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Abstract

This article deals with the design of an innovative adaptive multi-modal tuned mass damper able to change its eigenfre-
quencies to recover shifts of the natural frequencies of the primary system which needs to be damped. This is accom-
plished using systems of shape memory alloy wires connected to a number of masses equal to the number of modes to
be damped. This article presents the analytical model used to describe the behaviour of the adaptive tuned mass damper,
showing which parameters can affect the performances of the device. The layout proposed for the tuned mass damper
proves to be able to act on a wide frequency range and to work adaptively on at least two eigenfrequencies at the same
time with a given level of independence. The last goal is accomplished, thanks to the special features of the shape mem-
ory alloys, by heating (or cooling) each wire of the device independently and allowing the exploitation of two different
effects: the change of the axial load in the wires and the change of the geometry of the device. The reliability of both the
design approach and the model of the new device is proved by means of an experimental campaign performed consider-
ing a random disturbance.
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Introduction

On account of their advantageous features, the use of
smart materials for vibration reduction has proved to
be very promising. Indeed, piezoelectric materials (e.g.
Berardengo et al., 2015b, 2016, 2017a, 2017b; Heuss
et al., 2016; Høgsberg and Krenk, 2015), shape mem-
ory alloys (SMAs; e.g. Casciati et al., 2014; Dieng
et al., 2013; dos Santos and Nunes, 2018; Mavroidis,
2002; Ozbulut et al., 2007; Piccirillo et al., 2016; Saggin
et al., 2017; Senthilkumar and Umapathy, 2013; Torra
et al., 2014), magnetic memory alloys (e.g. Majewska
et al., 2007), and magnetorheological materials (e.g.
Caterino et al., 2011; Weber and Maślanka, 2012) have
been fruitfully employed in damping and actuation
applications.

These materials were shown to be effective for the
design of semi-active and active tuned mass dampers
(TMDs). In general, TMDs reduce vibrations very
effectively, but they have two main drawbacks: (1) their
performances decrease significantly when mistuning
occurs and (2) they usually act on a single mode. With
regard to the first point, smart materials can give signif-
icant contributions because their properties are

particularly suitable for the design of adaptive TMDs
(e.g. Heuss et al., 2016). Adaptive TMDs able to adapt
their own eigenfrequencies can follow the changes of
one eigenfrequency of the primary system to be
damped, allowing the adaptive TMD to be always
tuned and to achieve an optimal damping action (e.g.
Weber, 2013). Changes in the dynamical features of the
primary system are a critical issue since they often
occur because of a number of possible reasons (e.g.
thermal shifts).

Among the various smart materials, this article
focuses on the use of SMAs. Indeed, SMAs have been
successfully employed to damp vibrations in light struc-
tures, and especially to design and construct adaptive
TMDs capable of changing their eigenfrequency, on
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account of the unique physical properties of such
materials.

Furthermore, they are cheaper than other materials
and can be manufactured in shapes (e.g. wires) which
guarantee low weights; this is a key characteristic
because adaptive devices can be designed and built in a
manner that avoids high load effects in light structures.

Several works on adaptive devices based on SMAs
have been proposed in the literature to demonstrate the
possibility of applying SMA-based devices in real engi-
neering applications. As examples, Mani and
Senthilkumar developed an application where an
absorber made from SMA springs damps the vibration
of a centrifugal pump with varying excitation frequency
(Mani and Senthilkumar, 2013), while Zuo and Li
demonstrated that SMA dampers are suitable for miti-
gating cable vibrations (Zuo and Li, 2011). The various
works proposed by the scientific community on adap-
tive TMDs based on SMAs differ in the principle used
to adapt the TMD eigenfrequency and in the control
strategy that is applied. For example, Rustighi et al.
showed the effectiveness of cantilever beams made from
SMA material to build reliable adaptive TMDs
(Rustighi et al., 2005a). Changes in the eigenfrequency
of the adaptive TMD occur when the SMA material
temperature is changed, which in turn causes a change
in its Young’s modulus. Different strategies for control-
ling this type of adaptive TMD are presented in
Rustighi et al. (2005b). Williams et al. developed an
adaptive TMD based on a series of SMA-based cantile-
ver beams in Williams et al. (2002), relying on the same
physical principle presented in Rustighi et al. (2005a).
Then, Williams et al. discussed a non-linear control
approach for the same device in Williams et al. (2005).
A different approach is discussed by Savi et al., who
studied the behaviour of an SMA spring to be used for
vibration control (Savi et al., 2010), evidencing its capa-
bility to change stiffness and damping properties by
changing temperature and exploiting the pseudoelastic
effect (see the next section). A similar device was stud-
ied experimentally by Aguiar et al. (2012). Tiseo et al.,
instead, showed experimentally that an adaptive TMD
can be built with an SMA wire with constrained ends
and with a mass located at its centre. Indeed, the eigen-
frequency of the system can be changed by changing
the temperature of the wire (Tiseo et al., 2010). Despite
the effectiveness of the presented design and working
principle, no models of the structure, control criteria
and quantification of the adaptation performances
were addressed in this work.

Recently, Berardengo et al. (2014, 2015a) proposed
a new SMA-based adaptive TMD able to change its
eigenfrequency by more than 100% of its initial value,
by coupling elastic elements to SMA wires and a cen-
tral mass. Furthermore, this adaptive TMD layout
showed to have two further advantages when com-
pared to the other SMA-based adaptive TMDs: (1) it

works properly with any kind of SMA material, there-
fore without requiring high-performance SMAs (i.e.
SMAs with special features such as high change of
Young’s modulus with temperature); (2) devices that
change the damping level of the adaptive TMD can be
easily added. This was accomplished in Berardengo
et al. (2015a) using an eddy current damper, but other
systems/principles could be used (e.g. magnetic devices
(Dai et al., 2014) or mechanical devices).

Albeit the effectiveness of SMAs in the development
of adaptive TMDs is proved by the referenced works,
the other main drawback of these adaptive TMDs (i.e.
they usually act on a single mode, as above-mentioned)
is still an open issue. Indeed, there is a lack of works in
the literature proposing adaptive TMDs based on smart
materials able to work at the same time on more than
one mode of the primary system independently. In this
scenario, the goal of this article is to investigate the pos-
sibility of designing SMA-based adaptive TMDs that
can change more than one eigenfrequency in specific
frequency ranges independently and at the same time
(multi-modal adaptive TMDs). This would give an
adaptive TMD able to recover any possible change in
the primary system eigenfrequencies, thus assuring
satisfactory damping of the vibrations of the primary
system. The working principle and the design approach
are the same as those described in Berardengo et al.
(2015a), because the device proposed there guarantees
high layout flexibility and an extended frequency range
when compared to the other SMA-based adaptive
TMDs.

This article is structured as follows. The next two
sections recall the SMA features and the SMA-based
adaptive TMD presented in Berardengo et al. (2015a),
respectively, for understanding the newly proposed
multi-modal adaptive TMD. Then, this multi-modal
adaptive TMD is presented, discussing how SMA prop-
erties are used to design it and developing its analytical
model. The last two sections of this article discuss the
adaptive TMD performances by means of numerical
simulations and validate the results through an experi-
mental campaign, respectively.

SMAs

This section recalls the main properties of SMAs
(Lagoudas, 2008) useful for understanding the working
principle of the proposed adaptive device. SMAs are
characterised by transformations over three different
solid phases, which occur when the material undergoes
a change of either temperature or applied stress. The
solid phase transition leads to changed mechanical
properties (e.g. Young’s modulus) and can cause a
change in the SMA shape. The three phases involved in
these transformations are detwinned martensite (DM),
twinned martensite (TM) and austenite (AU).



Figure 1 shows the phase diagram of SMA, where
ss is the stress value at which the transformation from
TM to DM starts at environmental temperature, while
sf is the stress value at which the transformation is
completed. Furthermore, As is the temperature value at
which the transformation from TM to AU starts at null
stress, Af is the value at which the transformation is
completed, Ms is the temperature value at which the
transformation from AU to TM starts at null stress
and Mf is the value at which the transformation is com-
pleted. CA and CM are the angular coefficients of the
transformation lines. Table 1 gathers the values of the
parameters shown in Figure 1 for the SMA wires used
in this work (identified experimentally), which are
made of Nitinol (nickel and titanium). In Table 1, Hcur

is the strain due to the change of shape during the
change of phase between TM and DM (see the vertical
solid arrow in Figure 1), named the current maximum
transformation strain; a is the thermal expansion coef-
ficient. Finally, Ew, DM and Ew, AU are Young’s moduli
of the DM and AU phases, respectively.

Figure 1 shows that the shape of the SMA can be
changed when either transformations from TM to DM
occur or the SMA changes phase from DM to AU and
vice versa. The shape in the TM and AU phases is
almost the same (i.e. unstrained). Therefore, a shape
change can be obtained by applying a stress value
higher than ss (transformation from TM to DM, see
the vertical solid arrow in Figure 1) and the original
shape can be recovered by increasing the temperature
(transformation from DM to AU). When the SMA is
in the AU phase, the shape can be changed by exploit-
ing the AU-DM transformation (and vice versa) and

thus by changing the temperature (temperature-induced
phase transformation, see the horizontal dashed double
arrow in Figure 1) and/or the applied stress (pseudoe-
lastic effect, see the vertical dashed double arrow in
Figure 1).

The strain of the SMA wires ew can be expressed by
the following general relation according to Lagoudas
(2008)

ew = eew + etw + ethw ð1Þ

where ethw is the strain component due to thermal expan-
sion, eew is the elastic strain component and etw is the
strain component due to the thermoelastic martensitic
transformation (i.e. the strain caused by the change of
shape from TM to DM; refer to Figure 1).

Adaptive TMD

As mentioned, the multi-modal adaptive TMD pre-
sented in this work takes advantage of the adaptive
TMD proposed by Berardengo et al. (2015a).
Consequently, it is worthwhile to recall its working
principle briefly.

The adaptive TMD presented in Berardengo et al.
(2015a) relies on the use of two (or more) SMA wires, a
central mass and some elastic elements (see Figure 2).
The elastic elements link this adaptive TMD to the pri-
mary system to be damped and make it possible to
apply a pre-stress (and thus a pre-strain) to the wires.
The value of this pre-stress is set above sf (see Figure 1)
in order to have the SMA wires in the DM condition.
Therefore, a further change in the shape (i.e. mainly the
length) of the wires can be achieved by means of a tem-
perature change, relying on the transformation between
DM and AU. Since the wires are constrained to the pri-
mary system through elastic elements, this change of
shape also changes the axial tensile load F that the wires

Figure 1. Temperature–stress diagram of SMA materials.

Table 1. Experimentally identified data for the SMA material used in this work.

As Af Ms Mf CA CM Hcur Ew, DM Ew, AU a

68.6 �C 78.9 �C 55.2 �C 42.7 �C 9.90 MPa/�C 6.83 MPa/�C 4.39% 32.1 GPa 39.5 GPa 1026 �C21

SMA: shape memory alloy.

Figure 2. Layout of the SMA-based original adaptive TMD.
Primary system abbreviated as PS in the figure.



are subject to, which in turn changes the first eigenfre-
quency of the adaptive TMD (Acar and Yilmaz, 2013;
Meirovitch, 2001; Rainieri and Fabbrocino, 2015).
Therefore, the working principle of the device can be
summarised as follows: a change in temperature causes
a change in shape and consequently also a change in
the stress of the SMA wires. Particularly, when the
wires are heated, they change their phase from DM to
AU, which means that they recover their initial shape
(see Figure 1) and thus their length decreases. This
causes the spring to stretch and the axial load to
increase. Conversely, when the wires are cooled from
AU to DM, their length increases and thus the springs
shorten and the axial load decreases. As mentioned, the
changes of axial load induce changes of the adaptive
TMD eigenfrequency (i.e. an increase in the axial load
produces an increase in the eigenfrequency, while a
decrease in the axial load produces a decrease in the
eigenfrequency). This layout, which relies mainly on
changes in the axial load of the wires rather than the
change of their Young’s moduli, allows the adaptive
TMD eigenfrequency to change by more than 100% of
the starting value, requires the use of low current values
to heat the wires by means of Joule’s effect, can be eas-
ily coupled to devices for adapting also the damping of
the adaptive TMD, and does not require the SMA
material used to have any special feature (Berardengo
et al., 2015a). All these features make such a layout very
attractive, and for this reason, this article further devel-
ops the concepts presented in Berardengo et al. (2015a)
with the aim of developing a multi-modal adaptive
TMD. As evidenced, the change of the axial load is
obtained by heating (or cooling) the wires. Two physi-
cal phenomena determine the change of temperature of
the wires: the Joule’s effect and thermal convection (see
the part related to the thermal model of the adaptive
TMD, further in this article). These phenomena involve
heat transfer, and thus, the adaptive TMD cannot
change its eigenfrequency at high speed (e.g. changes in
the eigenfrequency value equal to some Hertz in hun-
dredths of a second). As an example, the specific adap-
tive TMD presented in the section of this article related
to experiments is able to double its eigenfrequency
(changes of about 10 or 15 Hz) in less than 10 s.
Therefore, the adaptive TMDs proposed here can be
taken into consideration in all those engineering appli-
cations where there is no need for high-speed changes
of the device eigenfrequencies (e.g. when the eigenfre-
quencies of the primary system change because of ther-
mal shifts). However, the bandwidth of such an
adaptive TMD changes according to its design (e.g.
SMA material, wire diameter, electric resistance of the
SMA wires), and thus, the TMD can be built, to a cer-
tain extent, according to the specific application.

The main idea of this article is to design the adaptive
TMD by using more than one mass (i.e. a number of
masses equal to/higher than the number of the adaptive

TMD eigenfrequencies to be adapted; see Figure 3(a)
as an example) connected to each other by an SMA
wire and heating each wire independently from the oth-
ers. Indeed, the eigenfrequency of the first m modes of
an adaptive TMD with m masses (i.e. the modes which
have significant eigenvector components at the degrees
of freedom of the masses) can be changed in two differ-
ent ways: by both changing the axial load, as already
explained, and changing the TMD geometry. Both
these effects are achieved when the SMA wire tempera-
tures are changed.

Indeed, the increase/decrease in the axial load
changes all the TMD eigenfrequencies at the same time,
while heating the different wires independently can
result in changes of the system geometry and thus of its
eigenfrequencies. With this combined effect, the value
of one eigenfrequency is not expected to be completely
linked to the value of the others.

Consider, as an example, an adaptive TMD with
three masses and four wires (see Figure 3(a)). In this
case, the initial configuration at ambient temperature is
assumed to be with all the wires of the same length. If
the temperatures of the four wires are increased equally,
the length of all the wires decreases by the same quan-
tity and the axial load on the SMA wires increases, with
a consequent increase in the values of all the first three
eigenfrequencies. Instead, if the temperature of the first
wire (i.e. the one between the left constraint and the
adjacent mass) is increased more than the temperature
of the other three wires, the length of the first wire
decreases more than the length of the other wires. This
implies an additional effect besides the increase in axial
load: the change in the geometry of the adaptive TMD
(i.e. the distance between the left constraint and the first
mass decreases, in percentage, more than the distance
between the first and the second masses, the distance
between the second and the third masses and the dis-
tance between the third mass and the right constraint).

These two effects (i.e. change of axial load and
change of geometry) are expected to enable the adapta-
tion of different adaptive TMD eigenfrequencies with a
certain level of independence. One of the targets of this
article is to show that the mentioned principle actually
works and is reliable.

Figure 3. Layout of an SMA-based adaptive TMD with (a)
three masses and its (b) equivalent scheme. Primary system
abbreviated as PS in the figure.



It is important to recall that the discussion, as well
as the results presented in this article, can be extended,
without losing generality, to a device with more wires
and masses able to adapt more eigenfrequencies.
Therefore, the main goal of this article is to demon-
strate that the special features of SMA materials make
it possible to design and build adaptive TMDs capable
of following the changes of (at least) two eigenfrequen-
cies of the primary system at the same time.

Another aspect is worth being underlined: the pro-
posed layout of the adaptive TMD can be easily
coupled to devices able to adapt the damping as well,
allowing for a fully adaptive device. This is one of the
main features of the proposed adaptive TMD. As an
example, an eddy current damper was coupled to the
adaptive TMD of Figure 2 in Berardengo et al. (2015a),
in order to adapt its damping. Several experimental
tests showed that the TMD was fully adaptive and thus
able to change both its eigenfrequency and its damping.
Actually, also other principles could also be used in
place of eddy currents. Since the possibility of changing
the damping was already treated in the mentioned
paper, and a possible solution was already validated,
this work is focused just on the possibility of adapting
eigenfrequencies.

The following section describes the analytical model
of the multi-modal adaptive TMD needed to study the
behaviour of the new proposed system.

Model of the multi-modal adaptive TMD

The model of the adaptive TMD must describe its
eigenfrequencies (and mode shapes) as a function of
the current flowing in the wires. To do so, three models
are needed: (1) a thermal model which describes the
temperature of the wires as a function of the flowing
current (which is set by a user/controller), (2) a model
of the material describing the stress value acting on the
wires starting from their temperatures and (3) a
dynamic model describing the eigenfrequencies and
mode shapes as a function of the stress acting on the
wires and of the mechanical and geometrical features
of the adaptive TMD. The three models are described
in the next subsections.

Thermal model

In the steady state, the power balance of each wire of
the adaptive TMD is described by the following
equation

sw, exth T � T0ð Þ=Rwi2w ð2Þ

where Rw is the electric resistance of the wire, iw is the
current flowing in the wire, h is the convection

coefficient of air, T is the temperature of the wire, T0 is
the environmental temperature and sw,ext is the outer
surface of the wire. The expression of T as a function
of iw is achieved by rearranging equation (2)

T =
Rwi2

w

hsw, ext
+ T0 ð3Þ

This model also evidences that the wire heats increas-
ing the current flowing into it and thus exploiting the
Joule’s effect, while cooling is achieved by reducing the
flowing current and exploiting the convection effect.

Material model

The model proposed here relies on the experimentally
based one-dimensional (1D) material model (Lagoudas,
2008), then refined in Berardengo et al. (2015a) to take
into account partial transformations. The hypotheses of
the model are listed below, and they have already been
shown to be appropriate for this work in Berardengo
et al. (2015a):

� Young’s modulus of the SMA material Ew is lin-
early dependent on the martensite volume frac-
tion j (j = 0 when the material is fully
austenitic and j = 1 when it is fully martensitic)

Ew =Ew,AU � j Ew,AU � Ew,DMð Þ ð4Þ

� The thermal expansion coefficient a is constant;
� The transformation strain linearly depends on j

etw = jH cur ð5Þ

� The start and end transformation temperatures
at non-null stress (i.e. Ms

s ,M
s
f ,A

s
s ,A

s
f ) linearly

depend on sw

Ms
s =Ms +

sw

CM
,Ms

f =Mf +
sw

CM
,

As
s =As +

sw

CA
,As

f =Af +
sw

CA

ð6Þ

� During transformations from DM to AU (i.e.
increase in the temperature, _T.0, or decrease in
the stress applied to the wire, _sw\0; the dot
indicates the first derivative with respect to time
t), j is

j=

j�1,T ł As
s

As
f � T

Af � As
j�1,As

s \T\As
f

0, T ø As
f

8>>><
>>>:

ð7Þ

where j�1 is the martensite volume fraction at
the beginning of the transformation.



� During transformations from AU to DM (i.e.
decrease in the temperature, _T\0, or increase in
the stress applied to the wire, _sw.0), j is

j =

j�1, T ø Ms
s

Ms
s � T

Ms �Mf
1� j�1ð Þ+ j�1,M

s
f \T\Ms

s

1, T ł Ms
f

8>>><
>>>:

ð8Þ

Using equations (4), (5) and (1), the length Lr
wh of

the rth wire (the variables related to the rth wire will be
indicated by the superscript r from here on) of the
adaptive TMD strained by the force F produced by the
spring (without considering any other static or dynamic
load) can be written as

Lr
wh = 1+ erw

� �
Lr
w = 1+

sr
w

Ew,AU � jr Ew,AU � Ew,DMð Þ + jrH cur, r +ar T � T0ð Þ
� �

Lr
w ð9Þ

where Lr
w is the unstrained length of the rth wire.

Since the layout of the new proposed adaptive TMD
alternates SMA wires and masses (as shown in
Figure 3(a) for a device with three masses), it is possible
to state that s1

w =s2
w = � � � =sn

w, where n is the num-
ber of wires of the adaptive TMD (the number of
masses is n 2 1). Therefore, the same stress value (indi-
cated as sw) acts on all the wires.

In order to obtain a simpler analytical model, the
layout of Figure 3(a) is now modelled as shown in

Figure 3(b), where the two springs of Figure 3(a) have
been modelled as a single spring, whose stiffness K is
calculated considering the series of the two springs of
Figure 3(a) and their stiffness values (i.e. K1 and K2).
More details about the way to set the value of K can be
found in Berardengo et al. (2015a). Furthermore, and
for the sake of simplicity, the wires are assumed to be
made from the same SMA material, which in turn
means that a1 =a2 = � � � =an =a and
H cur, 1 =H cur, 2 = � � � =H cur, n =H cur. However, this
assumption does not cause any loss of generality of the
mathematical treatment.

According to Figure 4, the following relation holds
between the displacement of the outer end of the SMA
wire u and the stretch of the spring q

u=� q ð10Þ

If the axial load F is changed from a situation of
equilibrium (i.e. from Fold to Fnew, Fnew � Fold = �DF),
then u and q are non-null quantities and the stress sw

changes (i.e. �Dsw =sw, new � sw, old), as well as the
strain (i.e. �Dew = ew, new � ew, old). Vice versa, if a �Dew
occurs, the axial force F changes as well. According to
equation (10) and the central term of equation (9)

�DF = �DswAw =Kq=� Ku=� K
Xn

r= 1

(�DerwLr
w) ð11Þ

where Aw is the cross section of the wires (equation (11)
assumes the same value of Aw for all the wires). It
should be noted that the change of Aw due to strain can
be neglected for the purpose of this article (Berardengo
et al., 2015a).

Then, according to the right-hand term of equation
(9), equation (11) can be rearranged as

� Aw
sw, new � sw, oldð Þ

K

=
Xn

r = 1

sw, new

Ew,AU � jrnew Ew,AU � Ew,DMð Þ �
sw, old

Er
w, old

+a T r
new � T r

old

� �
+ jrnew � jrold
� �

H cur

" #
Lr
w

( ) ð12Þ

This equation can be used to simulate the behaviour of
the wires from a known reference condition, for exam-
ple, the initial condition where no current flows into
the wires and thus their temperature is equal to T0. If
the change of configuration is achieved by changing the
current flowing into the wires, equation (3) can be used
to estimate T r

new, once a given current value is set for
each wire. Therefore, the only unknowns of equation
(12) are sw, new and jrnew. This latter variable (jrnew) can
be written as a function of sw, new for each wire, using
either equation (7) or equation (8), according to the
transformation faced by the considered wire. Finally,
the only unknown of equation (12) is sw, new, which can
then be derived. Finally, Lr

wh can be estimated by means
of equation (9), and F can be found as sw, newAw. This
new configuration then becomes the reference config-
uration when the flowing currents are changed by the
user and the new wire lengths and axial load must be
estimated.

Figure 4. Scheme of the device.



Dynamic model

The value of the length of the wires and the stress act-
ing on the wires affect the value of the eigenfrequencies
of the adaptive TMD, as already mentioned. The aim
of this subsection is to provide a way to calculate the
eigenfrequencies by knowing sw, new and Lr

wh.
The hypotheses of the approach used in this section

are the following (Cheli and Diana, 2015):

� The wires are considered as strings. Shear force
and bending moment are thus neglected;

� Each string is made of homogeneous material,
and its characteristics do not change with space
and time (when the values of the currents flow-
ing into the wires are constant);

� Each string has constant cross section in space
and time;

� The mass per unit length is constant along the
string;

� The axial tension F of the string is high with
respect to the adaptive TMD weight.
Consequently, the adaptive TMD configuration
can be approximated as rectilinear in the static
equilibrium position. This hypothesis is always
well approximated in the numerical/experimen-
tal applications discussed in this article (see fur-
ther on);

� The amplitude of the vibration of the masses of
the adaptive TMD is limited. This implies that
geometric non-linearity can be neglected and
variations of the axial load acting on the wires
due to the transversal vibration of the string are
negligible if compared to the value of F in the
static configuration (i.e. the value which can be
estimated by means of the model of the previous
subsection). This hypothesis is usually verified
when random vibrations (due to random distur-
bances) are taken into consideration, which is a
common practical case. However, the model pre-
sented here is the base for a possible develop-
ment in the treatment of harmonic disturbances
with higher vibration levels where, consequently,
geometric non-linearity and variations of the
axial load acting on the wires due to the trans-
versal vibration of the string (which could cause
SMA phase changes) must be taken into
account. From here on, the case of low vibration
amplitudes will be considered, and therefore,
geometric non-linearity and variations of the
axial load acting on the wires due to the trans-
versal vibration of the string will be neglected.
This can be seen as equivalent to considering the
case of either random vibrations (as in the
experiments presented further in the manuscript)
or low-amplitude harmonic vibrations;

� The axial tension is assumed to be constant in
space and time (when the values of the currents
flowing into the wires are constant);

� Damping is neglected;
� The masses of the adaptive TMD are concen-

trated masses. In practical cases, this means that
their size must be small if compared to the length
of the whole adaptive TMD. However, this
hypothesis is used here just for the sake of sim-
plicity and it could be removed if necessary.

Relying on these hypotheses, which are more than
reasonable for the presented device, and considering an
infinitesimal portion of string (see Figure 5), the follow-
ing equilibrium in the vertical direction, with respect to
the static configuration of the string, can be written as

� Fin +F sin aRð Þ � F sin aLð Þ= 0 ð13Þ

Referring to Figure 5 and equation (13), w(x, t) is
the vertical displacement of the string evaluated at time
t and in correspondence of the string section located at
a distance x from the left extremity. F, the axial tension
of the string, is always perpendicular to the string cross
section. The angles aL and aR are the left and right
angles that the deformed infinitesimal piece of string
forms with the horizontal plane during vibrations,
respectively.

Finally, Fin is the inertial force acting on the infinite-
simal piece of the string, which can be rewritten as the
product between its mass (i.e. mddx, where md is the
mass per unit length) and its acceleration

Fin =mddx
∂2w

∂t2
ð14Þ

Thanks to the hypothesis of small vibration ampli-
tudes, the following approximations are valid (Cheli
and Diana, 2015)

Figure 5. Forces acting on an infinitesimal portion of tensioned
string.



sin aLð Þ ’ aL ’ tan (aL)=
∂w

∂x
,

sin aRð Þ ’ aR ’ tan (aR)=
∂

∂x
w+

∂w

∂x
dx

� � ð15Þ

Substituting equations (14) and (15) into equation
(13), the following expression is obtained

md
∂2w

∂t2
=F

∂2w

∂x2
ð16Þ

This partial differential equation leads to the following
expression of w(x, t) (Cheli and Diana, 2015; i.e. general
expression of the standing wave solution)

w x, tð Þ= Z sin xv

ffiffiffiffiffiffi
md

F

r� �
+P cos xv

ffiffiffiffiffiffi
md

F

r� �� �
cos vt+ uð Þ

ð17Þ

where v is the angular frequency and u is a constant.
The natural frequencies and the mode shapes

(depending on the constants Z and P) are functions of
the boundary conditions.

The spatial function in equation (17) (named here as
F(x)) is

F xð Þ= Z sin xv

ffiffiffiffiffiffi
md

F

r� �
+P cos xv

ffiffiffiffiffiffi
md

F

r� �� �
ð18Þ

Equation (18) is valid for strings without any disconti-
nuity. Since the adaptive TMD is made with more than
one wire, equation (18) must be written for each of
them. The boundary conditions related to all the wires
must also be written, taking into account that the natu-
ral frequencies are the same for all of them, because
they are part of the same dynamical system.

As an example, consider an adaptive TMD made
from two masses (M1 and M2) and three wires.
Equation (18) is rewritten as three different equations,
and there are six unknowns to be found imposing the
boundary conditions: Z1, P1, Z2, P2, Z3 and P3.
Indeed, referring to the coordinate along the first wire
as x1 (with 0 ł x1 ł L1

wh), the one along the second wire
as x2 (with 0 ł x2 ł L2

wh) and the one along the third
wire as x3 (with 0 ł x3 ł L3

wh), the mentioned three
equations are obtained (in this case, the three wires are
considered as having the same value of md, and the
changes in md due to strains are considered negligible)

F x1ð Þ= Z1 sin x1v

ffiffiffiffiffiffi
md

F

r� �
+P1 cos x1v

ffiffiffiffiffiffi
md

F

r� �� �
ð19Þ

F x2ð Þ= Z2 sin x2v

ffiffiffiffiffiffi
md

F

r� �
+P2 cos x2v

ffiffiffiffiffiffi
md

F

r� �� �
ð20Þ

F x3ð Þ= Z3 sin x3v

ffiffiffiffiffiffi
md

F

r� �
+P3 cos x3v

ffiffiffiffiffiffi
md

F

r� �� �
ð21Þ

The system of equations coming from the applica-
tion of all the boundary conditions makes it possible to
find the eigenfrequencies of the adaptive TMD as well
as the mode shapes. Two boundary conditions are given
by the constraints between the adaptive TMD and the
primary system (i.e. pinned–pinned condition in this
case). Two further conditions (or more in case a layout
with more than two masses is considered) are given by
the vertical dynamic equilibria of the two masses of the
adaptive TMD. Finally, the two remaining conditions
(or more in case a layout with more than two masses is
taken into account) are provided by the imposition of
the same vertical displacement for consecutive outer
points of wires (e.g. the last point of the first wire and
the first point of the second wire; indeed, concentrated
masses are considered here).

Recalling the hypotheses of small amplitudes of
vibration and the fact that concentrated masses are
taken into account, the above-mentioned boundary
conditions are written as (Gómez et al., 2007)

F x1 = 0ð Þ= 0 ð22Þ

F x3 = L3
wh

� �
= 0 ð23Þ

F
∂w

∂x2

				
x2 = 0

� ∂w

∂x1

				
x1 = L1

wh

!
=M1

∂2w

∂t2

				
x2 = 0

)F
dF

dx2

				
x2 = 0

� dF

dx1

				
x1 = L1

wh

!
=� v2M1F x2 = 0ð Þ

ð24Þ

F
∂w

∂x3

				
x3 = 0

� ∂w

∂x2

				
x2 = L2

wh

!
= M2

∂2w

∂t2

				
x3 = 0

)F
dF

dx3

				
x3 = 0

� dF

dx2

				
x2 = L2

wh

!
=� v2M2F x3 = 0ð Þ

ð25Þ

F x1 = L1
wh

� �
=F x2 = 0ð Þ ð26Þ

F x2 = L2
wh

� �
=F x3 = 0ð Þ ð27Þ

In this case, the following matrix equation is
obtained



0 1 0 0 0 0

sin(gL1
wh) cos(gL1

wh) 0 �1 0 0

�Fg cos gL1
wh

� �
Fg sin gL1

wh

� �
Fg M1v2 0 0

0 0 sin(gL2
wh) cos(gL2

wh) 0 �1

0 0 �Fg cos gL2
wh

� �
Fg sin gL2

wh

� �
Fg M2v2

0 0 0 0 sin gL3
wh

� �
cos gL3

wh

� �

2
6666664

3
7777775

Z1

P1

Z2

P2

Z3

P3

2
6666664

3
7777775
=

0

0

0

0

0

0

2
6666664

3
7777775
ð28Þ

where g =v
ffiffiffiffiffiffiffiffiffiffiffiffi
md=F

p
The values of the eigenfrequencies are yielded by sol-

ving the following equation with respect to v (Cheli
and Diana, 2015)

det

0 1 0 0 0 0

sin(gL1
wh) cos(gL1

wh) 0 �1 0 0

�Fgcos gL1
wh

� �
Fg sin gL1

wh

� �
Fg M1v2 0 0

0 0 sin(gL2
wh) cos(gL2

wh) 0 �1

0 0 �Fg cos gL2
wh

� �
Fg sin gL2

wh

� �
Fg M2v2

0 0 0 0 sin gL3
wh

� �
cos gL3

wh

� �

2
6666664

3
7777775
= 0 ð29Þ

The values vi, which are solutions of equation (29),
are the eigenfrequencies of the adaptive TMD (vi will
indicate the ith eigenfrequency from here on). The
mode shape corresponding to each vi can be calculated
by first substituting the value of vi into equation (28)
and finding the unknown constants Z and P (actually,
one of these constants needs to be arbitrarily set to a
given value because one scalar equation of the matrix
equation (28) is linearly dependent on the other scalar
equations due to the condition imposed through equa-
tion (29)) and then substituting the values of these con-
stants and the value of vi into equations (19) to (21).

The presented method can be applied to calculate
the eigenfrequencies and mode shapes of the adaptive
TMD (see Figure 6 as an example), once the values of
F and Lr

wh are known (see the previous subsection).
Therefore, the three models described here (i.e. thermal
model, material model and dynamic model) can be

used to calculate the adaptive TMD eigenfrequencies
as functions of its inputs, which are the currents flow-
ing into the SMA wires.

This global model will be used in the following sec-
tion to study the possibility of designing multi-modal
adaptive TMDs where it is possible to adapt different
eigenfrequencies independently.

System analysis

The models presented previously are now used to study
the behaviour of a multi-modal adaptive TMD. There
are two points which must be taken into account:

1. The first is how to set the initial configuration of
the adaptive TMD (i.e. starting values of its nat-
ural frequencies) through a change in the initial
geometry and layout. This means that the study
is finalized to understand how the first eigenfre-
quencies (i.e. those where the masses of the
adaptive TMD show significant displacements:
the first two modes for an adaptive TMD with
two masses, the first three modes for an adaptive
TMD with three masses, etc.) change, changing
the length of the whole adaptive TMD, the
length of each wire (and thus the position of
each mass) and the weight of each mass.

2. Once the initial configuration is set (as explained
in the previous point), the second analysis is
aimed at understanding if (and how much) it is
possible to change one eigenfrequency indepen-
dently from the others. This point is related to
the capability of the adaptive TMD to follow
the changes of different eigenfrequencies of the
primary system.

Figure 6. The first two mode shapes for an adaptive TMD
with two masses of 100 g and a total length of 30 cm. The first
mass is 10 cm from the left constraint, and the second one
25 cm. The black dash-dotted line represents the undeformed
configuration, the red dashed line the first mode (at about
5.8 Hz), and the blue solid line the second mode (at about
8.7 Hz).



These two points are treated in the next two
subsections.

The value of K used in the next simulations was set
in order to have a stress acting on the wires equal to
50 MPa at ambient temperature with all the wires in
DM (indeed, this stress value is higher than sf for the
material used in the experimental tests) and to 200 MPa
with all the wires in AU, thus having heated the wires
(this stress value is lower than the full scale suggested
by the manufacturer for the material used in the experi-
ments, that is, 250 MPa).

Set of the initial configuration

The aim of this section is to show that a change in the
initial geometry of the adaptive TMD (i.e. the length of
the whole adaptive TMD, the length of each wire, and
thus the position of each mass, and the weight of each
mass) allows the user to set the first eigenfrequencies of
the adaptive TMD in a wide frequency range. At first,
an adaptive TMD with two masses is discussed, and
then, three masses are taken into account. The dynamic
model discussed previously was used to perform the
simulations, which were carried out on an adaptive
TMD chosen as an example, having at first a total
length of 20 cm and masses of 100 g.

Among the various parameters that can be adjusted
to set the initial configuration of the adaptive TMD,
the effects of the mass values, the total length of the
adaptive TMD and the initial stress sw are known (e.g.
Cheli and Diana, 2015; Meirovitch, 2001): they shift
the adaptive TMD natural frequencies. Therefore, the

analyses focused on the effects of the mass ratio and
the length of the wires. Initially, the mass ratio of the
adaptive TMD was kept constant (both the masses with
equal mass, and thus, ratio equal to 1) and just the
effect of the mass locations was studied. After this, the
influence of the mass ratio on the results was investi-
gated. Therefore, at first, the location of the masses was
changed step by step of 0.1% of the total length of the
adaptive TMD, assuring that the distance between the
two masses and the distance between one mass and the
closest constraint were always higher than or equal to
5% of the total length of the adaptive TMD. The simu-
lations were carried out at environmental temperature
(i.e. sw = 50MPa). The plot obtained for the adaptive
TMD with two masses is shown in Figure 7(a). It is evi-
dent that the two eigenfrequencies cover a wide fre-
quency range.

Figures 7(b) to (d) instead show the trend of the first
three eigenfrequencies for an adaptive TMD with three
masses. This time the step used to change the position
of the masses was 1% in order to decrease the compu-
tational burden of the simulations. In plots (b), (c) and
(d), there are some blank spaces, which are due to the
step used (i.e. 1%). A narrower step would allow these
spaces to be filled in, which means that the envelope of
the points must be considered for a detailed analysis of
all the possible initial eigenfrequencies that can be
obtained with this configuration.

If the primary system eigenfrequencies to be con-
trolled are out of the shown working areas, it is possi-
ble, as mentioned, to act on the total length of the

Figure 7. Eigenfrequency configurations achieved by changing the initial adaptive TMD layout at environmental temperature
(adaptive TMD with a length of 20 cm and masses of 100 g): (a) adaptive TMD with two masses and (b, c and d) adaptive TMD with
three masses.



adaptive TMD and/or the mass values in order to shift
the envelopes. Other possibilities are to increase either
the value of sw at the environmental temperature or
the number of the masses of the adaptive TMD.

An interesting aspect can be noticed looking at
Figures 8(a) to (c), where the percentage variations D of
the adaptive TMD eigenfrequencies are presented for
different layouts of an adaptive TMD with two masses.
Here, D is evaluated considering the reference frequency
value obtained when the masses are as close as possible
to their left constraint. From the simulations, it appears
that the D values are not dependent on the mass values
(for equal masses) or the total length (compare Figures
8(a) to (c) as an example, where doubling the adaptive
TMD length or the mass values does not change the
plot points). In order to widen the percentage variation
of the eigenfrequencies, it is possible to act on the mass
ratio. Indeed, its effect can be used to extend the envel-
ope of the graphs, thus increasing the possible fre-
quency combinations which can be obtained, as can be
noticed by comparing Figure 8(a) and (d).

This analysis has shown that the initial values of the
adaptive TMD eigenfrequencies can be easily set by
acting on the device geometry and that wide frequency
ranges can be covered. As a consequence, the initial
eigenfrequencies of the adaptive TMD can be tuned
with the initial values of the primary system eigenfre-
quencies to be damped. The next section takes into
account the second key analysis listed previously: the
capability of the adaptive TMD to change its eigenfre-
quencies independently by heating its different wires
separately.

Adaptation capability

This section shows how the eigenfrequencies of the
adaptive TMD change by changing the temperatures of
the wires. In theory, the current iw should be changed,
which would cause a temperature change. However,
since there is just one constant between the square of
the current and the change of the temperature of each
wire (see equation (3)), the temperature was used
directly as input in this numerical analysis. The proce-
dure followed for the simulations is explained here for
an adaptive TMD with two masses for the sake of sim-
plicity. It was, however, also used for the adaptive
TMD with three masses discussed further in this
subsection.

To evaluate the behaviour of the adaptive TMD, the
temperatures of the three wires were initially set at the
environmental temperature and sw = 50MPa. The
material model and the dynamic model (shown earlier
in this article) were used to find the first two eigenfre-
quencies of the adaptive TMD. Then, the temperature
of the first wire was increased by 2 �C and the eigenfre-
quencies were calculated again. The temperature of the
first wire was then changed step by step by 2 �C up to
120 �C. This last temperature is higher than 103.91 �C,
which is the temperature at which the wires complete
the transformation in AU at a stress value of 200 MPa
(which is the maximum target stress in these simula-
tions, as mentioned previously). The temperature of the
wire was then decreased again to the environmental
temperature in steps of 2 �C. At each step, the adaptive
TMD eigenfrequencies were calculated.

Figure 8. Percentage changes D of the first two eigenfrequencies for an adaptive TMD with two masses: (a) length of 20 cm and
masses of 100 g, (b) length of 40 cm and masses of 100 g, (c) length of 20 cm and masses of 200 g and (d) length of 20 cm and one
mass of 100 g and the other equal to 200 g.



After this cycle, the temperature of the second wire
was increased by 2 �C, and the cycle for the tempera-
ture of the first wire repeated. When also the second
wire had completed the temperature cycle (i.e. the sec-
ond wire was finally cooled again to ambient tempera-
ture), the temperature of the third wire was changed by
2 �C and the previous procedure repeated. The simula-
tions ended when also the third wire had completed a
temperature cycle.

A simulation of this kind makes it possible to build
the envelope of stress–temperature points which can be
described by the adaptive TMD and thus to describe all
the possible combinations of the values of the first two
eigenfrequencies of the adaptive TMD. It is noticed that
when a wire is heated/cooled, phase transformation can
also occur in the other wires, even if they are at constant
temperature. Indeed, a change of temperature in a wire
causes a change of the applied stress in all the wires at
the same time. Therefore, the wires at constant tem-
perature could experience pseudoelastic-induced phase
transitions (see Figure 1).

Before discussing the results, it is worth explaining
that some specific layouts, chosen as examples, were
taken into consideration for this study. Figure 9(a) pre-
sents the cases considered for an adaptive TMD with
two masses, while Figure 9(b) shows the cases consid-
ered for an adaptive TMD with three masses. Each
TMD considered in the analysis has a specific label (see
Figure 9) for a direct reference.

The initial geometrical configuration for the adap-
tive TMDs of Figure 9 is indicated with three numbers.
As an example, the configuration 25-30-45 indicates
that the first wire has a length equal to 25% of the total

length of the adaptive TMD, the second wire (i.e. the
central wire) has a length equal to 30%, and the third
wire to 45% of the total length of the adaptive TMD.

Figure 10 shows the resulting percentage plot for
different adaptive TMD configurations. Here, the sym-
bol Y is used to indicate the percentage change of the
eigenfrequencies. Previously, the same quantity was
indicated as D. These different symbols allow the recog-
nition of the reason for the eigenfrequency change: D

indicates an eigenfrequency change at environmental
temperature due to a change in the adaptive TMD con-
figuration (e.g. a change in the initial distance between
two masses), while Y indicates a change due to a
change in the wire temperature (and thus in the current
flowing into a wire). The reference values for calculat-
ing the percentage values are the eigenfrequency values
with all the wires at environmental temperature in DM.
This type of plot will be named percentage adaptation
plot (PAP) from here on. It is noticed that the PAP is
neither a function of the global length of the adaptive
TMD nor of the mass values (for equal masses). As
examples, if the global length of the adaptive TMD
used in Figure 10(a) is doubled and/or the masses used
are doubled, the resulting PAP does not change.

From Figure 10, it can be seen that the maximum
possible change of the eigenfrequencies is about 104%,
and the plots have a mean slope that is almost unitary.
The blank spaces among points are again due to the
step used in the simulations (i.e. 2 �C). A smaller step
would fill in these spaces.

It is evident that for a given value of the first eigen-
frequency, more than one value of the second eigenfre-
quency can be achieved and vice versa. This

Figure 9. Layouts tested numerically for an adaptive TMD with (a) two masses and (b) three masses and the corresponding labels.



demonstrates the capability of the adaptive TMD to
adapt two different eigenfrequencies separately.
Obviously, full independence is not possible, but the
extent of the frequency shift of a resonance when the
other is fixed (i.e. the width of the plot) can be
increased, as will be shown further in this section.
Table 2 summarises the results related to the span of
the second eigenfrequency as a function of the value of
the first one for several cases presented in Figure 9(a)
(TMDs with two masses). The symbol Yz,g,v used in this
table indicates the maximum possible percentage
change of the zth eigenfrequency for a given value of
the gth eigenfrequency. As an example, Y2,1,60 expresses
the maximum possible percentage change of the second
eigenfrequency by a value of the first eigenfrequency
that is shifted by 60% compared to the reference value
(see Figure 10(a)). Moreover, the maximum values of

Yz,g,v as a function of v will be referred to as Ymax
z, g . In

the cases of Figure 10, the value of Hcur was equal to
that shown in Table 1 (which is that of the material
used in the further experiments, that is, 4.39%).
However, an SMA material with a higher value of Hcur

(e.g. 7%, which is possible in practice) would signifi-
cantly increase the resulting spans (compare the last
row of Table 2 with Table 3 where the material data
are those of Table 1, exception made for Hcur in
Table 3).

Tables 2 and 3 are related to the case in which the
two masses have the same value. Conversely, Table 4
refers to a case where different mass values are used
(see also Figure 10(b)); the material data are again
those of Table 1. Moreover, Table 5 shows the results
for one configuration of Table 4 (i.e. 33-33-33) with
Hcur = 7%.

Figure 10. Adaptation plots for different adaptive TMD configurations: (a) two masses of 100 g with a global length of 20 cm and a
wire configuration 25-30-45 (L5, see Figure 9), (b) two masses (one equal to 100 g and the other to 200 g) with a global length of
40 cm and a wire configuration 33-33-33 (L10) and (c and d) three masses of 100 g with a global length of 40 cm and a wire
configuration 25-25-25-25 (L12).

Table 2. Maximum possible spans of the second eigenfrequency as a function of the first eigenfrequency for different configurations
of an adaptive TMD with two masses (with equal values) and three wires.

Percentage length of the three wires (left-central-right)
as function of the total length of the adaptive TMD

Y2,1,20 Y2,1,60 Y2,1,80 Ymax
2, 1

40-20-40 (L1, see Figure 9) 2.5% 3.2% 4.8% 4.9%
20-60-20 (L3) 0.5% 2.4% 1.8% 2.6%
25-30-45 (L5) 1.6% 3.4% 4.0% 4.3%
33-33-33 (L8) 1.2% 3.4% 3.3% 3.8%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.



The different layouts tested and reported in Tables 2
and 4 evidence that the value of Ymax

2, 1 can be changed
significantly by changing the adaptive TMD configura-
tion. Indeed, Ymax

2, 1 changes from 2.6% to 5.0% in the
considered cases.

As for the simulations for an adaptive TMD with
three masses, the results are presented in Tables 6 and 7

(see also Figures 10(c) and (d)). Again, it is clear that the
proposed adaptive TMD offers the possibility of tuning
different eigenfrequencies with a certain amount of
independency.

To summarise, a change in the initial geometry can
be exploited in order to change the eigenfrequency val-
ues at environmental temperature: the increase/decrease
of the mass values, the increase/decrease of the total
length of the adaptive TMD and the decrease/increase
of the axial load allow decreases/increases in the eigen-
frequencies. Once these parameters are set, the envelope
of the points describing the eigenfrequency values
depends on the positions of the masses and on the mass
ratio, which is able to widen the envelope. As for the
adaptation capability, it still depends on the position of
the masses, on the mass ratio, and on the number of
the masses. Values of Ymax

2, 1 over 4% can be achieved
with Hcur = 4.39%. However, the use of an SMA with
a higher Hcur increases the values of Ymax

z, g and thus
improves the adaptation capability of the adaptive
TMD.

It now has to be understood whether the spans
reported in the previous tables are sufficient for practi-
cal applications. Indeed, it is important to understand
not only which frequency shifts are experienced by each
eigenfrequency of a real system but also the relative

Table 3. Maximum possible spans of the second
eigenfrequency as a function of the first eigenfrequency of an
adaptive TMD with two masses (with equal values) and three
wires (Hcur = 7%).

Percentage length of the
three wires (left-central-
right) as function of the
total length of the
adaptive TMD

Y2,1,20 Y2,1,60 Y2,1,80 Ymax
2, 1

33-33-33 (L9) 1.9% 5.3% 5.8% 6.0%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.

Table 4. Maximum possible spans of the second
eigenfrequency as a function of the first eigenfrequency for
different configurations of an adaptive TMD with two masses
(with different values: the mass on the left is 100 g, while the
other 200 g) and three wires.

Percentage length of the
three wires (left-central-
right) as function of the
total length of the
adaptive TMD

Y2,1,20 Y2,1,60 Y2,1,80 Ymax
2, 1

40-20-40 (L2) 2.0% 4.0% 3.3% 4.4%
20-60-20 (L4) 2.0% 4.2% 4.9% 4.9%
25-30-45 (L6) 1.0% 3.2% 2.2% 3.6%
33-33-33 (L10) 1.3% 3.6% 3.9% 4.4%
45-30-25 (L7) 1.7% 4.2% 4.9% 5.0%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.

Table 5. Maximum possible spans of the second
eigenfrequency as a function of the first eigenfrequency of an
adaptive TMD with two masses (with different values: the mass
on the left is 100 g, while the other 200 g) and three wires
(Hcur = 7%).

Percentage length of the
three wires (left-central-
right) as function of the
total length of the
adaptive TMD

Y2,1,20 Y2,1,60 Y2,1,80 Ymax
2, 1

33-33-33 (L11) 2.1% 5.9% 6.3% 6.7%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.

Table 6. Maximum possible spans for the first three
eigenfrequencies for different configurations of an adaptive TMD
with three masses (with equal values, that is, 100 g) and four
wires.

Percentage length of the
four wires as function of
the total length of the
adaptive TMD

Ymax
2, 1 Ymax

3, 1 Ymax
3, 2

25-25-25-25 (L12) 2.5% 4.8% 2.6%
10-40-40-10 (L14) 2.2% 1.3% 1.1%
40-10-10-40 (L15) 4.0% 4.8% 1.0%
10-20-30-40 (L16) 3.8% 3.2% 4.9%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.

Table 7. Maximum possible spans for the first three
eigenfrequencies of an adaptive TMD with three masses (with
equal values, that is, 100 g) and four wires (Hcur = 7%).

Percentage length of the
four wires as function of
the total length of the
adaptive TMD

Ymax
2, 1 Ymax

3, 1 Ymax
3, 2

25-25-25-25 (L13) 3.4% 7.4% 3.8%

TMD: tuned mass damper.

The test labels are those presented in Figure 9.



shift among the various resonance frequencies consid-
ered. Indeed, although the first aspect could barely con-
stitute a real limit (it is rare to face a shift of more than
100%; for example, shifts due to thermal changes are
usually around a few percentage points), the second
point must be deepened. If the case of thermal changes
is considered, the proposed layout is expected to work
properly when equal percentage shifts are experienced
by all the eigenfrequencies of the primary system.
Nevertheless, when the relative shifts among the system
eigenfrequencies are not known a priori, or the shifts of
the different eigenfrequencies are not equal in percent-
age, the applicability of the device must be checked. To
this purpose, the practical case of tensioned beams was
studied. These elements are used in many engineering
structures and are often flexible. Therefore, the damp-
ing of their vibrations is a common problem in many
practical cases. Due to environmental changes during
the year, the tensioned beams have to work in wide
ranges of temperature: e.g. between 210 �C and 30 �C.
The analytical expression of the kth eigenfrequency of
a tensioned beam (for bending vibrations) is (Cheli and
Diana, 2015)

vk = k
p

Lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fb +EbIb

kp
Lb


 �2

mb

vuut
ð30Þ

where Lb is the beam length, Fb is the axial load in the
beam, Eb is Young’s modulus of the beam, Ib is the area
moment of inertia of the beam cross section about the
axis of interest and mb is the mass per unit length of the
beam. When the temperature changes, some properties
of the beam change as well. Furthermore, also the axial
load changes because of the thermal expansion/contrac-
tion. Since a tensioned beam with fixed position of the
constraints is taken into account (in the linear field) in
this example, the strain eb of the beam is constant, and
the following relation holds

Fb

EbAb
+ab Tb � Trifð Þ= eb)Fb

= eb � ab Tb � Trifð Þ½ �EbAb

ð31Þ

where Ab is the cross-sectional area of the beam, ab is
its thermal expansion coefficient, Tb is the beam tem-
perature and Trif is a reference temperature (chosen to
be 20 �C here) at which the values of the other para-
meters are given (see, as an example, Table 8).

Substituting equation (31) into equation (30), the fol-
lowing expression is achieved

vk = k
p

Lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ebEbAb � EbAbab Tb � Trifð Þ+EbIb

kp
Lb


 �2

mb

vuut
ð32Þ

If, as an example, the data of Table 8 are used and a
temperature range between 210 �C and 30 �C is consid-
ered for Tb, the results of Table 9 are obtained. The
value of s1–s2 was computed, where s1 is the percentage
shift of v1 and s2 is the percentage shift of v2 compared
to their values at 20 �C. If s1–s2 is null, an adaptive
TMD with a null value of Ymax

2, 1 is in theory enough to
obtain tuning between the primary system and the adap-
tive TMD after an eigenfrequency change. Conversely,
if s1–s2 is not null, the two eigenfrequencies change dif-
ferently and Ymax

2, 1 must be higher than s1–s2 to have the
possibility of tuning both the adaptive TMD eigenfre-
quencies to those of the primary system after the shift.
Table 9 shows values of |s1–s2| always lower than 1.1%.
Therefore, these results show that the adaptive TMD
presented in this article would be able to adapt its eigen-
frequencies properly, avoiding mistuning between the
adaptive TMD and the primary system. Indeed, the
changes in the first and the second eigenfrequency of
the tensioned beam are much lower than 100%, so the
adaptive TMD can follow their changes. Moreover, the
values of |s12s2| are always lower than 1.1%, while the
Y values in Tables 2 to 7 are usually higher than 1.1%.
This means that the proposed adaptive TMD is fully
able to adapt its eigenfrequencies to those of the pri-
mary system and provide an optimal damping action.

Experiments

This section describes the experimental tests carried out
to show the effectiveness of the presented multi-modal
SMA-based adaptive TMD in adapting its dynamic
characteristics. The next three subsections treat the
experimental set-up, some issues to be considered when
collecting measurements and their effects on result
accuracy, and the results of the tests, respectively.

Set-up

The set-up used was based on SMA wires (Nitinol),
manufactured by SAES Getters, whose characteristics
were identified experimentally (see Table 1), and on

Table 8. Data at Trif = 20 �C for the beam considered in the example.

Eb (GPa) Lb (m) Ab (cm2) ab (mm/m/ �C) mb (kg/m) Fb (kN)

196 5 9 (square section) 0.0165 7.12 225



two masses of 18 g. The nominal diameter of the wires
was 0.5 mm and the maximum admissible current
(given by the manufacturer) was 5.0 A. The elastic ele-
ments were steel cantilever beams, provided with cali-
brated strain gauge Wheatstone bridges (Doebelin,
2003) with temperature compensation, aimed at mea-
suring the axial load on the wires. The value of K was
set in order to have a range of sw between about
80 MPa (with all the wires at environmental tempera-
ture, 20 �C) and 205 MPa (with all the wires in AU
condition thanks to heating). The global length of the
adaptive TMD was 35 cm. It was verified that the
adaptive TMD configuration was approximately recti-
linear in the static equilibrium position (static deflec-
tions significantly lower than 1 mm).

The set-up was directly mounted on a shaker, using
a supporting frame, to provide the random disturbance
in the vertical direction (see Figure 11). The disturbance
was provided in the frequency range of the first two ver-
tical eigenfrequencies of the adaptive TMD (estimated
by using its analytical model), and its root mean square
(RMS) value was between 2 and 8 m/s2, depending on
the test considered. The frequency band of the provided
noise was usually 10 or 15 Hz wide.

The electric resistance values of the wires were mea-
sured at environmental temperature and resulted as
being 0.7 O for each of the wires. One independent
external power supplier was used to feed each wire.
The constant current supplied to each wire was mea-
sured every time and the maximum value used in the
experiments was 2.1 A.

In each test, the axial load on the wires was mea-
sured and changed by heating one or more of them.
The first two vertical eigenfrequencies of the adaptive
TMD were experimentally identified by means of a
modal analysis (Peeters et al., 2004) each time. The
starting data for the modal identification were the fre-
quency response functions (FRF) measured between an
accelerometer measuring the vertical vibration of the
supporting frame (see Figure 11) and the vibration of
the two masses of the adaptive TMD. A contactless
laser Doppler velocimeter was used for one of the
masses, while for the other an accelerometer was placed
on the mass. The weight of the accelerometer was equal
to 5 g, and this additional mass was taken into account
when carrying out the simulations of the adaptive
TMD dynamics. Therefore, one mass of the adaptive
TMD was set at 18 g and the other at 23 g in the simu-
lations. The two masses had a cylindrical shape. The
FRFs were estimated using the H1 estimator (Brandt,
2011).

At environmental temperature, the first two eigen-
frequencies resulted to be about 12.9 and 22.2 Hz,
which are close to the theoretical expectations of 13.8
and 24.4 Hz. The first mode had the two masses mov-
ing in phase, while the second was characterised by an
out-of-phase vibration, as expected from theory and
simulations.

Figure 12(a) shows the FRF for one of the two
masses with all the wires at environmental temperature.
There is a small peak in the FRF after the second
eigenfrequency. This peak is due to a resonance of the
adaptive TMD in the horizontal direction. Indeed, it
was very difficult to measure the vibrations of the two
masses of the adaptive TMD exactly along the princi-
pal axes. However, this low-amplitude peak did not
cause any problem in the identification of the two
eigenfrequencies considered here.

Result accuracy

Under a theoretical point of view, the tests on the set-
up of Figure 11 would require a given current value for
each wire to be fixed and the corresponding eigenfre-
quencies of the adaptive TMD to be estimated. After
this, a comparison with the numerical results, imposing
the same current values in the model, would have

Table 9. Beam vertical eigenfrequencies (neglecting the change of ab and Eb with temperature).

T ( �C) v1=(2p) (Hz) Percentage shift of v1 compared
to the value at Trif = 20 �C
(named s1) (%)

v2= 2pð Þ (Hz) Percentage shift of v2

compared to the value at Trif = 20 �C
(named s2) (%)

s1–s2 (%)

210 21.14 17.56 43.31 16.53 1.03
0 20.14 12.01 41.36 11.28 0.73
10 19.09 6.17 39.32 5.79 0.38
20 17.98 0.00 37.17 0.00 0.00
30 16.80 26.57 34.89 26.14 20.43

Figure 11. Experimental set-up with two masses and three
SMA wires.



allowed model validation. However, some problems
arose during the tests, related to the fact that the resis-
tance value of the SMA wires can undergo slight
changes when heated. If the current flowing into the
wires is measured and the thermal model discussed pre-
viously (see equation (3)) is used to estimate the tem-
perature of the wires, these small resistance changes
(which cannot be measured and are thus unknown)
result in bias effects on the temperature estimations.
Moreover, it is also difficult to accurately estimate the
value of the convection coefficient h for the vibrating
strings, which becomes another source of bias effects.
A nominal value of 130 W/m2/ �C was used in the
simulations for h. The amplitude of the vibration, how-
ever, causes a change in h; therefore, the nominal value
used for h is affected by an unknown bias. These bias
effects, even if small, have a large effect on the resulting
eigenfrequencies. Indeed, when the SMA wire is in
transformation between DM and AU or vice versa, a
small change in temperature can significantly change
the resulting eigenfrequency values (i.e. changes in the
order of a few Hertz).

To overcome these problems, one possibility could
be to model the behaviour of the resistance values as a
function of the flowing current and the temperature of
the wires (and the value of h should be investigated as
function of the vibration amplitude as well). However,
this was considered beyond the scope of this work and
would not have added anything to it. Another possibil-
ity would be to validate the adaptive TMD behaviour
in terms of the shifts achievable on both

eigenfrequencies without considering the actual current
value needed to obtain it. This means, in practice, com-
paring the theoretical eigenfrequency plot with the
experimental one. Thanks to its simplicity, this
approach was followed to carry out the tests. As a first
step, the numerical plot was thus derived for the consid-
ered system, and many points describing the values of
the second eigenfrequency of the adaptive TMD as a
function of the first one were derived. The model can
be considered validated if the experimental points
describe the same area described by the numerical
results. For this reason, many experimental tests were
carried out changing the current flowing into the wires,
which made it possible to place many experimental
results on the same plot of the numerical results, and
therefore make a direct comparison.

Experimental results and model validation

The experimental tests were performed by changing the
currents flowing into the three wires. A total of 42 tests
were carried out. The main data related to some of
these tests (those discussed in detail in this section) are
presented in Table 10. Here, Fmeas is the measured axial
load acting on the wires. This load is the static load
applied (and measured) before switching on the shaker.
When the vibration starts, the axial load obviously
changes continuously, maintaining the value measured
prior to excitation of the adaptive TMD as the mean
value. The peaks of the axial load signals were found to

Figure 12. FRF amplitude between the accelerometer on the supporting frame and the accelerometer on one of the two masses:
(a) adaptive TMD with all the wires at environmental temperature and (b) adaptive TMD in the conditions of test 2 of Table 10
(green dashed line) and in the conditions of test 3 of Table 10 (red solid line).



differ from the mean value by a quantity significantly
lower than 1 N and thus negligible.

Furthermore, in Table 10, irw is the current flowing
in the rth wire, dr

w indicates the sign of the change of
the current flowing in the rth wire with respect to a ref-
erence configuration with a+or a 2. When the sign is
negative, it means that the wire was previously heated
to above the AU temperature and then cooled until the
considered current was reached. Conversely, a positive
sign means that the current was increased directly from
the DM condition. It is remarked that the directions of
change (i.e. increase/decrease) of the current flowing in
each wire, with respect to the previous test configura-
tion, are important data for fully understanding the
layout of the tests because of the hysteretic behaviour
of SMA materials on the stress–temperature plane
(Lagoudas, 2008). Among the experiments conducted,
there was also a test with no current flowing in the
wires (i.e. a test at environmental temperature with all

the wires in DM; test 1 in Table 10) and a test where all
the wires were heated to AU, which caused the maxi-
mum possible values of the first and second eigenfre-
quencies of the adaptive TMD (test 6 in Table 10).

Every time the current was changed in at least one
wire, the steady-state condition of the system was
waited for before collecting the vibration data used to
estimate the FRFs of the adaptive TMD. The achieve-
ment of the steady-state condition was monitored by
analysing the signals coming from the calibrated
Wheatstone bridges on the elastic beams (see
Figure 11).

The resulting relationship between the first and the
second eigenfrequencies of the adaptive TMD is plotted
in Figure 13 considering all the experiments carried
out. The maximum experimental percentage change of
the first eigenfrequency with the maximum and mini-
mum values of sw chosen for this set-up (see previ-
ously) was found to be 66.8%, while the numerical

Table 10. Measured/identified data for the tests carried out.

Test number i1w (A) d1
w i2w (A) d2

w i3w (A) d3
w Fmeas (N) v1= 2pð Þ ðHzÞ v2= 2pð Þ (Hz)

1 0.000 + 0.000 + 0.000 + 15.70 12.95 22.15
2 0.000 + 0.000 + 2.030 + 24.15 16.05 27.85
3 0.000 + 1.010 + 0.850 2 24.17 16.05 28.25
4 0.000 + 2.040 + 2.050 + 33.19 18.75 32.50
5 0.840 2 0.912 2 2.020 + 33.15 18.75 33.10
6 2.024 + 1.133 + 2.100 + 42.70 21.60 38.25

Figure 13. Relationship between the first and the second eigenfrequencies; the experimental results are the red circles, while the
numerical results are the blue dots.



expectation was 66.2%. Figure 13 evidences that the
experimental points are well superimposed on the
numerical ones. Furthermore, there are many situations
where a different second eigenfrequency value corre-
sponds to the same value of the first eigenfrequency or
vice versa. As an example, the value of Y2,1,45 (in corre-
spondence to a value of the first eigenfrequency equal
to about 18.75 Hz, see tests 4 and 5 in Table 10) is
about 2.72%. At the same first eigenfrequency value,
the result expected from the simulations is 3.02%,
which is close to the result obtained experimentally.
Moreover, the envelope of the experimental points is
close to that of the numerical points.

As an example, Figure 12(b) shows two FRFs (those
of tests 2 and 3 of Table 10), where the first eigenfre-
quency is at the same value, but the value of the second
eigenfrequency shows an evident difference between the
two curves.

Conclusion

This article has dealt with an innovative adaptive TMD
based on SMA wires. This device is able to change two
(or more) of its eigenfrequencies at the same time with
a certain degree of independency. This is made possible
by designing the adaptive TMD with two (or more)
masses linked by SMA wires and heating each wire
independently from the others, generating a change of
the axial load in the wires and a change of the TMD
geometry. When a single wire is heated, the other wires
can undergo a phase transformation, thanks to the
pseudoelastic effect of SMA materials, even if their
temperature is not changed by either heating or cool-
ing. This allows an increase in the possible dynamic
configurations of a single device.

A model of the proposed device was developed, com-
posed of three different models: a thermal model, a
model of the material and a dynamic model.

Numerical simulations were carried out at first in
order to find how to change the initial values of the
eigenfrequencies and then to test the adaptation capa-
bility of the new device. As for the first point, it was
found that a change in the initial geometry could be
exploited to change the eigenfrequency values at envi-
ronmental temperature: the increase/decrease of the
mass values, the increase/decrease of the total length of
the adaptive TMD and the decrease/increase of
the axial load make it possible to decrease/increase the
eigenfrequencies. Once these parameters are set, the
envelope of the points describing the value of each
eigenfrequency as a function of the others depends on
the positions of the masses and on the mass ratio,
which widens the envelope. As for the adaptation capa-
bility, it still depends on the position of the masses, on
the mass ratio and on the number of the masses. The
adaptation capability of the adaptive TMD can be

increased also using SMA wires with high Hcur values;
the higher Hcur is, the higher the values of Ymax

z, g will be.
An experimental campaign was carried out on a set-

up made from two masses and three wires. The model 
was validated, showing that the designed adaptive 
TMD is actually able to change the first two eigenfre-
quencies in a wide frequency range and set its second 
eigenfrequency at different values, while the first one 
remains at the same value.

This kind of adaptive TMD can be easily coupled to 
devices able to adapt damping as well, allowing for a 
fully adaptive device.
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