISPk traversed by V Pij . Then, Mult is used
to perform a secure element-wise multiplication of ~c(nodes)

and the selected row. All the elements of the obtained vector
are summed up and the result is securely multiplied by JdijK
using the Mult subroutine to obtain

∑
l∈Pij

uv
Jdij · clinksl K.

7) Secure Node’s Embedding Feasibility and Cost: Node-
Feasibility takes as input the matrices ~F and ~∆. The uf -
th element of ~F and the if -th element of ~∆ are J1K if a
VN of type f can be hosted in node u and if V Ni is of
type f , (and J0K otherwise). This subroutine returns a matrix
~W , whose ui-th element is J0K in case V Ni can be hosted
in node u and J∞K1 otherwise. The u-th row of matrix ~F
and the i-th row of matrix ~∆ are multiplied element-wise
using the Mult operator. Resulting products are then summed
up to obtain JwiuK, which is J1K in case node u is eligible
to host V Ni (and J0K otherwise). JwiuK is then updated as
JwiuK←

(
1− JwiuK

)
· ∞+ JwiuK

Similarly, the subroutine NodeCost takes as input the
matrices η and ∆, where the uf -th element of η is the cost
of embedding the VN of type f in u. This subroutine returns
a matrix C, whose ui-th element is the cost of embedding a
computational unit of V Ni in node u. The u-th row of matrix
η and the i-th row of matrix ∆ are multiplied element-wise
using the Mult operator and the resulting products are then
summed up to provide the cost of embedding V Ni in u.

8) Secure Node’s Capacity Constraint Verification: Node-
Capacity takes as input the states vector S(i)

CUST and
S(i)
ISPk

,∀i, the VNs’ computational demand vector ~d, the
nodes’ capacity vector ~ζ(nodes) and the index u of a physical
node ∈ ISPk. The output vu ∈ {0,∞} indicates the fulfill-
ment of the capacity constraint for node u. The k-th element
of S(i)

CUST (which is J1K iff V Ni has been assigned to ISPk)
is securely multiplied with JdiK and JS(i)

ISPk
Ku (which is J1K

iff V Ni is embedded in node u) by recursively applying the
Mult operator. This operation is repeated ∀i, and the results
are summed up to obtain the current amount of computational
demand embedded in node u. This value is then securely
compared with the capacity of the node Jζ(nodes)

u K using the
GE operator. The result of this comparison is successively
multiplied by ∞ to obtain vu (which is equal to 0 if node’s
capacity is not exceeded, and ∞ otherwise).

9) Secure Links’ Capacity Constraint Verification:
LinkCapacity takes as input the states vector
S(uv,ij)
ISPk

,∀i, j, i 6= j,∀u, v and a matrix Puv
k representing the

paths connecting nodes u and v (as described in Subsection
VI-A), the value JdijK and the index l. This subroutine
returns JvlK, where vl ∈ {0,∞} indicates the fulfillment of
the capacity constraint for link l. To select the path connecting
nodes u, v that is traversed by V Pij , RowSelection is applied

1∞ is encoded with the value 1000 in the performed experiments

on Puv
k . Then, Mult is executed to perform the secure

multiplication between JdijK and the l-th element of the
selected vector. This operation is repeated ∀u, v, ∀i, j, i 6= j
and the results are summed up to obtain the share of the
amount of bandwidth that are currently deployed on the l-th
link. Finally, the GE operator is applied to securely compare
this value and ~ζ

(links)
l . The result of this operation is then

multiplied by ∞ to obtain JvlK, which is (J0K in case the
capacity of the l-th link is not exceeded).

10) Secure Updating of the Q-table: UpdateQ inputs the
following data: a state vector ~s = [Js1K, ..., JsΦK], an action
vector ~α, a Q-table ∈ ZΦX3, a reward JrK and two decimal
values, i.e., the learning rate lr and the discount factor γ.
The output of this subroutine is the updated Q-table, which
is equal to the matrix Q in input, except for the s, χ-th entry
(which corresponds to the selected action in the current state
of the agent), which is modified according to Eq. 1, that we
repropose for clarity of exposition: Q(s, χ)← Q(s, χ) + lr ·
(r + γ ·maxχ̂Q(s, χ̂)−Q(s, χ)).

Initially, RowSelection is employed on Q and ~s to obtain
the row corresponding to the current state. Max is then used to
compute the maximum value of this row, i.e., Jmaxχ̂Q(s, χ̂)K,
which is then multiplied by the discount factor γ using
the MultDec subroutine. The values within parenthesis are
successively summed up and multiplied by lr, also using the
MultDec subroutine. At this point, the obtained value need
to be summed to Q(s, χ) only, while all the other values of
the matrix must remain unchanged. As participants are not
aware of s and χ, all the elements of the matrix Q must be
summed to the value lr · (r + γ ·maxχ̂Q(s, χ̂)−Q(s, χ))
multiplied by a properly selected JmaskK, which can be
obtained as follows: the Mult operator is applied to J~s(φ)K
and J~α(χ)K,∀φ, χ, in such a way that JmaskK is J1K only for
the ŝχ̂-th entry (i.e., that corresponding of the current state
and selected action), and J0K otherwise.

11) Masked Secure Updating of the Q-table:
MaskedUpdateQ differs from UpdateQ as the value
(r + γ ·maxχ̂Q(s, χ̂)−Q(s, χ)) is securely multiplied by
JmaskK before being multiplied by lr using MultDec.

VII. PRIVACY-PRESERVING RL FOR VNE
In this Section, we describe the proposed privacy-preserving

RL algorithm, in which operations are performed homomor-
phically on the shares that customer and ISPs exchange under
a (K + 1,K + 1) SSS. To yield meaningful results, these
operations must be executed by all the K + 1 participants.
Notice that this is a crucial difference with respect to the
RL described in Section V, in which each participant only
performs the operations required to accomplish his specific
sub-tasks. Notice also that results are reconstructed at the
end of the optimization process, and are obtained only by
the legitimate party.

A. Initial Data Sharing
1) Secret Sharing of the Data between customers and

ISPs: Initially, the participants exchange with each other the
following data:

a) Shares Distributed by the customer: The customer
distributes to the ISPs, in secret shared form, the data de-
scribed in subsection IV-B1, i.e., the vector of computational
demands ~d, the feasibility matrix ~∆ and the bandwidth de-
mand matrix ~D. Moreover, it also distributes Q(i)

CUST and
S(i)
CUST , ∀i and Q(kk′,ij)

CUST and S(kk′,ij)
CUST , ∀k, k′,∀i, j, i 6= j.

b) Shares Distributed by the ISPs: Each ISP distributes,
in secret-shared form, the following data: (i) the nodes’
computational capacity vector ~ζ(nodes), (ii) a feasibility matrix
~F indicating the types of VNs that can be hosted in its physical
nodes, (iii) the nodes’ embedding cost matrix η, the link
capacity vector ~ζ(links), (iv) Q(i)

ISPk
and S(i)

ISPk
,∀i; the (iv)

Q(uv,ij)
ISPk

and S(uv,ij)
ISPk

,∀i, j, i 6= j,∀u, v.
Initially, the NodeFeasibility and NodeCost subroutines

are applied to ∆,F and ∆,η, respectively, to obtain the
information on the feasibility and cost of embedding the
VNs on the physical nodes, i.e., W and C. With these
data in hand, participants can perform the privacy-preserving
counterparts of the operations described in Algorithm 1,
which are described in the following subsection. Note that,
as explained in Section V, the operations performed within
an environment may depend on the operations performed in
another one (e.g., the placement of a VN within the network
of an ISP is consequent to the selection of ISP hosting
it). When performing operations on secret shares, however,
the participants are not aware of the decisions taken and,
consequently, they do not know the environments they should
act in (i.e., they do not know which state vector and relativeQ-
table has to be updated). To address this issue, we associate a
JmaskK with each considered environment, where mask = 1
if operations must take place in that environment, and 0
otherwise. Whenever needed, we will explain the procedures
followed by the participants to obtain these masks.

B. Privacy-Preserving Operations on the Environments

1) Operations on E(i)
ISPk

: These operations are executed to
select the physical node to embeds V Ni (privacy-preserving
counterparts of lines 19 : 25 and 41 : 45 of Algorithm 1).
Firstly, the action ~α

(i)
ISPk

is obtained using the SelectAction
subroutine. The state S(i)

ISPk
is then updated accordingly

by means of the MaskedUpdateState subroutine, where the
employed mask is the k-th component of S(i)

CUST , which is J1K
iff V Ni has been assigned to ISPk. The corresponding reward
is r(i)

ISPk
= J−di · c(i)u − vu − wiuK, which is obtained using

the CostEmbeddingVN, NodeCapacity and NodeFeasibility
operators. Then, Q(i)

ISPk
is updated using the MaskedQUpdate

subroutine. These operations are repeated ∀i, k.
2) Operations on Euv,ijISPk

: These operations are executed
to select the path connecting nodes u and v to embed
V Pij (privacy-preserving counterpart of lines 27 : 38 of
Algorithm 1). We remind that the selection of the physical
path connecting nodes u and v belonging to ISPk on which
V Pij should pass is dependent on the peering path that such
VP traverses. Since customer and ISPs are not aware of
the peering path in which V Pij is embedded, they compute

JmaskK = J(V Ni ∈ ISPk) · (V Nj ∈ ISPk′) · S(ij,kk′)
CUST [β]K,

i.e., mask = 1 iff V Ni and V Nj have been assigned to
ISPk and ISPk′ and V Pij is embedded in the β-th peering
path connecting them (mask = 0 otherwise).

Then, the participants consider the environment EuUk,ij
ISPk

,
where Uk is assumed to be the first peering node of the β-
th peering path. SelectAction is executed to obtain ~αuUk,ij

ISPk
,

which is successively used to update the corresponding state
vector by means of the MaskedUpdateState subroutine. At this
point, the reward Jr(uv,ij)

ISPk
K = −

∑
l∈Pij

uv
(Jcl · dijK + JvlK) +

Jr(i)
ISPk

K + Jr(j)
ISPk

K is computed using the CostEmbeddingVP
and the LinkCapacity operator to obtain

∑
l∈Pij

uv
Jcl ·dij+vlK,

and by summing the shares obtained as described in Subsec-
tion VII-B1 to obtain Jr(i)

ISPk
+ r

(j)
ISPk

K. With these values in
hand, Quv,ijISPk

is updated with the MaskedQUpdate operator.
The same process in performed considering the last node of
the peering path (say Uk′) and the environment SUk′v,ij

ISPk′
,∀v

and the intermediate peering nodes (say Uxi
and Uxi+1

), for
which the same operations are performed on the environment
E
Uxi

Uxi+1
,ij

ISPk′
. All these operations are repeated ∀u, v, i, j, k.

3) Operations on E iCUST : These operations are executed to
select the ISP to embed V Ni (privacy-preserving counterpart
of the operations presented in lines 4 : 8 and 56 : 58 of Algo-
rithm 1). Firstly, action vector ~α(i)

CUST is obtained by means of
the SelectAction subroutine and used to update the state vector
S(i)
CUST employing the UpdateState subroutine. Then, the

reward is computed as r(i)
CUST =

∑K
k=1

∑N
j=1Jr

(j)
ISPk

K, where
Jr(j)
ISPk

K is obtained as described in Subsection VII-B1. With
these data, QiCUST is updated using the UpdateQ operator.
These operations are repeated ∀i.

4) Operations on E(kk′,ij)
CUST : These operations are executed

to select the peering path to embed V Pij (privacy-preserving
counterpart of the operations presented in lines 11 : 17 and
48 : 52 of Algorithm 1). Action ~α

(kk′,ij)
CUST is obtained using

the SelectAction subroutine and used to update the vector
state Skk′,ijCUST using the MaskedUpdateState subroutine. The
considered mask is obtained applying the Mult operator on
JV Ni ∈ ISPkK and JV Nj ∈ ISPk′K. Then, the reward
rkk′,ijCUST =

∑
(u,v)

∑K
k=1Jr

uv,ij
ISPk

K is obtained by summing the
single rewards computed as explained in Subsection VII-B2.
Finally, Qkk′,ijCUST is updated using the MaskedQUpdate opera-
tor. These operations are repeated ∀kk′, ij.

C. Computation of the Embedding Cost

At each iteration of the RL algorithm the participants
know Jdi · ciuK,∀u, i,JvuK,∀u, JwiuK,∀u, i, which are obtained
during the computation of the rewards relative to the em-
bedding of the VNs into the physical nodes, as explained
in subsection VII-B1. Similarly, the participants also obtain
J
∑
l∈Pij

uv
dijc

links
l K,∀ij, l and JvlK,∀l from the computation

of the rewards corresponding to the embedding of the VPs
into the physical links, as explained in subsection VII-B2.

By computing
∑
iJdi · ciuK +

∑
ijJdijc

links
l K participants

obtain the embedding cost at the current RL iteration, in secret
shared form. This cost is then summed up with

∑
iJw

i
uK +

∑
uJvuK+

∑
lJvlK, which are penalty values corresponding to

the feasibility of the solution. We remind that vu = 0 (resp.
vl = 0) if node u’s (resp., link l’s) capacity is not exceeded
(and ∞ otherwise) and wiu = 1 if node u is eligible to host
V Ni (and ∞ otherwise).

The obtained value is then securely compared with the
previous minimum cost (which is supposed to be initialized
at J∞K) by means of the GE operator, whose output is
recovered by the participants. If the current cost is less then
the previous minimum (i.e., GE outputs 0), this cost is taken
as the new minimum. The execution of the RL stops when the
GE outputs 1 (i.e., current cost greater or equal to the previous
minimum one) for a consecutive number of epochs equal to
patience. Notice that the last iteration in which GE outputs
0 corresponds to the computation of the best embedding and
the number of this iteration is known to all the participants.

D. Recovery of the Final Secrets

At the end of the execution of the RL algorithm, the K
ISPs deliver to the customer their shares of the minimum cost,
obtained as described in the previous subsection. In this way,
only the customer can recover the final embedding cost. Then,
participants identify the iteration in which the best embedding
has been obtained and exchange with each other the following
data relative to that iteration:

a) Data Received by the customer: the customer receives
from all the K ISPs the shares relative to the states vector
S(i)
CUST ,∀i and S(kk′,ij)

CUST ,∀kk′, ij. From these data, customer
discovers the ISPs in charge of embedding the VNs and the
peering links traversed by the VPs.

b) Data Received by the ISPs: The generic ISPk re-
ceives from all the other participants the k-th component
of vector state S(i)

CUST ,∀i, from which it can recover the
information if V Ni has been assigned to it, and the vector
state S(i)

ISPk
,∀i, from which it discovers the physical node

in which it has to embed V Ni. Then, the customer delivers
to ISPk the information on the peering nodes belonging
to its infrastructure that should be traversed by V Pij ,∀ij.
Finally, ISPk receives from all the participants the vector
state S(uv,ij)

ISPk
,∀uv, ij. Knowing the physical nodes that host

the VNs assigned to it and the peering nodes traversed by
the VPs, ISPk is able to identify the pair of nodes uv and,
from S(uv,ij)

ISPk
, discover the links in which V Pij has to be

embedded.

E. Fulfillment of Privacy Requirements

As described in subsection VII-E, customer and ISPs are
modeled as honest-but-curious entities. We justify this as-
sumption showing that two common malicious behaviors are
either prevented by our scheme or hard to realize in practice. i)
A possible malicious attack consists in a subset of participants
that collude to violate another party’s privacy. This attack
is prevented by the use of a (K + 1,K + 1) SSS, in which
no data can be recovered without the involvement of all the
K+1 participants (e.g., several colluding ISPs cannot discover
confidential details of a competitor’s infrastructure without its

explicit consent). ii) In another type of attack, participants
can execute the RL using data that they specifically craft to
pursue some illicit objective. For instance, the customer might
handcraft the VGs to discover specific patterns of deployment
(e.g., which ISP has the lowest cost of deployment of a
given type of VN). Alternatively, an ISP might advertise lower
embedding costs to attract more requests from the customer,
and based on how their number increases, it may also guess
the embedding costs of its competitors. Since the customer
(resp., ISP) has to actually pay for (resp., be paid for) the
requested VGs, we argue that there are not have sufficient
economic incentives to perform such an attack, mostly because
the latter is likely to be effective only after a significant
number of requests. We now elaborate on the fulfillment of
privacy requirements under the honest-but-curious security
model:

1) Customer’s Privacy Requirements: All the ISPs per-
form operations on data relative to customer’s environments
E(i)
CUST ,∀i and Ekk′,ijCUST ,∀kk′, ij. These operations, described

in subsection VII-B, are based on secure primitives. Hence, no
information about the VG is leaked beyond the number of VNs
N . At every iteration of the RL algorithm, the participants
discover if the current embedding cost is greater or equal
to the previous minimum one, as described in subsection
VII-C, which does not provide additional information about
the VG. Finally, during the secret recovery phase described in
subsection VII-D, each ISP only receives data related to the
portion of VG that it has to embed, from which it derives the
computational capacity di and type δi only of the generic V Ni
assigned to it. Similarly, each ISP discovers the bandwidth
requirement dij for every V Pij that it has to embed, but no
information about other VPs. Hence, the customer’s privacy
requirements are fulfilled.

2) ISPs’ Privacy Requirements: Each participant performs
operations over the shares hiding infrastructural details of
the generic ISPk and from environments E(i)

ISPk
,∀i and

E(uv,ij)
ISPk

,∀uv, ij. From them, it is possible to discover the
number of nodes |Mk| and links |Lk| of ISPk, as well as
|Puv

k |, i.e., the number of paths connecting any two generic
nodes u and v. However, since the operations performed on
the shares are proved secure, no additional information about
costs and capacities of ISPk’s nodes and links are exposed,
as well as if there is or not a link between two generic nodes.
Hence, also ISPs’ privacy requirements are satisfied.

VIII. NUMERICAL RESULTS

A. Simulation Settings

We compare the RL-based approach with the LID and
FID heuristics [4] considering the final embedding cost. We
perform the experiments on a simulation platform that we
realized in Python and allows us to i) define the networks (i.e.,
both the physical and virtual one), ii) reproduce the results of
the benchmarks and iii) execute the proposed RL algorithms.
Physical infrastructure and virtual graph are randomly gener-
ated at each simulation, according to the parameters presented

TABLE III: Simulation Settings

Variable Value
di U ∼ [0, 10]

Probability that V Ni

and V Nj exchange traffic 0.5

dij U ∼ [1, 10]
Number of VNs Types 10

Probability that an ISP can
host a certain type of VN 0.5

Probability that a physical node
can host a certain type of VN 0.5

4
Cost of embedding V Ni in node u U ∼ [1, 10]
Computational capacity of node u U ∼ {30, 40, 50}

Cost of embedding V Pij

in an internal link U ∼ {6, 7, 8, 9}

Cost of embedding V Pij

in a peering link U ∼ {11, 12, 13, 14, 15}

Capacity of an internal link U ∼ {50, 100}
Capacity of a peering link U ∼ {200, 400}

Learning rate lr and Discount Factor γ 0.125

in Table III2. The total number of peering nodes is the integer
part of 1.5 · K, K being the number of ISPs. Each ISP is
then assigned ≥ 1 peering nodes and its network is generated
following the Waxman model (as also done in [4]). Peering
nodes are then randomly interconnected, in such a way that
no ISP is disconnected from the multi-infrastructure network
and has, on average, 4 outgoing peering links.

We show the results obtained by averaging the embedding
costs of 50 experiments for each type of simulated scenario.
Unless stated otherwise, we consider K = 5 ISPs with an
average number of Mk = 15 nodes. The training of the RL
algorithm is stopped when no improvements to the final costs
are observed for a number of iteration patience = 50000.

B. Evaluation of the RL approach

In this subsection, we evaluate the effectiveness of the RL-
based approach presented in Section V (i.e., the non privacy-
preserving one). Experiments are performed setting T V NCUST =
20, T V PCUST = 50, T V NISP = 1, T V PISP = 1. In Fig. 3 we show
CostRL

CostFID
and CostLID

CostFID
for N ∈ {2, ..., 8}. We observe that the

CostRL is always lower than CostLID and, with N < 6, also
then CostFID. On average, CostLID

CostFID
= 1.14 and CostRL

CostFID
=

1. Hence, the RL approach is a valid alternative to both the
considered heuristics.

Then, Fig. 4a shows the minimum embedding cost as a
function of the number of executed iterations of the RL al-
gorithm for N ∈ {2, ..., 8}. As expected, a longer exploration
of the solution space is needed to find the best embedding
with increasing N . More specifically, the largest decrease of
embedding cost is obtained after 25000 iterations for large
instances of the VG (i.e., N ≥ 5), while much fewer epochs
are needed for small VGs (e.g., the minimum embedding cost
of N = 2 is generally achieved after as few as 5000 epochs).

We now discuss the data overhead introduced by the
privacy-preserving RL presented in Section VII.

2In this Table, U stands for Uniformly-Distributed Random Variable

2 3 4 5 6 7 8
0

0.5

1

1.5

Number of VNs (N)

C
o
st
/C

o
st

F
ID

RL
LID

Fig. 3: Comparison of costs achieved with the non-private RL,
LID and FID approaches

25000 50000 75000 100000 125000 150000
RL Iteration

0
1000
2000
3000
4000
5000
6000
7000

Em
be

dd
in
g
Co

st

2 VNs
3 VNs
4 VNs

5 VNs
6 VNs

7 VNs
8 VNs

(a) Non-Privacy-Preserving RL

25000 50000 75000 100000 125000 150000
RL Iteration

1500
1750
2000
2250
2500
2750
3000

Em
be

dd
in
g
Co

st

FID
LID
τ=1

τ=100
τ=500
τ=1000

(b) Privacy-Preserving RL (N = 5 VNs)

Fig. 4: Minimum Cost of the RL algorithm as a function of
the number of iteration

C. Data Overhead of the Privacy-Preserving RL

In Fig. 5 we show the volume of data that each pair of
participants exchange with each other at every iteration of
the privacy-preserving RL algorithm (where secret shares are
assumed to be represented using 20 bits). In particular, we
show the overhead generated by performing operations in each

2 3 4 5 6 7 8
0

100

200

300

400

Number of VNs

M
by

te
s

EV NCUST
EV PCUST
EV NISP
EV PISP
Total

(a) Overhead of data exchanged on-line

2 3 4 5 6 7 8
0

200

400

600

Number of VNs

M
by

te
s

EV NCUST
EV PCUST
EV NISP
EV PISP
Total

(b) Overhead of data exchanged off-line

Fig. 5: Cumulative Overhead in each type of Environment

one of the four considered types of environments (described
in subsection V-A) with increasing N , both on-line (in Fig.
5a) and off-line (in Fig. 5b).

First of all, we observe that the overhead increases with
increasing N in all the environments, and this increase is
much more voluminous in the environments related to the
embedding of a VP into the physical links, i.e., EV PISP . As
shown in Fig. 5a, the operations performed in this envi-
ronment and described in Subsection VII-B2 introduce, at
every iteration of the RL algorithm, a cumulative on-line
overhead of up 400Mbytes. On the other hand, operations
in the other environments are much less expensive (e.g.,
operations in EV NCUST introduce ∼ 10−3Mbytes per iteration).
A similar trend can be observed for data exchanged off-line.
Notice that these high values are mainly due to the fact
that, as data is ciphered, participants are not aware of the
specific environment in which they have to act and operations
are repeated in all environments. However, we remind that
operations are effective only in the environment associated
with a JmaskK = J1K, as explained in Section VII-A. A
strategy to reduce this high overhead is to limit the number
of operations performed in environments of type EV PISP , as

discussed in the next subsection.

D. Comparison between Privacy-Preserving RL and the base-
lines

Here we evaluate the embedding cost achieved by per-
forming operations on Euv,ijISPk

,∀k, uv, ij every T V PISP itera-
tions of the privacy-preserving RL algorithm, with T V PISP ∈
{1, 100, 500, 1000}, i.e., by varying the frequency of oper-
ations within the type of environments responsible for the
greatest portion of the overhead. Obtained results are shown
in Fig. 6a.

Firstly, we observe that the privacy-preserving RL yields to
an average increase of the embedding cost of 3% with respect
to FID heuristic, while the average costs of the non-privacy-
preserving RL and FID are the same when T V PISP = 1. This
result can be explained considering that operations on ciphered
data introduce several approximations (e.g., multiplications
by decimal numbers are truncated to integer values). Then,
we notice that the cost generally increases with increasing
T V PISP , as the number of operations performed to find the
physical paths that embed the virtual ones are reduced. In
particular, there is an average increase of cost with respect to
FID of 16%, 27% and 27%, achieved for T V PISP = 100,500
and 1000 iterations. For N < 6, the cost obtained with
T V PISP = 100 is still lower than CostLID, which implies an
advantage over to the privacy-preserving baseline (i.e., LID)
at a significant reduction of data overhead. As an example,
for N = 5, CostRL

CostFID
goes from 0.96 to 1.13 when T V PISP

goes from 1 to 100, which is an acceptable increase as the
overhead at every iteration of the RL drops from 152.42 to
1.61 Mbytes (exchanged on-line) and from 223.12 to 2.31
Mbytes (exchanged off-line). In general, the total overhead
decreases of a factor ∼ T V PISP . On the other hand, for N ≥ 6
the reduction of overhead achieved with T V PISP = 100 leads
to an embedding cost that is higher than the LID heuristic.
As a future study, we will evaluate such trade-off when
1 < T V PISP < 100, which seems to be a crucial range to
evaluate the ability of the privacy-preserving RL to effectively
embed large VGs. We then show in Fig. 4b the comparison
of the minimum embedding cost as a function of the RL
iteration, for several TV PISP , considering N = 5. We observe
that increasing TV PISP does not significantly affect the number
of iterations needed by the algorithm to converge but, as
expected, reduces its ability to minimize the embedding cost.

Finally, we show in Fig. 6b the embedding cost considering
N = 5 for several number of ISPs K ∈ {3, 5, 7} (and fixed
number of physical nodes Mk = 15) and for several number
of average physical nodes in every ISP, i.e., Mk ∈ {10, 15, 25}
(and fixed number of ISPs K = 5). These results show that,
when TV PISP ∈ {1, 100}, the RL yields lower costs than the
LID baseline if the number of ISPs (resp., of physical nodes)
is increased from 5 to 7 (resp., from 10 to 25), suggesting
that the proposed RL approach is robust with respect to the
variation of several conditions.

From these results, we observe that the proposed privacy-
preserving RL can guarantee embedding costs similar to those

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

Number of VNs (N)

C
o
st
/
C

o
st

F
ID

RL T = 1 T = 100
T = 500 T = 1000 LID

(a) Comparison for several values of N (number of ISPs K = 5 and
average number of internal nodes |Mk| = 15)

3 5 7 10 15 25
0

0.5

1

1.5

2

2.5

Number of ISPs Number of Nodes

C
o
st
/
C

o
st

F
ID

RL T = 1 T = 100
T = 500 T = 1000 LID

(b) Comparison for several number of ISPs and number of nodes
(number of VNs N = 5)

Fig. 6: Comparison between LID, FID and privacy-preserving
RL for several values of T V PISP

of the FID scenario, while fulfilling even more stringent
privacy requirements than existing LID approaches. However,
these results are achieved at the cost of a higher complexity,
as further discussed in the next subsection.
E. Complexity of the RL algorithms

In [4] the VNE problem is formulated as a mixed integer
multi-commodity flow, and sub-optimal solutions are found in
polynomial time for both LID and FID scenarios. Differently
from [4], we solve this problem by employing RL-based
approaches that find the solution in an iterative fashion. The
number of iterations needed by our algorithms to converge is
a crucial factor of their complexity, but it cannot be expressed
in closed form. In Table IV, we show the complexity of the
operations performed at each iteration. From this table, we
observe that both our approaches find a solution in polynomial
time, but that the privacy-preserving RL is significantly more
complex than the non-privacy-preserving one.

TABLE IV: Complexity at each iteration of the RL algorithms

Non-Privacy-Preserving RL O(N2 +N)

Privacy-Preserving RL
O

(
(K + 1) · [N2 · (K2 +M2

kK)

+N (̇1−K2 +K −M2
kK)])

The main reasons of the increased complexity are that i)
all the K + 1 participants execute the same operations on
their set of shares (indeed, the term K + 1 in the expression
of the complexity accounts for such repeated operations)
and ii) operations are performed over encrypted data. As
described in Section VII, encryption makes participants not
aware of the effects of their actions, and forces them to
repeat the same operation on multiple environments to make
it effective. However, we notice that operations executed
in different environments can be performed independently,
which renders the considered problem embarrassingly parallel
[22]. Also, this complexity can be significantly reduced if
few expensive operations are performed less frequently, as
discussed in the previous subsection. Finally, note that this
additional complexity is the price to be paid to ensure a
privacy-preserving operation of the VNE algorithm.

IX. CONCLUSIONS

In this paper, we proposed a privacy-preserving RL algo-
rithm to perform VNE over a multi-domain infrastructure
composed of several independent and mutually-distrustful
ISPs. In this context, ISPs and customer are not willing to
expose details that are required for an effective embedding
(e.g., cost of traversing a link). By performing operations on
secrets ciphered under the SSS scheme, our algorithm allows
both customer and ISPs to retain total privacy. We performed
extensive simulations to evaluate the embedding cost achieved
with our algorithm compared to two existing heuristics, i.e.,
the Limited Information Disclosure (LID) and the Full Infor-
mation Disclosure (FID). The RL algorithm proved to be a
valid alternative to such heuristics but introduces a high data
overhead. We reduced the number of operations responsible
for the highest portion of data overhead and we evaluated the
resulting trade-off between overhead and embedding costs.
Results have shown that a considerable reduction of data
overhead can be obtained at an acceptable increase in the final
cost.

ACKNOWLEDGMENT

Davide Andreoletti and Silvia Giordano are funded by the
Swiss National Science Foundation (SNSF) via the CHIST-
ERA project UPRISE-IoT. Giacomo Verticale’s work has
been supported by the project ATMOSPHERE, funded by the
Brazilian Ministry of Science, Technology and Innovation and
by the European Commission.

REFERENCES

[1] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[2] H. Cao, H. Hu, Z. Qu, and L. Yang, “Heuristic solutions of virtual
network embedding: A survey,” China Communications, vol. 15, no. 3,
pp. 186–219, 2018.

[3] S. M. Araújo, F. S. de Souza, and G. R. Mateus, “Virtual network em-
bedding in multi-domain environments with energy efficiency concepts,”
in 2018 International Conference on Information Networking (ICOIN).
IEEE, 2018, pp. 205–210.

[4] D. Dietrich, A. Rizk, and P. Papadimitriou, “Multi-provider virtual
network embedding with limited information disclosure,” IEEE Transac-
tions on Network and Service Management, vol. 12, no. 2, pp. 188–201,
2015.

[5] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha,
“Optimal virtual network embedding: Node-link formulation,” IEEE
Transactions on Network and Service Management, vol. 10, no. 4, pp.
356–368, 2013.

[6] F. Samuel, M. Chowdhury, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” Journal of Internet
Services and Applications, vol. 4, no. 1, p. 6, 2013.

[7] F.-E. Zaheer, J. Xiao, and R. Boutaba, “Multi-provider service negotia-
tion and contracting in network virtualization,” in 2010 IEEE Network
Operations and Management Symposium-NOMS 2010. IEEE, 2010,
pp. 471–478.

[8] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Computer Networks,
vol. 55, no. 4, pp. 1011–1023, 2011.

[9] K. Guo, Y. Wang, X. Qiu, W. Li, and A. Xiao, “Particle swarm
optimization based multi-domain virtual network embedding,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015, pp. 798–801.

[10] Q. T. A. Pham, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, “Multi-
domain non-cooperative vnf-fg embedding: A deep reinforcement learn-
ing approach,” 2019.

[11] X. Chen, Z. Li, Y. Zhang, R. Long, H. Yu, X. Du, and M. Guizani,
“Reinforcement learning–based qos/qoe-aware service function chaining
in software-driven 5g slices,” Transactions on Emerging Telecommuni-
cations Technologies, vol. 29, no. 11, p. e3477, 2018.

[12] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre,
and I. Truck, “Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow,” in ICAS 2011,
The Seventh International Conference on Autonomic and Autonomous
Systems, 2011, pp. 67–74.

[13] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Machine-learning-
based prediction and optimization of mobile metro-core networks,” in
2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).
IEEE, 2018, pp. 155–156.

[14] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in neural information processing systems, 2017,
pp. 6379–6390.

[15] D. Andreoletti, O. Ayoub, S. Giordano, G. Verticale, and M. Tornatore,
“Privacy-preserving caching in isp networks,” in 2019 IEEE 20th
International Conference on High Performance Switching and Routing
(HPSR). IEEE, 2019, pp. 1–6.

[16] D. Andreoletti, O. Ayoub, C. Rottondi, S. Giordano, G. Verticale,
and M. Tornatore, “A privacy-preserving protocol for network-neutral
caching in isp networks,” IEEE Access, 2019.

[17] D. Andreoletti, S. Giordano, G. Verticale, and M. Tornatore, “Dis-
covering the geographic distribution of live videos’ users: A privacy-
preserving approach,” in 2018 IEEE Global Communications Confer-
ence (GLOBECOM). IEEE, 2018, pp. 1–6.

[18] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[19] T. Turban, “A secure multi-party computation protocol suite inspired by
shamir’s secret sharing scheme,” Master’s thesis, Institutt for telematikk,
2014.

[20] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[21] O. Catrina and S. De Hoogh, “Improved primitives for secure multiparty
integer computation,” in International Conference on Security and
Cryptography for Networks. Springer, 2010, pp. 182–199.

[22] J.-C. Régin, M. Rezgui, and A. Malapert, “Embarrassingly parallel
search,” in International Conference on Principles and Practice of
Constraint Programming. Springer, 2013, pp. 596–610.

