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Abstract. We consider the following critical weakly coupled elliptic system
{

−∆ui = µi|ui|
2
∗−2ui +

∑

j 6=i βij |uj |
2∗

2 |ui|
2∗−4

2 ui in Ωε

ui = 0 on ∂Ωε,
i = 1, . . . ,m,

in a domain Ωε ⊂ RN , N = 3, 4, with small shrinking holes as the parameter ε → 0. We prove

the existence of positive solutions of two different types: either each density concentrates around
a different hole, or we have groups of components such that all the components within a single
group concentrate around the same point, and different groups concentrate around different
points.

1. Introduction

The system of nonlinear elliptic equations

(1.1)

{

−∆u+ λiui = µi|ui|p−1ui +
∑

j 6=i βij |uj|
p+1
2 |ui|

p−3
2 ui in Ω

ui ∈ H1
0 (Ω),

i = 1, . . . ,m,

where Ω is either a bounded domain or the whole space RN , has been studied intensively in the
last decade, in light of its relevance in different physical context: (1.1) appears when looking for
solitary wave solutions Φi(t, x) = eιλitui(x) for the coupled Gross-Pitaevskii equation

−ι∂tΦi = ∆Φi + µi|Φi|p−1Φi +
∑

j 6=i

βij |Φi|
p−3
2 |Φj |

p+1
2 Φi,

which is of interest in nonlinear optics and in quantum mechanics, see e.g. [1, 30]. In the models,
|ui| represents the amplitude of the i-th density, and the real parameters µi and βij represent the
intra-spaces and inter-species scattering length, describing respectively the interaction between
particles of the same component or of different components. In particular, the positive sign of µi
(and of βij) stays for attractive interaction, while the negative sign stays for repulsive interaction.

From the mathematical point of view, (1.1) is one of the simplest, yet highly non-trivial, ex-
amples of weakly coupled system, i.e. is a system admitting non-trivial solutions (u1, . . . , um) 6≡
(0, . . . , 0) with some trivial components ui ≡ 0. This feature stimulated a lot of research about ex-
istence of fully nontrivial solutions, i.e. solutions with ui 6≡ 0 for every i. Nowadays, many results
in this direction are available, mainly concerning the cubic problem p = 3 in dimension N ≤ 3, i.e.
in a Sobolev subcritical regime. A complete review of the result in this framework would be beyond
the aim of the present paper, and we refer the interested read to the quite exhaustive introductions
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in [28,29] and to the references therein. In this paper we focus instead on the much less understood
Sobolev critical regime p = 2∗ − 1 in dimension N = 3 or N = 4, where 2∗ = 2N/(N − 2) is the
critical exponent for the Sobolev embedding H1(RN ) →֒ Lr(RN ); moreover, from now on we limit
ourselves to the focusing setting µi > 0 for every i.

The study of the critical system (1.1) started with the Chen and Zou’s paper [9], where the
authors focused on (1.1) with 2 components in bounded domains of R4 (thus, with p = 3), and
proved existence of least energy positive solutions under suitable assumptions on the parameters
λi, µi > 0, βij . In [10], the authors extended their results in higher dimension N ≥ 5. In both
papers it is assumed that −ν1(Ω) < λ1, λ2 < 0 (here ν1(Ω) denotes the first eigenvalue of (−∆)
with homogeneous Dirichlet boundary conditions in Ω), and this plays a crucial role: indeed, as
remarked by Chen and Zou, system (1.1) with Ω bounded, µi > 0 and p = 2∗−1 can be considered
a critically coupled version of the Brezis-Nirenberg problem

(1.2)

{

−∆u+ λu = |u|2∗−2u in Ω

u = 0 on ∂Ω,

and it is well known that in any dimension N ≥ 4 (1.2) admits a positive solution (for an arbitrary
bounded domain) if and only if −ν1(Ω) < λ < 0 (see [5] for this result, and the survey [22] for a
more extended discussion).

The relation between (1.1) and the Brezis-Nirenberg problem has been recently exploited also
in [8, 23]. In [8], Chen and Lin described the blow-up behaviur of least energy positive solutions
as λi → 0, in case of 2 components system with β12 > 0. In [23], the first author and Tavares
constructed, under appropriate assumptions on the domain Ω ⊂ R4 and on the parameters βij ∈ R,
solutions to (1.1) with all the components ui concentrating around different points ai ∈ Ω as
λi → 0−.

We finally refer to [15], where the authors proved existence of infinitely many non-radial solutions
for (1.1) in R3, with λi = 0 and βij < 0.

In this paper we address (1.1) when Ω is a bounded domain of R3 or R4 and λi = 0 for every i. If
Ω is star-shaped, the Pohozaev identity for gradient-type systems implies that the problem has no
nonnegative solutions (meaning that ui ≥ 0 for every i) but the trivial one (u1, . . . , um) = (0, . . . , 0),
but if Ω has some hole there is hope to find fully nontrivial positive solutions, in the spirit of the
celebrated Coron and Bahri-Coron results, which we briefly review: let us consider the critical
problem

(1.3)







−∆u = |u|2∗−2u in Ω

u > 0 in Ω

u = 0 on ∂Ω,

with Ω bounded domain.

If Ω is star-shaped, non-trivial solutions do not exist, but the situation drastically changes removing
this geometric assumption: indeed, as observed by Kazdan and Warner in [16], (1.3) in an annulus
admits a positive solution. The result was then improved by Coron, who showed in [13] that
(1.3) has a positive solution as long as Ω has a small hole. A further improvement was achieved
by Bahri and Coron, who proved in [2] that a positive solution does exist provided that Ω has
non-trivial topology. For multiplicity results and sign changing solutions, we refer the interested
reader to [11, 12, 14, 18, 21, 24].

The purpose of this paper is to discuss the extension to (1.1) of the Coron result. While in [13] a
variational argument is considered, we adopt here a perturbation approach based on the Lyapunov-
Schmidt finite dimensional reduction, which has been already fruitfully used to deal with scalar
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Coron’s type problem in [11, 14, 20, 21]. In order to state our main result, we introduce some
notation and recall some basic results.

We consider from now on the following general assumptions, which will not be always recalled.
Let Ω ⊂ RN with N = 3, 4 be a bounded and sufficiently regular domain, and let m ∈ N. Let
a1, . . . , am ∈ Ω be m (not necessarily different) points in Ω, r1, . . . , rm > 0, µ1, . . . , µm > 0 and
βij = βji for every i, j = 1, . . . ,m, i 6= j. We consider the following Coron-type problem:

(1.4)

{

−∆ui = µi|ui|p−1ui +
∑

j 6=i βij |uj |
p+1
2 |ui|

p−3
2 ui in Ωε

ui = 0 on ∂Ωε,
i = 1, . . . ,m,

where

Ωε := Ω \
m⋃

i=1

Briε(ai),

and p := 2∗ − 1 = (N + 2)/(N − 2).
For δ > 0 and ξ ∈ RN , we denote by Uδ,ξ the standard bubble

(1.5) Uδ,ξ(x) := αN

(
δ

δ2 + |x− ξ|2
)N−2

2

,

where αN > 0 is a suitable constant depending on the space dimension. It is well known (see [7,
Corollary 8.2]) that the family {Uδ,ξ : δ > 0, ξ ∈ RN} contains all the solutions to the critical
problem

(1.6)







−∆U = Up in RN

U > 0 in RN

U ∈ D1,2(RN ),

where D1,2(RN ) is the completion of C∞
c (RN ) with respect to the norm ‖u‖D1,2(RN ) := ‖∇u‖L2(RN ).

We consider the projection PεUδ,ξ of Uδ,ξ into H1
0 (Ωε), i.e. the only solution to

(1.7)

{

−∆(PεUδ,ξ) = −∆Uδ,ξ = Upδ,ξ in Ωε

PεUδ,ξ = 0 on ∂Ωε.

The first of our main results describe the situation where the components ui are all concentrating
around different points.

Theorem 1.1. Let N = 4, and let us suppose that ai 6= aj for i 6= j. Then there exists ε̄, β̄ > 0
such that, if ε ∈ (0, ε̄) and −∞ < βij < β̄ for every i 6= j, then problem (1.4) has a fully nontrivial
solution (u1,ε, . . . , um,ε), where each ui,ε is positive and is concentrating around ai as ε→ 0.

To be precise, we have that

ui,ε = µ
− 1

p−1

i PεUδi,ξi + φi,ε > 0 in Ωε,

where δi = di
√
ε, ξi = ai + δiτi for suitably chosen di > 0 and τi ∈ RN , and there exists C > 0

(independent of ε) such that

‖φi,ε‖H1
0(Ωε) ≤ Cε

N−2
2 i = 1, . . . ,m.

If N = 3, the same conclusion holds without any restriction on βij (which can be also positive
and large).
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Notice that in dimension N = 4 we allow interactions of competitive type (βij < 0) or of weakly
cooperative type (0 ≤ βij small) between the different components, while in dimension N = 3 we
have no restriction, and for the reason of this difference we refer to the forthcoming Remark 1.7

In Theorem 1.1 we proved the existence of solutions to (1.4) with all the components concen-
trating around different points. On the other hand, it is natural to wonder if it is possible to find
solutions with several groups G1, . . . , Gq of components such that:

• each component within a given group Gh concentrate around a point ah;
• the different groups concentrate around different points, i.e. ah 6= ak if h 6= k.

The following theorem gives a positive answer to this question.
In what follow we focus on system (1.4) with 3 components in dimension N = 4.

Theorem 1.2. Let N = 4, m = 3, and let us suppose that a1 = a2 6= a3. Let us suppose that
either −√

µ1µ2 < β12 < min{µ1, µ2}, or β12 > max{µ1, µ2}. Then there exists ε̄, β̄ > 0 such that,

if ε ∈ (0, ε̄) and −∞ < β13, β23 < β̄, then problem (1.4) has a solution (u1,ε, u2,ε, u3,ε) where u1,ε
and u2,ε are concentrating around a1, while u3,ε is concentrating around a3 as ε→ 0.

To be precise, let c1, c2, c3 > 0 be defined by

c21 =
β12 − µ2

β12 − µ1µ2
, c22 =

β12 − µ1

β12 − µ1µ2
, c3 = µ

− 1
2

3 .

We have that

ui,ε = ciPεUδ1,ξ1 + φi,ε, i = 1, 2, u3,ε = c3PεUδ3,ξ3 + φ3,ε,

where δi = di
√
ε, ξi = ai + δiτi for suitably chosen di > 0 and τi ∈ RN , and there exists C > 0

(independent of ε) such that

‖φi,ε‖H1
0(Ωε) ≤ Cε

N−2
2 i = 1, . . . ,m.

Moreover, there exists β̃ ≤ β̄ such that if −∞ < βij < β̃ for every i 6= j, then ui,ε > 0 in Ωε for
every i.

Notice that the interaction between the components u1 and u3 and between u2 and u3 is compet-
itive or weakly cooperative, while the one between u1 and u2 is weakly competitive or cooperative
(possibly with a large coupling parameter β12 > 0).

Theorem 1.2 is the first result in the literature dealing with concentration of groups of compo-
nents. As it will be clear from the proof, our method works in a much more general context with
respect to the one considered in Theorem 1.2. One could both extend the result in R3, and (what
is more important) consider more groups of components. This is the content of the forthcoming
Theorem 1.3, for which we need some further notation. Let us consider system (1.4), and let
βii := µi.

For an arbitrary 1 < q < m, we say that a vector l = (l0, . . . , lq) ∈ Nq+1 is a q-decomposition of
m if

0 = l0 < l1 < · · · < lq−1 < lq = m;

given a q-decomposition l of m, we set, for h = 1, . . . , q,

Ih := {i ∈ {1, . . . ,m} : lh−1 < i ≤ lh},
K := {(i, j) ∈ Ih × Ik with h 6= k} .(1.8)

This way, we have partitioned the set {1, . . . ,m} into q groups I1, . . . , Iq, and have consequently
splitted the components into q groups: {ui : i ∈ Ih}.
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Let us consider the q non-linear systems

(1.9) −∆Ui =
∑

j∈Ih

βij |Ui|
p−3
2 |Uj |

p+1
2 Ui in R

N , i ∈ Ih, h = 1, . . . , q.

Any such system has a solution Ui = ciU, with ci > 0 for i ∈ Ih, and where U = U1,0 is a standard
bubble in RN centered in 0 and with δ = 1, if and only if there exists a vector of positive numbers
(c1, . . . , ck) such that

(1.10)
∑

j=1,...,k

βijc
p−1
2

i c
p+1
2

j = ci, i = 1, . . . , k.

Supposing that such a vector does exist, we linearize the q systems (1.9) in D1,2(RN ) around the
solutions (clh−1+1U, . . . , clhU), obtaining
(1.11)

−∆vi =









pβiic

p−1
i +

p− 1

2

∑

j∈Ih
j 6=i

βijc
p−3
2

i c
p+1
2

j




 vi +

p+ 1

2

∑

j∈Ih
j 6=i

βijc
p−1
2

i c
p−1
2

j vj




U

p−1 in R
N ,

for all i ∈ Ih, for all h = 1, . . . , q, with vi ∈ D1,2(RN ).

Theorem 1.3. In the previous setting, let N = 4, and let a1, . . . , aq ∈ Ω with ah 6= ak for
h 6= k. Let us suppose that the q systems (1.9) have solutions (clh−1+1, . . . , clh), h = 1, . . . , q,
with ci > 0 for every i. Let us suppose also that each of the q linearized systems (1.11) has
a (N + 1)-dimensional set of solutions. Then there exists ε̄, β̄ > 0 such that, if ε ∈ (0, ε̄) and
−∞ < βij < β̄ for every (i, j) ∈ K, then problem (1.4) has a solution (u1,ε, . . . , um,ε), where
u1,ε, . . . , ul1,ε are concentrating around a1, ul1+1,ε, . . . , ul2,ε are concentrating around a2, . . . , and
ulq−1+1,ε, . . . , ulq,ε are concentrating around aq as ε→ 0.

To be precise, we have that for any h = 1, . . . , q

ulh−1+1,ε = clh−1+1PεUδh,ξh + φlh−1+1,ε, . . . ulh,ε = clhPεUδh,ξh + φlh,ε,

where δh = dh
√
ε, ξh = ah + δhτh for suitably chosen dh > 0 and τh ∈ RN , and there exists C > 0

(independent of ε) such that

‖φi,ε‖H1
0(Ωε) ≤ Cε

N−2
2 i = 1, . . . ,m.

Moreover, there exists β̃ ≤ β̄ such that if −∞ < βij < β̃ for every i 6= j, then ui,ε > 0 in Ωε for
every i.

In dimension N = 3, the existence result holds, without any additional assumptions on the
parameters βij with (i, j) ∈ K. Also, in this case we always obtain positive solutions.

Theorem 1.2 can be obtained applying Theorem 1.3 for the 3 components system in R4, con-
sidering the 2-decomposition of 3 given by l = (0, 2, 3). In this perspective, one has only to verify
that the assumptions of Theorem 1.3 are satisfied, i.e. that the system

µ1c
2
1 + β12c

2
2 = 1, µ2c

2
2 + β12c

2
1 = 1,

has a solution with c1, c2 > 0, and that the linearized problem

−∆vi = (3µic
2
i + βijc

2
j)U

2vi + 2βijcicjU
2vj in R

4, i = 1, 2, j 6= i

has a 5-dimensional set of solutions.
Nevertheless, for the sake of simplicity and brevity, we directly write down the proof of Theorem

1.2, without deriving it as corollary of Theorem 1.2, and we omit the proof of Theorem 1.3. The
passage from the particular situation described in Theorem 1.2 to the general setting considered in
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Theorem 1.3 creates additional difficulties only from the technical and notational points of view,
and once that the main idea are understood, the interested reader can easily fill the details.

Rather, one point which we want to stress is that the assumptions of Theorem 1.3 only regard
the data of the problem, and in general are not too difficult to check, as shown in the following
proposition.

Given the number of components m, the number of groups 1 < q < m, a q-decomposition
l = (l0, . . . , lq) of m, and the coupling parameters βij , i, j = 1, . . . ,m, let us consider the q
matrices

Bh := (βij)(i,j)∈Ih×Ih h = 1, . . . , q.

Notice that if lh − lh−1 = 1 for some i, then Ih is a singleton and the corresponding Bh is simply
given by the real number βii, i ∈ Ih.

Conditions on Bh ensuring the existence of solutions (clh−1+1, . . . , clh), h = 1, . . . , q, for the
algebraic problem (1.10) are given in [3, Section 2] or [27, Section 4].

So, let us suppose that such (clh−1+1, . . . , clh), h = 1, . . . , q, do exist.

Proposition 1.4. Let N = 4. In the previous setting, and using the notation of Theorem 1.3, let
us suppose that for any h = 1, . . . , q we have

the matrix Bh is invertible and has only positive elements.

Then each of the h linearized systems (1.11) has a (N + 1)-dimensional set of solutions.

Combining then the results in [3,27] with Proposition 1.4, Theorem 1.3 permits to prove existence
of a bunch of solutions, with arbitrary number q of groups (each of them having an arbitrary number
of components) concentrating around q different points.

The proofs of Theorems 1.1 and 1.2 rest upon a finite-dimensional reduction, and will be the
object of the next sections. Before proceeding, we conclude the introduction with some comments.

Remark 1.5. We point out that, both in Theorems 1.1, 1.2 and 1.3, we can deal with systems
with mixed cooperation and competition (that is, we can deal with systems where some βij is
positive, and some other is negative). This is particularly interesting since the mixed coupling
critical case was completely open, and also for subcritical problems has been investigated only in
few recent contributions (see [6, 25, 26, 28, 29]).

Remark 1.6. Regarding the positivity in dimension N = 4, it is natural to think that in Theorems
1.2 and 1.3 we have a positive solution without any additional assumptions on βij . Indeed, any
component ui,ε is a superposition of positive function and small perturbation term. If the positive
part of βij is small for every i 6= j, then a short rigorous proof of the positivity can be given
arguing as in [23]. If on the other hand some βij is allowed to be large, such proof does not work
and one is forced to approach the problem with finer (and much longer) techniques, such as careful
L∞-estimates on the error φi,ε (see for instance [17, Section 8] for related computations). We
decided to not insist on this point for the sake of brevity.

Remark 1.7. As it emerges from Theorem 1.1, in R4 we have to suppose extra-conditions on βij
in order to have existence of fully nontrivial positive solutions, with respect to the 3-dimensional
problem. This is somehow natural, and is related to the particular shape of the cubic system
(in dimension N = 4 we have p = 3) which makes possible to prove non-existence results (for
instance, one can repeat word by word the proof of Theorem 3-(iii) in [27] to rule out the existence
of positive solutions under some assumptions on the parameters). This difference between the
dimension N = 4 and N 6= 4 was already observed in [10].
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The extra-condition −∞ < βij < β̄ with β̄ small enough was already considered in [23], and
plays the same role in our proof and the one in [23]; it enters in the analysis of the linearization
of (1.4) and in the proof of the positivity of the solutions. It is interesting that this assumption is
not needed in dimension 3.

Regarding the higher dimensional case N ≥ 5, the main obstruction for our method is repre-

sented by the lack of regularity of the interaction term |uj |
p+1
2 |ui|

p−3
2 ui, which is not of class C1.

This creates several additional difficulties in dealing with a linearization of (1.4), difficulties which
were already observed in [15, 23].

Remark 1.8. Both Theorems 1.1 and 1.2 regard the case when at least two components con-
centrate around different points, and hence it is natural to wonder what happens if we search for
solutions to (1.4) with all the components concentrating around the same point. Under appro-
priate assumptions on βij , this case is actually much simpler to deal with, since one can obtain
a solution with all the components proportional among each other, reducing system (1.4) to the
scalar problem (1.6). For instance, for a system with 2 components in a domain Ω ⊂ R4, it is not
difficult to check that if (1.6) has a solution w (positive or sign-changing, concentrating around
one or more points), and if

(1.12) either −√
µ1µ2 < β12 < min{µ1, µ2}, or β12 > max{µ1, µ2},

then (1.4) in Ω has a solution of type (u1, u2) = (c1w, c2w), with c1, c2 as in Theorem 1.2. In
particular, we have:

• Bahri-Coron-type result: if Ω ⊂ R4 has non-trivial topology and (1.12) is in force, then the
critical system (1.4) has a positive solutions.

• Solutions concentrating around the same point in domains with one shrinking hole: if
a ∈ Ω ⊂ R4, Ωε = Ω \ Bε(a), and (1.12) holds true, then (1.4) has a family of positive
solutions with u1,ε and u2,ε concentrating around the same point with the same speed.

• Multipeak solutions and multiplicity results, extending [11,12,14,18,21,24] as in the previous
points.

Similar results in higher or lower dimension can be obtained using the existence of (k0, l0) as
in [10, Theorem 1.1]. In the same way, in order to deal with more than 2 components one can use
the results in [3, Section 2] or [27, Section 4].

Remark 1.9. In our results, we focus on domains Ωε with radially symmetric holes Briε(ai). It is
not difficult to check that we can treat also the case of non-symmetric holes. In such a situation,
we could repeat our argument essentially word by word, simply replacing Lemma A.1 with Lemma
1.1 in [19]; this introduces some technical complications which we preferred to avoid.

Structure of the paper. The proof of Theorem 1.1 is contained in Sections 2-4, while the proof
of Theorem 1.2 is given in 5. Both are based upon the Lyapunov-Schmidt finite dimensional
reduction method, which in the context of systems was already adopted in [23] to deal with the
Brezis-Nirenberg-type problem. The proof of Proposition 1.4 is given in Section 6.

In Section 2 we set up the reduction scheme, splitting system (1.4) in two new systems of m
equations, one of them living in finite dimension. The infinite dimensional problem is then treated
in Section 3 via a fixed point argument, while the finitely-reduced problem is the object of Section
4.

Since Theorem 1.2 shares the same structure and many passages with that of Theorem 1.1, we
put particular emphasis on the main differences.

As usual when dealing with a perturbation approach, many proofs contains very long com-
putations. In order to keep the presentation as smooth as possible, we collect them in several
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appendixes, so that the reader can easily understand the main strategy behind each proof, and
check the details in a second time.

Notation and preliminary results. We recall that with Uδ,ξ and PεUδ,ξ we denote the standard
bubble and its projection in H1

0 (Ωε), defined in (1.5) and (1.7). We shall use many times the fact
that 0 ≤ PεUδ,ξ ≤ Uδ,ξ, which is a simple consequence of the maximum principle.

Since {Uδ,ξ} is the set of all the solutions to (1.6), it is easy to check that any solution to






−∆U = µUp in RN

U > 0 in RN

U ∈ D1,2(RN )

with µ > 0 is given by µ− 1
p−1Uδ,ξ, for some δ > 0 and ξ ∈ RN .

Coming back to problem (1.6), we recall some properties of the linearized equation

(1.13) −∆φ = pUp−1
δ,ξ φ in R

N , φ ∈ D1,2(RN ).

It is clear that there are N + 1 solutions given by

ψ0
δ,ξ :=

∂Uδ,ξ
∂δ

= αN

(
N − 2

2

)

δ
N−4

2
|x− ξ|2 − δ2

(δ2 + |x− ξ|2)
N
2

ψhδ,ξ :=
∂Uδ,ξ
∂ξℓ

= αN (N − 2)δ
N−2

2
xℓ − ξℓ

(δ2 + |x− ξ|2)
N
2

, h = 1, . . . , N.

(1.14)

By [4, Lemma A.1], these functions span the set of solutions to (1.13).
We consider the projections Pεψ

h
δ,ξ of ψhδ,ξ (h = 0, . . . , N) into H1

0 (Ωε), i.e.
{

−∆(Pεψ
h
δ,ξ) = −∆ψhδ,ξ = pUp−1

δ,ξ ψhδ,ξ in Ωε

Pεψ
h
δ,ξ = 0 on ∂Ωε.

Notice that the derivative commutes with the projection Pε, in the sense that Pεψ
h
δ,ξ = ∂h(PεUδ,ξ),

where ∂h denotes the partial derivative with respect to ξh if h = 1, . . . , N , and ∂0 denotes the
partial derivative with respect to δ.

We denote by G(x, y) the Green function of −∆ with Dirichlet boundary condition in Ω, that
is the function satisfying, for fixed y ∈ Ω,

{

−∆xG(· , y) = δy in Ω

G(· , y) = 0 on ∂Ω,

where δy is the Dirac delta centered in y. It is well known that the Green function can be
decomposed as

G(x, y) =
1

N(N − 2)ωN |x− y|N−2
+H(x, y),

where ωN is the volume of the unit ball in RN , and H(x, y) is the regular part of the Green function,
defined for fixed y ∈ Ω as the solution to

{

−∆xH(· , y) = 0 in Ω

H(· , y) = 1
N(N−2)ωN |· −y|N−2 on ∂Ω,

Finally, we denote the standard inner product and norms in H1
0 (Ω) by

〈u, v〉H1
0 (Ω) :=

∫

Ω

∇u · ∇v, ‖u‖H1
0(Ω) := (〈u, u〉)

1
2 ,
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and the Lq-norm (q ≥ 1) by | · |Lq(Ω). When there is no possibility of misunderstanding, we shall
often adopt the simplified notations ‖ · ‖ and | · |q, for the sake of brevity.

In the rest of the paper C always denotes a positive constant which can depend on the dimension
N , on the data µi and βij , but not on ε. In two steps we will need to point out that a constant C
does not depend on βij ; in such cases we will explicitly write it. The exact value of C can change
from line to line.

In many cases, to estimate some quantity involving PεUδ,ξ or Pεψ
i
δ,ξ, it will be necessary to

approximate the projections with the original functions, carefully controlling the difference. These
kind of results are mainly collected in Appendix A.

2. Proof of Theorem 1.1: the reduction scheme

Being interested in positive solutions, instead of problem (1.4) we consider

(2.1)

{

−∆ui = µif(ui) +
∑

j 6=i βij |uj|
p+1
2 |ui|

p−3
2 ui in Ωε

ui = 0 on ∂Ωε,
i = 1, . . . ,m,

where f(s) := |s|p−1s+. We shall see that this replacement makes possible to prove positivity of
the solutions in a very simple way, under the assumptions described by the main theorems.

Let i : H1
0 (Ωε) → L2∗(Ωε) be the canonical Sobolev embedding. We consider the adjoint

operator i∗ : L
2N

N+2 (Ωε) → H1
0 (Ωε), characterized by

i∗(u) = v ⇐⇒
{

−∆v = u in Ω (in weak sense)

v ∈ H1
0 (Ω)

It is well known that i∗ is a continuous operator, and using it we can rewrite (2.1) as

(2.2) ui = i∗



µif(ui) +
∑

j 6=i

βij |uj |
p+1
2 |ui|

p−3
2 ui



 .

We search for solutions as perturbation of bubbles centered at different points: let η ∈ (0, 1) be
small, and let

(2.3) Xη :=
{
(d, τ ) ∈ R

m × (RN )m : η < di < η−1, |τi| < η−1
}
.

Our ansatz is that

(2.4) ui = µ
− 1

p−1

i PεUδi,ξi + φi,

where for some (d, τ ) = (d1, . . . , dm, τ1, . . . , τm) ∈ Xη we have

(2.5) δi := di
√
ε, ξi := ai + di

√
ετi.

We stress that the quantity η will always be fixed and small, while the unknowns will be di > 0,
τi ∈ RN , and φi ∈ H1

0 (Ωε).

Remark 2.1. Once that η > 0 is fixed, we observe that

δi = O(ε
1
2 ) and ε = O(δ2i ) ∀i = 1, . . . ,m

as ε→ 0.



10 ANGELA PISTOIA AND NICOLA SOAVE

Plugging ansatz (2.4) into (2.2), our problem is transformed in the research of di, τi, and φi
such that

(2.6) µ
− 1

p−1

i PεUδi,ξi + φi = i∗

[

µif(µ
− 1

p−1

i PεUδi,ξi + φi)

+
∑

j 6=i

βij |µ
− 1

p−1

j PεUδj ,ξj + φj |
p+1
2 |µ− 1

p−1

i PεUδi,ξi + φi|
p−3
2 (µ

− 1
p−1

i PεUδi,ξi + φi)

]

for i = 1, . . . ,m, with each equality which takes place in H1
0 (Ωε). To proceed, the idea is then to

split the space into two orthogonal subspaces, one of them having finite dimension. To be precise,
for ε > 0, d1, . . . , dm > 0, and τ1, . . . , τm ∈ RN , we define

Ki = Kdi,τi,ε := span
{
Pεψ

h
δi,ξi : h = 0, . . . , N

}
, Kd,τ ,ε := K1 × · · · ×Km

(recall that δi and ξi are determined by di, τi and ε through the ansatz (2.5)). Notice that K⊥
d,τ ,ε =

K⊥
1 × · · · ×K⊥

m.
If Πi = Πδi,ξi,ε (resp. Π⊥

i = Π⊥
δi,ξi,ε

) denotes the orthogonal projection H1
0 (Ωε) → Ki (resp.

H1
0 (Ωε) → K⊥

i ), then (2.6) can be further rewritten as a system of 2m equations

(2.7) Πi(µ
− 1

p−1

i PεUδi,ξi + φi) = (Πi ◦ i∗)
[

µif(µ
− 1

p−1

i PεUδi,ξi + φi)

+
∑

j 6=i

βij |µ
− 1

p−1

j PεUδj ,ξj + φj |
p+1
2 |µ− 1

p−1

i PεUδi,ξi + φi|
p−3
2 (µ

− 1
p−1

i PεUδi,ξi + φi)

]

,

and

(2.8) Π⊥
i (µ

− 1
p−1

i PεUδi,ξi + φi) = (Π⊥
i ◦ i∗)

[

µif(µ
− 1

p−1

i PεUδi,ξi + φi)

+
∑

j 6=i

βij |µ
− 1

p−1

j PεUδj ,ξj + φj |
p+1
2 |µ− 1

p−1

i PεUδi,ξi + φi|
p−3
2 (µ

− 1
p−1

i PεUδi,ξi + φi)

]

,

i = 1, . . . ,m.
The proof of Theorem 1.1 consists of two main steps: first, for fixed ε, d1, . . . , dm, and τ1, . . . , τm

we solve the m-equations system (2.8), finding (φd,τ ,ε1 , . . . , φd,τ ,εm ) ∈ K⊥
d,τ ,ε. Plugging this choice

of φ into (2.7), we obtain a finite dimensional problem in the unknowns d and τ , which will be
solved in a second step for any ε > 0 sufficiently small.

3. The equations in K⊥
d,τ ,ε

In this section we study the solvability of (2.8). In a functional analytic perspective, (2.8) reads

(3.1) Li
d,τ ,ε(φ) = N i

d,τ ,ε(φ) +Ri
d,τ ,ε,
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where L stays for the linear part

Li
d,τ ,ε(φ) = Π⊥

i

{

φi − i∗

[

µif
′(µ

− 1
p−1

i PεUδi,ξi)φi

+
p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−3
2 φi

+
p+ 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p−1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2 φj

]}

,

(3.2)

N stays for the nonlinear part

N i
d,τ ,ε(φ) =

Π⊥
i ◦ i∗

[

µif(µ
− 1

p−1

i PεUδi,ξi + φi)− µif(µ
− 1

p−1

i PεUδi,ξi)− µif
′(µ

− 1
p−1

i PεUδi,ξi)φi

+
∑

j 6=i

βij |µ
− 1

p−1

j PεUδj ,ξj + φj |
p+1
2 |µ− 1

p−1

i PεUδi,ξi + φi|
p−3
2 (µ

− 1
p−1

i PεUδi,ξi + φi)

−
∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2

− p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−3
2 φi

− p+ 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p−1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2 φj

]

,

(3.3)

and R is the remainder term

Ri
d,τ ,ε = Π⊥

i

{

− µ
− 1

p−1

i PεUδi,ξi

+ i∗

[

µif(µ
− 1

p−1

i PεUδi,ξi) +
∑

j 6=i

βij(µ
− 1

p−1

j PεUδj,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2

]}

= Π⊥
i ◦ i∗

[

µ
− 1

p−1

i

(

PεU
p
δi,ξi

− Upδi,ξi

)

+
∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2

]

,

(3.4)

where the last equality is a consequence of the definitions of i∗ and of f .
For future convenience, we also define

Ld,τ ,ε := (L1
d,τ ,ε, . . . , L

m
d,τ ,ε) : K

⊥
d,τ ,ε → K⊥

d,τ ,ε,

and Rd,τ ,ε and Nd,τ ,ε in an analogue way.
The main result of this section is the following:

Proposition 3.1. Let N = 4. For every η > 0 small enough there exists β̄, ε0 > 0 small, and
C > 0, such that if ε ∈ (0, ε0), and −∞ < βij < β̄ for every i 6= j, then for any (d, τ ) ∈ Xη (see

(2.3)) there exists a unique function φd,τ ,ε ∈ K⊥
d,τ ,ε solving the equation

(3.5) Ld,τ ,ε(φ) = Rd,τ ,ε +Nd,τ ,ε(φ)
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and satisfying

‖φd,τ ,ε‖H1
0 (Ωε) ≤ Cε

N−2
2 .

Furthermore, the map (ε,d, τ ) 7→ φd,τ ,ε is of class C1, and

‖∇(d,τ)φ
d,τ ,ε‖H1

0 (Ωε) ≤ Cε
N−2

2 .

If N = 3, the same conclusion holds without any restriction on βij.

The proof of the proposition takes the rest of this section, and is divided into several intermediate
lemmas.

3.1. Study of the linear part. As a first step, it is important to understand the solvability of
the linear problem associated to (3.1), i.e.

(3.6) Li
d,τ ,ε(φ) = fi, with fi ∈ K⊥

di,τi,ε.

Lemma 3.2. Let N = 4. For every η > 0 small enough there exists β̄, ε0 > 0 small, and C > 0,
such that if ε ∈ (0, ε0), and −∞ < βij < β̄ for every i 6= j, then

(3.7) ‖Ld,τ ,ε(φ)‖H1
0 (Ωε) ≥ C‖φ‖H1

0 (Ωε) ∀φ ∈ H1
0 (Ωε,R

m)

for every (d, τ ) ∈ Xη. Moreover, Ld,τ ,ε is invertible in K⊥
d,τ ,ε, with continuous inverse.

If N = 3, the same conclusion holds true without restrictions on βij.

Proof. The long proof proceed by contradiction. Let us suppose that there exist sequences

{εn} ⊂ R
+, εn → 0, {(dn, τn)} ⊂ Xη, {φn} ⊂ K⊥

1,n × · · · ×K⊥
m,n

such that

‖φn‖H1
0 (Ωεn ) = 1 and ‖Ln(φn)‖H1

0 (Ωεn ) → 0

as n → ∞, where we wrote Ki,n := Kdi,n,τi,n,εn and Ln := Ldn,τn,εn for short. In the same spirit

in this proof we write Pn := Pεn , Ui,n := Uδi,n,ξi,n , ψ
h
i,n := ψhδi,n,ξi,n , and Ωn := Ωεn .

Let hn := Ln(φn). Then, observing that

µif
′(µ

− 1
p−1

i PεUδ,ξ) = p(PεUδ,ξ)
p−1 ∀ε, δ > 0, ξ ∈ R

N ,

we have by definition of Ln

φi,n = i∗

[

p(PnUi,n)
p−1φi,n +

p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PnUj,n)
p+1
2 (µ

− 1
p−1

i PnUi,n)
p−3
2 φi,n

+
p+ 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PnUj,n)
p−1
2 (µ

− 1
p−1

i PnUi,n)
p−1
2 φj,n

]

+ hi,n − wi,n

(3.8)

for some wi,n ∈ Ki,n.

Step 1) We show that ‖wi,n‖H1
0(Ωn) → 0 as n→ ∞.

Since wi,n ∈ Ki,n, there exists constants cki,n such that

wi,n =
N∑

k=0

cki,nPnψ
k
i,n.
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Let us multiply equation (3.8) with δ2i,nwi,n: taking into account that φi,n, hi,n ∈ K⊥
i,n, we deduce

that

δ2i,n‖wi,n‖2H1
0 (Ωn)

︸ ︷︷ ︸

=:(I)

= p δ2i,n

∫

Ωn

(PnUi,n)
p−1φi,nwi,n

︸ ︷︷ ︸

=:(II)

+
p− 1

2

N∑

l=0

cli,n δ
2
i,n

∫

Ωn

∑

j 6=i

βij(µ
− 1

p−1

j PnUj,n)
p+1
2 (µ

− 1
p−1

i PnUi,n)
p−3
2 φi,n(Pnψ

l
i,n)

︸ ︷︷ ︸

=:(III)

+
p+ 1

2

N∑

l=0

cli,n δ
2
i,n

∫

Ωn

∑

j 6=i

βij(µ
− 1

p−1

j PnUj,n)
p−1
2 (µ

− 1
p−1

i PnUi,n)
p−1
2 φj,n(Pnψ

l
i,n)

︸ ︷︷ ︸

=:(IV )

.

(3.9)

The rest of the proof of step 1 consists in a careful (and very long) asymptotic expansion of the
terms (I)-(IV ), whose details are contained in Appendix B. Therein we prove that

|(I)| =
N∑

l=0

(cli,n)
2σll + o(1)

N∑

l,k=0

cli,nc
k
i,n

|(II)| = o(δ2i,n)‖wi,n‖H1
0 (Ωn) +O(δ2i,n)

N∑

l=0

cli,n

|(III)| = o(δ2i,n)

|(IV )| = o(δ2i,n),

(3.10)

as n→ ∞, with

(3.11) σlk =







0 if l 6= k

pαp+1
N (N − 2)2

∫

RN

y2l
(1+|y|2)N+2 dy if k = l ≥ 1

pαp+1
N

(
N−2
2

)2 ∫

RN

(|y|2−1)2

(1+|y|2)N+2 dy if k = l = 0.

Using the second to fourth estimates in (3.10), equation (3.9) becomes

(3.12) δ2i,n‖wi,n‖2H1
0 (Ωn)

= o(δ2i,n)‖wi,n‖H1
0 (Ωn) +O(δ2i,n)

N∑

k=0

cki,n.

Due to the first estimate in (3.10), the previous expression yields

C

(
N∑

k=0

|cki,n|
)2

≤ o(1)
N∑

k=0

|cki,n|,

so that, firstly, {cki,n} is a bounded sequence, for any k, and in turn, this implies that cki,n → 0 as

n→ ∞, for every k. Hence, using this into (3.12), we deduce that

‖wi,n‖2H1
0 (Ωn)

= o(1)‖wi,n‖H1
0 (Ωn) + o(1),

whence ‖wi,n‖H1
0 (Ωn) → 0 as n→ ∞.
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Step 2) For a fixed κ = 1, . . . ,m, let us introduce

φ̃κi,n(y) :=

{

δ
N−2

2
κ,n φi,n(ξκ,n + δκ,ny) y ∈ Ωn−ξκ,n

δκ,n
=: Ω̃κ,n

0 y ∈ RN \ Ω̃κ,n,
i = 1, . . . ,m.

In a completely analogue way, we define h̃κi,n and w̃κi,n, and we set φ̃κ,n := φ̃κκ,n, h̃κ,n := h̃κκ,n,
w̃κ,n := w̃κκ,n.

In this step we show that φ̃κ,n ⇀ 0 in D1,2(RN ) (i.e. ∇φ̃κ,n ⇀ 0 in L2(RN )) as n → ∞, for
every κ = 1, . . . ,m.

At first, we observe that ‖φ̃κ,n‖H1
0 (Ω̃κ,n)

= ‖φκ,n‖H1
0(Ωn) ≤ 1, and hence up to a subsequence

φ̃κ,n ⇀ φ̃κ weakly in D1,2(RN ) for every i. Now we rewrite the equation (3.8) for φκ,n in terms of

φ̃κ,n: if ψ ∈ C∞
c (RN ), we have

∫

Ω̃κ,n

∇φ̃κ,n · ∇ψ = pδ2κ,n

∫

Ω̃κ,n

(P̂nUκ,n)
p−1φ̃κ,nψ

+
p− 1

2

∑

j 6=κ

δ2κ,nβκj

∫

Ω̃κ,n

(µ
− 1

p−1
κ P̂nUκ,n)

p−3
2 (µ

− 1
p−1

j P̂nUj,n)
p+1
2 φ̃κ,nψ

+
p+ 1

2

∑

j 6=κ

δ2κ,nβκj

∫

Ω̃κ,n

(µ
− 1

p+1
κ P̂nUκ,n)

p−1
2 (µ

− 1
p−1

j P̂nUj,n)
p−1
2 φ̃j,nψ

+

∫

Ω̃κ,n

∇φ̃κ,n · ∇(h̃κ,n − w̃κ,n),

(3.13)

where P̂nUj,n(y) := PnUj,n(ξκ,n + δκ,ny) for all j = 1, . . . ,m. In Appendix C, we show that (3.13)
yields

(3.14)

∫

Ω̃κ,n

∇φ̃κ,n · ∇ψ = p

∫

RN

Up−1
1,0 φ̃κψ + o(1) for every ψ ∈ C∞

c (RN )

which in turn, by weak convergence, implies that

(3.15) −∆φ̃κ = pUp−1
1,0 φ̃κ, φ̃i ∈ D1,2(RN ).

Since our final goal consists in proving that φ̃κ = 0, due to the previous equation it will suffices to
show that φ̃κ is orthogonal, in D1,2(RN ), to the N + 1 partial derivatives ψℓ1,0 (ℓ = 0, . . . , N) of
U1,0. Indeed, we already know that these partial derivatives span the sets of the solutions to (3.15).
The orthogonality condition comes from the fact that φκ,n ∈ K⊥

κ,n for every i and n: indeed, for
any ℓ = 1, . . . , N (the case ℓ = 0 is analogue), we have

0 = δκ,n

∫

Ωn

∇φκ,n · ∇(Pnψ
ℓ
κ,n) = pδκ,n

∫

Ωn

pUp−1
κ,n ψ

ℓ
κ,nφκ,n

= δκ,n

∫

Ωn

p(N − 2)αpN

(
δκ,n

δ2κ,n + |x− ξκ,n|2
)2

δ
N−2

2
κ,n

xℓ − ξℓκ,n
(
δ2κ,n + |x− ξκ,n|2

)N
2

dx

=

∫

Ω̃κ,n

p(N − 2)αpN
1

(1 + |y|2)2
yℓ

(1 + |y|2)N
2

φ̃κ,n dy

=

∫

Ω̃κ,n

pUp−1
1,0 ψℓ1,0φ̃κ,n,
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and by weak convergence we deduce that for every ℓ and i

0 =

∫

RN

pUp−1
1,0 ψℓ1,0φ̃κ =

∫

RN

∇ψℓ1,0 · ∇φ̃κ,

as desired.

Step 3) We prove that ‖φi,n‖H1
0 (Ωn) → 0 as n→ ∞ for every i. This is in contradiction with the

fact that ‖φn‖H1
0(Ωn) = 1, and completes the proof of (3.7). Let us test (3.8) with φi,n: recalling

that {φi,n} is bounded in H1
0 (Ωn) and that wi,n, hi,n → 0 strongly, we deduce that

‖φi,n‖2H1
0 (Ωn)

= o(1) + p

∫

Ωn

(PnUi,n)
p−1φ2i,n

︸ ︷︷ ︸

=:(I)

+
p− 1

2

∑

j 6=i

βij

∫

Ωn

(µ
− 1

p−1

i PnUi,n)
p−3
2 (µ

− 1
p−1

j PnUj,n)
p+1
2 φ2i,n

︸ ︷︷ ︸

=:(II)

+
p+ 1

2

∑

j 6=i

βij

∫

Ωn

(µ
− 1

p−1

i PnUi,n)
p−1
2 (µ

− 1
p−1

j PnUj,n)
p−1
2 φi,nφj,n

︸ ︷︷ ︸

=:(III)

(3.16)

We have to estimate the right hand side. At first, recalling as usual that 0 ≤ PnUi,n ≤ Ui,n, we
have

(3.17) |(I)| ≤ p

∫

Ωn

Up−1
i,n φ2i,n = Cp

∫

Ω̃i,n

Up−1
1,0 φ̃2i,n → 0

as n→ ∞, since φ̃2i,n ⇀ 0 in L
N

N−2 (RN ) by step 2, and Up−1
1,0 ∈ L

N
2 (RN ).

The second term on the right hand side in (3.16) can be estimated discussing several possibilities:
if βij < 0, we simply observe that (II) ≤ 0. Otherwise, if βij > 0,

(II) ≤ Cβij

∫

Ωn

U
p−3
2

i,n U
p+1
2

j,n φ2i,n

≤ Cβij

(∫

Ωn

U
(4−N)N
2(N−2)

i,n U
N2

2(N−2)

j,n

) 2
N

|φi,n|22∗ .

In case N = 3, the last term reads

Cβij

(∫

Ωn

U
3
2

i,nU
9
2

j,n

) 2
3

|φi,n|22∗ ≤ Cβij‖φi,n‖2H1
0 (Ωn)

(

δ
3
4

i,nδ
3
4

j,n

) 2
3

= o(1)

(no matter how large βij is), where we used Lemmas A.6 and A.8. If on the other hand N = 4,
we have

Cβij

(∫

Ωn

U4
j,n

) 1
2

|φi,n|22∗ ≤ Cβij‖φi,n‖2H1
0 (Ωn)

,

where C does not depend on βij . We conclude that there exists β̄ > 0 sufficiently small such that,
if βij < β̄ for all i 6= j, then

(3.18) |(II)| ≤ Cβij‖φi,n‖2H1
0 (Ωn)

≤ 1

2
‖φi,n‖2H1

0(Ωn)
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To sum up, in any case we can conclude that for every i 6= j and for any n large enough

(3.19)
p− 1

2

∑

j 6=i

(II) ≤ 1

2
‖φi,n‖2H1

0 (Ωn)

{

for every βij , if N = 3

provided βij < β̄, if N = 4.

It remains to consider the last term in (3.16): by the Hölder inequality and Lemmas A.6 and
A.8

|(III)| ≤ βij

∫

Ωn

U
p−1
2

i,n U
p−1
2

j,n |φi,n||φj,n|

≤ βij |φi,n|2∗ |φj,n|2∗
(∫

Ωn

U
N

N−2

i,n U
N

N−2

j,n

) 2
N

≤ Cβij‖φi,n‖H1
0 (Ωn)‖φj,n‖H1

0 (Ωn)δi,nδj,n (| log δi,n|+ | log δj,n|)
2
N = o(1),

(3.20)

as n→ ∞, where we used the boundedness of {φn} in H1
0 .

Plugging (3.17)-(3.20) into (3.16), we conclude that φi,n → 0 strongly in H1
0 (Ωn), which gives

the desired contradiction and completes the first part of the lemma.
It remains still to show the invertibility of Ld,τ ,ε, and this is the object of the last step.

Step 4) We start recalling that the operator i∗ : L
2N

N+2 (Ωε) → H1
0 (Ωε) is compact. Therefore, by

definition, the restriction of Ld,τ ,ε to K⊥
d,τ ,ε is a compact perturbation of the identity. So far we

showed that

(3.21) ‖Ld,τ ,ε(φ)‖H1
0 (Ωε,Rm) ≥ C‖φ‖H1

0 (Ωε,Rm) for every φ ∈ K⊥
d,τ ,ε,

and hence Ld,τ ,ε is injective. By the Fredholm alternative, it is also surjective, thus invertible, and
the inverse is continuous (due to (3.21)). �

Now we prove the solvability of equation (3.5).

Lemma 3.3. Let N = 4. For every η > 0 small enough there exists β̄, ε1 > 0 small and C > 0
such that: if ε ∈ (0, ε1), and −∞ < βij < β̄ for every i 6= j, then for any (d, τ ) ∈ Xη there exists

a unique function φd,τ ,ε ∈ K⊥
d,τ ,ε solving equation (3.5):

Ld,τ ,ε(φ
d,τ ,ε) = Rd,τ ,ε +Nd,τ ,ε(φ

d,τ ,ε),

and satysfying

‖φd,τ ,ε‖H1
0 (Ωε) ≤ Cε

N−2
2 .

If N = 3, the same conclusion holds without any restriction on βij.

Proof. Let ε ∈ (0, ε0), with ε0 given by Lemma 3.2. Then, to solve equation (3.5) is equivalent to
find φ ∈ K⊥

d,τ ,ε such that

φ = L−1
d,τ ,ε (Rd,τ ,ε +Nd,τ ,ε(φ)) =: Td,τ ,ε(φ).

We aim at proving that Td,τ ,ε is a contraction inside a properly chosen region.

Step 1) Td,τ ,ε : Yε → Yε for a suitable subset Yε ⊂ H1
0 (Ωε,R

m).

Using the continuity of L−1
d,τ ,ε, of Π

⊥
i and of i∗, we have

(3.22) ‖Td,τ ,ε(φ)‖H1
0 (Ωε) ≤ C

(

|R̃d,τ ,ε|
L

2N
N+2 (Ωε)

+ |Ñd,τ ,ε(φ)|
L

2N
N+2 (Ωε)

)

,
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where

R̃id,τ ,ε := µ
− 1

p−1

i

(

PεU
p
δi,ξi

− Upδi,ξi

)

+
∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2 ,

Ñ i
d,τ ,ε(φ) := P̃ id,τ ,ε(φ) + Q̃id,τ ,ε(φ),

P̃ id,τ ,ε(φ) := µif(µ
− 1

p−1

i PεUδi,ξi + φi)− µif(µ
− 1

p−1

i PεUδi,ξi)− p(PεUδi,ξi)
p−1φi,

and

Q̃i
d,τ ,ε(φ) :=

∑

j 6=i

βij |µ
− 1

p−1

j PεUδj ,ξj + φj |
p+1
2 |µ− 1

p−1

i PεUδi,ξi + φi|
p−3
2 (µ

− 1
p−1

i PεUδi,ξi + φi)

−
∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2

− p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p+1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−3
2 φi

− p+ 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PεUδj ,ξj )
p−1
2 (µ

− 1
p−1

i PεUδi,ξi)
p−1
2 φj ,

with i = 1, . . . ,m. In Appendix D, we prove that

|R̃i
d,τ ,ε|

L
2N

N+2 (Ωε)
≤ Cε

N−2
2

|Ñ i
d,τ ,ε(φ)|

L
2N

N+2 (Ωε)
≤ C‖φ‖2H1

0 (Ωε)

(3.23)

Therefore, by equation (3.22) there exist C1, C2 > 0 such that

‖Td,τ ,ε(φ)‖H1
0 (Ωε) ≤ C1ε

N−2
2 + C2‖φ‖2H1

0 (Ωε)

Let C̄ > C1 arbitrarily chosen, and let

Yε :=
{

φ ∈ H1
0 (Ωε,R

m) : ‖φ‖H1
0 (Ωε) ≤ C̄ε

N−2
2

}

.

Then there exists ε1 ∈ (0, ε0] sufficiently small such that

‖Td,τ ,ε(φ)‖H1
0 (Ωε) ≤ C1ε

N−2
2 + C2C̄

2εN−2 ≤ C̄ε
N−2

2

for every ε ∈ (0, ε1) and φ ∈ H1
0 (Ωε,R

m), that is, Td,τ ,ε : Yε → Yε.
Step 2) Td,τ ,ε is a contraction in Yε.

Notice that

(3.24) ‖Td,τ ,ε(φ
1)−Td,τ ,ε(φ

2)‖H1
0 (Ωε) ≤ C|Ñd,τ ,ε(φ

1)− Ñd,τ ,ε(φ
2)|

L
2N

N+2 (Ωε)
.

Recalling that Ñ i
d,τ ,ε(φ) = P̃ i

d,τ ,ε(φ)+Q̃
i
d,τ,ε(φ), we compute with a Taylor expansion (see Lemma

A.4)

|P̃ i
d,τ ,ε(φ

1)− P̃ i
d,τ ,ε(φ

2)|
L

2N
N+2 (Ωε)

≤ C
∣
∣(PεUδi,ξi + |φ1i |+ |φ2i |)p−2(|φ1i |+ |φ2i |)|φ1i − φ2i |

∣
∣

L
2N

N+2 (Ωε)
.

Therefore, by the Hölder and the Sobolev inequalities

|P̃ i
d,τ ,ε(φ

1)− P̃ i
d,τ ,ε(φ

2)|
L

2N
N+2 (Ωε)

≤ (C + |φ1i |p−2
2∗ + |φ2i |p−2

2∗ )
(
|φ1i |2∗ + |φ2i |2∗

)
|φ1i − φ2i |2∗

≤ C‖φ‖H1
0(Ωε)‖φ1i − φ2i ‖H1

0 (Ωε) ≤ Cε
N−2

2 ‖φ1i − φ2i ‖H1
0 (Ωε)

(3.25)
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for every φ1,φ2 ∈ Yε, i = 1, . . . ,m. Regarding Q̃iδ,τ ,ε, in Appendix D we show that

(3.26) |Q̃i
d,τ ,ε(φ

1)− Q̃i
d,τ ,ε(φ

2)|
L

2N
N+2 (Ωε)

≤ Cε
N−2

2 ‖φ1 − φ2‖H1
0 (Ωε)

or every φ1,φ2 ∈ Yε, i = 1, . . . ,m. Collecting together (3.24), (3.25) and (3.26), we deduce that
there exists C > 0 such that

‖Td,τ ,ε(φ
1)−Td,τ ,ε(φ

2)‖H1
0 (Ωε) ≤ Cε

N−2
2 ‖φ1 − φ2‖H1

0 (Ωε) ∀φ1,φ2 ∈ Yε.

By replacing the necessary ε1 with a smaller quantity, we see that for ε ∈ (0, ε1) the map Td,τ ,ε

is a contraction in Yε, and hence the thesis follows by the contraction mapping theorem. �

Lemma 3.3 enables us to define a map

A : (0, ε1)×Xη → K⊥
d,τ ,ε, (ε,d, τ ) 7→ φd,τ ,ε.

To complete the proof of Proposition 3.1, it remains to check that this map if differentiable, and
to prove the desired estimate on the derivative.

Lemma 3.4. There exists ε2 > 0 small enough such that the map A is of class C1 in (0, ε2)×Xη.

Proof. We apply the implicit function theorem to T : (0, ε1)×Xη ×K⊥
d,τ ,ε → K⊥

d,τ ,ε defined by

T(ε,d, τ ,φ) = Ld,τ ,ε(φ)−Rd,τ ,ε −Nd,τ ,ε(φ).

By Lemma 3.3, we know that T(ε,d, τ ,φd,τ ,ε) = 0. We shall prove that DφT(ε,d, τ ,φd,τ ,ε) is in-

vertible. To this aim, by the Fredholm alternative, it is sufficient to check that DφT(ε,d, τ ,φd,τ ,ε)

is injective, since DφT(ε,d, τ ,φd,τ ,ε) is a compact perturbation of the identity (due to the com-
pactness of i∗).

In the rest of the proof we often write P , Ui, φi instead of Pε, Uδi,ξi , φ
d,τ ,ε
i , to ease the notation.

Notice that

DφT(ε,d, τ ,φd,τ ,ε)[ψ] = Ld,τ ,ε(ψ)−DφNd,τ ,ε(φ
d,τ ,ε)[ψ].

By definition of Nd,τ ,ε (see (3.3))

DφN
i
d,τ ,ε(φ

d,τ ,ε)[ψ] = Π⊥
i ◦ i∗

[

µi

(

f ′(µ
− 1

p−1

i PUi + φi)− f ′(µ
− 1

p−1

i PUi)

)

ψi

+
p+ 1

2

∑

j 6=i

βij

(

|µ− 1
p−1

i PUi + φi|
p−3
2 |µ− 1

p−1

j PUj + φj |
p−3
2 (µ

− 1
p−1

i PUi + φi)(µ
− 1

p−1

j PUj + φj)

− (µ
− 1

p−1

i PUi)
p−1
2 (µ

− 1
p−1

j PUj)
p−1
2

)

ψj

+
p− 1

2

∑

j 6=i

βij

(

|µ− 1
p−1

i PUi + φi|
p−3
2 |µ− 1

p−1

j PUj + φj |
p+1
2

− (µ
− 1

p−1

i PUi)
p−3
2 (µ

− 1
p−1

j PUj)
p+1
2

)

ψi

]

.
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Then, if N = 3 (i.e. p = 5), by the Lagrange theorem and using the fact that 0 ≤ PεUδi,ξi ≤ Uδi,ξi ,

‖DφN
i
d,τ ,ε(φ

d,τ ,ε)[ψ]‖H1
0(Ωε) ≤ C

[

|U3
i φiψi| 65 +

∣
∣|φi|4ψi

∣
∣
6
5

+
∑

j 6=i

(
∣
∣|Ui + |φi|| |Uj + |φj ||2 |φi| |ψj |

∣
∣
6
5

+
∣
∣|Ui + |φi||2 |Uj + |φj || |φj | |ψj |

∣
∣
6
5

+
∣
∣|φi| |Uj + |φj ||3 |ψi|

∣
∣
6
5

+
∣
∣|Ui + |φi|| |Uj + |φj ||2 |φj | |ψi|

∣
∣
6
5

)]

;

similarly, if N = 4, using the fact that p− 3 = 0, we find

‖DφN
i
d,τ ,ε(φ

d,τ ,ε)[ψ]‖H1
0 (Ωε) ≤ C

[

|Uiφiψi| 4
3
+
∣
∣|φi|2ψi

∣
∣
4
3

+
∑

j 6=i

(

|Uiφjψj | 4
3
+ |φiUjψj | 4

3
+ |φiφjψj | 4

3
+ |Ujφjψi| 4

3
+ |φ2jψi| 43

)]

.

In order to estimate the right hand side, it is not difficult to apply the Hölder and the Sobolev
inequalities, as well as the estimate in Lemma 3.3, to deduce that

(3.27) ‖DφN
i
d,τ ,ε(φ

d,τ ,ε)[ψ]‖H1
0(Ωε) = o(1)‖ψ‖H1

0(Ωε),

where o(1) → 0 as ε→ 0 (in particular, we use the fact that |Ui|2∗ ≤ C, and ‖φi‖ → 0 as ε→ 0).

Using (3.27) and (3.7), we infer that if DφT(ε,d, τ ,φd,τ ,ε)[ψ] = 0, that is

Ld,τ ,ε(ψ) = DφNd,τ ,ε(φ
d,τ ,ε)[ψ],

then

C‖ψ‖H1
0 (Ωε) ≤ o(1)‖ψ‖H1

0 (Ωε),

which finally implies that ψ = 0. This means that DφT(ε,d, τ ,φd,τ ,ε) is injective for ε small
enough and, as observed, this suffices to complete the proof. �

The following lemma completes the proof of Proposition 3.1.

Lemma 3.5. There exists ε̄ > 0 small enough and a constant C > 0 such that

‖∇(δ,ξ)φ
d,τ ,ε‖H1

0(Ωε) ≤ Cε
N−3

2 ⇐⇒ ‖∇(d,τ)φ
d,τ ,ε‖H1

0 (Ωε) ≤ Cε
N−2

2

for every ε ∈ (0, ε̄) and (d, τ ) ∈ Xη.

Proof. The equivalence of the two inequalities follows by the chain rule and by the ansatz (2.5).
Let si,h = δi if h = 0, and si,h = ξi,h if h = 1, . . . , N , with i = 1, . . . ,m. We differentiate the
equation

(3.28) Ld,τ ,ε(φ
d,τ ,ε) = Rd,τ ,ε −Nd,τ ,ε(φ

d,τ ,ε),

with respect to a variable si,h, and we obtain

∂si,hLd,τ ,ε(φ
d,τ ,ε) + Ld,τ ,ε(∂si,hφ

d,τ ,ε)

= ∂si,hRd,τ ,ε − ∂si,hNd,τ ,ε(φ
d,τ ,ε)−DφNd,τ ,ε(φ

d,τ ,ε)[∂si,hφ
d,τ ,ε].

We claim that

(3.29) ‖∂si,hLd,τ ,ε(φ
d,τ ,ε)‖H1

0 (Ωε) + ‖∂si,hRd,τ ,ε‖H1
0 (Ωε) + ‖∂si,hNd,τ ,ε(φ

d,τ ,ε)‖H1
0 (Ωε) ≤ Cε

N−3
2 .
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With this estimate in our hands, the thesis can be easily proved. Indeed, by (3.27) and the
inequality in Lemma 3.2, we deduce that

C‖∂si,hφd,τ ,ε‖ ≤ ‖Ld,τ ,ε(∂si,hφ
d,τ ,ε)−DφNd,τ ,ε(φ

d,τ ,ε)[∂si,hφ
d,τ ,ε]‖

≤ ‖∂si,hLd,τ ,ε(φ
d,τ ,ε)‖+ ‖∂si,hRd,τ ,ε‖+ ‖∂si,hNd,τ ,ε(φ

d,τ ,ε)‖ ≤ Cε
N−3

2 .

The validity of (3.29) can be checked by direct computations, and the details are presented in
Appendix E. �

4. The reduced problem

In this section we solve equation (2.7) with φ = φd,τ ,ε.
Let Jε : H

1
0 (Ωε,R

m) → R be defined by

(4.1) Jε(u1, . . . , um) =

∫

Ωε

1

2

m∑

i=1

|∇ui|2 − µiF (ui)−
2

p+ 1

∑

1≤i<j≤m

βij |ui|
p+1
2 |uj |

p+1
2 ,

where F : R → R, t 7→ (t+)p+1/(p + 1) is the primitive of f . Critical points of Jε are solution to
(2.1), and hence solutions to (1.4) (here we use the fact that βij = βji).

Let us introduce the reduced functional J̃ε : Xη → R,

J̃ε(d, τ ) := Jε

(

µ
− 1

p−1

1 PεUδ1,ξ1 + φd,τ ,ε1 , . . . , µ
− 1

p−1
m PεUδm,ξm + φd,τ ,εm

)

.

In order to simplify the notation, from now on we often write

V d,τ ,ε
i := µ

− 1
p−1

i PεUδi,ξi + φd,τ ,εi .

Lemma 4.1. There exists ε̄ > 0 sufficiently small such that if (d, τ ) is a critical point of J̃ε, and
ε ∈ (0, ε̄), then

(

µ
− 1

p−1

1 PεUδ1,ξ1 + φd,τ ,ε1 , . . . , µ
− 1

p−1
m PεUδm,ξm + φd,τ ,εm

)

is a solution to (2.7), and hence a solution to (2.1).

Proof. We start observing that, denoting by 〈·, ·〉 the scalar product in H1
0 (Ωε), we have

∂J̃ε
∂di

(d, τ ) =
√
ε
∂J̃ε
∂δi

(d, τ )

=
√
εdJε

(

V d,τ ,ε
1 , . . . , V d,τ ,ε

m

)
[(

∂φd,τ ,ε1

∂δi
, . . . ,

∂φd,τ ,εm

∂δi

)]

+
√
ε∂iJε

(

V d,τ ,ε
1 , . . . , V d,τ ,ε

m

)[

µ
− 1

p−1

i Pεψ
0
δi,ξi

]

=
√
ε

m∑

k=1

〈

V d,τ ,ε
k − i∗



µkf(V
d,τ ,ε
k ) +

∑

j 6=k

βkj |V d,τ ,ε
j | p+1

2 |V d,τ ,ε
k | p−3

2 V d,τ ,ε
k



 ,
∂φd,τ ,εk

∂δi

〉

+
√
ε

〈

V d,τ ,ε
i − i∗



µif(V
d,τ ,ε
i ) +

∑

j 6=i

βij |V d,τ ,ε
j | p+1

2 |V d,τ ,ε
i | p−3

2 V d,τ ,ε
i



 , µ
− 1

p−1

i Pεψ
0
δi,ξi

〉

By Proposition 3.1, we know that the projection of ∇Jε(V d,τ ,ε
1 , . . . , V d,τ ,ε

m ) on K⊥
d,τ ,ε is 0. This

means that the terms in left position inside the brackets are linear combination of the partial
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derivatives Pεψ
ℓ
δk,ξk

, and hence the previous chain of equalities can be continued in the following
way:

∂J̃ε
∂di

(d, τ ) =
√
ε

m∑

k=1

〈
N∑

ℓ=0

cεk,ℓPεψ
ℓ
δk,ξk

,
∂φd,τ ,εk

∂δi

〉

+
√
ε

〈
N∑

ℓ=0

cεi,ℓPεψ
ℓ
δk,ξk

, µ
− 1

p−1

i Pεψ
0
δi,ξi

〉

.

Now, let (d, τ ) be a critical point for J̃ε. We have then (multiplying by
√
ε)

(4.2) ε

m∑

k=1

〈
N∑

ℓ=0

cεk,ℓPεψ
ℓ
δk,ξk ,

∂φd,τ ,εk

∂δi

〉

+ ε

〈
N∑

ℓ=0

cεi,ℓPεψ
ℓ
δk,ξk , µ

− 1
p−1

i Pεψ
0
δi,ξi

〉

= 0.

In the same way, if we compute the derivatives with respect to τi,h (h = 1, . . . ,m) and we evaluate
them in a critical point, we obtain

(4.3) ε

m∑

k=1

〈
N∑

ℓ=0

cεk,ℓPεψ
ℓ
δk,ξk

,
∂φd,τ ,εk

∂ξi,h

〉

+ ε

〈
N∑

ℓ=0

cεi,ℓPεψ
ℓ
δk,ξk

, µ
− 1

p−1

i Pεψ
h
δi,ξi

〉

= 0.

Letting i and h vary, (4.2) and (4.3) provides us a linear homogeneous system of m(N + 1) equa-
tions in the m(N + 1) unknowns cεi,h. We aim at showing that the system has only the trivial

solution; this means that also the projection on ∇Jε(V d,τ ,ε
1 , . . . , V d,τ ,ε

m ) on Kd,τ ,ε vanishes, i.e.

∇Jε(V d,τ ,ε
1 , . . . , V d,τ ,ε

m ) = 0 in H1
0 (Ωε), and completes the proof. Thus, we consider now (4.2) and

(4.3), and we show that the matrix of the coefficients is invertible for ε small enough.
The last term in both (4.2) and (4.3) can be estimated as in step 1 in Lemma 3.2: recalling that

ε ≃ δ2i as ε→ 0, we have for h = 0, . . . , N

(4.4) ε

〈
N∑

ℓ=0

cεi,ℓPεψ
ℓ
δk,ξk

, µ
− 1

p−1

i Pεψ
h
δi,ξi

〉

= µ
− 1

p−1

i σhhc
ε
i,h + o(1)

∑

ℓ 6=h

cεi,ℓ,

as ε→ 0, with σhh > 0 defined by (3.11). Let us now consider the terms involving the derivative of

φd,τ ,εk . By Lemma 3.5, the Cauchy-Schwarz inequality, and recalling again that δ2i ‖Pεψℓδi,ξi‖2H1
0(Ωε)

→
σℓℓ, we deduce that

(4.5) ε

∣
∣
∣
∣
∣

〈

Pεψ
ℓ
δi,ξi ,

∂φd,τ ,εi

∂ξi,h

〉∣
∣
∣
∣
∣
≤ Cδ2i

∥
∥Pεψ

ℓ
δi,ξi

∥
∥
H1

0 (Ωε)

∥
∥
∥
∥
∥

∂φd,τ ,εi

∂ξi,h

∥
∥
∥
∥
∥
H1

0 (Ωε)

≤ Cδiε
N−3

2 ≤ Cε
N−2

2 ,

where we used also the fact that δi ≃ ε
1
2 . The same estimate holds if we consider the derivatives

with respect to δi, i = 1, . . . ,m. Thus, plugging (4.4) and (4.5) inside (4.2) and (4.3), we infer that
the matrix associated to the system is strictly diagonally dominant, hence invertible, and being
homogeneous has only the trivial solution. As observed, this completes the proof. �

Due to Lemma 4.1, in order to complete the proof of Theorem 1.1 we have to find a critical
point of the reduced functional J̃ε in Xη. In this perspective, we need the asymptotic expansion

of Jε(V
d,τ ,ε
1 , . . . , V d,τ ,ε

m ) as ε→ 0+. We introduce the real numbers

b1 :=
αp+1
N

N

∫

RN

dy

(1 + |y2)N , b2 :=
αp+1
N

2

∫

RN

dy

(1 + |y|2)N+2
2

,(4.6)
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and the functions Γ : RN → R, Ψ : Xη → R defined by

Γ(x) :=

∫

RN

dy

|y + x|N−2(1 + |y|2)N+2
2

Ψ(d, τ ) :=

m∑

i=1

µ
− 2

p−1

i

[

b2H(ai, ai)d
N−2
i +

αp+1
N rN−2

i

2

Γ(τi)

dN−2
i (1 + |τi|2)

N−2
2

]

.

(4.7)

Proposition 4.2. We have

J̃ε(d, τ ) =

(
m∑

i=1

µ
− 2

p−1

i

)

b1 +Ψ(d, τ )ε
N−2

2 +Rε(d, τ ),

with Rε = o(ε
N−2

2 ) C1-uniformly in Xη as ε→ 0.

Here and what follows, we write that fε = o(εα) Ck-uniformly in Xη as ε→ 0 if

lim
ε→0

‖fε‖Ck(Xη)

εα
= 0

The proof of the proposition takes most of the rest of the section. In order to keep the notation

short, in what follows we sometimes write P , Ui, Vi, φi and ‖ ·‖ instead of Pε, Uδi,ξi , V
d,τ ,ε
i , φd,φ,εi

and ‖ · ‖H1
0 (Ωε), respectively.

Let Iε,µ : H1
0 (Ωε) → R be defined by

Iε(u) =
1

2

∫

Ωε

|∇u|2 −
∫

Ωε

µF (u), Iε := Iε,1.

Then, by the Lagrange theorem,

J̃ε(d, τ ) =
∑

i

Iε,µi(Vi)−
2

p+ 1

∑

i<j

∫

Ωε

βij |Vi|
p+1
2 |Vj |

p+1
2

=
∑

i

µ
− 2

p+1

i Iε(PUi) +
1

2

∑

i

∫

Ωε

2µ
− 1

p−1

i ∇(PUi) · ∇φi + |∇φi|2

−
∑

i

∫

Ωε

µi

(

F (µ
− 1

p−1

i PUi + φi)− F (µ
− 1

p−1

i PUi)

)

− 2

p+ 1

∑

i<j

βij

∫

Ωε

|µ− 1
p−1

i PUi|
p+1
2 |µ− 1

p−1

j PUj|
p+1
2

−
∑

i<j

βij

∫

Ωε

(

|µ− 1
p−1

i PUi + ηiφi|
p+1
2 |µ− 1

p−1

j PUj + ηjφj |
p−1
2 φj

+|µ− 1
p−1

i PUi + ηiφi|
p−1
2 |µ− 1

p−1

j PUj + ηjφj |
p+1
2 φi

)

(4.8)

where ηi, ηj denote continuous functions with values in [0, 1].
We start considering the asymptotic expansion of Iε(PεUδi,ξi).

Lemma 4.3. For every i = 1, . . . ,m, it results that

Iε(PεUδi,ξi) = b1 +

[

b2H(ai, ai)d
N−2
i +

αp+1
N rN−2

i

2

Γ(τi)

dN−2
i (1 + |τi|2)

N−2
2

]

ε
N−2

2 + o(ε
N−2

2 )
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as ε → 0, C1-uniformly in (d, τ ) ∈ Xη, where the real numbers b1, b2 > 0 and the function
Γ : RN → R are defined by (4.6) and (4.7).

Proof. At first, using the definition of PεUδi,ξi , we observe that

Iε(PεUδi,ξi) =
1

2

∫

Ωε

PεUδi,ξiU
p
δi,ξi

− 1

p+ 1

∫

Ωε

(PεUδi,ξi)
p+1

=

(
1

2
− 1

p+ 1

)∫

Ωε

Up+1
δi,ξi

+
1

2

∫

Ωε

Upδi,ξi(PεUδi,ξi − Uδi,ξi)

− 1

p+ 1

∫

Ωε

((PεUδi,ξi)
p+1 − Up+1

δi,ξi
)

=
1

N

∫

Ωε

Up+1
δi,ξi

− 1

2

∫

Ωε

Upδi,ξi(PεUδi,ξi − Uδi,ξi)

− p

2

∫

Ωε

(Uδi,ξi + ηi(PεUδi,ξi − Uδi,ξi))
p−1(PεUδi,ξi − Uδi,ξi)

2

(4.9)

for a function ηi with values in [0, 1]. Now we estimate separately the three terms on the right
hand side. Recalling that Ωε = Ω \⋃iBriε(ai), the first term gives

∫

Ωε

Up+1
δi,ξi

= αp+1
N

∫

Ωε−ξi
δi

dy

(1 + |y|2)N = b1 +O

((
ε

δi

)N

+ δNi

)

.(4.10)

To treat the second term, we use Lemma A.1 (R = Rε,di,τi):
∫

Ωε

Upδi,ξi(PεUδi,ξi − Uδi,ξi) = αpN

∫

Ωε

Rε,δi,ξiU
p
δi,ξi

− αp+1
N

∫

Ωε

(

δ
N−2

2

i H(x, ξi) +
δ
−N−2

2

i

(1 + |τ |2)N−2
2

(
riε

|x− a|

)N−2
)

Upδi,ξi .

(4.11)

Now, by dominated convergence
∫

Ωε

δ
N−2

2
i H(x, ξi)U

p
δi,ξi

=

∫

Ωε−ξi
δi

δN−2
i

H(ξi + δiy, ξi)

(1 + |y|2)N+2
2

dy

= b2H(ai, ai)δ
N−2
i + o(δN−2

i ),

(4.12)

and

∫

Ωε

δ
−N−2

2

i

(1 + |τi|2)
N−2

2

(
riε

|x− a|

)N−2

Upδi,ξi

=
1

(1 + |τi|2)
N−2

2

(
riε

δi

)N−2 ∫

Ωε−ξi
δi

dy

|y + τi|N−2(1 + |y|2)N+2
2

=

(
ε

δi

)N−2
rN−2
i Γ(τi)

(1 + |τi|2)
N−2

2

+ o

((
ε

δi

)N−2
)

,

(4.13)

as ε → 0. Also, by Lemma A.1 the term with Rε,δi,ξi is of lower order with respect to those in
(4.12) and (4.13), and can be absorbed in the small o therein.
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Since δi ≃ ε
1
2 , it remains to estimate only the last term in (4.9), and this can be done using [14,

Lemma 3.2]: as 0 ≤ PεUδi,ξi ≤ Uδi,ξi , we have

∣
∣
∣
∣
∣

∫

Ωε

(Uδi,ξi + ηi(PεUδi,ξi − Uδi,ξi))
p−1(PεUδi,ξi − Uδi,ξi)

2

∣
∣
∣
∣
∣

≤ C

∫

Ωε

Up−1
δi,ξi

(PεUδi,ξi − Uδi,ξi)
2 = o(ε

N−2
2 )

Collecting all the previous computations, we infer that the expansion in the thesis holds C0 uni-
formly as ε→ 0. The estimates for the derivatives can be obtained in a similar way. �

Coming back to (4.8), we now show that the other terms are perturbation of Iε(PεUδi,ξi).

Lemma 4.4. Let R1,ε : Xη → R be defined by

R1,ε(d, τ ) := J̃ε(d, τ )−
m∑

i=1

µ
− 2

p−1

i Iε(PεUδi,ξi).

Then R1,ε = o(ε
N−2

2 ) C1-uniformly in Xη as ε→ 0.

Proof. Using the definitions of PUi and of F , we have

[

1

2

∫

Ωε

2µ
− 1

p−1

i ∇PUi · ∇φi −
∫

Ωε

µi

(

F (µ
− 1

p−1

i PUi + φi)− F (µ
− 1

p−1

i PUi)

)]

=

∫

Ωε

µ
− 1

p−1

i (Upi − PUpi )φi

−
∫

Ωε

µi

(

F (µ
− 1

p−1

i PUi + φi)− F (µ
− 1

p−1

i PUi)− F ′(µ
− 1

p−1

i PUi)φi

)

.

(4.14)

The first term on the right hand side can be controlled using Corollary A.2, Lemmas A.4, A.6 and
A.7, the fact that 0 ≤ PUi ≤ Ui, and the Hölder and the Sobolev inequalities:

∣
∣
∣
∣
∣

∫

Ωε

(Upi − PUpi )φi

∣
∣
∣
∣
∣
≤ C

∫

Ωε

Up−1
i |PUi − Ui||φi|

≤ C

(
∫

Ωε

U
8N

(N−2)(N+2)

i

(

δ
N−2

2
i +

δ
3
2N−3
i

|x− ai|N−2

))N+2
2N

‖φi‖

≤ Cδ
N−2

2

i

(∫

Ωε

U
8N

(N−2)(N+2)

i

)N+2
2N

‖φi‖+ Cδ
3
2N−3
i





∫

Ωε

U
8N

(N−2)(N+2)

i

|x− ai|
2N(N−2)

N+2





N+2
2N

‖φi‖

≤ Cδ
N−2

2

i

(

δ
N(N−2)

N+2

i

)N+2
2N

‖φi‖+ Cδ
3
2N−3
i

(

δ
N(2−N)

N+2

i

)N+2
2N

‖φi‖ ≤ CδN−2
i ‖φi‖ = o(ε

N−2
2 )

uniformly in Xη as ε→ 0, where the last equality follows by Proposition 3.1. Regarding the second
term on the right hand side in (4.14), by the Lagrange theorem there exists a function ηi with
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values in [0, 1] such that

∫

Ωε

∣
∣
∣
∣
F (µ

− 1
p−1

i PUi + φi)− F (µ
− 1

p−1

i PUi)− F ′(µ
− 1

p−1

i PUi)φi

∣
∣
∣
∣

=

∫

Ωε

|F ′′(µ
− 1

p−1

i PUi + ηiφi)|φ2i ≤ C

∫

Ωε

(
(PUi)

p−1φ2i + |φi|p+1
)

≤ C

∫

Ωε

Up−1
i φ2i + C|φi|2

∗

2∗ ≤ C|Ui|p−1
2∗ |φi|22∗ + C‖φi‖2∗

≤ C‖φi‖2 + ‖φi‖2
∗

= o(ε
N−2

2 )

uniformly in Xη as ε → 0. To sum up, the left hand side in (4.14) is o(ε
N−2

2 ) uniformly in Xη as
ε→ 0.

To estimate the other terms on the right hand side in (4.8), we use Lemmas A.6 and A.8, the
fact that 0 ≤ PεUδ,ξ ≤ Uδ,ξ, the ansatz (2.5), and the estimate in Proposition 3.1:

∣
∣
∣
∣

∫

Ωε

PU
p+1
2

i PU
p+1
2

j

∣
∣
∣
∣
≤
∫

Ωε

U
N

N−2

i U
N

N−2

j ≤ Cδ
N
2

i δ
N
2

j (| log δi|+ | log δj|) = o(ε
N−2

2 ),

∫

Ωε

|µ− 1
p−1

i PUi + ηiφi|
p+1
2 |µ− 1

p−1

j PUj + ηjφj |
p−1
2 |φj |

≤ C

∫

Ωε

(

U
p+1
2

i U
p−1
2

j |φj |+ |φi|
p+1
2 U

p−1
2

j |φj |+ U
p−1
2

i |φj |
p+1
2 + |φi|

p+1
2 |φj |

p+1
2

)

≤ C

(∫

Ωε

U
2N2

(N+2)(N−2)

i U
4N

(N+2)(N−2)

j

)N+2
2N

|φj |2∗ + C|φi|
p+1
2

2∗ |Uj |
p−1
2

2∗ |φj |2∗

+ C|Ui|
p−1
2

2∗ |φj |
p+1
2

2∗ + C + |φi|
p+1
2

2∗ |φj |
p+1
2

2∗

≤ Cδiδj‖φj‖+ C‖φi‖
p+1
2 ‖φj‖+ C‖φj‖

p+1
2 + C‖φi‖

p+1
2 ‖φj‖

p+1
2 = o(ε

N−2
2 ),

and analogously

∫

Ωε

|µ− 1
p−1

i PUi + ηiφi|
p−1
2 |µ− 1

p−1

j PUj + ηjφj |
p+1
2 |φi| = o(ε

N−2
2 )

uniformly in Xη as ε→ 0.

Collecting together the previous estimates, we deduce that R1,ε = o(ε
N−2

2 ) C0-uniformly as
ε→ 0. The estimates on the derivatives can be obtained in a similar way. �

Proposition 4.2 follows from Lemmas 4.3 and 4.4 straightforwardly, and allows us to complete
the proof of Theorem 1.1: we show that for every ε > 0 small enough the function J̃ε has a critical
point in Xη. A crucial lemma is the following.

Lemma 4.5. The function Ψ defined in (4.7) has a non-degenrate critical point (d̃, 0) ∈ Xη,
provided η > 0 was chosen small enough at the beginning.
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Proof. We have

∂diΨ(d, τ ) = (N − 2)µ
− 2

p−1

i b2H(ai, ai)d
N−3
i − (N − 2)

αp+1
N µ

− 2
p−1

i rN−2
i

2

Γ(τi)

dN−1
i (1 + |τi|2)

N−2
2

∂τi,hΨ(d, τ ) =
αp+1
N µ

− 2
p−1

i rN−2
i

2dN−2
i

(

∂τi,hΓ(τi)

(1 + |τi|2)
N−2

2

− (N − 2)Γ(τi)τi,h

(1 + |τi|2)
N
2

)

.

As proved in [14, Lemma 4.1], the function Γ has a non-degenerate maximum in 0 (the Hessian
matrix is diagonal with all negative entries), and hence we deduce that for every d

∇τΨ(d, 0) = 0.

Thus, to find a critical point of Ψ, it is sufficient to find d with η < di < η−1 for every i such that

∇dΨ(d, 0) = 0.

The existence of such critical point follows straightforwardly by the fact that

Ψ(d, 0) =
∑

i

gi(di), with gi(di) := b̃i,1d
N−2
i +

b̃i,2

dN−2
i

for suitable positive constants b̃i,1, b̃i,2, so that d 7→ Ψ(d, 0) admits a global minimum d̃ in the set
{η < di < η−1} (at least for η > 0 small enough).

Now we show that (d̃, 0) is non-degenerate. The Hessian matrix D2Ψ(d̃, 0) can be divided in
blocks in the following way:

D2Ψ(d̃, 0) =

(
D2

d
Ψ(d̃, 0)

(
∂τi,h,djΨ(d, 0)

)

(
∂τi,h,djΨ(d, 0)

)
D2

τΨ(d̃, 0)

)

Recalling that 0 is a non-degenerate maximum for the function Γ, it is not difficult to check by
direct computations that the matrix D2

τΨ(d̃, 0) is diagonal and negative definite. Moreover, for

every i, j = 1, . . . ,m and h = 1, . . . , N we have ∂τi,h,djΨ(d̃, 0) = 0, and hence to prove the non-

degeneracy of (d̃, 0) it remains only to analyze the block D2
d
Ψ(d̃, 0). It is clear that this is another

diagonal matrix, with

∂di,diΨ(d̃, 0) =
2

µi
b2H(ai, ai) + 6

α4
4r

2
i

2µi

Γ(0)

d̃4i
if N = 4,

and

∂di,diΨ(d̃, 0) = 2
α6
3ri

2µ
1
2

i

Γ(0)

d̃3i
if N = 3.

In any case, D2
d
Ψ(d̃, 0) is diagonal and positive definite, and hence we deduce that (d̃, 0) is a

non-degenerate saddle-point for Ψ. �

Conclusion of the proof of Theorem 1.1. Thanks to Lemma 4.1, we prove that for ε > 0 small the
function J̃ε has a critical point in Xη. By Proposition 4.2, this amounts to find a solution of the
algebraic system

{

∇dΨ(d, τ )ε
N−2

2 +∇dRε(d, τ ) = 0

∇τΨ(d, τ )ε
N−2

2 +∇τRε(d, τ ) = 0,
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with ∇dRε(d, τ ),∇τRε(d, τ ) = o(ε
N−2

2 ) as ε → 0, C0-uniformly in Xη. The previous system can
be rewritten as {

∇dΨ(d, τ ) + g1(d, τ, ε) = 0

∇τΨ(d, τ ) + g2(d, τ, ε) = 0,

with g1, g2 = o(1) as ε→ 0, C0-uniformly in (d, τ ) ∈ Xη. Now, let us define the two maps

Λ0(d, τ ) :=

(
∇dΨ(d, τ )
∇τΨ(d, τ )

)

, Λ1,ε(d, τ ) :=

(
∇dΨ(d, τ ) + g1(d, τ , ε)
∇τΨ(d, τ ) + g2(d, τ , ε)

)

.

The zeros of Λ1,ε are critical point of the reduced functional J̃ε, and hence gives solutions to

(1.4). By Lemma 4.5, we know that Λ0 has a zero in (d̃, 0), and by non-degeneracy there exists a

neighbourhood U ⊂ Xη of (d̃, 0) such that (d̃, 0) is the unique 0 of Λ0 in U , and deg(Λ0, U, 0) 6= 0.
Let Hε : [0, 1]× U → Rm × RNm be defined by

Hε(t,d, τ ) := Λ0(d, τ ) + t

(
g1(d, τ , ε)
g2(d, τ , ε)

)

.

This is an homotopy between Λ0 and Λ1,ε, and since g1, g2 → 0 as ε → 0 uniformly in Xη, is
such that Hε(t,d, τ ) 6= 0 for every t ∈ [0, 1], (d, τ ) ∈ ∂U , at least for ε > 0 small enough. As a
consequence, by the homotopy-invariance property of the topological degree, we conclude that

deg(Λ0, U, 0) = deg(Λ1,ε, Hε(1, U), 0) 6= 0,

and hence Λ1,ε has a zero in H(1, U). That is, J̃ε has a critical point, as desired. This completes
the proof of the existence of a solution (u1,ε, . . . , um,ε) to system (2.1).

It remains to show that, if necessary replacing β̄ with a smaller quantity, ui,ε > 0 in Ωε for
every i, so that in particular (u1,ε, . . . , um,ε) solves (1.4).

We start from the case N = 4, in which case we have βij < β̄ for every i 6= j. This case can be
treated exactly as in [23, Conclusion of the proof of Theorem 1.1]. 1

Regarding the case N = 3, the positivity of the solutions (without any assumption on βij) can
be obtained replacing system (2.1) with

(4.15)

{

−∆ui = µif(ui) +
∑

j 6=i βij |uj |
p+1
2 |ui|

p−3
2 u+i in Ωε

ui = 0 on ∂Ωε,
i = 1, . . . ,m.

The key fact is that for N = 3 the interaction term on the right hand side is of type F (x, y) =
|x|x+|y|3, which is of class C1, so that the proof we used to deal with system (2.1) in dimensions
N = 3, 4 can be used word by word to produce a solution to (4.15) with ui,ε 6≡ 0 for every i. This
immediately implies (by the classical maximum principle) that ui,ε > 0 in Ωε. �

Remark 4.6. We stress that the strategy to prove the positivity of ui,ε in dimension N = 3
does not work in dimension N = 4, since for the problem in R4 the interaction term is of type
F (x, y) = x+y2, which is not C1. We needed the smoothness of F to prove Lemma A.5, which is
the key ingredient to estimate the nonlinear part for the equations in K⊥

d,τ ,ε.

5. Proof of Theorem 1.2

We start with some preliminaries about the shape of the approximate solution.

1Some careful is needed, since to apply the argument in [23] it is required that in the bound ‖φ‖ ≤ Cε
N−2

2 ,
given in Proposition 3.1, the constant C > 0 is independent on the particular choice of βij with −∞ < βij < β̄.

Going through the proof of Proposition 3.1, it is not difficult to check that this is possible.
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5.1. Some preliminaries. Let us consider the 2 components system

(5.1)







−∆v1 = µ1v
3
1 + β12v1v

2
2 in R4

−∆v2 = µ2v
3
2 + β12v

2
1v

2
1 in R4

v1, v2 > 0 in R4

v1, v2 ∈ D1,2(R4),

and let us search for solutions of the form (v1, v2) = (c1U, c2U) (where U = U1,0 is a standard
bubble in R4 centered in 0 and with δ = 1), with c1, c2 > 0. This ansatz leads to the algebraic
system

(5.2) µ1c
2
1 + β12c

2
2 = 1, β12c

2
1 + µ2c

2
2 = 1,

which admits the solution

(5.3) c21 :=
β12 − µ2

β2 − µ1µ2
, c22 :=

β12 − µ1

β2 − µ1µ2

if either −√
µ1µ2 < β12 < min{µ1, µ2}, or β12 > max{µ1, µ2}.

Let us consider now the linearization of (5.1) in (c1U, c2U), namely the linear system

(5.4)

{

−∆v1 = (3µ1c
2
1 + β12c

2
2)U

2v1 + 2β12c1c2U
2v2 = U2(α11v1 + α12v2) in R

4

−∆v2 = 2β12c1c2U
2v1 + (3µ2c

2
2 + β12c

2
1)U

2v2 = U2(α21v1 + α22v2) in R
4.

where

(5.5) α11 := 3µ1c
2
1 + β12c

2
2, α12 = α21 := 2β12c1c2, α22 := 3µ2c

2
2 + β12c

2
1.

We introduce the 2× 2 matrix M := (αij)i,j=1,2, with eigenvalues

(5.6) λ2 =
α11 + α22 +

√

(α11 − α22)2 + 4α2
12

2
, λ2 =

α11 + α22 −
√

(α11 − α22)2 + 4α2
12

2
.

Using (5.2), it is not difficult to check by direct computations that λ1 = 3.
We consider now the eigenvalue problem:

−∆v = νU2v, v ∈ D1,2(R4),

It is well known (see [4, Lemma A.1]) that there exists a sequence of positive eigenvalues {νk} with

1 = ν1 < 3 = ν2 < ν3 < · · · < νk < νk+1 < . . . ,

νk → +∞.

Lemma 5.1. Let (e1, e2) be a non-trivial eigenvector of the matrix M associated with λ2. If
λ2 6= νk for every k, then the set of solutions to the linear system (5.4) is 5−dimensional, and is
generated by

(e2,−e1)ψh1,0 h = 0, 1, . . . , 4

(where ψh1,0 have been defined in (1.14)).

This lemma is a particular case of the forthcoming Lemma 6.1, to which we refer for the proof.
Notice that in Lemma 5.2 we express the generators of the set of solutions to (5.4) as e1ψ

h
1,0, with

e1 eigenvector associated to the eigenvalue λ1 = 3, while here we use an eigenvector associate to λ2.
This is possible since, being eigenvectors associated to different eigenvalues orthogonal, (e2,−e1)
is indeed an eigenvector for λ1 = 3.
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Proposition 5.2. Under the assumptions of theorem 1.2, the set of solutions to the linear system
(5.4) is 5−dimensional, and is generated by

(e2,−e1)ψh1,0 h = 0, 1, . . . , 4

(where ψh1,0 have been defined in (1.14)).

Proof. Notice at first that λ2 < λ1 = 3. Then, by Lemma 5.1, to complete the proof is sufficient
to show that λ2 is different from the eigenvalues νk. Since λ2 < 3 and 1 = ν1 < ν2 = 3, we have
to check that under the assumptions of Theorem 1.2 it results λ2 6= 1. Using the definition of αij
and the one of c1, c2, it is not difficult to check that

λ1,2 =
6− 2β(c21 + c22)± 2β(c21 + c22)

2
.

If λ2 = 1, i.e.

1 = 3− 2β12
2β12 − µ1 − µ2

β2 − µ1µ2
,

then it is not difficult to infer that either β12 = µ1, or β12 = µ2. Since in Theorem 1.2 we suppose
that either β12 < min{µ1, µ2}, or β12 > max{µ1, µ2}, we have λ2 6= 1, and the thesis follows. �

5.2. The reduction scheme. Once again, we search for solutions of (2.1), which can be rewritten
as in (2.2):

ui = i∗



µif(ui) +
∑

j 6=i

βij |uj |
p+1
2 |ui|

p−3
2 ui



 .

Let η ∈ (0, 1) be small, and let

(5.7) Xη :=
{
(d, τ ) = (d1, d3, τ1, τ3) ∈ R

2 × (R4)2 : η < d1, d3 < η−1, |τ1|, |τ3| < η−1
}
.

Our ansatz is that

u1 = c1PεUδ1,ξ1 + φ1, u2 = c2PεUδ1,ξ1 + φ2, u3 = c3PεUδ3,ξ3 + φ3

where for some (d, τ ) = (d1, d3, τ1, τ3) ∈ Xη we have

δi := di
√
ε, ξi := ai + di

√
ετi, i = 1, 3.

Even though we have to deal with only 2 parameters d1, d3 and two vectors τ1, τ3, in order to
simplify the notation it is convenient to introduce d2 = d1 and τ2 = τ1. Analogously, we often
write δ2 = δ1 and ξ2 = ξ1.

Plugging the previous ansatz into (2.2), our problem is transformed in the research of di, τi

and φi such that (2.6) is satisfied (with ci instead of µ
− 1

p−1

i ) for i = 1, . . . ,m, with each equality
which takes place in H1

0 (Ωε). To proceed, the idea is again to split the space into two orthogonal
subspaces, one of them having finite dimension. But in doing this we take into account that u1
and u2 are concentrating around the same point. Then we define

K1 = Kd1,τ1,ε := span
{
(e2,−e1)Pεψhδ1,ξ1 : h = 0, . . . , N

}
⊂ H1

0 (Ωε,R
2),

K3 = Kd3,τ3,ε := span
{
Pεψ

h
δ3,ξ3 : h = 0, . . . , N

}
⊂ H1

0 (Ωε,R)

Kd,τ ,ε := K1 ×K3,

where (e1, e2) is an eigenvector with norm 1 of the matrix M associated with λ2 (defined in (5.6)).
Notice that K⊥

d,τ ,ε = K⊥
1 ×K⊥

3 .
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If, for i = 1, 3, the symbol Πi = Πδi,ξi,ε (resp. Π
⊥
i = Π⊥

δi,ξi,ε
) denotes the orthogonal projection

H1
0 (Ωε) → Ki (resp. H

1
0 (Ωε) → K⊥

i ), then (2.6) can be further rewritten as a system of 4 equations.

We have (2.7) and (2.8) for i = 3 (with µ
− 1

p−1

j replaced by cj), together with

Π1(c1PεUδi,ξi + φ1, c2PεUδi,ξi + φ2)

= Π1

(

i∗

[

µ1f(c1PεUδ1,ξ1 + φ1) +
∑

j 6=1

β1j |cjPεUδj ,ξj + φj |2(c1PεUδ1,ξ1 + φ1)

]

,

i∗

[

µ2f(c2PεUδ1,ξ1 + φ2) +
∑

j 6=2

β2j |cjPεUδj ,ξj + φj |2(c2PεUδ1,ξ1 + φ2)

])

,

(5.8)

and

Π⊥
1 (c1PεUδi,ξi + φ1, c2PεUδi,ξi + φ2)

= Π⊥
1

(

i∗

[

µ1f(c1PεUδ1,ξ1 + φ1) +
∑

j 6=1

β1j |cjPεUδj ,ξj + φj |2(c1PεUδ1,ξ1 + φ1)

]

,

i∗

[

µ2f(c2PεUδ1,ξ1 + φ2) +
∑

j 6=2

β2j |cjPεUδj ,ξj + φj |2(c2PεUδ1,ξ1 + φ2)

])

,

(5.9)

5.3. The equations in K⊥
d,τ ,ε. The equations in K⊥

d,τ ,ε can be still expressed in the form

(5.10) Lid,τ ,ε(φ) = N i
d,τ ,ε(φ) +Rid,τ ,ε i = 1, 3,

where for i = 3 the linear and nonlinear part and the remainder term are defined as in (3.2), (3.3),
(3.4), while for i = 1 we have

L1
d,τ ,ε(φ) =

Π⊥
1

(

φ1 − i∗

[

µ1f
′(c1PεUδ1,ξ1)φ1 +

∑

j 6=1

β1j(cjPεUδj ,ξj )
2φ1 + 2

∑

j 6=1

β1j(cjPεUδj ,ξj )(c1PεUδ1,ξ1)φj

]

,

φ2 − i∗

[

µ2f
′(c2PεUδ1,ξ1)φ2 +

∑

j 6=2

β2j(cjPεUδj ,ξj )
2φ2 + 2

∑

j 6=2

β2j(cjPεUδj ,ξj )(c2PεUδ1,ξ1)φj

])

,

(5.11)
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N1
d,τ ,ε(φ) =

Π⊥
1

(

i∗

[

µ1f(c1PεUδ1,ξ1 + φ1)− µ1f(c1PεUδ1,ξ1)− µ1f
′(c1PεUδ1,ξ1)φ1

+
∑

j 6=1

β1j |cjPεUδj ,ξj + φj |2(c1PεUδ1,ξ1 + φ1)− β1j(cjPεUδj ,ξj )
2(c1PεUδ1,ξ1)

−
∑

j 6=1

β1j(cjPεUδj ,ξj )
2φ1 − 2β1j(cjPεUδj ,ξj )(c1PεUδ1,ξ1)φj

]

,

i∗

[

µ2f(c2PεUδ1,ξ1 + φ2)− µ2f(c2PεUδ1,ξ1)− µ2f
′(c2PεUδ1,ξ1)φ2

+
∑

j 6=2

β2j |cjPεUδj ,ξj + φj |2(c2PεUδ1,ξ1 + φ2)− β2j(cjPεUδj ,ξj )
2(c2PεUδ1,ξ1)

−
∑

j 6=2

β2j(cjPεUδj ,ξj )
2φ2 − 2β2j(cjPεUδj ,ξj )(c2PεUδ1,ξ1)φj

])

,

(5.12)

and

R1
d,τ ,ε = Π⊥

1

(

i∗

[

c1(PεUδ1,ξ1 − Uδ1,ξ1) + β13(c3PεUδ3,ξ3)
2(c1PεUδ1,ξ1)

]

,

i∗

[

c2(PεUδ1,ξ1 − Uδ1,ξ1) + β23(c3PεUδ3,ξ3)
2(c2PεUδ1,ξ1)

])

,

(5.13)

where we used the definition of i∗ and the equations (5.2) defining c1, c2.
We define

Ld,τ ,ε := (L1
d,τ ,ε, L

3
d,τ ,ε) : K

⊥
d,τ ,ε → K⊥

d,τ ,ε,

and Rd,τ ,ε and Nd,τ ,ε in an analogue way.
The main result of this subsection is the counterpart of Proposition 3.1 in the present setting.

Proposition 5.3. For every η > 0 small enough there exists β̄, ε̄ > 0 small, and C > 0, such that
if ε ∈ (0, ε̄), and −∞ < β13, β23 < β̄, then for any (d, τ ) ∈ Xη (see (5.7)) there exists a unique

function φd,τ ,ε ∈ K⊥
d,τ ,ε solving the equation

Ld,τ ,ε(φ) = Rd,τ ,ε +Nd,τ ,ε(φ)

and satisfying

‖φd,τ ,ε‖H1
0 (Ωε) ≤ Cε.

Furthermore, the map (ε,d, τ ) 7→ φd,τ ,ε is of class C1, and

‖∇(d,τ)φ
d,τ ,ε‖H1

0 (Ωε) ≤ Cε.

For the proof, we start studying the linear part.

Lemma 5.4. For every η > 0 small enough there exists β̄, ε0 > 0 small, and C > 0, such that if
ε ∈ (0, ε0), and −∞ < β13, β23 < β̄, then

‖Ld,τ ,ε(φ)‖H1
0 (Ωε) ≥ C‖φ‖H1

0 (Ωε) ∀φ ∈ H1
0 (Ωε,R

3)
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for every (d, τ ) ∈ Xη. Moreover, Ld,τ ,ε is invertible in K⊥
d,τ ,ε, with continuous inverse.

Proof. The proof follows exactly the same sketch of that of Lemma 3.2. We suppose by contradic-
tion that there exist sequences

{εn} ⊂ R
+, εn → 0, {(dn, τn)} ⊂ Xη, {φn = ((φ1,n, φ2,n), φ3,n)} ⊂ K⊥

1,n ×K⊥
3,n

such that

‖φn‖H1
0 (Ωεn ) = 1 and ‖Ln(φn)‖H1

0 (Ωεn ) → 0

as n→ ∞, where we adopted the same short notation as in Lemma 3.2.
Let hn := Ln(φn). Then we have three equations for φ1,n, φ2,n, φ3,n, completely analogue to

(3.8) (with ci instead of µ
− 1

p−1

i ), but with (w1,n, w2,n) ∈ K1,n, w3,n ∈ K3,n.

Step 1) ‖wi,n‖H1
0 (Ωn) → 0 as n→ ∞.

The argument used in Lemma 3.2 immediately implies that ‖w3,n‖H1
0 (Ωn) → 0. Regarding w1,n

and w2,n, we multiply the first equation with δ21,nw1,n, the second equation with δ21,nw2,n, and we

sum the results. Since (φ1,n, φ2,n), (h1,n, h2,n) ∈ K⊥
1,n, and recalling the definition of αij given in

(5.5), we obtain

δ21,n(‖w1,n‖2 + ‖w2,n‖2) =
∫

Ωn

c23(PnU3,n)
2(β13φ1,nw1,n + β23φ2,nw2,n)

+

∫

Ωn

c3(PnU1,n)(PnU3,n)(c1β13φ3,nw1,n + c2β23φ3,nw2,n)

+ δ21,n

∫

Ωn

(PnU1,n)
2(α11φ1,nw1,n + α12(φ2,nw1,n + φ1,nw2,n) + α22φ2,nw2,n).

(5.14)

In this equation, the first and the second integral on the right hand side can be treated as terms
(III) and (IV ) in (3.9), and together give o(δ21,n) as n→ ∞.

The integral on the left hand side can be treated developed as term (I) in (3.9), in the following
way: since (w1,n, w2,n) ∈ K1,n, there exists constants ch1,n, h = 0, . . . , 4 such that

(5.15) (w1,n, w2,n) =

4∑

h=0

ch1,n(e2,−e1)Pnψh1,n;

then, for σlk defined in (3.11), we have

δ21,n(‖w1,n‖2 + ‖w2,n‖2) =
4∑

l,k=0

cl1,nc
k
1,n (e

2
1 + e22)

︸ ︷︷ ︸

=1

(σlk + o(1))

=

4∑

h=0

(ch1,n)
2σhh + o(1)

4∑

h,k=0

ch1,nc
k
1,n.

It remains then to analyze the last integral on the right hand side in (5.14), and in what follows
we prove that it gives

o(δ21,n) (‖w1,n‖+ ‖w2,n‖) +O(δ2i,n)

N∑

l=0

cli,n.

Now, since (φ1,n, φ2,n) ∈ K⊥
1,n, for every h

0 =

∫

Ωn

e2∇(Pnψ
h
1,n) · ∇φ1,n − e1∇(Pnψ

h
1,n) · ∇φ2,n = 3

∫

Ωn

U2
1,nψ

h
1,n(e2φ1,n − e1φ2,n).
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Therefore, for every h

∫

Ωn

U2
1,nψ

h
1,n(α11e2φ1,n + α12(e2φ2,n − e1φ1,n)− α22e1φ2,n)

=

∫

Ωn

α11U
2
1,nψ

h
1,n(e2φ1,n ± e1φ2,n) +

∫

Ωn

α12U
2
1,nψ

h
1,n(e2φ2,n − e1φ1,n)

−
∫

Ωn

α22U
2
1,nψ

h
1,n(e1φ2,n ± e2φ1,n)

=

∫

Ωn

(α11e1 + α12e2)U
2
1,nψ

h
1,nφ2,n −

∫

Ωn

(α12e1 + α22e2)U
2
1,nψ

h
1,nφ1,n

= λ2

∫

Ωn

U2
1,nψ

h
1,n(e1φ2,n − e2φ1,n) = 0,

where we used the definition of αij , see (5.5). In turn, using (5.15), we have

δ21,n

∫

Ωn

(PnU1,n)
2(α11φ1,nw1,n + α12(φ2,nw1,n + φ1,nw2,n) + α22φ2,nw2,n)

= δ21,n

∫

Ωn

((PnU1,n)
2 − U1,n)

2(α11φ1,nw1,n + α12(φ2,nw1,n + φ1,nw2,n) + α22φ2,nw2,n)

+ δ21,n

4∑

h=0

ch1,n

∫

Ωn

U2
1,n(Pnψ

h
1,n − ψh1,n)(α11e2φ1,n + α12(e2φ2,n − e1φ1,n)− α22e1φ2,n),

and hence we can proceed exactly as in (B.3), deducing that

δ21,n

∫

Ωn

(PnU1,n)
2(α11φ1,nw1,n + α12(φ2,nw1,n + φ1,nw2,n) + α22φ2,nw2,n)

= o(δ21,n) (‖w1,n‖+ ‖w2,n‖) +O(δ2i,n)

N∑

l=0

cli,n.

To sum up, we proved the analogue of the estimates (3.10) for the couple (w1,n, w2,n), and hence
we can conclude as in Lemma 3.2 that ‖w1,n‖, ‖w2,n‖ → 0 as n→ ∞.

Step 2) For a fixed κ = 1, . . . ,m, we introduce

φ̃κi,n(y) :=

{

δ
N−2

2
κ,n φi,n(ξκ,n + δκ,ny) y ∈ Ωn−ξκ,n

δκ,n
=: Ω̃κ,n

0 y ∈ RN \ Ω̃κ,n,
i = 1, . . . ,m.

In a completely analogue way, we define h̃κi,n and w̃κi,n. Proceeding as in step 2 of Lemma 3.2

(with minor changes), it is not difficult to check that φ̃11,n, φ̃
1
2,n, φ̃

3
3,n ⇀ 0 in D1,2(RN ) as n → ∞.

The only difference with respect to Lemma 3.2 is that this time the weak limit (φ̃11, φ̃
1
2) solves the

system (5.4) instead of a single equation, and hence the fact that (φ̃11, φ̃
1
2) = (0, 0) comes from

Proposition 5.2 and the condition (φ1,n, φ2,n) ∈ K⊥
1,n.

Step 3) We prove that ‖φi,n‖H1
0 (Ωn) → 0 as n → ∞ for every i. Regarding φ3,n, we can proceed

as in Lemma 3.2. We focus then on the other components. We test (3.8) with φ1,n: recalling that
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{φ1,n} is bounded in H1
0 (Ωn) and that w1,n, h1,n → 0 strongly, we deduce that

‖φ1,n‖2H1
0 (Ωn)

= o(1) +

∫

Ωn

(PnUi,n)
2(α11φ

2
1,n + α12φ1,nφ2,n)

+ β13

∫

Ωn

(c3PnU3,n)
2φ21,n + 2β23

∫

Ωn

(c1PnUi,n)(c3PnU3,n)φ1,nφ3,n

(5.16)

The second and the third integral on the right hand side can be treated as in Lemma 3.2. Notice
that here we have only to ask that β13 is small enough (we don’t need any assumption on β12).

Now, to estimate the first integral in (5.16), we observe that as in (3.17)
∫

Ωn

(PnU1,n)
2φ21,n → 0,

and moreover
∣
∣
∣
∣
∣

∫

Ωn

(PnU1,n)
2φ1,nφ2,n

∣
∣
∣
∣
∣
≤ C

∫

Ωn

U2
1,n|φ1,n| |φ2,n|

= C

∫

Ω̃1,n

U2
1,0φ̃

1
1,nφ̃

1
2,n → 0

as n→ ∞, since φ̃11,n, φ̃
1
2,n ⇀ 0 in L

2N
N−2 (RN ) by step 2, and U2

1,0 ∈ L
N
2 (RN ). Thus, we infer that

‖φ1,n‖ → 0; in the same way, ‖φ2,n‖ → 0, and we reached the desired contradiction.
We stress that, while we have to suppose −∞ < β13, β23 < β̄, no assumption is needed on β12.

Step 4) Invertibility of Ld,τ ,ε. This can be proved exactly as in Lemma 3.2. �

The rest of the proof of Proposition 5.3 is now a straightforward modification of that of Propo-
sition 3.1, and hence is omitted.

5.4. The reduced problem. In this section we solve equation (5.8) with φ = φd,τ ,ε. In what
follows we use the notation

V d,τ ,ε
i := ciPεU

d,τ ,ε
δ1,ξ1

+ φd,τ ,εi i = 1, 2, V d,τ ,ε
3 := c3PεU

d,τ ,ε
δ3,ξ3

+ φd,τ ,ε3 .

Let Jε : H
1
0 (Ωε,R

3) → R be the action functional, defined as in (4.1). Critical points of Jε are
solution to (2.1), and hence solutions to (1.4).

Let us introduce now the reduced functional J̃ε : Xη → R,

J̃ε(d, τ ) := Jε

(

c1PεUδ1,ξ1 + φd,τ ,ε1 , c2PεUδ1,ξ1 + φd,τ ,ε2 , c3PεUδ3,ξ3 + φd,τ ,ε3

)

.

The counterpart of Lemma 4.1 in the present context is given in the following statement, whose
proof is omitted.

Lemma 5.5. There exists ε̄ > 0 sufficiently small such that if (d, τ ) = (d1, d3, τ1, τ3) is a critical

point of J̃ε, and ε ∈ (0, ε̄), then
(

c1PεUδ1,ξ1 + φd,τ ,ε1 , c2PεUδ1,ξ1 + φd,τ ,ε2 , c3PεUδ3,ξ3 + φd,τ ,ε3

)

is a solution to (2.7), and hence a solution to (2.1).

Due to Lemma 5.5, we have to find a critical point of the reduced functional J̃ε in Xη, and to

this aim we derive the asymptotic expansion of Jε(V
d,τ ,ε
1 , V d,τ ,ε

2 , V d,τ ,ε
3 ) as ε → 0+. We recall
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the definition of b1, b2 and Γ, given in (4.6) and (4.7), but we modify the definition of Ψ in the
following way:

Ψ(d, τ ) := (c21 + c22)

[

b2H(a1, a1)d
N−2
1 +

αp+1
N rN−2

1

2

Γ(τ1)

dN−2
1 (1 + |τ1|2)

N−2
2

]

+ c23

[

b2H(a1, a1)d
N−2
1 +

αp+1
N rN−2

1

2

Γ(τ1)

dN−2
1 (1 + |τ1|2)

N−2
2

]

.

(5.17)

Proposition 5.6. We have

J̃ε(d, τ ) =

(
3∑

i=1

c2i

)

b1 + Ψ(d, τ )ε
N−2

2 +Rε(d, τ ),

with Rε = o(ε
N−2

2 ) C1-uniformly in Xη as ε→ 0.

Proof. In this proof we omit the dependence of the functions on d, τ , ε for simplicity, and we write
U1 = U2 = Uδ1,ξ1 , U3 = Uδ3,ξ3 .

We proceed as in Proposition 4.2, noting that by (5.2)

J̃ε(d, τ ) =
∑

i

Iε(Vi)−
2

p+ 1

∑

i<j

∫

Ωε

βij |Vi|
p+1
2 |Vj |

p+1
2

=
∑

i

Iε(ciPUi) +
1

2

∑

i

∫

Ωε

2ci∇(PUi) · ∇φi + |∇φi|2

−
∑

i

∫

Ωε

µi (F (ciPUi + φi)− F (ciPUi))

− 2

p+ 1

∑

i<j

∫

Ωε

|ciPUi|2|cjPUj |2

−
∑

i<j

∫

Ωε

(
|ciPUi + ηiφi|2|cjPUj + ηjφj |φj

+|ciPUi + ηiφi||cjPUj + ηjφj |2φi
)

= (c21 + c22)Iε(PU1) + c23Iε(PU3) +R1,ε

(where ηi, ηj denote continuous functions with values in [0, 1]). Then we can slightly modify
Lemmas 4.3 and 4.4 to obtain the desired result. �

Once that Proposition 5.6 is established, the conclusion of the proof of Theorem 1.2 is analogue
to the one of Theorem 1.1.

6. Proof of Proposition 1.4

Let us consider a system

(6.1) −∆Ui =

k∑

j=1

βijUiU
2
j in R

4, i = 1, . . . , k,
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and let us suppose that it has a solution Ui = ciU, with ci > 0 for i = 1, . . . , k, where U = U1,0 is
a standard bubble in R4 centered in 0 and with δ = 1. That is,

∑

j=1,...,k

βijc
2
j = 1, i = 1, . . . , k.

We can linearize system (6.1) in D1,2(RN ) around the solutions (c1U, . . . , ckU), obtaining

(6.2) −∆vi =













3βiic
2
i +

∑

j 6=i

βijc
2
j





︸ ︷︷ ︸

=1+2βiic2i

vi + 2
∑

j 6=i

βijcicjvj











U2 in R
4,

with vi ∈ D1,2(R4).
It is clear that Proposition 1.4 follows if we prove that the condition

the matrix (βij)i,j=1,...,k is invertible and has only positive entries

implies that (6.2) has a 5-dimensional set of solutions.
To this aim, we observe that system (6.2) can be rewritten as

−∆v = U2Mv in R
4, v := (v1, . . . , vk) ∈ D1,2(R4,Rk),

with M := Id+ 2 C and

C :=








β11c
2
1 β12c1c2 . . . β1kc1ck

β12c1c2 β22c
2
2 . . . β2kc2ck

...
...

. . .
...

β1kc1ck β2kc2ck . . . βkkc
2
k







.

Let Λ be an eigenvalue of M and e an associated eigenfunction, i.e.

Me = Λe.

It is useful to point out that Λℓ is an eigenvalue of M if and only if Θℓ := (Λℓ−1)/2 is an eigenvalue
of the matrix C. It is immediate to check that Θ = 1 is an eigenvalue of C whose eigenvector is
(c1, . . . , ck). We set Θ1 = 1, which implies Λ1 = 3.

Let us consider the eigenvalue problem

−∆v = νU2v, v ∈ D1,2(R4).

It is well known (see [4, Lemma A.1]) that there exists a sequence of positive eigenvalues {νm}m∈N

with

1 = ν1 < 3 = ν2 < ν3 < · · · < νm < νm+1 < . . . and νm → +∞.

The role of these eigenvalues when dealing with (6.2) is clarified by the following statement.

Lemma 6.1. Assume that, for any Λ2, . . . ,Λk of M do not coincide with any of the eigenvalues
{νm : m ∈ N}. Then the set of solutions to the linear system (6.2) is 5−dimensional, and is
generated by

ψh1,0e1 h = 0, 1, . . . , 4

where e1 ∈ Rk is an eigenvector associated with Λ1 = 3 and the functions ψh1,0 have been defined
in (1.14).
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Proof. Let Λℓ be an eigenvalue of the matrix M and let eℓ ∈ Rk an associated eigenvector. We
multiply (6.2) by eℓ and taking into account the symmetry of the matrix M we get

−∆(eℓ · v) = Λℓ U
2(eℓ · v) in R

4.

Since Λℓ 6= νm for every m, we deduce that

eℓ · v = 0 for any ℓ = 2, . . . , k,

which implies (by the orthogonality of eigenvectors associated to different eigenvalues) that

v = ψ(x)e1 for some function ψ such that −∆ψ = 3U2ψ in R
4.

The claim follows then by [4, Lemma A.1]. �

Conclusion of the proof of Proposition 1.4. As observed above, we have to prove that if (βij) is
invertible and has positive entries, then the set of solutions to (6.2) is 5-dimensional. By Lemma
6.1, this amounts to show that if (βij) is invertible and has positive entries, then the eigenvalues
Λ2, . . . ,Λk of M are different from ν1 = 1, ν2 = 3, νm > 3.

Let us argue in terms of the matrix C. By assumption, C has positive entries. Therefore
by Perron-Frobenius Theorem we deduce that the eigenvalue Θ1 = 1, which is associated to
the eigenvector of positive elements (c1, . . . , ck), is simple, and any other eigenvalue Θℓ satisfies
|Θℓ| < 1. Moreover, 0 is not an eigenvalue of the matrix C, since a straightforward computation
shows that

det C = −(c21 · · · · · c2k) det(βij) 6= 0

being (βij) invertible. Therefore, Λ1 = 3 is a simple eigenvalue, and we have that both −1 < Λℓ < 3
and Λℓ 6= 1 for any ℓ = 2, . . . , k. This completes the proof. �

Appendix A.

In this section we collect several technical lemmas. We start recalling from [14, Lemma 3.1] the
point-wise estimate of the difference of Uδ,ξ and PεUδ,ξ, as well as of their derivates.

Lemma A.1. Let a ∈ Ω, r > 0, and let η, ε > 0 be small. Let d > 0 and τ ∈ RN be such that
η < d < η−1, |τ | < η−1. Finally, let δ = d

√
ε and ξ = a+ δτ . Let us define

R(x) := PεUδ,ξ(x)− Uδ,ξ(x) + αNδ
N−2

2 H(x, ξ) + αN
1

δ
N−2

2 (1 + |τ |2)
N−2

2

(
rε

|x− a|

)N−2

.

Then there exists a positive constant C > 0 depending only on η and on dist(a, ∂Ω) such that for
any x ∈ Ω \Brε(a)

|R(x)| ≤ Cδ
N−2

2

[
εN−2(1 + εδ1−N )

|x− a|N−2
+ δ2 +

(ε

δ

)N−2
]

|∂τiR(x)| ≤ Cδ
N
2

[
εN−2(1 + εδ−N)

|x− a|N−2
+ δ2 +

εN−2

δN−1

]

|∂δR(x)| ≤ Cδ
N−4

2

[
εN−2(1 + εδ1−N )

|x− a|N−2
+ δ2 +

(ε

δ

)N−2
]

.

Corollary A.2. In the previous setting, we have

∂ξh (PεUδ,ξ(x)− Uδ,ξ(x)) = −αNδ
N−2

2 ∂ξhH(x, ξ) +
αN (N − 2)τh

δ
N
2 (1 + |τ |2)N

2

(
rε

|x− a|

)N−2

+
1

δ
∂τhR(x),
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and

∂δ (PεUδ,ξ(x) − Uδ,ξ(x)) = −αN
N − 2

2
δ

N−4
2 H(x, ξ)

+
αN (N − 2)

2δ
N
2 (1 + |τ |2)N−2

2

(
rε

|x− a|

)N−2

+ ∂δR(x),

and in particular there exists C > 0 depending only on η and on dist(a, ∂Ω) such that

|PεUδ,ξ(x) − Uδ,ξ(x)| ≤ Cδ
N−2

2 + C
δ

3
2N−3

|x− a|N−2

|Pεψhi (x) − ψhi (x)| ≤ Cδ
N−2

2 + C
δ

3
2N−4

|x− a|N−2

|Pεψ0
i (x) − ψ0

i (x)| ≤ Cδ
N−4

2 + C
δ

3
2N−4

|x− a|N−2
,

for h = 1, . . . , N , for every ε > 0 small enough. In particular, if we fix a compact set K ⋐ Ω, then
one can choose a unique constant C > 0 for any a ∈ K.

Proof. The result is a straightforward consequence of Lemma A.1 and of the boundedness ofH(x, ξ)
together with its derivatives for x ∈ Ω, ξ ∈ K ′, with K ′ compact of Ω. We also used the facts that

δ ≃ ε
1
2 and that the derivatives commute with the projection Pε. �

Now we collect some estimates regarding the derivates of the bubble.

Lemma A.3. Let ψℓδ,ξ (ℓ = 0, . . . , N) be defined in (1.14). Then we have

(i) |ψ0
δ,ξ| ≤

C

δ
Uδ,ξ

(ii) |ψℓδ,ξ| ≤
C

δ
U

N
N−2

δ,ξ |xℓ − ξℓ| ℓ = 1, . . . , N

point-wisely in RN .

Proof. The thesis is a simple consequence of the explicit expressions. �

The following lemma is an easy consequence of Taylor expansion.

Lemma A.4. For every q > 1, there exists C > 0 such that

||a+ b|q − |a|q| ≤ C(|a|q−1|b|+ |b|q) for every a, b ∈ R.

Let also f(s) := (s+)q, with q ≥ 2. Then there exists C > 0 such that

|f(a+ b1)− f(a)− f ′(a)b1 − (f(a+ b2)− f(a)− f ′(a)b2)|
≤ C||a|+ |b1|+ |b2||q−2(|b1|+ |b2|)|b1 − b2|

for every a, b1, b2 ∈ R.

A slightly more involved result is contained in the following statement.

Lemma A.5. Let N = 3, 4, p = (N + 2)/(N − 2),

F (x, y) := |x| p−3
2 x|y| p+1

2 ,

and
ψ(h, k) := F (x+ h, y + k)− F (x, y)− ∂1F (x, y)h− ∂2F (x, y)k.
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Then F, ψ ∈ C1,1(R2), and

|ψ(h1, k1)− ψ(h2, k2)|

≤ C

[
p− 3

2

∣
∣|x|+ |h1|+ |h2|

∣
∣
p−5
2
∣
∣|y|+ |k1|+ |k2|

∣
∣
p+1
2
∣
∣|h1|+ |h2|

∣
∣
∣
∣h1 − h2

∣
∣

+
∣
∣|x|+ |h1|+ |h2|

∣
∣
p−3
2
∣
∣|y|+ |k1|+ |k2|

∣
∣
p−1
2
∣
∣|k1|+ |k2|

∣
∣
∣
∣h1 − h2

∣
∣

+
∣
∣|x|+ |h1|+ |h2|

∣
∣
p−3
2
∣
∣|y|+ |k1|+ |k2|

∣
∣
p−1
2
∣
∣|h1|+ |h2|

∣
∣
∣
∣k1 − k2

∣
∣

+
∣
∣|x|+ |h1|+ |h2|

∣
∣
p−1
2
∣
∣|y|+ |k1|+ |k2|

∣
∣
p−3
2
∣
∣|k1|+ |k2|

∣
∣
∣
∣k1 − k2

∣
∣

]

for every x, y, h1, k1, h2, k2 ∈ R.

Proof. By the Lagrange intermediate value theorem

|ψ(h1, k1)− ψ(h2, k2)| = |∇ψ(h̄, k̄) · (h1 − h2, k1 − k2)|,
for some (h̄, k̄) on the segment joining (h1, k1) with (h2, k2). By definition, and using again the
Lagrange theorem,

|∂1ψ(h̄, k̄)| = |∂1F (x+ h̄, y + k̄)− ∂1F (x, y)|
≤ |∂11F (x+ h̃, y + k̃)h̄|+ |∂12F (x+ h̃, y + k̃)k̄|,

where (h̃, k̃) is on the segment joining (0, 0) and (h̄, k̄). A similar estimate holds for |∂2ψ(h̄, k̄)|.
Observing that

|h̄| ≤ |h1|+ |h2| and |k̄| ≤ |k1|+ |k2|,
=⇒ |h̃| ≤ |h1|+ |h2| and |k̃| ≤ |k1|+ |k2|,

and using the explicit expression of F , the thesis follows. �

Now we collect several estimates regarding integrals of the bubbles.

Lemma A.6. Let K ⊂⊂ Ω. Then, as δ → 0+, we have

∫

Ω

U qδ,ξ =







O(δ
N−2

2 q) if 0 < q < N
N−2 ,

Cδ
N
2 | log δ|+O(δ

N
2 ) if q = N

N−2 ,

O(δN−N−2
2 q) if N

N−2 < q < +∞, q 6= 2N
N−2 ,

C q = 2N
N−2

uniformly in ξ ∈ K, where C > 0 denotes a constant depending only on the dimension N .

Proof. We focus on the cases q 6= N/(N − 2), 2N/(N − 2) (if equality holds, one can proceed in
the same way). Since Ω is bounded, there exists R > 0 such that Ω ⊂ BR(ξ). Then

∫

Ω

U qδ,ξ ≤
∫

BR(ξ)

U qδ,ξ = αqN

∫

BR/δ

δN−N−2
2 q dy

(1 + |y|2)N−2
2 q

.

Now, if q > N/(N−2) the last integral can be controlled with the one over RN , which is convergent,
and the thesis follows. If on the other hand q < N/(N − 2), we have

∫

Ω

U qδ,ξ ≤ CδN−N−2
2 q

(

1 +

∫ R/δ

1

rN−1−(N−2)q dr

)

≤ CδN−N−2
2 q · C

δN−(N−2)q
≤ Cδ

N−2
2 q. �
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In a similar way:

Lemma A.7. Let r > 0, η ∈ (0, 1), a ∈ K ⊂⊂ Ω, |τ | < η−1, ξ = a + δτ , 0 ≤ ν2 < N , ν1 ≥ 0,
h = 1, . . . , N , and let (N − 2)q + ν2 − ν1 > N . Then, as δ → 0+, we have

∫

Ω\Brδ2 (a)

U qδ,ξ
|xh − ξh|ν1
|x− a|ν2 = O(δN+ν1−ν2−

N−2
2 q),

uniformly in a ∈ K and |τ | < η−1.
If ν2 = 0 and q = (N + ν1)/(N − 2), then

∫

Ω

U qδ,ξ|x− ξ|ν1 = O(δ
N−2

2 q| log δ|)

as δ → 0+, uniformly in a ∈ K and |τ | < η−1.
If ν1 = 0, ν2 = N , and (N − 2)q + ν2 > N , then

∫

Ω\Brδ2 (a)

U qδ,ξ
|x− a|N = O(δ−

N−2
2 q| log δ|),

as δ → 0+, uniformly in a ∈ K and |τ | < η−1.

Proof. We only prove the first inequality. Arguing as in the previous lemma, we have
∫

Ω\Brδ2 (a)

U qδ,ξ
|xh − ξh|ν1
|x− a|ν2 = C

∫

Ω\B
rδ2

(a)−a

δ

δN+ν1−
N−2

2 q−ν2
|y − τ |ν1

(1 + |y|2)qN−2
2 |y|ν2

dy

≤ CδN+ν1−
N−2

2 q−ν2

∫

BR/δ\Brδ

|y − τ |ν1
(1 + |y|2)qN−2

2 |y|ν2
dy,

whence the thesis follows. �

Lemma A.8. Let R, q1, q2 > 0. Then there exists C > 0 such that
∫

Ω

U q1δ1,ξ1U
q2
δ2,ξ2

≤ Cδ
N−2

2 q1
1 δ

N−2
2 q2

2 + Cδ
N−2

2 q1
1

∫

Ω

U q2δ2,ξ2 + Cδ
N−2

2 q2
2

∫

Ω

U q1δ1,ξ1

for every ξ1, ξ2 ∈ Ω such that dist(ξi, ∂Ω) > 2R and |ξ1 − ξ2| > 2R.

Proof. We can split the integral over Ω using the fact that

Ω =
(
Ω \ (BR(ξ1) ∪BR(ξ2))

)
∪BR(ξ1) ∪BR(ξ2).

Then, the thesis follows using the positivity of Uδ,ξ, and the fact that 0 ≤ Uδ,ξ ≤ Cδ
N−2

2 in
RN \BR(ξ). �

Similarly:

Lemma A.9. Let R, q1, q2 > 0. Then there exists C > 0 such that
∫

Ω

U q1δ1,ξ1U
q2
δ2,ξ2

|x− ξ1|ν1
|x− a|ν2 ≤ Cδ

N−2
2 q1

1 δ
N−2

2 q2
2 + Cδ

N−2
2 q1

1

∫

Ω

U q2δ2,ξ2 + Cδ
N−2

2 q2
2

∫

Ω

U q1δ1,ξ1
|x− ξ1|ν1
|x− a|ν2

for every ξ1, ξ2, a ∈ Ω such that dist(ξi, ∂Ω) > 2R, |ξ1 − ξ2| > 2R, |ξ1 − a| < R/2, ν1 ≥ 0 and
0 ≤ ν2 < N .
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Appendix B.

In this appendix we provide the details for the estimates (3.10).

Estimate of (I): integrating by parts we deduce that

(B.1) δ2i,n

∫

Ωn

∇(Pnψ
l
i,n) · ∇(Pnψ

k
i,n) = δ2i,n

∫

Ωn

pUp−1
i,n ψki,n(Pnψ

l
i,n)

= δ2i,n

∫

Ωn

pUp−1
i,n ψki,nψ

l
i,n + δ2i,n

∫

Ωn

pUp−1
i,n ψki,n(Pnψ

l
i,n − U li,n).

Due to Corollary A.2, it is not difficult to show that the last term tends to 0 as n → ∞. We
consider here in full details the case l, k = 1, . . . , N (the others can be treated similarly): first, we
observe that Corollary A.2 is applicable since {ξi,n} ⊂ K for some compact set K ⋐ Ω, at least
for η > 0 small enough. Then, using also Lemmas A.3 and A.7, and recalling that εn ≃ δ2i,n since
η is fixed, we deduce that

δ2i,n

∣
∣
∣
∣
∣

∫

Ωn

Up−1
i,n ψki,n(Pnψ

l
i,n − U li,n)

∣
∣
∣
∣
∣
≤ Cδi,n

∫

Ωn

U
4+N
N−2

i,n |xk − ξi,nk |



δ
N−2

2

i,n +
δ

3
2N−4
i,n

|x− ai|N−2





= Cδ
N
2

i,n

∫

Ωn

U
4+N
N−2

i,n |xk − ξi,nk |+ Cδ
3
2N−3
i,n

∫

Ωn

U
4+N
N−2

i,n

|xk − ξi,nk |
|x− ai|N−2

≤ Cδ
N
2 +N+1− 4+N

2

i,n + Cδ
3
2N−3+N+1− 4+N

2 −N+2
i,n = o(1)

as n→ ∞.
Coming back to (B.1), using the explicit expression of Ui,n and ψki,n, it is not difficult to check

that

δ2i,n

∫

Ωn

∇(Pnψ
l
i,n) · ∇(Pnψ

k
i,n) = σlk + o(1),

where o(1) → 0 as n→ ∞, and the values σlk are defined in (3.11). Therefore, as n→ ∞

δ2i,n‖wi,n‖2H1
0 (Ωn)

=

N∑

l,k=0

cli,nc
k
i,nδ

2
i,n

∫

Ωn

∇(Pnψ
l
i,n) · ∇(Pnψ

k
i,n)

=

N∑

l,k=0

cli,nc
k
i,n(σlk + o(1)) =

N∑

l=0

(cli,n)
2σll + o(1)

N∑

l,k=0

cli,nc
k
i,n.

(B.2)

Estimate of (II): we aim at proving the second equality in (3.10). Since φi,n ∈ K⊥
i,n, we know

that 〈φi,n, Pnψli,n〉H1
0
= 0, i.e.

0 =

∫

Ωn

∇(Pnψ
l
i,n) · ∇φi,n = p

∫

Ωn

Up−1
i,n φi,nψ

l
i,n.

As a consequence

|(II)| ≤ δ2i,n

[
∫

Ωn

|(PnUi,n)
4

N−2 − U
4

N−2

i,n ||φi,n||wi,n|
︸ ︷︷ ︸

=:(II.1)

+
N∑

l=0

cli,n

∫

Ωn

U
4

N−2

i,n |φi,n||Pnψli,n − ψli,n|
︸ ︷︷ ︸

=:(II.2)

]

.

(B.3)
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Concerning the first integral, by the Hölder and the Sobolev inequalities

|(II.1)| ≤ |(PnUi,n)
4

N−2 − U
4

N−2

i,n |N
2
|φi,n|2∗ |wi,n|2∗

≤ C|(PnUi,n)
4

N−2 − U
4

N−2

i,n |N
2
‖φi,n‖‖wi,n‖.

(B.4)

We recall that ‖φi,n‖ = 1 for every n. Moreover, since 0 ≤ PnUi,n ≤ Ui,n in Ωn by the maximum
principle, applying Lemma A.4 we have

|(PnUi,n)
4

N−2 − U
4

N−2

i,n |N
2
≤ |U

4
N−2−1

i,n (PnUi,n − Ui,n)|N
2
+ |(PnUi,n − Ui,n)

4
N−2 |N

2

≤ 2|U
4

N−2−1

i,n (PnUi,n − Ui,n)|N
2
= 2

(∫

Ωn

U
(6−N)N
2(N−2)

i,n |PnUi,n − Ui,n|
N
2

) 2
N

.

Thus, using Corollary A.2, the fact that εn ≃ δ2i,n (see ansatz (2.5)), and Lemmas A.6 and A.7, we
obtain for N = 3

|(PnUi,n)
4

N−2 − U
4

N−2

i,n |N
2

≤ Cδ
N−2

2

i,n

(∫

Ωn

U
(6−N)N
2(N−2)

i,n

) 2
N

+ Cδ
3
2N−3
i,n






∫

Ωn

U
(6−N)N
2(N−2)

i,n

|x− ai|
N−2

2 N






2
N

= CδN−2
i,n ,

and similarly for N = 4

|(PnUi,n)
4

N−2 − U
4

N−2

i,n |N
2
≤ CδN−2

i,n | log δi,n|
2
N .

Thus, coming back to (B.4), we proved that |(II.1)| = o(1)‖wi,n‖H1
0 (Ωn).

Let us consider now |(II.2)|. By the Hölder and the Sobolev inequalities

|(II.2)| ≤ C‖φi,n‖|U
4

N−2

i,n (Pnψ
l
i,n − ψli,n)| 2N

N+2
.

The right hand side can be controlled using Corollary A.2 and Lemmas A.6 and A.7. We focus on
the case l = 1, . . . , N , which is completely analogue with respect to l = 0, and we compute

|(II.2)| ≤
(∫

Ωn

U
8N

(N−2)(N+2)

i,n |Pnψli,n − ψli,n|
2N

N+2

)N+2
2N

≤ C






∫

Ωn

U
8N

(N−2)(N+2)

i,n



δ
N−2

2
i,n +

δ
3
2N−4
i,n

|x− ai|N−2





2N
N+2






N+2
2N

≤ Cδ
N−2

2

i,n

(∫

Ωn

U
8N

(N−2)(N+2)

i,n

)N+2
2N

+ Cδ
3
2N−4
i,n





∫

Ωn

U
8N

(N−2)(N+2)

i,n

|x− ai|
2N(N−2)

N+2





N+2
2N

≤ CδN−3
i,n .

Coming back to (B.3) (and recalling that N = 3, 4), we proved the validity of the second estimate
in (3.10), as desired.
Estimate of (III): we show that (III) = o(δ2i,n) as n → ∞, focusing here on the case l = 0; the
one l = 1, . . . , N is, once again, completely analogue. Recalling that 0 ≤ PnUi,n ≤ Ui,n, using the
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Hölder and the Sobolev inequalities we compute

δ2i,n

∣
∣
∣
∣
∣

∫

Ωn

(PnUi,n)
p−3
2 (PnUj,n)

p+1
2 φi,n(Pnψ

l
i,n)

∣
∣
∣
∣
∣

= δ2i,n

∣
∣
∣
∣
∣

∫

Ωn

(PnUi,n)
p−3
2 (PnUj,n)

p+1
2 φi,n

[
ψli,n +

(
Pnψ

l
i,n − ψli,n

)]

∣
∣
∣
∣
∣

≤ δ2i,n

∫

Ωn

U
p−3
2

i,n U
p+1
2

j,n |φi,n||ψli,n|+ δ2i,n

∫

Ωn

U
p−3
2

i,n U
p+1
2

j,n |φi,n||Pnψli,n − ψli,n|

≤ Cδ2i,n ‖φi,n‖
∣
∣
∣U

p−3
2

i,n U
p+1
2

j,n |ψli,n|
∣
∣
∣

2N
N+2

︸ ︷︷ ︸

=:(III.1)

+Cδ2i,n ‖φi,n‖
∣
∣
∣U

p−3
2

i,n U
p+1
2

j,n |Pnψli,n − ψli,n|
∣
∣
∣

2N
N+2

︸ ︷︷ ︸

=:(III.2)

(B.5)

In order to estimate (III.2), we use Corollary A.2, the ansatz (2.5), and the fact that ‖φi,n‖ = 1:

(III.2) ≤ C

∣
∣
∣
∣
∣
∣

U
p−3
2

i,n U
p+1
2

j,n



δ
N−4

2
i,n +

δ
3
2N−4
i,n

|x− ai|N−2





∣
∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−4

2

i,n

(∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

)N+2
2N

+ Cδ
3
2N−4
i,n






∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

|x− ai|
2N(N−2)
(N+2)






N+2
2N

.

(B.6)

By Lemmas A.6 and A.8,

δ
N−4

2

i,n

(∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

)N+2
2N

≤ Cδ
N−4

2

i,n

(

δ
N(4−N)

N+2

i,n δ
N2

N+2

j,n + δ
N(4−N)

N+2

i,n δ
2N

N+2

j,n + Cδ
N2

N+2

j,n

∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n

)N+2
2N

,

and discussing separately the case N = 3 and N = 4, it is not difficult to check that in both cases

δ
N−4

2

i,n

(∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

)N+2
2N

≤ Cδj,n = o(1)

as n → ∞. The second term on the right hand side in (B.6) can be controlled using Lemmas A.6
and A.9, in a similar way:

δ
3
2N−4
i,n






∫

Ωn

U
2N(4−N)

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

|x− ai|
2N(N−2)
(N+2)






N+2
2N

≤ Cδ
3
2N−4
i,n

(

δ
N(4−N)

N+2

i,n δ
N2

N+2

j,n + δ
N(4−N)

N+2

i,n δ
2N

N+2

j,n + Cδ
N2

N+2

j,n δ
N−N(4−N)

N+2 − 2N(N−2)
N+2

i,n

)N+2
2N

= o(1)
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as n→ ∞. Therefore, (III.2) → 0 as n→ ∞. Concerning the term (III.1), by Lemmas A.3, A.6
and A.8, we obtain

|(III.1)| ≤ Cδ−1
i,n

∣
∣
∣U

p−1
2

i,n U
p+1
2

j,n

∣
∣
∣

2N
N+2

≤ Cδ−1
i,n

(∫

Ωn

U
4N

(N−2)(N+2)

i,n U
2N2

(N−2)(N+2)

j,n

)N+2
2N

Cδ−1
i,n

(

δ
2N

N+2

i,n δ
N2

N+2

j,n + δ
2N

N+2

i,n δ
2N

N+2

j,n + δ
2N

N+2

i,n δ
N2

N+2

j,n

)N+2
2N

≤ Cδj,n = o(1)

as n→ ∞.
To sum up we showed that (III.1) and (III.2) tend to 0 as n→ ∞, and coming back to (B.5)

we infer that (III) = o(δ2i,n), as desired.

Estimate of (IV ): this is similar to the estimate of (III), and this time we focus on l = 1, . . . , N .
We have

δ2i,n

∣
∣
∣
∣
∣

∫

Ωn

(PnUi,n)
p−1
2 (PnUj,n)

p−1
2 φi,n(Pnψ

l
i,n)

∣
∣
∣
∣
∣

≤ Cδ2i,n ‖φi,n‖
∣
∣
∣U

p−1
2

i,n U
p−1
2

j,n |ψli,n|
∣
∣
∣

2N
N+2

︸ ︷︷ ︸

=:(IV.1)

+Cδ2i,n ‖φi,n‖
∣
∣
∣U

p−1
2

i,n U
p−1
2

j,n |Pnψli,n − ψli,n|
∣
∣
∣

2N
N+2

︸ ︷︷ ︸

=:(IV.2)

(B.7)

The term (IV.2) can be controlled using Corollary A.2:

(IV.2) ≤ C

∣
∣
∣
∣
∣
∣

U
p−1
2

i,n U
p−1
2

j,n



δ
N−2

2
i,n +

δ
3
2N−4
i,n

|x− ai|N−2





∣
∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−2

2
i,n

(∫

Ωn

U
4N

(N−2)(N+2)

i,n U
4N

(N−2)(N+2)

j,n

)N+2
2N

+ Cδ
3
2N−4
i,n





∫

Ωn

U
4N

(N−2)(N+2)

i,n U
4N

(N−2)(N+2)

j,n

|x− ai|
2N(N−2)
(N+2)





N+2
2N

.

(B.8)

By Lemmas A.6 and A.8, the first integral on the right hand side gives

δ
N−2

2

i,n

(∫

Ωn

U
4N

(N−2)(N+2)

i,n U
4N

(N−2)(N+2)

j,n

)N+2
2N

≤ Cδ
N−2

2

i,n

(

δ
2N

N+2

i,n δ
2N

N+2

j,n

)N+2
2N

= o(1),

and, by Lemmas A.6 and A.9, the second integral gives

δ
3
2N−4
i,n





∫

Ωn

U
4N

(N−2)(N+2)

i,n U
4N

(N−2)(N+2)

j,n

|x− ai|
2N(N−2)
(N+2)





N+2
2N

≤ Cδ
3
2N−4
i,n

(

δ
2N

N+2

i,n δ
2N

N+2

j,n + δ
N(4−N)

N+2

i,n δ
2N

N+2

j,n

)N+2
2N

= o(1)
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as n→ ∞. As far as (IV.1) is concerned, using Lemmas A.3, A.7 and A.9, we infer that

|(IV.1)| ≤ Cδ−1
i,n

∣
∣
∣
∣
U

p−1
2 + N

N−2

i,n U
p−1
2

j,n |xl − ξni,l|
∣
∣
∣
∣

2N
N+2

≤ Cδ−1
i,n

(∫

Ωn

U
2N

N−2

i,n U
4N

(N−2)(N+2)

j,n |xl − ξni,l|
2N

N+2

)N+2
2N

≤ Cδ−1
i,n

(

δNi,nδ
2N

N+2

j,n + δ
2N

N+2

j,n δ
N−N+ 2N

N+2

i,n

)N+2
2N

= o(1)

as n→ ∞. Altogether, we proved that (IV.1) and (IV.2) tend to 0 as n→ ∞, so that (IV ) = o(δ2i,n)
as n→ ∞.

This completes the proof of the validity of the estimates (3.10).

Appendix C.

In this appendix we show that (3.13) gives (3.14). At first, we notice that

pδ2κ,n

∫

Ω̃κ,n

(P̂nUκ,n)
p−1φ̃κ,nψ = pδ2κ,n

∫

Ω̃κ,n

Up−1
κ,n (ξκ,n + δκ,n ·)φ̃κ,nψ

+ pδ2κ,n

∫

Ω̃κ,n

[(P̂nUκ,n)
p−1 − Up−1

κ,n (ξκ,n + δκ,n ·)]φ̃κ,nψ.

Arguing as in Appendix B, estimate of term (II.1), it can be proved that the last integral on the
right hand side tends to 0 as n→ ∞. Moreover, the first integral can be explicitly computed:

Up−1
κ,n (ξκ,n + δκ,ny)ψ(y) = αp−1

N

(
1

1 + |y|2
)2

ψ(y) = Up−1
0,1 (y)ψ(y) ∈ L

2N
N+2 (RN )

(where we recall that U1,0 denotes the standard bubble with δ = 1 and ξ = 0), and hence by weak

convergence φ̃κ,n ⇀ φ̃κ in L2∗(RN )

pδ2κ,n

∫

Ω̃κ,n

(P̂nUκ,n)
p−1φ̃κ,nψ = pδ2κ,n

∫

Ω̃κ,n

Up−1
κ,n (ξκ,n + δκ,n ·)φ̃κ,nψ + o(1)

= p

∫

Ω̃κ,n

Up−1
1,0 φ̃κ,nψ + o(1) = p

∫

RN

Up−1
1,0 φ̃iψ + o(1)

(C.1)

as n→ ∞.
Now we show that the remaining terms on the right hand side of (3.13) tend to 0 as n → ∞.

We start observing that, if j 6= κ, for any compact set K ⊂ RN there exists C > 0 (depending on
K) such that for sufficiently large n

inf
y∈K

|ξκ,n + δκ,ny − ξj,n| ≥ |ξκ,n − ξj,n| − Cδκ,n

≥ 1

2
|aκ − aj | − Cδκ,n ≥ 1

4
|aκ − aj |.

(C.2)
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Thus, for any j 6= κ

δ2κ,n

∣
∣
∣
∣
∣

∫

Ω̃κ,n

(P̂nUκ,n)
p−3
2 (P̂nUj,n)

p+1
2 φ̃κ,nψ

∣
∣
∣
∣
∣

≤ Cδ2κ,n

∫

Ω̃κ,n

U
p−3
2

κ,n (ξκ,n + δκ,n ·)U
p+1
2

j,n (ξκ,n + δκ,n ·)|φ̃κ,n||ψ|

≤ Cδ2κ,n

∫

suppψ

(

δj,n
δ2j,n + |ξκ,n + δκ,ny − ξj,n|2

)N
2
(

δ−1
κ,n

1 + |y|2

) 4−N
2

|φ̃κ,n(y)||ψ(y)| dy

≤ Cδ
N
2
κ,nδ

N
2
j,n

∫

suppψ

|φ̃κ,n(y)||ψ(y)| dy ≤ Cδ
N
2
κ,nδ

N
2
j,n|φ̃κ,n|2∗ |ψ| 2N

N+2
= o(1)

as n→ ∞.
Similarly, always for any j 6= i

δ2κ,n

∣
∣
∣
∣
∣

∫

Ω̃κ,n

(P̂nUκ,n)
p−1
2 (P̂nUj,n)

p−1
2 φ̃j,nψ

∣
∣
∣
∣
∣

≤ Cδ2κ,n

∫

Ω̃κ,n

δj,n
δ2j,n + |ξκ,n + δκ,ny − ξj,n|2

δ−1
κ,n

1 + |y|2 |φ̃j,n(y)||ψ(y)| dy

≤ Cδκ,nδj,n

∫

suppψ

|φ̃j,n(y)||ψ(y)| dy = o(1)

as n→ ∞.
Finally, also the last term on the right hand side in (3.13) tends to 0, since ‖h̃κ,n‖H1

0 (Ω̃κ,n) =

‖hκ,n‖H1
0 (Ωn), ‖w̃κ,n‖H1

0(Ω̃κ,n) = ‖wκ,n‖H1
0 (Ωn), both hκ,n and wκ,n converge to 0 strongly inH1

0 (Ωn)

(hκ,n by assumption, wκ,n by step 1), and φ̃κ,n ⇀ φ̃i weakly.

Appendix D.

In this appendix we prove the validity of the estimates (3.23) and (3.26). In order to ease the
notation, we write P and Ui instead of Pε and Uδi,ξi .

We start with the proof of (3.23).

Estimate of |R̃i
d,τ ,ε|L 2N

N+2 (Ωε)
. By Lemma A.4 and the fact that 0 ≤ PUi ≤ Ui,

|PUpi − Upi | ≤ C
(
|Ui|p−1|PUi − Ui|+ |PUi − Ui|p

)
≤ C|Ui|p−1|PUi − Ui|.

Therefore, recalling that ε ≃ δ2i by (2.5) (we fixed η from the beginning), Corollary A.2 and
Lemmas A.6 and A.7 give

(
∫

Ωε

|PUpi − Upi |
2N

N+2

)N+2
2N

≤ C

(
∫

Ωε

U
8N

(N−2)(N+2)

i |PUi − Ui|
2N

N+2

)N+2
2N

≤ C





∫

Ωε

U
8N

(N−2)(N+2)

i

(

δ
N−2

2

i +
δ

3
2 (N−2)
i

|x− ai|N−2

) 2N
N+2





N+2
2N

≤ C

(

δ
2N(N−2)

N+2

i + δ
3N(N−2)

N+2 +N(2−N)
N+2

i

)N+2
2N

≤ CδN−2
i ≤ Cε

N−2
2 .

(D.1)
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We also have, by Lemmas A.6 and A.8

∣
∣
∣(PUj)

p+1
2 (PUi)

p−1
2

∣
∣
∣

2N
N+2

≤
∣
∣
∣U

p+1
2

j U
p−1
2

i

∣
∣
∣

2N
N+2

=

(∫

Ωε

U
2N2

(N+2)(N−2)

j U
4N

(N+2)(N−2)

i

)N+2
2N

≤ Cδiδj ≤ Cε.

This estimate and (D.1) imply that, for ε > 0 small enough, there exists C > 0 such that

(D.2) |R̃id,τ ,ε|
L

2N
N+2 (Ωε)

≤ C
(

ε
N−2

2 + ε
)

≤ Cε
N−2

2 ,

where we used the fact that N = 3, 4, so that ε ≤ ε
N−2

2 for small ε.

Estimate of |Ñ i
d,τ ,ε(φ)|L 2N

N+2 (Ωε)
. At first, with the aid of Lemma A.4, we compute

|P̃ i
d,τ ,ε(φ)| 2N

N+2
≤ C|(PUi)p−2φ2i + |φi|p| 2N

N+2
≤ C|U

6−N
N−2

i φ2i | 2N
N+2

+ |φi|
N+2
N−2

2∗

≤ C|Ui|
6−N
N−2

2∗ |φi|22∗ + |φi|
N+2
N−2

2∗ ≤ C‖φi‖2 + ‖φi‖
N+2
N−2

(D.3)

Regarding the remaining term Q̃i
d,τ ,ε(φ), we focus at first on N = 3. Using Lemma A.5 2 and the

usual arguments we deduce that

|Q̃id,τ ,ε(φ)| 65 ≤ C

∣
∣
∣
∣
|µ− 1

p−1

j PUj + |φj ||3|φi|2

+ |µ− 1
p−1

i PUi + |φi|| |µ
− 1

p−1

j PUj + |φj ||2|φi| |φj |

+|µ− 1
p−1

i PUi + |φi||2|µ
− 1

p−1

j PUj + |φj |||φj |2
∣
∣
∣
∣
6
5

≤ C
[

|U3
j φ

2
i | 65 + |φ3jφ2i | 65 + |UiU2

j φiφj | 65 + |Uiφiφ3j | 65 + |U2
j φ

2
iφj | 65

+|U2
i Ujφ

2
j | 65 + |U2

i φ
3
j | 65 + |Ujφ2iφ2j | 65

]

≤ C
[

|Uj |32∗ |φi|22∗ + |φi|22∗ |φj |32∗ + |Ui|2∗ |Uj |22∗ |φi|2∗ |φj |2∗

+ |Ui|2∗ |φi|2∗ |φj |32∗ + |Uj|22∗ |φi|22∗ |φj |2∗ + |Ui|22∗ |Uj |2∗ |φj |22∗

+ |Ui|22∗ |φj |32∗ + |Uj|2∗ |φi|22∗ |φj |22∗
]

≤ C
(
‖φ‖2 + ‖φ‖5

)
= C

(

‖φ‖2 + ‖φ‖N+2
N−2

)

.

(D.4a)

Let us consider now the easier case N = 4. We have

|µ− 1
2

j PUj + φj |2(µ− 1
2

i PUi + φi)− (µ
− 1

2

j PUj)
2(µ

− 1
2

i PUi)− (µ
− 1

2

j PUδj ,ξj )
2φi

− 2(µ
− 1

2
j PUδj ,ξj )(µ

− 1
2

i PUi)φj = µ
− 1

2
i PUi φ

2
j + 2µ

− 1
2

j PUj φiφj + φiφ
2
j

2in the Lemma, we consider x = µ
− 1

p−1

i PUi, y = µ
− 1

p−1

j PUj , h1 = φi, k1 = φj , h2 = 0, k2 = 0.
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Therefore

|Q̃id,τ ,ε(φ)| 43 ≤ C
∑

i6=j

(

|Ui φ2j | 43 + |Ujφiφj | 4
3
+ |φiφ2j | 43

)

≤ C
∑

i6=j

(
|Ui|2∗ |φj |22∗ + |Uj|2∗ |φi|2∗ |φj |2∗ + |φi|2∗ |φj |22∗

)

≤ C
(
‖φ‖2 + ‖φ‖3

)
= C

(

‖φ‖2 + ‖φ‖N+2
N−2

)

.

(D.4b)

Collecting (D.3) and (D.4), we conclude that for every i = 1, . . . ,m, and provided that ‖φ‖ < 1,

‖Ñ i
d,τ ,ε(φ)‖ 2N

N+2
≤ C

(

‖φ‖2 + ‖φ‖N+2
N−2

)

≤ C‖φ‖2

for some C > 0 depending only on the data.

Now we pass to the proof of the validity of (3.26)
We apply again Lemma A.5 (notice that if N = 4 then p = 3, while if N = 3 then p = 5): thus

|Q̃i
d,τ ,ε(φ

1)− Q̃i
d,τ ,ε(φ

2)| 2N
N+2

≤ C
p− 3

2

∑

j 6=i

∣
∣
∣
∣

∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p+1
2
∣
∣|φ1i |+ |φ2i |

∣
∣
∣
∣φ1i − φ2i

∣
∣

∣
∣
∣
∣

2N
N+2

+ C
∑

j 6=i

∣
∣
∣
∣

∣
∣Ui + |φ1i |+ |φ2i |

∣
∣
p−3
2
∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p−1
2
∣
∣|φ1j |+ |φ2j |

∣
∣
∣
∣φ1i − φ2i

∣
∣

∣
∣
∣
∣

2N
N+2

+ C
∑

j 6=i

∣
∣
∣
∣

∣
∣Ui + |φ1i |+ |φ2i |

∣
∣
p−3
2
∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p−1
2
∣
∣|φ1i |+ |φ2i |

∣
∣
∣
∣φ1j − φ2j

∣
∣

∣
∣
∣
∣

2N
N+2

+ C
∑

j 6=i

∣
∣
∣
∣

∣
∣Ui + |φ1i |+ |φ2i |

∣
∣
p−1
2
∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p−3
2
∣
∣|φ1j |+ |φ2j |

∣
∣
∣
∣φ1j − φ2j

∣
∣

∣
∣
∣
∣

2N
N+2

,

(D.5)

where we wrote Ui for Ui. To estimate the right hand side, we apply the Hölder and the Sobolev
inequalities. We notice at first that the first term survives only if N = 3. In such case, for any

φ1,φ2 ∈ Yε (recall that then ‖φ1‖, ‖φ2‖ ≤ Cε
N−2

2 )
∣
∣
∣

∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
3∣
∣|φ1i |+ |φ2i |

∣
∣
∣
∣φ1i − φ2i

∣
∣

∣
∣
∣
6
5

≤
∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
3

2∗

∣
∣|φ1i |+ |φ2i |

∣
∣
2∗

|φ1i − φ2i |2∗

≤ C
(
‖φ1‖+ ‖φ2‖

)
‖φ1i − φ2i ‖ ≤ Cε

N−2
2 ‖φ1i − φ2i ‖.

Similarly
∣
∣
∣

∣
∣Ui + |φ1i |+ |φ2i |

∣
∣
p−3
2
∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p−1
2
∣
∣|φ1j |+ |φ2j |

∣
∣
∣
∣φ1i − φ2i

∣
∣

∣
∣
∣

2N
N+2

≤
∣
∣Ui + |φ1i |+ |φ2i |

∣
∣
p−3
2

2∗

∣
∣Uj + |φ1j |+ |φ2j |

∣
∣
p−1
2

2∗

∣
∣|φ1j |+ |φ2j |

∣
∣
2∗

|φ1i − φ2i |2∗

≤ Cε
N−2

2 ‖φ1i − φ2i ‖,
and estimating the remaining terms on the right hand side in (D.5) in the very same way (the
terms are obtained one from the other after a permutation of the exponents), we deduce that

|Q̃i
d,τ ,ε(φ

1)− Q̃i
d,τ ,ε(φ

2)| 2N
N+2

≤ Cε
N−2

2 ‖φ1 − φ2‖

for any φ1,φ2 ∈ Yε, as desired.
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Appendix E.

In this appendix we prove the validity of estimate (3.29).
In this proof we write Ui for Uδi,ξi , ψ

h
i for ψhδi,ξi , and P for Pε in order to keep the notation as

short as possible.
Step 1) We consider ∂sk,h

Li
d,τ ,ε(φ), with φ ∈ K⊥

d,τ ,ε. Let us focus at first on the case k = i. We
have

∂si,hL
i
d,τ ,ε(φ) = Π⊥

i ◦ i∗
[

p(p− 1)(PUi)
p−2(Pψhi )φi+

+
(p− 1)(p− 3)

4

∑

j 6=i

βij(µ
− 1

p−1

j PUj)
p+1
2 (µ

− 1
p−1

i PUi)
p−5
2 µ

− 1
p−1

i (Pψhi )φi

+
(p+ 1)(p− 1)

4

∑

j 6=i

βij(µ
− 1

p−1

j PUj)
p−1
2 (µ

− 1
p−1

i PUi)
p−3
2 µ

− 1
p−1

i (Pψhi )φj

]

.

Therefore, using the continuity of Π⊥ and i∗, and the fact that 0 ≤ PUi ≤ Ui, we deduce that

‖∂si,hLid,τ ,ε(φ)‖ ≤ C|Up−2
i (Pψhi )φi| 2N

N+2
+ C

∑

j 6=i

|U
p−3
2

i U
p−1
2

j (Pψhi )φj | 2N
N+2

+ C(p− 3)
∑

j 6=i

|U
p−5
2

i U
p+1
2

j (Pψhi )φi| 2N
N+2

≤ C |Up−2
i ψhi φi| 2N

N+2
︸ ︷︷ ︸

=:(I)

+C
∑

j 6=i

|U
p−3
2

i U
p−1
2

j ψhi φj | 2N
N+2

︸ ︷︷ ︸

=:(II)

+ C(p− 3)
∑

j 6=i

|U
p−5
2

i U
p+1
2

j ψhi φi| 2N
N+2

︸ ︷︷ ︸

=:(III)

+n.t.

where n.t stays for “negligible terms”, and denotes a quantity which is a small o of the previous
ones as ε → 0. The exact shape of these terms can be computed using Corollary A.2 (similarly
as we have already done in Appendix B), but it’s not so important for what follows and hence it
is omitted for the sake of brevity. Notice also that term (III) is present only in case N = 3, in
which case p = 5.

Now, by the Hölder and the Sobolev inequalities, and using Lemmas A.6-A.9, we compute for
h = 0

|(I)| ≤ C|Up−2
i ψhi |N

2
‖φi‖ ≤ Cδ−1

i

(∫

Ωε

U2∗

i

) 2
N

‖φi‖ ≤ Cδ−1
i ‖φi‖,(E.1)

|(II)| ≤ C|U
p−3
2

i U
p−1
2

j ψhi |N
2
‖φj‖ ≤ Cδ−1

i

(∫

Ωε

U
N

N−2

i U
N

N−2

j

) 2
N

‖φj‖

≤ Cδj(| log δi|+ | log δj |)
2
N ‖φj‖,

(E.2)

and in case N = 3

|(III)| ≤ C‖φi‖|U3
j ψ

h
i | 32 ≤ Cδ−1

i ‖φi‖
(∫

Ωε

U
3
2

i U
9
2

j

) 2
3

≤ Cδ−1
i (δiδj)

1
2 ‖φi‖.

(E.3)
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Moreover, for h = 1, . . . , N ,

|(I)| ≤ C|Up−2
i ψhi |N

2
‖φi‖ ≤ Cδ−1

i

(∫

Ωε

U
3N

N−2

i |xh − ξi,h|
N
2

) 2
N

‖φi‖ ≤ Cδ−1
i ‖φi‖,(E.4)

|(II)| ≤ C‖φj‖|U
p−3
2

i U
p−1
2

j ψhi |N
2
≤ Cδ−1

i ‖φj‖
(∫

Ωε

U
2N

N−2

i U
N

N−2

j |xh − ξi,h|
N
2

) 2
N

≤ Cδ−1
i ‖φj‖(δiδj),

(E.5)

and for N = 3

|(III)| ≤ C‖φi‖|U3
j ψ

h
i | 32 ≤ Cδ−1

i ‖φi‖
(∫

Ωε

U
9
2

j U
9
2

i |xh − ξi,h|
3
2

) 2
3

≤ Cδ
1
2

i δ
1
2

j ‖φi‖.(E.6)

Altogether, recalling the ansatz (2.5) and that ‖φ‖ ≤ Cε
N−2

2 by Lemma 3.3, we conclude that for
every i = 1, . . . ,m and h = 0, . . . , N

‖∂si,hLid,τ ,ε(φ)‖H1
0 (Ωε) ≤ Cε

N−3
2 ,

as desired.
Now, if k 6= i, we have still to consider

∂sk,h
Lid,τ ,ε(φ)

= Π⊥
i ◦ i∗

[

(p− 1)(p+ 1)

4
βki(µ

− 1
p−1

k PUk)
p−1
2 (µ

− 1
p−1

i PUi)
p−3
2 µ

− 1
p−1

k Pψhk φi

+
(p− 1)(p+ 1)

4
βki(µ

− 1
p−1

k PUk)
p−3
2 (µ

− 1
p−1

i PUi)
p−1
2 µ

− 1
p−1

k Pψhk φk

]

.

This term can be treated exactly as the one with k = i (actually the computations are easier).

Step 2) We consider ∂sk,h
Ri

d,τ ,ε(φ), and again we present the details only for the (a bit harder)
case k = i. We have

∂si,hR
i
d,τ ,ε = Π⊥

i ◦ i∗
[

µ
− 1

p−1

i p
(

(PUi)
p−1Pψhi − Up−1

i ψhi

)

+
p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PUj)
p+1
2 (µ

− 1
p−1

i PUi)
p−3
2 (µ

− 1
p−1

i Pψhi )

]

,

and hence

‖∂si,hRid,τ ,ε‖ ≤ C|(PUi)p−1Pψhi − Up−1
i ψhi | 2N

N+2
+ C

∑

j 6=i

|U
p+1
2

j U
p−3
2

i Pψhi | 2N
N+2

≤ C|PUp−1
i |Pψhi − ψhi || 2N

N+2
+ C||PUp−1

i − Up−1
i |ψhi | 2N

N+2
+ C

∑

j 6=i

|U
p+1
2

j U
p−3
2

i ψhi | 2N
N+2

+ n.t.

≤ C |Up−1
i |Pψhi − ψhi || 2N

N+2
︸ ︷︷ ︸

=:(I)

+C |ψhi Up−2
i |PUi − Ui|| 2N

N+2
︸ ︷︷ ︸

=:(II)

+C
∑

j 6=i

|U
p+1
2

j U
p−3
2

i ψhi | 2N
N+2

︸ ︷︷ ︸

=:(III)

+n.t.,

where we used Lemma A.4 and the fact that 0 ≤ PUi ≤ Ui.
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As in the first step, using the lemmas collected in Appendix A, we estimate separately the three
terms on the right hand side, starting from the case h = 0:

|(I)| ≤ C

∣
∣
∣
∣
∣
U

4
N−2

i

(

δ
N−4

2

i +
δ

3
2N−4
i

|x− ai|N−2

)∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−4

2
i

(∫

Ωε

U
8N

(N+2)(N−2)

i

)N+2
2N

+ Cδ
3
2N−4
i





∫

Ωε

U
8N

(N+2)(N−2)

i

|x− ai|
2N(N−2)

N+2





N+2
2N

≤ Cδ
N−4

2 +N−2
2

i + Cδ
3
2N−4−N−2

2

i ≤ CδN−3
i ,

(E.7)

|(II)| ≤ Cδ−1
i

∣
∣
∣
∣
∣
Up−1
i

(

δ
N−2

2
i +

δ
3N
2 −3
i

|x− ai|N−2

)∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−4

2

i

(∫

Ωε

U
8N

(N+2)(N−2)

i

)N+2
2N

+ Cδ
3
2N−4
i





∫

Ωε

U
8N

(N+2)(N−2)

i

|x− ai|
2N(N−2)

N+2





N+2
2N

≤ CδN−3
i ,

(E.8)

|(III)| ≤ Cδ−1
i |U

p+1
2

j U
p−1
2

i | 2N
N+2

≤ Cδ−1
i

(

δ
2N

N+2

i δ
2N

N+2

j

)N+2
2N

≤ Cδj .(E.9)

Analogously, for h = 1, . . . , N , we have

|(I)| ≤ C

∣
∣
∣
∣
∣
U

4
N−2

i

(

δ
N−2

2

i +
δ

3
2N−4
i

|x− ai|N−2

)∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−2

2 +N−2
2

i + Cδ
3
2N−4−N−2

2

i ≤ CδN−3
i ,(E.10)

|(II)| ≤ Cδ−1
i

∣
∣
∣
∣
∣
U

6
N−2

i |xh − ξi,h|
(

δ
N−2

2

i +
δ

3
2N−3
i

|x− ai|N−2

)∣
∣
∣
∣
∣

2N
N+2

≤ Cδ
N−4

2

i

(∫

Ωε

U
12N

(N+2)(N−2)

i |xh − ξi,h|
2N

N+2

)N+2
2N

+ Cδ
3
2N−4
i

(
∫

Ωε

U
12N

(N+2)(N−2)

i

|xh − ξi,h|
2N

N+2

|x− ai|
2N(N−2)

N+2

)N+2
2N

≤ Cδ
N−4

2 +N−2
2

i + Cδ
3
2N−4+ 2−N

2
i ≤ CδN−3

i ,

(E.11)

|(III)| ≤ Cδ−1
i |U

N
N−2

j U
4

N−2

i |xh − ξi,h|| 2N
N+2

≤ Cδ−1
i

(∫

Ωε

U
8N

(N+2)(N−2)

i U
2N2

(N+2)(N−2)

j |xh − ξi,h|
2N

N+2

)N+2
2N

≤ Cδ−1
i

(

δ
4N

N+2

i δ
N2

N+2

j + δ
4N

N+2

i

∫

Ωε

U
2N2

(N+2)(N−2)

j + δ
N2

N+2

j

∫

Ωε

U
8N

(N+2)(N−2)

i |xh − ξi,h|
2N

N+2

)N+2
2N

≤ Cδ−1
i

(

δ2i δj + δ2i δ
N
2

j | log δj |
N+2
2N

)

= o(ε
N−3

2 ).

(E.12)

Notice that the logarithm appears in the computations only for N = 4, see Lemma A.7.
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Collecting together the previous estimates, we deduce that ‖∂si,hRid,τ ,ε‖ ≤ Cε
N−3

2 , as desired.

Step 3) We consider ∂sk,h
N i

d,τ ,ε(φ), with φ ∈ K⊥
d,τ ,ε. Once again, we focus on the case k = i,

which presents the heaviest calculations. We have

∂sk,h
N i

d,τ ,ε(φ)

= Π⊥
i ◦ i∗

[(

f ′(µ
− 1

p−1

i PUi + φi)− f ′(µ
− 1

p−1

i PUi)− f ′′(µ
− 1

p−1

i PUi)φi

)

µ
p−2
p−1

i Pψhi

+
p− 1

2

∑

j 6=i

βij |µ
− 1

p−1

j PUj + φj |
p+1
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p−1

i PUi + φi|
p−3
2 µ

− 1
p−1

i Pψhi

− p− 1

2

∑

j 6=i

βij(µ
− 1

p−1

j PUj)
p+1
2 (µ

− 1
p−1

i PUi)
p−3
2 µ

− 1
p−1

i Pψhi

− (p− 1)(p− 3)

4

∑

j 6=i

βij(µ
− 1

p−1

j PUj)
p+1
2 (µ

− 1
p−1

i PUi)
p−5
2 µ

− 1
p−1

i Pψhi φi

− (p+ 1)(p− 1)

4

∑

j 6=i

βij(µ
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p−1

j PUj)
p−1
2 (µ

− 1
p−1

i PUi)
p−3
2 µ

− 1
p−1

i Pψhi φj

]

.

Therefore, if N = 3 we can use the Lagrange theorem to deduce that

‖∂sk,h
N i

d,τ ,ε(φ)‖ ≤ C
∣
∣(U2

i + φ2i )φ
2
iPψ

h
i

∣
∣
6
5

+ C
∑

j 6=i

(
∣
∣|Ui + |φi|||Uj + |φj ||2φj Pψhi

∣
∣
6
5

+
∣
∣|Uj + |φj ||φi Pψhi

∣
∣
6
5

+ |U3
j φi Pψ

h
i | 65 + |UiU2

j φj Pψ
h
i | 65

)

;

if on the other hand N = 4, then by direct computations

‖∂sk,h
N i

d,τ ,ε(φ)‖ ≤ C|φ2iPψhi | 43
+ C

∑

j 6=i

(

|Uj φj Pψhi | 43 + |φ2jPψhi | 43 + |Uj φj Pψhi | 43

)

.

In both cases, using the lemmas in Appendix A as in the previous steps, it is not difficult to check
that

‖∂sk,h
N i

d,τ ,ε(φ)‖ ≤ Cε
N−3

2 .

This completes the proof of (3.29).
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