ON CORON’S PROBLEM FOR WEAKLY COUPLED ELLIPTIC SYSTEMS

ANGELA PISTOIA AND NICOLA SOAVE

ABSTRACT. We consider the following critical weakly coupled elliptic system

2% _9 2% 2" —4 .

—Aug = il TR+ 30 Biglug T ui| TR w in Qe i=1

=1,.
u; =0 on 09,

..,m,

in a domain Q. C RN, N = 3,4, with small shrinking holes as the parameter ¢ — 0. We prove
the existence of positive solutions of two different types: either each density concentrates around
a different hole, or we have groups of components such that all the components within a single
group concentrate around the same point, and different groups concentrate around different
points.

1. INTRODUCTION
The system of nonlinear elliptic equations
_ ptl p=3 .
—Au+ Nug = pi|uiP g + Z#i ﬂij|uj|p2 |ui|p2 w; in O

i=1
u; € H&(Q),

(1.1) ey
where  is either a bounded domain or the whole space RY, has been studied intensively in the
last decade, in light of its relevance in different physical context: (1.1) appears when looking for

solitary wave solutions ®;(t,z) = e *u,(z) for the coupled Gross-Pitaevskii equation

—10,®; = A®; + ;D[P D; + Zﬂij|‘1>i|p2;3 [X et
J#i

which is of interest in nonlinear optics and in quantum mechanics, see e.g. [1,30]. In the models,
|ui| represents the amplitude of the i-th density, and the real parameters p; and ;; represent the
intra-spaces and inter-species scattering length, describing respectively the interaction between
particles of the same component or of different components. In particular, the positive sign of u;
(and of 8;;) stays for attractive interaction, while the negative sign stays for repulsive interaction.

From the mathematical point of view, (1.1) is one of the simplest, yet highly non-trivial, ex-
amples of weakly coupled system, i.e. is a system admitting non-trivial solutions (u1,...,um) Z
(0,...,0) with some trivial components u; = 0. This feature stimulated a lot of research about ex-
istence of fully nontrivial solutions, i.e. solutions with u; # 0 for every i. Nowadays, many results
in this direction are available, mainly concerning the cubic problem p = 3 in dimension N < 3, i.e.
in a Sobolev subcritical regime. A complete review of the result in this framework would be beyond
the aim of the present paper, and we refer the interested read to the quite exhaustive introductions
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in [28,29] and to the references therein. In this paper we focus instead on the much less understood
Sobolev critical regime p = 2* — 1 in dimension N = 3 or N = 4, where 2* = 2N/(N — 2) is the
critical exponent for the Sobolev embedding H*(RY) — L"(R¥); moreover, from now on we limit
ourselves to the focusing setting p; > 0 for every 1.

The study of the critical system (1.1) started with the Chen and Zou’s paper [9], where the
authors focused on (1.1) with 2 components in bounded domains of R* (thus, with p = 3), and
proved existence of least energy positive solutions under suitable assumptions on the parameters
i, i > 0, Bi;. In [10], the authors extended their results in higher dimension N > 5. In both
papers it is assumed that —v1 () < A1, A2 < 0 (here v1(€2) denotes the first eigenvalue of (—A)
with homogeneous Dirichlet boundary conditions in ), and this plays a crucial role: indeed, as
remarked by Chen and Zou, system (1.1) with € bounded, u; > 0 and p = 2* — 1 can be considered
a critically coupled version of the Brezis-Nirenberg problem

(12) {—Au—l-/\U— lul> "2u in Q

u=20 on 0,
and it is well known that in any dimension N > 4 (1.2) admits a positive solution (for an arbitrary
bounded domain) if and only if —4(2) < A < 0 (see [5] for this result, and the survey [22] for a
more extended discussion).

The relation between (1.1) and the Brezis-Nirenberg problem has been recently exploited also
in [8,23]. In [8], Chen and Lin described the blow-up behaviur of least energy positive solutions
as A; — 0, in case of 2 components system with S12 > 0. In [23], the first author and Tavares
constructed, under appropriate assumptions on the domain 2 C R* and on the parameters Bi; € R,
solutions to (1.1) with all the components u; concentrating around different points a; € Q as
A — 07,

We finally refer to [15], where the authors proved existence of infinitely many non-radial solutions
for (11) in RS, with \; =0 and ﬂij < 0.

In this paper we address (1.1) when Q is a bounded domain of R? or R* and \; = 0 for every i. If
Q) is star-shaped, the Pohozaev identity for gradient-type systems implies that the problem has no
nonnegative solutions (meaning that u; > 0 for every ) but the trivial one (uy,...,un) = (0,...,0),
but if € has some hole there is hope to find fully nontrivial positive solutions, in the spirit of the
celebrated Coron and Bahri-Coron results, which we briefly review: let us consider the critical
problem

—Au=[u* 2u inQ
(1.3) u>0 in Q with Q bounded domain.
u=>0 on 09,

If Q is star-shaped, non-trivial solutions do not exist, but the situation drastically changes removing
this geometric assumption: indeed, as observed by Kazdan and Warner in [16], (1.3) in an annulus
admits a positive solution. The result was then improved by Coron, who showed in [13] that
(1.3) has a positive solution as long as {2 has a small hole. A further improvement was achieved
by Bahri and Coron, who proved in [2] that a positive solution does exist provided that € has
non-trivial topology. For multiplicity results and sign changing solutions, we refer the interested
reader to [11,12,14, 18,21, 24].

The purpose of this paper is to discuss the extension to (1.1) of the Coron result. While in [13] a
variational argument is considered, we adopt here a perturbation approach based on the Lyapunov-
Schmidt finite dimensional reduction, which has been already fruitfully used to deal with scalar
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Coron’s type problem in [11,14,20,21]. In order to state our main result, we introduce some
notation and recall some basic results.

We consider from now on the following general assumptions, which will not be always recalled.
Let © € RN with N = 3,4 be a bounded and sufficiently regular domain, and let m € N. Let
ai,...,am € 2 be m (not necessarily different) points in Q, r1,..., 7y, > 0, p1,..., tm > 0 and
Bi; = Bji for every i,j =1,...,m, i # j. We consider the following Coron-type problem:

p+1 p—3 .
I e SR
u; =0 on 0f).,
where
Qe == Q\ U Byc(a;),
i=1

and p:=2*—1=(N+2)/(N —2).
For § > 0 and £ € RV, we denote by Us ¢ the standard bubble

5 7
(15) U(s)g(fﬂ) = QanN (m) N

where a > 0 is a suitable constant depending on the space dimension. It is well known (see [7,
Corollary 8.2]) that the family {Use : § > 0, & € RV} contains all the solutions to the critical
problem

—AU =UP in RY

(1.6) U>0 in RN
U € DL2(RV),
where D2 (R") is the completion of C2°(R") with respect to the norm [[u|p1.2gy) := [Vl 2@y).

We consider the projection P.Us ¢ of Us ¢ into HJ(€.), i.e. the only solution to

(1.7) {—A(PaUé,z) = —AUse = Uj, in Q.

P.Us¢ =0 on 0f)..

The first of our main results describe the situation where the components u; are all concentrating
around different points.

Theorem 1.1. Let N = 4, and let us suppose that a; # a; for i # j. Then there exists £, > 0
such that, if € € (0,€) and —oo < Bi; < B for every i # j, then problem (1.4) has a fully nontrivial
solution (U1 e, ..., Um.,), where each u; . is positive and is concentrating around a; as € — 0.

To be precise, we have that

__1
Uje = My pilPEUJi,fi + ¢ie >0 in e,

where 6; = di\/E, & = a; + 0;7; for suitably chosen d; > 0 and 7, € RN, and there exists C > 0
(independent of €) such that

N2 .
|@iell 3y < Ce™2 i=1,...,m.

If N = 3, the same conclusion holds without any restriction on B;; (which can be also positive
and large).
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Notice that in dimension N = 4 we allow interactions of competitive type (5;; < 0) or of weakly
cooperative type (0 < f3;; small) between the different components, while in dimension N = 3 we
have no restriction, and for the reason of this difference we refer to the forthcoming Remark 1.7

In Theorem 1.1 we proved the existence of solutions to (1.4) with all the components concen-
trating around different points. On the other hand, it is natural to wonder if it is possible to find
solutions with several groups G, ..., G, of components such that:

e each component within a given group G}, concentrate around a point ap;
e the different groups concentrate around different points, i.e. ap # ay if h # k.

The following theorem gives a positive answer to this question.
In what follow we focus on system (1.4) with 3 components in dimension N = 4.

Theorem 1.2. Let N = 4, m = 3, and let us suppose that ay = as # asz. Let us suppose that
either —\/fiifiz < B2 < min{puy, o}, or fr2 > max{ju, uz}. Then there exists &, > 0 such that,
if e € (0,8) and —oco < B3, B2z < B, then problem (1.4) has a solution (uy ., us ¢, u3.c) where uy .
and ug . are concentrating around ai, while us . is concentrating around as as € — 0.

To be precise, let c1,co,c3 > 0 be defined by

2 ﬂ12_,u2 2 [312—#1 -1
G=5—"—""—, ¢=—5"-—"7"—, 3 .
Bi2 — p1pi2 Bia — pr1p2

We have that
u’i,s - CiPEU(sl,El + ¢i,€7 1= 1; 27 u3,€ - C3PEU53,E3 + ¢3,67

where 6; = di\/E, & = a; + 0;7; for suitably chosen d; > 0 and 7, € RN, and there exists C > 0
(independent of €) such that

N-—2

iell iy < Ce™2

i=1,...,m.

Moreover, there exists 3 < 8 such that if —oo < Bij < B for every i # j, then Ui e > 0 in Q. for
every 1.

Notice that the interaction between the components u; and ug and between us and ug is compet-
itive or weakly cooperative, while the one between u; and us is weakly competitive or cooperative
(possibly with a large coupling parameter 812 > 0).

Theorem 1.2 is the first result in the literature dealing with concentration of groups of compo-
nents. As it will be clear from the proof, our method works in a much more general context with
respect to the one considered in Theorem 1.2. One could both extend the result in R3, and (what
is more important) consider more groups of components. This is the content of the forthcoming
Theorem 1.3, for which we need some further notation. Let us consider system (1.4), and let
Bis = Hi-

For an arbitrary 1 < ¢ < m, we say that a vector 1 = (lo,...,l;) € N1 is a g-decomposition of
m if

0=l <l < <lgm1 <lg =m;

given a g-decomposition 1 of m, we set, for h=1,...,q,

18 IhZ:{’L'E{l,...,m}:lhfl<i§lh},

(18) K :={(,j) € I x I, with h # k}.

This way, we have partitioned the set {1,...,m} into ¢ groups I, ..., I;, and have consequently

splitted the components into ¢ groups: {u; : i € Ip}.
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Let us consider the ¢ non-linear systems
(1.9) AU = Y BylU" T U U m RN, i€y, h=1,....q.
JEIn
Any such system has a solution U; = ¢;U, with ¢; > 0 for ¢ € Ij,, and where U = U, o is a standard

bubble in RY centered in 0 and with § = 1, if and only if there exists a vector of positive numbers
(c1,...,ck) such that

1

p—1 ptl
(1.10) > Bije? ¢ =ci, i=1,...k
J=1,...k
Supposing that such a vector does exist, we linearize the ¢ systems (1.9) in DV2(R¥Y) around the
solutions (¢, _,+1U, ..., ¢, U), obtaining
(1.11)
_ p—1 p=3 ptl p+1 p=1l p—1 _ .
— Av; = | | pBuc? 1+TZﬂijCi2 ¢’ Ui"’TZﬂijCiz ;T v | UP L in RY,
JEI JEI
i i

for all i € I, for all h =1,...,¢q, with v; € DL2(RY).

Theorem 1.3. In the previous setting, let N = 4, and let a',...,a? € Q with a" # a* for
h # k. Let us suppose that the q systems (1.9) have solutions (ci,_,+1,---,¢1,), b = 1,...,q,
with ¢; > 0 for every i. Let us suppose also that each of the q linearized systems (1.11) has
a (N + 1)-dimensional set of solutions. Then there exists &, > 0 such that, if € € (0,&) and

—00 < fBi; < B for every (i,j) € K, then problem (1.4) has a solution (ui,...,Um,e), where
Ule, ..., U, e are concentrating around a*, Ui, 41,e,- - -, U, are concentrating around a2, ..., and
Ul 41,6y -+ Ulye AT concentrating around a? as € — 0.

To be precise, we have that for any h=1,...,¢q
Wiy _1+1,e = Clh—1+1P5U5}m§h + ¢l)171+175’ cee U = Clh,P€U5h,75h + ¢lh-,5’
where 8, = dp+/g, &, = a”* + o1, for suitably chosen dj, > 0 and 1, € RY, and there exists C > 0
(independent of €) such that
N2 .
||¢i,s||H%(QE) <(Ce™> i=1,...,m.

Moreover, there exists 3 < B such that if —oo < Bij < B for every i # j, then Ui e > 0 in Qg for
every 1.

In dimension N = 3, the existence result holds, without any additional assumptions on the
parameters B;; with (i,7) € K. Also, in this case we always obtain positive solutions.

Theorem 1.2 can be obtained applying Theorem 1.3 for the 3 components system in R*, con-
sidering the 2-decomposition of 3 given by 1 = (0,2, 3). In this perspective, one has only to verify
that the assumptions of Theorem 1.3 are satisfied, i.e. that the system

pici + Biacs =1, pacs + Pract =1,
has a solution with ¢y, co > 0, and that the linearized problem
—Av; = (3[&1'612 + ﬁijc?)Uzvi + 2ﬂijcich2vj inRY,i=1,2, j#i
has a 5-dimensional set of solutions.
Nevertheless, for the sake of simplicity and brevity, we directly write down the proof of Theorem

1.2, without deriving it as corollary of Theorem 1.2, and we omit the proof of Theorem 1.3. The
passage from the particular situation described in Theorem 1.2 to the general setting considered in
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Theorem 1.3 creates additional difficulties only from the technical and notational points of view,

and once that the main idea are understood, the interested reader can easily fill the details.
Rather, one point which we want to stress is that the assumptions of Theorem 1.3 only regard

the data of the problem, and in general are not too difficult to check, as shown in the following

proposition.

Given the number of components m, the number of groups 1 < g < m, a g-decomposition
1 = (lp,...,l;) of m, and the coupling parameters S;;, i,j = 1,...,m, let us consider the ¢
matrices

By, = (Bij)(i,j)elh xIp, h=1,....q
Notice that if I;, — lp—1 = 1 for some i, then I}, is a singleton and the corresponding B, is simply
given by the real number 3;;, i € Ij.
Conditions on By ensuring the existence of solutions (¢, _,41,...,¢1,), h = 1,...,q, for the
algebraic problem (1.10) are given in [3, Section 2] or [27, Section 4].
So, let us suppose that such (¢, _,+1,-..,¢1,), h=1,...,q, do exist.

Proposition 1.4. Let N = 4. In the previous setting, and using the notation of Theorem 1.3, let
us suppose that for any h =1,...,q we have

the matriz By, is invertible and has only positive elements.
Then each of the h linearized systems (1.11) has a (N + 1)-dimensional set of solutions.

Combining then the results in [3,27] with Proposition 1.4, Theorem 1.3 permits to prove existence
of a bunch of solutions, with arbitrary number ¢ of groups (each of them having an arbitrary number
of components) concentrating around ¢ different points.

The proofs of Theorems 1.1 and 1.2 rest upon a finite-dimensional reduction, and will be the
object of the next sections. Before proceeding, we conclude the introduction with some comments.

Remark 1.5. We point out that, both in Theorems 1.1, 1.2 and 1.3, we can deal with systems
with mixed cooperation and competition (that is, we can deal with systems where some f;; is
positive, and some other is negative). This is particularly interesting since the mixed coupling
critical case was completely open, and also for subcritical problems has been investigated only in
few recent contributions (see [6,25,26,28,29]).

Remark 1.6. Regarding the positivity in dimension N = 4, it is natural to think that in Theorems
1.2 and 1.3 we have a positive solution without any additional assumptions on 3;;. Indeed, any
component u; . is a superposition of positive function and small perturbation term. If the positive
part of B;; is small for every ¢ # j, then a short rigorous proof of the positivity can be given
arguing as in [23]. If on the other hand some 3;; is allowed to be large, such proof does not work
and one is forced to approach the problem with finer (and much longer) techniques, such as careful
L*>-estimates on the error ¢; . (see for instance [17, Section 8] for related computations). We
decided to not insist on this point for the sake of brevity.

Remark 1.7. As it emerges from Theorem 1.1, in R* we have to suppose extra-conditions on f3;;
in order to have existence of fully nontrivial positive solutions, with respect to the 3-dimensional
problem. This is somehow natural, and is related to the particular shape of the cubic system
(in dimension N = 4 we have p = 3) which makes possible to prove non-existence results (for
instance, one can repeat word by word the proof of Theorem 3-(#4i) in [27] to rule out the existence
of positive solutions under some assumptions on the parameters). This difference between the
dimension N =4 and N # 4 was already observed in [10].
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The extra-condition —oo < f§;; < B with 8 small enough was already considered in [23], and
plays the same role in our proof and the one in [23]; it enters in the analysis of the linearization
of (1.4) and in the proof of the positivity of the solutions. It is interesting that this assumption is
not needed in dimension 3.

Regarding the higher dimensional case N > 5, the main obstruction for our method is repre-
sented by the lack of regularity of the interaction term |u3|pT+1 |uz|p773u17 which is not of class C!.
This creates several additional difficulties in dealing with a linearization of (1.4), difficulties which
were already observed in [15,23].

Remark 1.8. Both Theorems 1.1 and 1.2 regard the case when at least two components con-
centrate around different points, and hence it is natural to wonder what happens if we search for
solutions to (1.4) with all the components concentrating around the same point. Under appro-
priate assumptions on f3;;, this case is actually much simpler to deal with, since one can obtain
a solution with all the components proportional among each other, reducing system (1.4) to the
scalar problem (1.6). For instance, for a system with 2 components in a domain Q C R*, it is not
difficult to check that if (1.6) has a solution w (positive or sign-changing, concentrating around
one or more points), and if

(1.12) either —\/i1 2 < B12 < min{pg, po}, or B2 > max{ui, ua},

then (1.4) in Q has a solution of type (u1,u2) = (ciw,cow), with ¢1,¢a as in Theorem 1.2. In
particular, we have:

e Bahri-Coron-type result: if Q@ C R* has non-trivial topology and (1.12) is in force, then the
critical system (1.4) has a positive solutions.

e Solutions concentrating around the same point in domains with one shrinking hole: if
a€QCRY Q. =Q\ B.(a), and (1.12) holds true, then (1.4) has a family of positive
solutions with u; . and u2 . concentrating around the same point with the same speed.

o Multipeak solutions and multiplicity results, extending [11,12,14,18,21,24] as in the previous
points.

Similar results in higher or lower dimension can be obtained using the existence of (ko,lo) as
in [10, Theorem 1.1]. In the same way, in order to deal with more than 2 components one can use
the results in [3, Section 2] or [27, Section 4].

Remark 1.9. In our results, we focus on domains Q). with radially symmetric holes B,,-(a;). It is
not difficult to check that we can treat also the case of non-symmetric holes. In such a situation,
we could repeat our argument essentially word by word, simply replacing Lemma A.1 with Lemma
1.1 in [19]; this introduces some technical complications which we preferred to avoid.

Structure of the paper. The proof of Theorem 1.1 is contained in Sections 2-4, while the proof
of Theorem 1.2 is given in 5. Both are based upon the Lyapunov-Schmidt finite dimensional
reduction method, which in the context of systems was already adopted in [23] to deal with the
Brezis-Nirenberg-type problem. The proof of Proposition 1.4 is given in Section 6.

In Section 2 we set up the reduction scheme, splitting system (1.4) in two new systems of m
equations, one of them living in finite dimension. The infinite dimensional problem is then treated
in Section 3 via a fixed point argument, while the finitely-reduced problem is the object of Section
4.

Since Theorem 1.2 shares the same structure and many passages with that of Theorem 1.1, we
put particular emphasis on the main differences.

As usual when dealing with a perturbation approach, many proofs contains very long com-
putations. In order to keep the presentation as smooth as possible, we collect them in several
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appendixes, so that the reader can easily understand the main strategy behind each proof, and
check the details in a second time.

Notation and preliminary results. We recall that with Us ¢ and P.Us ¢ we denote the standard
bubble and its projection in H{ (€2.), defined in (1.5) and (1.7). We shall use many times the fact
that 0 < P.Us¢ < Us¢, which is a simple consequence of the maximum principle.
Since {Us.¢} is the set of all the solutions to (1.6), it is easy to check that any solution to
—AU =puUP  in RN
U>0 in RY
U € DM (RY)

with p > 0 is given by ;fﬁUM, for some § > 0 and £ € RV,

Coming back to problem (1.6), we recall some properties of the linearized equation
(1.13) —Ap=pUl'¢ mRY, ¢eD?RV)
It is clear that there are N + 1 solutions given by

oUs N -2 N-4 |:C—§|2—52
Vo= £ — [ 7 > -
Yos = s _aN( 2 >6 82 _e2) ¥
(1.14) (0% + |z — &[?)
' oU N2 _
1/}?75 = aésyg:aN(N_2)5 2 2$£—§£2ﬂ7 h=1,...,N.
‘ (0% + |z —&*)*

By [4, Lemma A.1], these functions span the set of solutions to (1.13).
We consider the projections Pgw(}{g of 1/1(’{5 (h=0,...,N) into H}(Q.), i.e.

—A(P)e) = —Agk = UL Wl in Qe
Pgwfi5 =0 on 0f)..

Notice that the derivative commutes with the projection P, in the sense that Paz/J(’{g = Op(P.Usg),
where J;, denotes the partial derivative with respect to &, if h = 1,..., N, and Jy denotes the
partial derivative with respect to J.

We denote by G(z,y) the Green function of —A with Dirichlet boundary condition in 2, that
is the function satisfying, for fixed y € €,

-AG(,y) =46, inQ
G(-,y)=0 on 04,

where 6, is the Dirac delta centered in y. It is well known that the Green function can be

decomposed as
1

G =
@9) = NN —2nlz g2
where wy is the volume of the unit ball in R, and H (x,y) is the regular part of the Green function,
defined for fixed y € Q as the solution to

—ALH(-,y)=0 in Q
H(-,y)= N(N,Q)wll\,|. vz on o9,

+ H(z,y),

Finally, we denote the standard inner product and norms in Hg () by

(0 g ) = / V- Vo, [ull g = (),
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and the Li-norm (¢ > 1) by |- |Le(q). When there is no possibility of misunderstanding, we shall
often adopt the simplified notations || - || and | - |4, for the sake of brevity.

In the rest of the paper C always denotes a positive constant which can depend on the dimension
N, on the data p; and 3;;, but not on €. In two steps we will need to point out that a constant C'
does not depend on f;;; in such cases we will explicitly write it. The exact value of C' can change
from line to line.

In many cases, to estimate some quantity involving P.Us¢ or Paz/me, it will be necessary to
approximate the projections with the original functions, carefully controlling the difference. These
kind of results are mainly collected in Appendix A.

2. PROOF OF THEOREM 1.1: THE REDUCTION SCHEME

Being interested in positive solutions, instead of problem (1.4) we consider

—Auy = paf (i) + 32 Biglug) T |ui T u; in Q.

2.1 i =1,...
(2.1) u; =0 on 0., R

where f(s) := |s[P7!sT. We shall see that this replacement makes possible to prove positivity of
the solutions in a very simple way, under the assumptions described by the main theorems.
Let i : H{(Q.) — L*¥ () be the canonical Sobolev embedding. We consider the adjoint

operator ¢* : L4 () = H(Q.), characterized by

i*(u) = v {—Av =u in Q (in weak sense)

v e HHQ)

It is well known that ¢* is a continuous operator, and using it we can rewrite (2.1) as

(2.2) wp =i | pif(wi) + Zﬁiﬂuﬂ%l | 7 g

j#i
We search for solutions as perturbation of bubbles centered at different points: let n € (0,1) be
small, and let

(2.3) Xy ={(d,7)eR" x RM)": n<di<n ', |u|<n'}.
Our ansatz is that

(2.4) u; ::u’i_ﬁPEU(siyfi + ¢is

where for some (d,7) = (di,...,dm,T1,...,Tm) € X, we have

(2.5) 0i=dive, & =a;+divVer.

We stress that the quantity n will always be fixed and small, while the unknowns will be d; > 0,
T € RN, and ¢; € H&(Qs)

Remark 2.1. Once that n > 0 is fixed, we observe that
§; = O(E%) and e=0(6?) Vi=1,....,m

as € — 0.
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Plugging ansatz (2.4) into (2.2), our problem is transformed in the research of d;, 7;, and ¢;
such that

N N
(2.6) p; " PUs e + ¢ =i | pif (n; 7 PeUs, e, + ¢4)
+ > Biglny T PUs, e, + 6517 Iy T PeUs, e + 637 (1 T PeUs, 6 + 6)
i

for i = 1,...,m, with each equality which takes place in Hg(Q.). To proceed, the idea is then to
split the space into two orthogonal subspaces, one of them having finite dimension. To be precise,
fore >0,dy,...,dy >0,and 71,...,7m € RV, we define

Ki=Ka, 7. =span{P} ¢ h=0,...,N}, Kaqrc=K x - xKy
(recall that ¢; and &; are determined by d;, 7; and € through the ansatz (2.5)). Notice that Ki_r)a =
Ki x - x K-,

If T; = Tls, ¢, (resp. I} = IT5; . .) denotes the orthogonal projection Hg(Q) — K; (resp.
H}(9.) — Ki-), then (2.6) can be further rewritten as a system of 2m equations

__1_ PR
(27) Hi(ui pilPEU&w& + (bl) = (HZ © Z*) [Mif(ﬂi pilPEU&y& + ¢1)

_ 1 p+1 N p—3 _+
+ > Bigluy T PUs e, + 65177 |y 7 PelUse + 6il 7 (g T PeUs, e, + 61)
i

)

and

1

1
(28) Hil(:ui v P5U5iq£i + ¢Z) = (HZL © Z*) luif(ui v P€U5i7§i + ¢Z)

— T ptl, —iy =8, —5iy
+Zﬁij|ﬂj TP Us; g, +¢j|p2 I 77 PeUs, e +¢i|p2 (i 7 PeUs, e, + i)

3

J#i
t=1,...,m.
The proof of Theorem 1.1 consists of two main steps: first, for fixed €, d1,...,dm, and 71, ..., 7
we solve the m-equations system (2.8), finding (¢$"7%,. .., ¢d7e) € K , .. Plugging this choice

of ¢ into (2.7), we obtain a finite dimensional problem in the unknowns d and 7, which will be
solved in a second step for any € > 0 sufficiently small.

L
d,r,e

3. THE EQUATIONS IN K

In this section we study the solvability of (2.8). In a functional analytic perspective, (2.8) reads

(31) fi,‘r,s(d)) = N(ii,T,E(d)) + Rfiﬂ'ﬁ’
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where L stays for the linear part

ii,-r,a(qs) = HZL{Q/% - |‘,uif/(,ui_pllPsU6i7§i)¢i

p—1 -5 pr1, —olg p=3
(3.2) +TZBU(MJ’ "PoUs, ;)7 (1 7 PeUs,e) 7 i
J#i
+1 T R 1 p—1
p ZBU i 1PU5J7£J) 7 ( ip 1P€U5i)£i) 2 ¢j1}7
J#i
N stays for the nonlinear part
Nar () =
1
HJ_ sz( P U5“51 + ¢z) sz( P Uéz,fz) - Nif/(/%' pilPaUéi,&)(bi

Ly 1
+Zﬂij|u] "PUs, g, + 05 Iy 7 T PUs, ¢, + 67 (4] 7 PUs g, + 64)

i
pt1, —-1o p=1
(3:3) = Biiluy; PU& &) (1 7 PUs,e) "
J#i
p—1 —t 11—y p=3
_TZBU( PU5J7£]) 2 ( K 1P€U5i;fi)p2 (bl
i
p+1 -1 o1 b p—1
B Tzﬂij(uj 1P5U5jv§j)p2 (:ui 1P€U5i£i)p2 ¢j]7
J#i
and R is the remainder term

(3.4)

. 1
RZi,‘r,s = HzJ_{ ' pilPEUéi,fi

+i*

p+l , ——1o p—1
i (0 7 P.Us, )+ By PU& &) 7 ‘”PsUai,si)QH
J#i

. -1 -1 p¥l, ——Lg p—1
- Hﬁ_ o [Mi " (PEU(:;@ - Ug)'hfi) T Zﬁij(uj ! 1P€U5j75j)p2 (/J’i ! 1P€U5z‘,5¢)p2 ] )
J#i
where the last equality is a consequence of the definitions of ¢* and of f.
For future convenience, we also define
1 il il
Ld;"'vf = (Ld,‘r,s? A 37:7'75) : Kd,T,s - Kd,T,57

and Rq,+. and Ng -, in an analogue way.
The main result of this section is the following:

11

Proposition 3.1. Let N = 4. For every n > 0 small enough there exists B,e0 > 0 small, and
C > 0, such that if € € (0,e0), and —oo0 < Bi; < B for every i # j, then for any (d,7) € X,, (see

(2.3)) there exists a unique function PpdTE K3

yTHE

(35) Ld,-r,a(d)) = Rd,‘r,a + Nd,-r,a(d))

solving the equation
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and satisfying

d N-2
165" Ny (0. < Ce 2.
Furthermore, the map (e,d, ) — ¢ s of class Ct, and
d,r, N_2
IVan® " a1 <Ce .
If N =3, the same conclusion holds without any restriction on B;;.

The proof of the proposition takes the rest of this section, and is divided into several intermediate
lemmas.

3.1. Study of the linear part. As a first step, it is important to understand the solvability of
the linear problem associated to (3.1), i.e.

(3.6) hre(®)=fi, with f, e K . ..

Lemma 3.2. Let N = 4. For every n > 0 small enough there exists B,e0 > 0 small, and C > 0,
such that if € € (0,¢€¢), and —oo < fB;; < B for every i # j, then

(3.7) ILare(@)mio) > Clléluo., Vo€ Hy(Q,R™)

for every (d,T) € X,,. Moreover, Lq r . is invertible in Kir,w with continuous inverse.
If N =3, the same conclusion holds true without restrictions on B;;.

Proof. The long proof proceed by contradiction. Let us suppose that there exist sequences
{en} CRY, 6, =0, {(dn,70)} C Xy, {&,} CKi X+ x Koy

such that

y=1 and [Ln(,)llm @

imstimen a0d Ly == Lq, . ¢, for short. In the same spirit

in this proof we write P, := P, Ui :=Us, , 6., wf)n = 1/)& iy and Qp =0 .
Let h,, := L, (¢,,). Then, observing that

En En

as n — oo, where we wrote K; ,, := K4

__1
pif (p; " T PUse) = p(PUs )Pt Ve, 6 >0, £ € RV,

we have by definition of L,

. _ p—1 -1 pt1, ——io p=3
Ginm = 1" |P(Palin)? " Gin + =5— D Bisl; " Pallin) T (1 ™ Palin) T i
i
(3.8)
1 1 P U _
+ Z% > Bijlp; 7 PUj) T (11 7 Palin) "= jon | + i — win

J#i
for some w; ,, € K; .
Step 1) We show that |[wi,.| m1(q,) — 0 as n — oco.
Since w; ., € K n, there exists constants cﬁn such that
N
Wiy = cf)nPM/)ﬁn
k=0



ON CORON’S PROBLEM FOR WEAKLY COUPLED ELLIPTIC SYSTEMS 13

Let us multiply equation (3.8) with 5 2Win: taking into account that ¢; ., h;,» € KZ -+, we deduce
that

51‘271;”“}1',71”%[%((2") = P5i2,n/9 (PoU;i )P i pwin
—_— n
=:(I) —(11)

N
p—1 = -5l p=3
Tzcin / Zﬁu 1P Uj, n) (i 7 PulUin) 2 ¢1n(Pn1/}in)

(3.9) 1=0 nojAi
=:(II1)
1 N -1, —-1 -1
St [ B TR ) T Puin) T by (P
=0 noj#i
—(IV)

The rest of the proof of step 1 consists in a careful (and very long) asymptotic expansion of the
terms (I)-(IV), whose details are contained in Appendix B. Therein we prove that

N N
(D= (d)ou+o1) Y ek,
1=0 1,k=0
N
(3.10) (D) = 0(57 ) [winll 2 ) + O67) Y b
1=0
(IIT)| = o(67,,)

I()I()

as n — 0o, with

0 if 14k
2
(3.11) Olk = po‘?v-’_l(N 2 I]RN W dy ifk=1>1
2— .
poktt (252)7 fon i dy itk =1=0.

Using the second to fourth estimates in (3.10), equation (3.9) becomes

N
(312) anwZ nHHl(Q ) — O( zn)”wl HHHI Qn +O ZC in"
k=0

Due to the first estimate in (3.10), the previous expression yields

2 N
<Z|C ) <01)Z|C§n,

k=0

so that, firstly, {cfn} is a bounded sequence, for any k, and in turn, this implies that cfn — 0 as
n — oo, for every k. Hence, using this into (3.12), we deduce that

lwinlFgy 0,y = oWllwinll . +o(1),

whence [|winl g1 (q,) — 0 as n — oc.
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Step 2) For a fixed k = 1,...,m, let us introduce

N2 ~
Nin( ) — 5:{,% Qbi,n(gn,n =+ 5n,ny) Y€ LI L Niﬁj = Qn,n i=1,...,m.
0 y € RV \ Qs
In a completely analogue way, we define iLf and w;,, and we set gb,i n = gbn n Prn = hﬁn,

Wen 2= Wy 4,

In this step we show that ¢,, — 0 in DV2(RN) (i.e. Vpn — 0in L2(RY)) as n — oo, for
every k =1,...,m.

At first, we observe that H(lzn,n”Hé(Q =[x, n”Hl Q,) < 1, and hence up to a subsequence
Grm — bn weakly in DV2(RN) for every i. Now we rewrite the equation (3.8) for ¢y, in terms of
G if P € C(RYN), we have

/~ vén,n . V1/1 = p(si,n/~ (mn>p71¢;n,nw
Qrn

p—1 *p% 5 77 \R2=3 *p% +1 5
+ T Z 5;-21,71[311]' /~ (,U'K ! PnUl-c,n> P2 (,U] ! Pnt,n) =N (b/-c nw
it Qion
(3.13) v + 7 1
i e e vy g N ik S d
> 62, Brj / (b " PoUp ) = (1 " PulUjin) 7 Gjinth
J#k Qen

+ /~ vén,n . v(ﬁn,n - UN]K,n)y
S

K,n

where P:(rn(y) = PUj n(Exn + 0k ny) for all 5 =1,...,m. In Appendix C, we show that (3.13)
yields

(3.14) [ V(;an -V = p/ Ufglqz,.i@/} +o(1) for every ¢ € C°(RY)
Qurn RN

which in turn, by weak convergence, implies that

(3.15) — D¢ =pUls 0, i € DVA(RY).

Since our final goal consists in proving that gi;,{ = 0, due to the previous equation it will suffices to
show that ¢, is orthogonal, in D2(RN), to the N + 1 partial derivatives Yio (0 =0,...,N) of
U1,0. Indeed, we already know that these partial derivatives span the sets of the solutions to (3.15).
The orthogonality condition comes from the fact that ¢, , € K, é‘n for every i and n: indeed, for

any £ =1,. (the case £ = 0 is analogue), we have
= nn/ V(bnn nz/] ): nn/ U;;snl ¢ ¢nn
Qn
0 2 N2 zp — &F
:5,.;7"/ p(N — 2)ak ( o ) 02 i dx
0, AR A6l T (2 e — )
1 -
= p(N —2)aly Dron
/Q M+ 1+ |y| )z

1 ~
= / pr,O ¢{,0¢n,nu
Qs
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and by weak convergence we deduce that for every ¢ and 4
0= [ Ut obe = [ Wty Vi
RN RN

as desired.

Step 3) We prove that ||¢; 5| i (q,) — 0 as n — oo for every . This is in contradiction with the
fact that ||, |41 (q,) = 1, and completes the proof of (3.7). Let us test (3.8) with ¢; : recalling
that {¢;,} is bounded in H}(Q,) and that w; ,,, h;n — 0 strongly, we deduce that

Iualiye,) = o)+ [ (UL,

=:(I)
p—1 — 5T L ESP
+—Zﬁij (1 7 PuUin) 2 (/Lj " PyUjn) in
(3.16) 2 = e,

=:(IT)

p+1 -4 e p=1
+T Zﬂzy/ (,UJZ 11:)77.Ui,n)p2 (,UJJ 11:)77.Uj,n)p2 ¢i,n¢j,n

=:(II1)

We have to estimate the right hand side. At first, recalling as usual that 0 < P,U; , < U, p, we
have

(3.17) (D] < /Q Ui, = Cp / Ursia, =0

Qin

as n — oo, since ¢?,, — 0 in L™ (RN) by step 2, and Uly' e Lz (RM).
The second term on the right hand side in (3.16) can be estimated discussing several possibilities:
it B;; < 0, we simply observe that (II) < 0. Otherwise, if 5;; > 0,

rp—3 p+1
(1) < OBy, / U U,

n

2

@-N)N N2
2(N—2 2(N—2 2
< CBij (/ Umi ) Uj,iz )> |Pinl3--

n

In case N = 3, the last term reads

2
sy ([ UR0L) 16 < CBullunliya,) (51.51)" = o)
) wn'"- j,n ,m 2% = Y I¥unll g (Q,) wn“jn

n

(no matter how large f;; is), where we used Lemmas A.6 and A.8. If on the other hand N = 4,

we have
%
CBi; (/ U_;l,n) |Pin
Qn

where C' ~does not depend on Bi;. We conclude that there exists B > 0 sufficiently small such that,
if B;; < B for all ¢ # j, then

2. < Cﬁij”@m”%{é(ﬂn)’

1
(3.18) ((ID)] < CBijllpinllT g,y < §||¢z',n||fqg(nn)
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To sum up, in any case we can conclude that for every i # j and for any n large enough

for every f;;, if N =3

p—1 1 2
3.19 —— 2 ) = Sl[¢in 3
(3.19) 5 Y an< 5 1 Pinll ) {pmvided Bi; < B, if N =4.

J#i

It remains to consider the last term in (3.16): by the Hélder inequality and Lemmas A.6 and
A8

p=1  p-1

(UID] < By | USTUST 16001630

n
2

NN NN N
—3 —3
2% ‘/Q Ui,n Uj,n

< OBijllbinll az ) 10jnll 3 (2,)0:,m05,n (1108 0in | + | Log 6jn)

as n — oo, where we used the boundedness of {¢,,} in H{.

Plugging (3.17)-(3.20) into (3.16), we conclude that ¢;,, — 0 strongly in H}(€2,), which gives
the desired contradiction and completes the first part of the lemma.

It remains still to show the invertibility of Lq - ., and this is the object of the last step.

(3.20) N

< Bijldin

(bj,n

EC

= o(1),

Step 4) We start recalling that the operator ¢* : L%(QS) — H}(Q.) is compact. Therefore, by
definition, the restriction of Lg » - to ijs is a compact perturbation of the identity. So far we
showed that

(3.21) HLd,r,s(@HHg(QE,Rm) 2 C||¢||Hg(szs,Rm) for every ¢ € Kir,sv

and hence Lg - . is injective. By the Fredholm alternative, it is also surjective, thus invertible, and
the inverse is continuous (due to (3.21)). O

Now we prove the solvability of equation (3.5).

Lemma 3.3. Let N = 4. For every n > 0 small enough there exists B,e1 > 0 small and C > 0
such that: if e € (0,e1), and —oo < fB;; < B for every i # j, then for any (d,T) € X,, there exists
a unique function @H™F € Kj-ma solving equation (3.5):
Ld,T,a(d)d7T7€) = Rd,-r,a + Nd,7,8(¢d7ﬂs)u
and satysfying
[t

If N = 3, the same conclusion holds without any restriction on B;;.

N—-2
i) S 087

Proof. Let € € (0,e0), with g9 given by Lemma 3.2. Then, to solve equation (3.5) is equivalent to
find ¢ € K& _ _ such that

d,T,e
= L:l,i—,:: (Rd,r,e + Nd,r,c(9)) = Ta,r,c(d).
We aim at proving that Tq -+ is a contraction inside a properly chosen region.
Step 1) Tq.r.: Y. — Y. for a suitable subset Y. C Hg (., R™).

Using the continuity of L;{r o> of II;* and of i*, we have

(3'22) HTd,‘r,s((ﬁ)HHé(QE) <C (|Rd,-r,s|L 2N ) + |Nd,-r,s(¢)| 2N > ’

N2 (Q.



ON CORON’S PROBLEM FOR WEAKLY COUPLED ELLIPTIC SYSTEMS 17

where
~ . +1, ——L —1
Rarei=m " (P%@ 70 > By TTRUs, ) (1, 7 PUs, ) T
J#i
Niro(0) = Pir o (&) + Qa7 c(9).
. 1
Py 7o (@) = pif(n; " PUs, ¢ + 6i) — pif (u; 7T P.Us, ) - p(PUs,e )",
and
~ . _1
Qlyr (D)= Biln; 7" PU%@+¢A2|M PU&&+¢A2(- " P.Us, ¢ + ¢1)
J#i
1 +1 _ﬁ p-1
_ZBZJ P.Us, 5;) & (1 P.Us, ¢,)
J#i
+1 -1 _3
o —ZBU PU5 5;) 3 (ks p71P€U5i7§i)pT¢i
J#i
+ 1 = pol =iy p=1
- ZBU 1PU5 5;) 7 (" 1P5U5i7§i)p2 b4,
J#i
with ¢ = 1,...,m. In Appendix D, we prove that
~ N-—2
|Rd T, a| < Ce =
(3.23) LY@,
N @), a2, < Clelyca,

Therefore, by equation (3.22) there exist Cq,C2 > 0 such that
[Ta,re(P)l 100 < Cie 7 + C2||¢||§I(}(QE)
Let C > C) arbitrarily chosen, and let
Yo = {6 € HY(©OoR™) : [l g < O™ ).
Then there exists €1 € (0, g¢] sufficiently small such that
| Tare(@) 0.y < Cre™= +CaC?N 2 < Ce™=

for every € € (0,e1) and ¢ € H}(Qe,R™), that is, Tq rc: Yo — Ye.
Step 2) T4 r. is a contraction in Y.
Notice that

(3-24) ||Td,f,€(¢1) - Td,T,8(¢2)||H(}(QE) < C|Nd,‘r,€(¢l) - Nd,‘r,a(d)zﬂ

ETS
¥ (o,

Recalling that N} . (@) = P . (¢)+Ql ;. .(¢), we compute with a Taylor expansion (see Lemma
A4)

|Pare(¢7) = Pir o (8)] < C|(PeUs, e, + 03| + 167 D763 ] + 107))1oi — 67|, 4
Therefore, by the Holder and the Sobolev inequalities

(3.25)

= 1 =i 2
|Pire(@) — Py, (¢ )|Lﬁfz Q)

2N
LN+2(Q,) LN+2 (Q.)

22 627%) (16Ha- + [62-) 10} — 62l

N—2
< C||¢H15{5(QE)HQ%1 - ¢§HH§(QE) <Ce7 |¢f — ¢§||H5(QE)

<(
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for every ¢, ¢*> € Y., i =1,...,m. Regarding ngs, in Appendix D we show that

N

(3.26) Qaro(@') = Qar (0N, 2, SO 18" = Fliyca

LN+Z(Q,

or every ¢',¢* € Yz, i =1,...,m. Collecting together (3.24), (3.25) and (3.26), we deduce that
there exists C' > 0 such that

N—-2
ITare(¢!) = Tare(@ )y <Ce 7 9" — P, Vo' ¢° €Yo

By replacing the necessary €1 with a smaller quantity, we see that for € € (0,e1) the map Tq r .
is a contraction in Y, and hence the thesis follows by the contraction mapping theorem. O

Lemma 3.3 enables us to define a map
A: (0,51) X )(77 — Ké)_’_)@ (E, d, 7-) — ¢d,‘r,€.

To complete the proof of Proposition 3.1, it remains to check that this map if differentiable, and
to prove the desired estimate on the derivative.

Lemma 3.4. There exists e2 > 0 small enough such that the map A is of class C' in (0,e2) x X,,.

Proof. We apply the implicit function theorem to T : (0,e1) X X,; X Kj)_,_)a — K& _ _ defined by

d,r.e

T(f':, d, T, ¢) = Ld,T,5(¢) - Rd,T,s - Nd,T,E(¢)'

By Lemma 3.3, we know that T(e,d, T, qbd"'"s) = 0. We shall prove that DyT(e,d, T, qbd"'"s) is in-
vertible. To this aim, by the Fredholm alternative, it is sufficient to check that DyT(e,d, T, d)d”"g)
is injective, since DgT(e,d, T, qu’T’E) is a compact perturbation of the identity (due to the com-
pactness of i*).
In the rest of the proof we often write P, U;, ¢; instead of P., Us, ¢,, QS?’T’E, to ease the notation.
Notice that

DgT(e,d, 7, ¢ )] = Lar.e () = DpNar (677 7)[¢]
By definition of Ng r . (see (3.3))

DgNa 7 o(¢*7) W] = 11" o "

1 PR
o (70 TP ) = £ PUD )
p+1 -1 p=3 —5iy p=3, —piy 1
+TZ[%‘J‘<|M PPU + ¢l T |y T PU + 5| (g T PU + ) (g T PU; A+ )
i
— =1 S p—1
= (u; 7 PU) T (py P PU) T ),
p—1 -1 =3, —3ly p+l
+TZﬂz‘j I, " PU 4 @il 2 [y " PUj + ¢4 2
i

- =3, —ig pt1
= " PU)E (py T PUG) R i
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Then, if N =3 (i.e. p =75), by the Lagrange theorem and using the fact that 0 < P.Us, ¢, < Us, ¢,,

1De NG - (65T W]l 1y 0.y < C

U gatils + |6l v

6
5

+ 30 (10054 6105+ 16311 o sl + 105 + bl 105 + kel ol 951
i

+wmw+mmeyww+mmw+mwwmw%ﬂ;
similarly, if N = 4, using the fact that p — 3 = 0, we find

D NG 7 (YT ]l 111 00y < C Uiditpilg + || il

4
3

+ <|Ui¢ﬂ/fj|g +10iUjls + [9id59;|1 + |Ujd¢0il 2 + |¢?¢i|§>]-
i

In order to estimate the right hand side, it is not difficult to apply the Holder and the Sobolev
inequalities, as well as the estimate in Lemma 3.3, to deduce that

(3.27) HD¢N§1,T,5(¢d)T7€)[¢]HH%(QE) = 0(1)||1/’||Hg(525)7

where o(1) — 0 as e — 0 (in particular, we use the fact that |U;|2« < C, and ||¢;]| — 0 as e — 0).
Using (3.27) and (3.7), we infer that if DeT(e,d, T, % 7)[b] = 0, that is

Ld,‘r,a(,l/)) = D¢Nd,‘r,€(¢d7"-1€)[¢]7
then
Cllbll ai .y < oMWYl a1 (0.

which finally implies that @ = 0. This means that DgT(e,d, T, p* ™) is injective for ¢ small
enough and, as observed, this suffices to complete the proof. O

The following lemma completes the proof of Proposition 3.1.
Lemma 3.5. There exists € > 0 small enough and a constant C' > 0 such that
d,7.e N=s d,r,e N=2
IVis.e)0" " iy < Ce = [[Vano " lluiq.) < Ce 2
for every e € (0,¢) and (d,T) € X,,.

Proof. The equivalence of the two inequalities follows by the chain rule and by the ansatz (2.5).
Let s;n = 6; if h =0, and s;5 = & if h =1,...,N, with ¢ = 1,...,m. We differentiate the
equation

(328) Ld7"',8(d)d77—7€) = Rd,-r,a - Nd,‘r,a(d)dﬂ-)a)u
with respect to a variable s; 5, and we obtain
Os, L7 c(647°) + La 7 (05, 67°)
=05,y Rare — 05, Nar o(947°) = DgNa r o (¢477)[0s, , 7).
We claim that
(3.29) ||3si,h,Ld,7-,s(¢d’T’€)||H3(QE) + 1105, Rar el ma ooy + ||85i,h,Nd1T1E(¢d7T)8)|‘Hé(QE) <Ce =
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With this estimate in our hands, the thesis can be easily proved. Indeed, by (3.27) and the
inequality in Lemma 3.2, we deduce that

O|‘85i,h¢d77-)8| < |‘Ld17'75(85i,h,¢d77-7€) - D¢Nd7775(¢d)1—7€)[851',h¢d)T7€]H
T T N-=3
<05, L e (@) + 105, Rarell + 105, , Na7 o (9477)|| < Ce™7

The validity of (3.29) can be checked by direct computations, and the details are presented in
Appendix E. O

4. THE REDUCED PROBLEM

In this section we solve equation (2.7) with ¢ = ¢&7°.
Let J. : HY(Q:,R™) — R be defined by

1 & 2 pt1 pt1
(A1) T ) = /Q 3 VUl =Pl == 30 Bl F |
i=1 1<i<j<m
where ' : R — R, t + (t7)PT1/(p + 1) is the primitive of f. Critical points of J. are solution to

(2.1), and hence solutions to (1.4) (here we use the fact that 8;; = 5i).
Let us introduce the reduced functional J, : X, — R,

€

1 1
JE(dv T) = JE (/1‘1 v P€U51,51 + ¢?7T’87 e 7:“’7711)71 P€U5m75m + (b:lr“:-’-)a) .
In order to simplify the notation, from now on we often write

1
dar, — 5t dr,
VT =y T PUs g + 95T

3

Lemma 4.1. There exists £ > 0 sufficiently small such that if (d,T) is a critical point of J., and
e €(0,&), then

a1 a1
(ul PP Us e+ 0T i PoUs e + d)ﬂ{m)
is a solution to (2.7), and hence a solution to (2.1).

Proof. We start observing that, denoting by (-,-) the scalar product in Hg (£2.), we have

0J. B d.J.
0% 4.m) = Va2,
= \/ng (Vd,‘r,a Vd’T’E) 8¢?’T’8 (9(;52{7"5
5 1 s Vim 85Z geeey 85Z

.
+ \/Eazt]s (Vldﬂ-)aa ) vay‘r’s) |::ui o P51/)l(5)i75i:|

m d,r,e

o pt+1 p—3 6¢ o
_ \/gz <de,-r,a —i Mkf(vkd,-r,a) + Zﬁkj“/jd,-r,glp2 |de,-r,a|P2 de,-r,a , 55 >
k=1 j#£k v

% pt1 p=3 -1
+ \/g <V;d,-r,a —i Mif(v;d,-r,a) + Zﬁijn/jd,-r,a'l?z |Vvid,-r',5lf’2 Vvid,-r,a Iy P 1P8wgi)£i>
J#i

By Proposition 3.1, we know that the projection of VJ.(V;¥™¢, ..., V47<) on Ké‘ms is 0. This
means that the terms in left position inside the brackets are linear combination of the partial
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derivatives Paz/Jgk’ ¢,» and hence the previous chain of equalities can be continued in the following
way:

8J 8(}5(17-5 1
7, (4 7) \/—Z<ZCHPE% & >+\/_<Zczepa%k gt T Pet, £z>
k=1 \{=0 =0

Now, let (d, ) be a critical point for J.. We have then (multiplying by /g)

8(}5‘1 T, N 1
(4.2) € Z <Z Ck gPs%k e~ — ) TE Z Ciepﬂ/)gk,gkv#i r 51/121»,51» =0.

£=0

In the same way, if we compute the derivatives with respect to 7 5, (h = 1,...,m) and we evaluate
them in a critical point, we obtain

m N 8¢d T,E N 1
(4.3) ey <Z PV e T > +e <Z P ity T aw§i1£i> = 0.
k=1 \¢=0 ih

£=0

Letting ¢ and h vary, (4.2) and (4.3) provides us a linear homogeneous system of m(N + 1) equa-
tions in the m(N + 1) unknowns cf,. We aim at showing that the system has only the trivial
solution; this means that also the projection on VJE(Vld’T’E, e V,g""’g) on Kq - vanishes, i.e.
VI (VAT vATe) = 0in HY(Q.), and completes the proof. Thus, we consider now (4.2) and
(4.3), and we show that the matrix of the coefficients is invertible for ¢ small enough.

The last term in both (4.2) and (4.3) can be estimated as in step 1 in Lemma 3.2: recalling that
e~ 6? as € — 0, we have for h=0,..., N

N
(4.4) <Z ¢ ePs‘/’ak £khuz w 5¢61,5Z> =p; U onne; nto(l) Z Ci 05

£=0 0+£h

as e — 0, with opp, > 0 defined by (3.11). Let us now consider the terms involving the derivative of

¢2ﬂ'v€ . By Lemma 3.5, the Cauchy-Schwarz inequality, and recalling again that 62| P.y)§. [ @)
&l H (.

o, we deduce that

a(bd,r,s
0 %
<P€¢6i7£i7 851 h >

where we used also the fact that §; ~ 7. The same estimate holds if we consider the derivatives
with respect to d;, ¢ = 1,...,m. Thus, plugging (4.4) and (4.5) inside (4.2) and (4.3), we infer that
the matrix associated to the system is strictly diagonally dominant, hence invertible, and being
homogeneous has only the trivial solution. As observed, this completes the proof. O

ad);ﬁl,-r,s

< O || Py, e, HI(Q0)

HY Q)

Due to Lemma 4.1, in order to complete the proof of Theorem 1.1 we have to find a critical
point of the reduced functional J. in X,,. In this perspective, we need the asymptotic expansion
of JL(VATE . VA7) as e — 0F. We introduce the real numbers

1 1
(4 6) bl — €V+ dy b2 . Z])VJF / dy
N Jan (L+[y2)N 2 Jry (1+]y2)




22 ANGELA PISTOIA AND NICOLA SOAVE

and the functions I' : RV — R, ¥ : X, — R defined by

dy
I'(z) :—/
(47) Y |y + 2[N=2(1+ |y)2) =
' -2 p+1, N—-2 (s
=3 ey R T
, 2 AN 214 |m)2) 2

Proposition 4.2. We have

J.(d,7) = (Zuzr’ 1)bl—i-\lf(d T)e 2 —l—R(d,T),

i=1

with Re = o(e N'f) Cl-uniformly in X, as e — 0.
Here and what follows, we write that f- = o(¢®) C*-uniformly in X,, as e — 0 if

fim | feller(x,)

e—0 ex

=0

The proof of the proposition takes most of the rest of the section. In order to keep the notation
short, in what follows we sometimes write P, U;, V;, ¢; and || - || instead of P., Us, ¢, , Vid’T’E, gb?’d”s
and || - || g1 ., respectively.

Let 1., : H}(S2:) — R be defined by

L) = [ 1VaP = [ uP), L= L,
Q. Q

€

Then, by the Lagrange theorem,

T):Zla,ui( p+1Z/ ﬁz]|V|p+l |P+1

1<J

_ZM +11 (PU;) + Z/ 24, 7~ IV(PU) Vo + |Voil?

- Z I (P P+ 00— P 7P )

(4.8)
p+1
25 [ PRI
1<J
_Zﬁm/ <|.Uz "' PU; +771¢1| |/LJ - IPU +773¢J| ¢J

1<g
+|M,LP 1‘P(] +771¢1| 2 |MJP 1—P[] +77]¢]| ¢Z>

where 7;,7; denote continuous functions with values in [0, 1].
We start considering the asymptotic expansion of I.(P:Us, ¢, ).

Lemma 4.3. For everyi=1,...,m, it results that

angrl,rinQ F(Tl) ] EN—Q N-2

2 a PP

I.(P.Us, ¢,) = by + |boH(a;, a;)dY % +
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as € — 0, Ct-uniformly in (d,T) € Xy, where the real numbers bi,by > 0 and the function
I':RY — R are defined by (4.6) and (4.7).

Proof. At first, using the definition of P.Us, ¢,, we observe that

1 1
IE(P8U6i7£i) = 5/9 PEU&,&U(?I-,& - m ‘/Q (PaUéi,ﬁi)p-"_l
1 1

1
=|s—-—— urt! —/ U? . (P.Us, ¢, — Us. ¢.
(2 p+1>/95 6i75i+2 o 61',&( eUs; ¢, 51751)
1
9 Cp+1 /g (PUs,e)"" = Uc;;)i—j_&li)

1 1
— U”“——/ U? . (P.Us, ¢, — Us, ¢,
N/sE bt 2 Jo 50,6 (PeUsi e = Usi )

- g/g (Usi e + 0i(P-Us, e, — Us, )P~ (P-Us, e, — Us, e,)?

for a function n; with values in [0,1]. Now we estimate separately the three terms on the right
hand side. Recalling that Q. = Q\ J; Br,=(a;), the first term gives

dy e\
g e [ no((2) ).
(4.10) /ga Sugs T ON 2—e (L4 [y[)N ' o ’
To treat the second term, we use Lemma A.1 (R = R. 4, 1, ):

/ ng',fz‘ (P5U5ivfi - U‘sivfi) = a?\l/ R515iv§i Ugi,fz‘
Q.

€

(4.11)

N-—-2

e N-2
No2 6, * i€
- o/”“/ 5,2 H(x, &)+ — _ < : ) Ur . .
N Je. (1+|r2)"=" \|z—q| birki

Now, by dominated convergence

N2 o H(& + 6y, &
| o Heweug, = [, vt g,
€ —5;

(4.12) (L+[yl?)=
= boH(ay, ai)éfv_z + o(6fv_2),
and
5;¥ rie \V 2 »
/QE 1+ |m2) = (I:r - al) Usie
(4.13) -t <E>Nz/ dy _
1+[m?)7= \d Seti |y + N2 (L4 [yf?) 2

k3

_ (3>N2 W) (3)“
d; (1+|m:[2) = d; ’
as € = 0. Also, by Lemma A.1 the term with R. s, ¢, is of lower order with respect to those in
(4.12) and (4.13), and can be absorbed in the small o therein.
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Since §; ~ €2, it remains to estimate only the last term in (4.9), and this can be done using [14,
Lemma 3.2]: as 0 < P.Us, ¢, < Us, ¢, we have

/ (Us,e, +i(PeUs,e, — Us, e,))P ™ (P-Us, ¢, — Uai,fi)2|
Qe

_ N—2
= C/ UL (PUs,e, — Us,e))* =o(e77)
Vo

€

Collecting all the previous computations, we infer that the expansion in the thesis holds C° uni-
formly as € — 0. The estimates for the derivatives can be obtained in a similar way. O

Coming back to (4.8), we now show that the other terms are perturbation of I (P.Us, ¢, ).

Lemma 4.4. Let Ry, : X,, = R be defined by

m

- _ 2
Ric(d,7):=Jo(d,7) = p; " I(PeUs, g,).
i=1
Then Ry = 0(5¥) C'-uniformly in X, as e — 0.

Proof. Using the definitions of PU; and of F', we have

1 1 1 1
[5/ 2u; "'V PU; -V —/ Wi (F(Mi "UPU A+ ¢i) — F(uy; plPUi))
Q

€ €

(4.14) _ / 1y I (UP — PUP):

€

1 1 1
= [ (PP 00 - P PO — P T P
Qe

The first term on the right hand side can be controlled using Corollary A.2, Lemmas A.4, A.6 and
A.7, the fact that 0 < PU; < U;, and the Holder and the Sobolev inequalities:

/ (UF — PUP);| < © / UL\ PU; - Uyl
Q. Q.

, Ni2
N (NTD 5N72 5»§N_3 o
<ol v L R .
<c(f v S = ) I
S
N+2 2
N—2 8N 2N 37 U_(N*2)(N+2)
<0y, (/ Ui(N2)(N+2)) il + 67" / — v [l ]|
Q. Qe |x — ai|N—+2

N+2

N+2
N2 N(N-2)\ 2N 3N-3 [ N\ NV _ N2
<co” (61- o ) o | + Co; (61- o ) loill < C6N 2l ill = o(=™7)

uniformly in X, as € — 0, where the last equality follows by Proposition 3.1. Regarding the second
term on the right hand side in (4.14), by the Lagrange theorem there exists a function 7; with
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values in [0, 1] such that

J.

__1 _ 1 __1_
F(p; " " PU; + ¢i) — F(p; "' PU;) — F'(p; * ' PU;) ¢

= [ PG T U o0l <€ [ (UG )

SE

3. < OUBgil3 + Cllal) >

sc/zﬁ*ﬁ+cm
Qs

N—-2

=)

2= o(e

< Cllgill* + ll¢s

uniformly in X,, as ¢ = 0. To sum up, the left hand side in (4.14) is o(e NQQ) uniformly in X, as

e—0.
To estimate the other terms on the right hand side in (4.8), we use Lemmas A.6 and A.8, the
fact that 0 < P.Us¢ < Usg¢, the ansatz (2.5), and the estimate in Proposition 3.1:

N-—2

2),

1 P+l NN N N
/ PU, % PU,> S/ U2 U <067 67 (|logdi| + [ log 6j]) = o(e
Qe

- 1, —rig p=1
A l; P PU+migil 2 |y P70 PUG +md5] 2 (95

ptl  p—1 pt1 p=1 21 pt1 pt1 pt1
< [ (UFUT o+ 160 U T 0]+ UT 6 F 410 03]
Q.

N+2

N+§N]2Vf2 N+24NN72 E ptl E
<o [ v mur ) T o b clodE 105 ol
: bt ph byl opit
+ CUily2 |pjl02 + C+ |dilo? |d4le?

N-—2

2),

ptl ptl ptl ptl
< €86 163]1 + Cllgill 451l + CllggI ™ + Cllgnll F 511"+ = ofe
and analogously

N-—2

=)

—=1 1, - pt1
A I, "7 PU 4 migi| 2 |y "7 PUG +m;05] 2 [¢i] = o(e

uniformly in X, as e — 0.
Collecting together the previous estimates, we deduce that Ry . = o(e =) 2) CO-uniformly as

€ — 0. The estimates on the derivatives can be obtained in a similar way. O

Proposition 4.2 follows from Lemmas 4.3 and 4.4 straightforwardly, and allows us to complete
the proof of Theorem 1.1: we show that for every € > 0 small enough the function J; has a critical
point in X,,. A crucial lemma is the following.

Lemma 4.5. The function U defined in (4.7) has a non-degenrate critical point (d,0) € X,
provided n > 0 was chosen small enough at the beginning.
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Proof. We have
_ 2
o T T
2 AN 1+ )t
2
Bl T N2 < ., T(m) (N = 2)T(73)7in
: _ .

_ N i i
Oran A7) = = g (1+Inf) %

04,9(d, T) = (N — 2)u, *~ lbg (ai,a;)dY =3 — (N —2)

L+ |nf2) 5=

As proved in [14, Lemma 4.1], the function I" has a non-degenerate maximum in 0 (the Hessian
matrix is diagonal with all negative entries), and hence we deduce that for every d

V,¥(d,0) =
Thus, to find a critical point of W, it is sufficient to find d with n < d; < n~! for every i such that
Va¥(d,0) =0.

The existence of such critical point follows straightforwardly by the fact that

) . _ bi2
- Zgi(di)v with  gi(d;) = biad) % + g2

for suitable positive constants l;iyl, lN)l-_yg, so that d — ¥(d,0) admits a global minimum d in the set
{n < d; <n~1} (at least for n > 0 small enough).

Now we show that (d,0) is non-degenerate. The Hessian matrix D?¥(d, 0) can be divided in
blocks in the following way:

o~ ( D2¥(d,0) (0,4, 2(d, 0))
vao=( Gl B )

Recalling that 0 is a non-degenerate maximum for the function I', it is not difficult to check by
direct computations that the matrix D2W(d,0) is diagonal and negative definite. Moreover, for

every i,j = 1,...,mand h = 1,..., N we have 0, , 4,¥(d,0) = 0, and hence to prove the non-

Ti,h>

degeneracy of (d,0) it remains only to analyze the block D3¥(d,0). It is clear that this is another
diagonal matrix, with

agr? I‘( )

adi,dilll(da 0) Eb2H(au az) +6—— 2,“1' d;l it N = 47
and
i [
84,.0,0(d, 0) = 20‘371 L
our
In any case, D(Qi\IJ(CNI,O) is diagonal and positive definite, and hence we deduce that (&,O) is a
non-degenerate saddle-point for W. 0

Conclusion of the proof of Theorem 1.1. Thanks to Lemma 4.1, we prove that for € > 0 small the
function J. has a critical point in X,,. By Proposition 4.2, this amounts to find a solution of the
algebraic system

{vd\p(d,f)a¥ +V4R.(d,T) =

0
V,U(d, T)e" T (d,7)=0

)
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N-—2

with VaR:(d,7),V+R.(d,7) = 0o(c"= ) as € — 0, C%uniformly in X,,. The previous system can
be rewritten as

Va¥(d,7)+ g1(d,7,e) =0
V:U(d,7)+ g2(d, 7,6) =0,

with g1, g2 = o(1) as € — 0, C%-uniformly in (d, ) € X,,. Now, let us define the two maps

_( Va¥(d,T) _( Va¥(d,T)+g1(d, T,¢)
Ao(d, 7) := < Vou(d 1) ) Are(d, 7) = ( V(A ) + ol ) )

The zeros of A;. are critical point of the reduced functional ja, and hence gives solutions to

(1.4). By Lemma 4.5, we know that Ao has a zero in (d,0), and by non-degeneracy there exists a

neighbourhood U C X, of (d,0) such that (d,0) is the unique 0 of Ag in U, and deg(Ag, U, 0) # 0.
Let H. : [0,1] x U — R™ x RY™ be defined by

R g1 (du T, 5)
H.(t,d,7):=Ao(d,7) + ¢t ( o(d, T.2) ) .
This is an homotopy between Ag and Ay ., and since g1,¢92 — 0 as ¢ — 0 uniformly in X,, is
such that H.(¢t,d,T) # 0 for every t € [0,1], (d,T) € 9U, at least for ¢ > 0 small enough. As a
consequence, by the homotopy-invariance property of the topological degree, we conclude that

deg(Ao,U,0) = deg(A16, H:(1,U),0) # 0,

and hence A . has a zero in H(1,U). That is, J. has a critical point, as desired. This completes
the proof of the existence of a solution (uj e, ..., Um,) to system (2.1).

It remains to show that, if necessary replacing § with a smaller quantity, u;e > 0 in Q. for
every %, so that in particular (uy e, ..., Um,) solves (1.4).

We start from the case N = 4, in which case we have 3;; < 3 for every i # j. This case can be
treated exactly as in [23, Conclusion of the proof of Theorem 1.1]. !

Regarding the case N = 3, the positivity of the solutions (without any assumption on §;;) can
be obtained replacing system (2.1) with

pt1

A — 115 F s RO T PPN = S TR =l S
(4.15) {Auz pif (i) + 3252 Biglus 2 |uil 2w in Qe

i=1,...,m.

u; =0 on 0f).,
The key fact is that for N = 3 the interaction term on the right hand side is of type F(z,y) =
|z|z T |y|®, which is of class C!, so that the proof we used to deal with system (2.1) in dimensions
N = 3,4 can be used word by word to produce a solution to (4.15) with u; . # 0 for every i. This
immediately implies (by the classical maximum principle) that u; . > 0 in .. g

Remark 4.6. We stress that the strategy to prove the positivity of ;. in dimension N = 3
does not work in dimension N = 4, since for the problem in R* the interaction term is of type
F(x,y) = x*y?, which is not C*. We needed the smoothness of F' to prove Lemma A.5, which is
the key ingredient to estimate the nonlinear part for the equations in ija.

5. PROOF OF THEOREM 1.2

We start with some preliminaries about the shape of the approximate solution.

N—2
ISome careful is needed, since to apply the argument in [23] it is required that in the bound ||| < Ce 2 ,

given in Proposition 3.1, the constant C' > 0 is independent on the particular choice of §8;; with —oco < 8;; < 8.
Going through the proof of Proposition 3.1, it is not difficult to check that this is possible.
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5.1. Some preliminaries. Let us consider the 2 components system

—Av = /Ll’U% + 6121)11)% in R*

—Avy = pgvi + Bravivd in R?

v1,v2 >0 in R*
D1’2 R4

V1,V2 € ( )7

(5.1)

and let us search for solutions of the form (v1,v2) = (c1U, c2U) (where U = Uj o is a standard
bubble in R* centered in 0 and with § = 1), with c;,co > 0. This ansatz leads to the algebraic
system

(5.2) pict + Pracs =1, Bracf + pach = 1,
which admits the solution

[312 — M2 2 512 — M1
5.3 2= -, C5i=
( ) ! B? — papio 2 B2 — pipe

if either —\/p1pe < B12 < min{py, pa}, or B2 > max{u1, ua}.
Let us consider now the linearization of (5.1) in (¢1U, c2U), namely the linear system

(5 4) —Avl = (3,&10% + ﬂlzcg)U21}1 + 2ﬂ126102U2’02 = U2(04111)1 + 04121)2) in R4
' —Avg = 26120102[]2’01 + (3#203 + ﬁlzc%)U2’U2 = U2(0421’U1 + agg’l)g) in R
where

(5.5) ar1 = 31165 + Biacs, g = qop i=2PB12c1Ca,  Qoz = 3puacs + Biaci.

We introduce the 2 x 2 matrix M := (a;);,j=1,2, with eigenvalues

a1y + ag + /(a1 — a2)? 4 4ai, Ny = a1 + g — /(11 — a2)? 4 4ai,
2 ’ 2 '
Using (5.2), it is not difficult to check by direct computations that A; = 3.
We consider now the eigenvalue problem:

—Av = vU?, v € DM2(RY),

(5.6) Ay =

It is well known (see [4, Lemma A.1]) that there exists a sequence of positive eigenvalues {vy} with
l=1<3=1r<ryy< <V <Vpgp1 <...,
v — +00.

Lemma 5.1. Let (e1,e2) be a non-trivial eigenvector of the matrix M associated with Ao. If
A2 # vy for every k, then the set of solutions to the linear system (5.4) is 5—dimensional, and is
generated by

(62’_61)1/}?70 h=0,1,...,4
(where 1/}{‘70 have been defined in (1.14)).

This lemma is a particular case of the forthcoming Lemma 6.1, to which we refer for the proof.
Notice that in Lemma 5.2 we express the generators of the set of solutions to (5.4) as elw{l)o, with
e; eigenvector associated to the eigenvalue A\; = 3, while here we use an eigenvector associate to As.
This is possible since, being eigenvectors associated to different eigenvalues orthogonal, (eq, —e1)
is indeed an eigenvector for A\; = 3.
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Proposition 5.2. Under the assumptions of theorem 1.2, the set of solutions to the linear system
(5.4) is 5—dimensional, and is generated by

(e2,—e)ly  h=0,1,....4
(where 1/}{170 have been defined in (1.14)).

Proof. Notice at first that Ao < A\; = 3. Then, by Lemma 5.1, to complete the proof is sufficient
to show that Ay is different from the eigenvalues v. Since s < 3 and 1 = 11 < vy = 3, we have
to check that under the assumptions of Theorem 1.2 it results Ay # 1. Using the definition of a;;
and the one of ¢q, ¢o, it is not difficult to check that

6 — 28(ct + c3) + 2B(ct + c3)

)\112 = 2 .
If )\2 = 1, i.e.
2 _ _
1=3_ 2[312 [3122 M1 — M2
B? — papi2

then it is not difficult to infer that either S15 = p1, or B12 = uo. Since in Theorem 1.2 we suppose
that either B2 < min{uq, po}, or B12 > max{u1, ua}, we have Ay # 1, and the thesis follows. O

5.2. The reduction scheme. Once again, we search for solutions of (2.1), which can be rewritten
as in (2.2):

- ptl,  p=3

up =1 Mif(ui)+2ﬁij|uj| T |ui| 7wy

J#i
Let n € (0,1) be small, and let
(5.7) X, ={(d,7) = (d1,ds, 71, 73) ER* x (R*)*: p<dy,ds <n ', |ml|,|ms| <n'}.
Our ansatz is that
ur = c1PUs e, + @1, U2 =coP.Us ¢, + @2, uz=c3P.Us; e, + @3

where for some (d, T) = (d1,ds, 71, 73) € X,, we have

51' = dl\/g, 51 = ai—f—di\/ETi, = 1,3

Even though we have to deal with only 2 parameters d;, d3 and two vectors 71, 73, in order to
simplify the notation it is convenient to introduce dy = d; and 79 = 7. Analogously, we often
write 62 = 51 and 52 = 51.

Plugging the previous ansatz into (2.2), our problem is transformed in the research of d;, 7;

1

and ¢; such that (2.6) is satisfied (with ¢; instead of y; *~*) for i = 1,...,m, with each equality
which takes place in Hg(€2.). To proceed, the idea is again to split the space into two orthogonal
subspaces, one of them having finite dimension. But in doing this we take into account that u;
and ug are concentrating around the same point. Then we define

Ky = Kg, 7, == span {(e2, —e1) Py}, ¢, - h=0,...,N} C Hj(Q:,R?),
K3 = Kg, 7y ==span {P00}, .+ h=0,...,N} C H}(Q,R)
Kd,‘r,s = Kl X K?n

where (e1, e2) is an eigenvector with norm 1 of the matrix M associated with Ag (defined in (5.6)).
Notice that Ki‘m-: = Ki x K5
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If, for i = 1,3, the symbol II; = II5, ¢, - (resp. I} = Hi,gi,s) denotes the orthogonal projection
H} () — K; (resp. H}(2.) — K1), then (2.6) can be further rewritten as a system of 4 equations.
1

We have (2.7) and (2.8) for i = 3 (with ,uj_E replaced by ¢;), together with
I (c1P-Us, ¢, + ¢1,c2P:Us, ¢, + $2)

)

=1L (l* [le(clanél,ﬁl +¢1) + ZﬁlﬂchaUaj,gj + ¢j[*(c1 P-Us, ¢, + 1)

(5.8) #1
i* [sz(wPaUal,a +¢2) + D Pajle; PUs, e, + 65> (caPeUs, &, + ¢2)1 ) ;
i#2
and
I (c1 PeUs, ¢, + ¢1, 2 P-Us, ¢, + ¢2)
59) =TIy <l* [mf(ClPaUél,sl +61) + > Bijle; PUs, e, + 652 (cr PUs, e, + ¢1) |
. j#1

i* | paf(c2aPUs, ¢, + ¢2) + Zﬁ2j|CjPaU5j,5j + ¢ (c2P-Us, e, + 02) );
i72

5.3. The equations in Ki_,_ﬁs. The equations in Ki_,_ﬁs can be still expressed in the form

(5.10) are(®) =Nar.(¢)+Raq,. i=13

where for ¢ = 3 the linear and nonlinear part and the remainder term are defined as in (3.2), (3.3),
(3.4), while for i = 1 we have

(5.11)
Lyr-(¢) =

I <¢1 — i [le/(clanél,&)(bl + Z Brj(c;PUs, )21 + 2 Z Blj(CjPaUaj,gj)(01P5U51,51)¢j] :
i1 i1

¢o — i luzf’(wanél,a)% + D Baj(cjPels,e,)*d2 +2) sz(CjPaUéj,zj)(C2PEU51,51)¢J‘] ) :
72 72
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(5.12)
Ngr-(¢) =

Iy (l* [le(clpsUél,fl + ¢1) = f(aPUs, ¢,) — pn f'(c1 P-Us, ¢, )1

+ 3 Buyle PoUs, ¢, + &2 (1 PoUs, ¢, + ¢1) — Buj(e; PUs, ;) (e1 P-Us, )
71
— > B1(¢;PUs, 6,) 1 — Qﬂlj(CszUéjyfj)(ClpsUél,El)@] ;
i#1
i [sz(@PsUél,El + ¢2) — p2f(c2PeUs, ¢,) — paf'(c2PeUs, ) 2
+ Y Bajle PoUs, ¢, + &> (caPeUs, ¢, + 02) — Boj(¢; PUs, ;) (2 P-Us, )
i72
— Y Ba;(¢;PUs, ¢,) o — Qﬂzj(CszUéjyfj)(02P5U61,£1)¢j] >
i72
and

c1(P-Us, e, — Us,e,) + Bi3(csPeUs, e,)* (1 PeUs, )

3

)

1 N o A
Rd,‘r,s - Hl <Z

(5.13)

i*

c2(PeUs, ¢, — Usye,) + Bas(c3PeUs, ¢,)* (c2P-Us, ¢,)

where we used the definition of ¢* and the equations (5.2) defining ¢y, .
We define
1 3 1L 1L
Ldﬂ',E = (Ld,-r,sa Ld,-r,s) : Kd,‘r,s - Kd,-r,sv
and Rq,+. and Ng -, in an analogue way.
The main result of this subsection is the counterpart of Proposition 3.1 in the present setting.

Proposition 5.3. For every n > 0 small enough there exists B,& >0 small, and C > 0, such that
if e € (0,8), and —oo < 3, B2z < B, then for any (d,T) € X,, (see (5.7)) there exists a unique
function ¢ € Kj-)_,_)a solving the equation
Lare(¢) = Rare+ Nare(d)
and satisfying
||¢d’T’€||Hg(Q€) < Ce.

Furthermore, the map (e,d,T) — ¢ s of class Ct, and
d, 7,
V@70 " |lui . < Ce.
For the proof, we start studying the linear part.

Lemma 5.4. For every n > 0 small enough there exists B,e0 > 0 small, and C > 0, such that if
€ € (0,e0), and —oc < Bi3, B2z < B, then

Lare(@lmzn = Clldlluza, Vo € Hy(Q,R?)
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for every (d,T) € X,. Moreover, Lg r . is invertible in Kj‘ms, with continuous inverse.

Proof. The proof follows exactly the same sketch of that of Lemma 3.2. We suppose by contradic-
tion that there exist sequences

{en} C R*, e, =0, {(dn,m0)} C Xy, {Pr, = ((P1,0,B2,0), P3,0)} C Kll,n X Ksl,n
such that

lonllmy.,) =1 and |Ln(@.)lmy0.,) =0

En En)

as n — 0o, where we adopted the same short notation as in Lemma 3.2.
Let h,, := L, (¢,,). Then we have three equations for ¢1 ,, ¢2.n, ¢3.n, completely analogue to
1

(3.8) (with ¢; instead of u;ﬁ), but with (w1 pn,wer) € K1n, Ws.n € Kap.

Step 1) [|winllmi(q,) — 0 asn — oco.

The argument used in Lemma 3.2 immediately implies that |[wsn|lg1(q,) — 0. Regarding wi
and ws ,, we multiply the first equation with 67wy n, the second equation with 67, ws ,, and we

sum the results. Since (¢1,n, P2.n)s (F1,n, hon) € Kf:n, and recalling the definition of a;; given in
(5.5), we obtain

8% n(lwinll?® + lwanl?) = / 3(PoUs )2 (B1301,nW01,0 + Bosda o n)

n

(5.14) +/ c3(PnU1n) (PuUs ) (181303010 + 282303 nwa,n)
Q

+ 5%,1 / (PoUn ) (01161 nw1 n + a12(d2.n W1 5 + G1.nWa.n) + Q2ad2 nW2.n).

In this equation, the first and the second integral on the right hand side can be treated as terms
(II1) and (IV) in (3.9), and together give o(47 ,,) as n — co.
The integral on the left hand side can be treated developed as term (I) in (3.9), in the following

way: since (w1,n,ws2,) € K1y, there exists constants c}fn, h=0,...,4 such that
(5.15) (Wi s w2n) = chn ez, —e1) Pt 5
then, for oy defined in (3.11), we have
4
F n(llwrnll? + wanl®) = el ek, (€ + e3)(om + o(1))
1,k=0 ~
4 4
= Z(Cl n) Ohh + 0(1) Z c;.l nclfn
h=0 R, k=0

It remains then to analyze the last integral on the right hand side in (5.14), and in what follows
we prove that it gives

N
0(67 ) ([wrnll + lwa,nll) + O7,) >l -
1=0
Now, since (¢1.n, P2.n) € Kf:n, for every h

0= / GQV( nwl 'n,) Vorn — €1V( nwl 'n,) Vo n = 3/ U%,nw?,n(e2¢l,n - 61¢2,n)-
Q

n Qp
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Therefore, for every h

/ U12,n¢fn(041162¢1,n + ai2(e202,n — €101,0) — a22€102.1)

n

= / 0411U127n1/1fn(62¢1,n teipan) + / 0412U12,n1/)fn(62¢2,n —e101,n)
Qn Qp
2
—/ Ui ¥, (e102,n £ €261.n)
Q'Vl

= / (arrer + arze2) UL 7 d2.m — / (a1ze1 + agzea) UL 01 1
Q'Vl

n

[ UR i (crdnn — eann) =

n

where we used the definition of «;;, see (5.5). In turn, using (5.15), we have
(ﬁn/ (PoUr n)? (011610 w1 0 + a12(d2 nw1 5 + G1.nWa ) + 2ad2 nw2,n)
Qp

= 5%71/ (PoUrn)? = Urn)*(@1101,0w1 0 + @12(P2,nw1 0 + $1nw2n) + Q2202 w2 )
Q.

4
h h h
T / Ut n(Putt = 01 p)(@11eadin + arz(eadon — e1¢1,0) — a22e102,0),
Q
h=0 n

and hence we can proceed exactly as in (B.3), deducing that

5%71/ (PoUr,n)* (1161 nw1 0 + @12(h2,nw1n + $1nW2,n) + Q2202 nw2.1)

2

N

= 0(81 ) (lwrnll + llwzall) + O(67,) D ¢l -
1=0

To sum up, we proved the analogue of the estimates (3.10) for the couple (w1, w2 ), and hence
we can conclude as in Lemma 3.2 that |w1 ||, [|w2n] — 0 as n — oo.

Step 2) For a fixed k = 1,...,m, we introduce

,n mn Z:l

yERN\ana Y

K Kk, 7,n\SK,n K,n . K,n

In a completely analogue way, we define Bfn and wf,. Proceeding as in step 2 of Lemma 3.2

(with minor changes), it is not difficult to check that ¢} ,,, 3 ,,¢3, — 0 in DV(RV) as n — oo.

The only difference with respect to Lemma 3.2 is that this time the weak limit ((;NS (;NS%) solves the
)

system (5.4) instead of a single equation, and hence the fact that (¢!, 4L) = (0,
Proposition 5.2 and the condition (¢1 p, ¢2,n) € Kf-n

comes from

Step 3) We prove that [¢inl g1 (q,) = 0 as n — oo for every i. Regarding ¢3,,,, we can proceed
as in Lemma 3.2. We focus then on the other components. We test (3.8) with ¢1,,,: recalling that
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{¢1,n} is bounded in H}(€2,) and that wy ,, h1, — 0 strongly, we deduce that

|wmm%mﬂ:ouy3/(Rﬂmfmuﬁm+auwm@@
(5.16) n
+513/ (CBPnU3,n)2¢%,n + 2523/ (1 PoU; n)(e3PoUs )1 n®3.m

n Qn

The second and the third integral on the right hand side can be treated as in Lemma 3.2. Notice
that here we have only to ask that (813 is small enough (we don’t need any assumption on f12).
Now, to estimate the first integral in (5.16), we observe that as in (3.17)

/<Bﬂmfﬁm%a

2%

and moreover

/ (PnUl,n)2¢1,n¢2,n
Qn

< C/Q Uﬁn|¢1,n| |p2,n

2 71 71
=C [ Uioby 93, —0
Ql,n
as n — 0o, since gﬂn, g?)%n —0in L%(RN) by step 2, and U7, € L= (RY). Thus, we infer that
[¢1,n]l — O; in the same way, ||¢2,| — 0, and we reached the desired contradiction.
We stress that, while we have to suppose —oco < (i3, f23 < 3, no assumption is needed on Si2.

Step 4) Invertibility of Lqg .. This can be proved exactly as in Lemma 3.2. O

The rest of the proof of Proposition 5.3 is now a straightforward modification of that of Propo-
sition 3.1, and hence is omitted.

5.4. The reduced problem. In this section we solve equation (5.8) with ¢ = qbd"'"s. In what
follows we use the notation
VAT = G PUST + 0077 i=1,2, Vi = e PUST + 057
Let J. : H} (92, R3?) — R be the action functional, defined as in (4.1). Critical points of .J. are

solution to (2.1), and hence solutions to (1.4).
Let us introduce now the reduced functional J. : X,, — R,

Jo(d,m) = S (1 PUs, 6+ 607 @PUs, e, + 657 esPoUsy e, + 657

The counterpart of Lemma 4.1 in the present context is given in the following statement, whose
proof is omitted.

Lemma 5.5. There exists € > 0 sufficiently small such that if (d,T) = (d1,ds, 1,73) is a critical
point of Je, and € € (0,&), then

(ClP&U‘slvﬁl + (ZS?)T)a? caPUs, ¢, + ¢S)T7€7 csPeUsy ¢, + ¢g77—7€)
is a solution to (2.7), and hence a solution to (2.1).

Due to Lemma 5.5, we have to find a critical point of the reduced functional J. in X, and to
this aim we derive the asymptotic expansion of J.(V;27 V™2 V™) as ¢ — 0F. We recall
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the definition of b1,b2 and T', given in (4.6) and (4.7), but we modify the definition of ¥ in the
following way:

«
boH (a1, aq V=24 N1 -
o 20 dY P )

R P T(n) ]

2 A+ )

U(d,7) = (cf +c3)

P+1TN—2 F(Tl) 1

(5.17)

=+ Cg bgH(al, al)divi2

Proposition 5.6. We have

3

js(d,f)_<z >b1+\11(d e T + Re(d, ),

N-—2

with R = o(e~= ) C'-uniformly in X, ase — 0.

Proof. In this proof we omit the dependence of the functions on d, 7, ¢ for simplicity, and we write
Uy = Uz =Us, ¢, Us = Usy -
We proceed as in Proposition 4.2, noting that by (5.2)

=Y L) - g 2 [ sV

1<g

= S ety + }:/’ma (PUD) - Vi + Vil
- Z /Q wi (F(c; PU; + ¢;) — F(¢; PU;))
— o4 1 Z/ |ci PU;|?|c; PU; 2

_Z/ |CZPU +771¢z| le; PU;j + n;050;

1<g
+|ciPU; + mi9i|c; PU; + nj ;1> 65 )
= (¢} + 3)I.(PUy) 4+ 3 1.(PUs) + R ¢

(where 7;,7n; denote continuous functions with values in [0,1]). Then we can slightly modify
Lemmas 4.3 and 4.4 to obtain the desired result. g

Once that Proposition 5.6 is established, the conclusion of the proof of Theorem 1.2 is analogue
to the one of Theorem 1.1.

6. PROOF OF PROPOSITION 1.4

Let us consider a system

k
(6.1) —AU; =Y ByUiU7 i RY i=1,...k

Jj=1
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and let us suppose that it has a solution U; = ¢;U, with ¢; > 0 fori =1,...,k, where U = U, ¢ is
a standard bubble in R* centered in 0 and with § = 1. That is,

Z Byt =1, i=1,...,k
j=1,...k

We can linearize system (6.1) in D2(RY) around the solutions (c1U, ..., cxU), obtaining
(62) — A’Ui = 3@‘1'0? + Z ﬁijC? Vi + 2 Z BijCiCj’Uj []2 in R4,
Iz Iz
:1+2ﬁii(;12

with v; € DV2(R?).
It is clear that Proposition 1.4 follows if we prove that the condition

the matrix (8;): j=1,... .k is invertible and has only positive entries

implies that (6.2) has a 5-dimensional set of solutions.
To this aim, we observe that system (6.2) can be rewritten as

—Av=U*MvinR*, v:=(vi,...,v) € DH2(R,RF),
with M := Zd+ 2 C and

Biici  Pizcica ... Pigcick
Biacica  Paacd ... Bagcacy
Bikcick  Bakcack ... BrkCi

Let A be an eigenvalue of M and e an associated eigenfunction, i.e.
Me = Ae.

It is useful to point out that Ay is an eigenvalue of M if and only if O, := (A;—1)/2 is an eigenvalue
of the matrix C. It is immediate to check that © = 1 is an eigenvalue of C whose eigenvector is
(c1y...,ck). We set ©1 = 1, which implies A; = 3.

Let us consider the eigenvalue problem

—Av = vU?, v € DV2(RY).
It is well known (see [4, Lemma A.1]) that there exists a sequence of positive eigenvalues {v;, }men
with
l=11<3=1r <3< - <VUp<VUpt1 <... and v, — +oc.
The role of these eigenvalues when dealing with (6.2) is clarified by the following statement.
Lemma 6.1. Assume that, for any Aa, ..., Ar of M do not coincide with any of the eigenvalues

{Vm : m € N}. Then the set of solutions to the linear system (6.2) is 5—dimensional, and is
generated by

Yl er h=0,1,...,4

where ¢; € R¥ is an eigenvector associated with A1 = 3 and the functions 1/){170 have been defined
in (1.14).
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Proof. Let Ay be an eigenvalue of the matrix M and let ¢, € R* an associated eigenvector. We
multiply (6.2) by e, and taking into account the symmetry of the matrix M we get

—Aer-v) = Ay U?(ep - v) in RY
Since Ay # vy, for every m, we deduce that
¢eg-v=0forany {=2,...,k,
which implies (by the orthogonality of eigenvectors associated to different eigenvalues) that
v = 1)(x)e; for some function ¢ such that — Ay = 3U%) in R*.
The claim follows then by [4, Lemma A.1]. O

Conclusion of the proof of Proposition 1.4. As observed above, we have to prove that if (8;;) is
invertible and has positive entries, then the set of solutions to (6.2) is 5-dimensional. By Lemma
6.1, this amounts to show that if (5;;) is invertible and has positive entries, then the eigenvalues
As, ..., Ay of M are different from vy =1, vo = 3, v, > 3.

Let us argue in terms of the matrix C. By assumption, C has positive entries. Therefore
by Perron-Frobenius Theorem we deduce that the eigenvalue ©; = 1, which is associated to
the eigenvector of positive elements (cy,...,cx), is simple, and any other eigenvalue ©, satisfies
|©¢] < 1. Moreover, 0 is not an eigenvalue of the matrix C, since a straightforward computation
shows that

det C= —(ci-----c) det(Bij) #0
being (3;;) invertible. Therefore, A; = 3 is a simple eigenvalue, and we have that both —1 < A, < 3
and Ay # 1 for any £ = 2,..., k. This completes the proof. O

APPENDIX A.

In this section we collect several technical lemmas. We start recalling from [14, Lemma 3.1] the
point-wise estimate of the difference of Us ¢ and P.Us¢, as well as of their derivates.

Lemma A.1. Let a € Q, r > 0, and let n,e > 0 be small. Letd > 0 and 7 € RY be such that
n<d<nt |r| <n~l. Finally, let § = d\/e and € = a + 7. Let us define

N-—2

55 (14 |r2) = \lz—d|

Then there exists a positive constant C' > 0 depending only on 1 and on dist(a,d) such that for
any x € Q\ Byc(a)

2 1 N2
R(.”L‘) = P€U575(.’L') — U(;,g(x) + aN(SNTH(ZE,f) + an ~— ( re ) .

_, [eN-2 1-N N—2
R(z)| < 05 [0+ )+52+(§)

| |z —a]V2 )
x [eN2(14e6N) ,  eN-2
O R(@)| < COF | =m0+ 5N1]

noa [eN“2(14e=N) e\ N-2]
< 2 —
95 R(z)| < C5 o (5) _

Corollary A.2. In the previous setting, we have

N—2
N aNN(N — 2)7?V ( re ) + laThR(QC%
6T (1+|r2)z \ )

x — al

e, (PUse(x) — Use(x)) = —and = g, H(x,€)
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and

ST H )

95 (PUsg(x) — Us () = —an

an(N —2) ( re
20% (1+|72)"=" \lz —al
and in particular there exists C > 0 depending only on n and on dist(a,0) such that

)N2 + 05 R(x),

N-—2 5%N73

|P-Usge(x) — Use(a)| < Co = + Cm
3N-_4a

h h N-2 2

! Y < 2 v 5

[Peyi (x) — 5 (2)| < OO + C|$ N2
4 gEN -t

0() — 0(2)| < 5z —_—

| Poapi () — oy (z)] < C +C|x_a|N—2’

forh=1,... N, for every € > 0 small enough. In particular, if we fix a compact set K € 2, then
one can choose a unique constant C > 0 for any a € K.

Proof. The result is a straightforward consequence of Lemma A.1 and of the boundedness of H(z, &)
together with its derivatives for z € Q, £ € K’, with K’ compact of 2. We also used the facts that
§ ~ ¢2 and that the derivatives commute with the projection F.. O

Now we collect some estimates regarding the derivates of the bubble.

Lemma A.3. Let z/Jég (t=0,...,N) be defined in (1.14). Then we have

Q

(i) V3¢l < <Use

4]
. ¢ C &
(i) |1/)§,5| < FU‘M |eg —&| ¢=1,...,N
point-wisely in RN,
Proof. The thesis is a simple consequence of the explicit expressions. 0

The following lemma is an easy consequence of Taylor expansion.

Lemma A.4. For every q > 1, there exists C' > 0 such that
lla + b9 — |al?| < C(|a|? || + [b]9) for every a,b € R.
Let also f(s):= (s1)4, with ¢ > 2. Then there exists C > 0 such that
[f(a+b1) — fa) = f'(a)br — (f(a +b2) — f(a) — f'(a)b2)]
< Clla] +[b1] + [b2]]772(|b1] + [b2]) b1 — ba

for every a,by,ba € R.

A slightly more involved result is contained in the following statement.

Lemma A.5. Let N=3,4, p= (N +2)/(N — 2),

p+1

r—3 p+1
F(z,y) = |2 2 aly|"=

and

w(hvk") = F($+h7y+k) _F(.’L',y) - 61F($7y)h_ 62F((E,y)k
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Then F,v¢ € C11(R?), and
(R, k1) — (ha, k2)

p—3 p—5 ptl
<O\ llal+ bl + [hol| = [yl + [kl + [Ral| = |lha] + [hal|[ha = Pa

+ ||| + P | + |h2|\’%3\|y| + |k | + |k2|\%||k1| + |kal||h1 — ha|
+ H;E| + b+ |h2|‘p%3‘|y| + k1| + |k2|‘p%l||h1| + |h2|||k1 —k2|
L]+ W]+ hal| 7 [l + Vo] + [Ral] 7 V] + [kl |1 — ol

for every x,y,h1, k1, ha, ko € R.
Proof. By the Lagrange intermediate value theorem
[W(h1, ki) = P(ha, k2)| = [V (h, k) - (1 — ha, ki — ko),

for some (h, k) on the segment joining (hi,k;) with (ho,ks). By definition, and using again the
Lagrange theorem,

019 (h, k)| =01 F (x + h,y + k) = 01 F (x,y)]
<O F (x4 hyy + k)h| + |012F (x + h,y + k)k|,
where (h, k) is on the segment joining (0,0) and (h, k). A similar estimate holds for |9yt (h, k).
Observing that
Bl < [ha| + |ha| and |k| < [k1| + |kel,

= |hl < ||+ |ho| and k] < [ko| + [Ral

and using the explicit expression of F', the thesis follows. g
Now we collect several estimates regarding integrals of the bubbles.

Lemma A.6. Let K CC Q. Then, as § — 07, we have

N-—2

O = 9) if0<q< <55,
/Uq _ JCo%[logd|+0(6%) ifq= Y5,
o % )o@V if 35 < g < +o0, q# 2,
C — 2N _
9= N—2

uniformly in & € K, where C > 0 denotes a constant depending only on the dimension N.

Proof. We focus on the cases ¢ # N/(N — 2),2N/(N — 2) (if equality holds, one can proceed in
the same way). Since € is bounded, there exists R > 0 such that Q C Bgr(§). Then

 N-2 dy
Ule< [ wvge=at [ ot
/Q 7 Jeae Brys (1+[y[2) "0

Now, if ¢ > N/(N —2) the last integral can be controlled with the one over RY, which is convergent,
and the thesis follows. If on the other hand ¢ < N/(N — 2), we have

R/S
/U(ISJE S C(SN_NQ—QQ <1+/ TN—I—(N—Q)q d'f‘)
Q 1

N—-2 C N—-2

<CNTTEl. ——— <05z 4. O
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In a similar way:

Lemma A.7. Letr > 0,n€ (0,1),ae KCCQ, || <n ', é=a+dr, 0< vy < N, v >0,
h=1,...,N, and let (N —2)q+ vy — vy > N. Then, as 6 — 01, we have

/ Ug |xh_€h|v1 O(6N+v1 vsz’ q),
O\B, 2 (a) $ o —al
uniformly in a € K and |7| <n~'.
Ifva =0 and ¢ = (N +v1)/(N —2), then
| Utda — € = 06" 10gs)
o 0
as & — 0T, uniformly in a € K and |7| <n~'.
Ifr1 =0, 1 =N, and (N —2)q+v2 > N, then
U! _
[ e =06 g
Q\B, ;2 (a) |z — al

as 6 — 0%, uniformly in a € K and |7| <n~'.
Proof. We only prove the first inequality. Arguing as in the previous lemma, we have

q—v2 |y_7—|u1

/ Uq |xh _§h|yl — C/ 5N+u1—N;2 - d
N-—2
B ¢ o= al DPegp e (L+ [yl g

|
S O5N+u17N272q71/2/ |y2 TL
Br/s\Brs (14 |y[?)?7=" [y["2

whence the thesis follows. g
Lemma A.8. Let R,q1,q2 > 0. Then there exists C' > 0 such that
N-2, N-2, N—2 N2,
/Ug;&Ug;g <067 M6, T P40 T /Ug”& + C6, 2 Q/Uglﬁ£1
Q '
for every &1,& € Q such that dist(&;,00) > 2R and |&; — &2| > 2R.
Proof. We can split the integral over §2 using the fact that
= (Q\ (Br(&) U Br(&))) U Br(&) U Br(&)-

Then, the thesis follows using the positivity of Us¢, and the fact that 0 < ¢ < z
RN\ Br(€). O

Similarly:

Lemma A.9. Let R,q1,q2 > 0. Then there exists C > 0 such that
q q |‘T — €1|V1 N2q 2o =2q q2 2 q | §1|V1
/ U U o < CH T 5T o T g vos T [ up TS0

for every &1,&2,a € Q such that dist(&;,00) > 2R, |& — §2| > 2R, |& —a| < R/2, 11 > 0 and
0<wy <N.
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APPENDIX B.

In this appendix we provide the details for the estimates (3.10).
Estimate of (I): integrating by parts we deduce that

(B1) &, /Q V(P ,) - V(Patt,) = 2, / Uk (Pt )

Qp

=4, / PUEL Wkt + 61 / UL 0 (Pt = Uj ).
Q, n
Due to Corollary A.2, it is not difficult to show that the last term tends to 0 as n — oco. We
consider here in full details the case [,k = 1,..., N (the others can be treated similarly): first, we
observe that Corollary A.2 is applicable since {& ,} C K for some compact set K € {2, at least
for n > 0 small enough. Then, using also Lemmas A.3 and A.7, and recalling that €, ~ 51’2771 since
7 is fixed, we deduce that

2 1k 1 I 2 ; N2 ?574
- N—2 7, )
Gim / Ubn Cin(Patti = Uin)| S Coin | U Pl =& | 6,0 + EErARE
n n ?
N 44N . 3N_3 44N |:Ek _ é—i,n
N— 7,Mn N— k
= C5i,2n/ Ui,n * |k — &k | + 061’2,77, / Ui,n ’ | TN_2
n Qo T — az|

NiNy1-2N SN-3+N+1-HN_ N9

as n — 00.
Coming back to (B.1), using the explicit expression of U; ,, and wﬁn, it is not difficult to check

that

52, / V(P ) - V(Patk,) = o + of1),

n

where o(1) — 0 as n — oo, and the values oy, are defined in (3.11). Therefore, as n — oo

N
1,k=0 In
(B.2) N N N
= dack (o +o(1)=> (d,)ou+01) Y d .
1,k=0 1=0 1,k=0

Estimate of (II): we aim at proving the second equality in (3.10). Since ¢;,, € K7, we know
that (Gin, inzl-)n>Hé =0, ie.

Qp

n

As a consequence

(B.3)

N
II)| < 62 PU )2 — U (| ; ! U= ||| Pal . — ot
|( )|_ in |( n mt) in ||¢Z,n||wz,n|+zci,n 0 in |¢”1|| "dji,n ¢l7n|
=0 s

2%

=:(I1.1) =:(I1.2)
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Concerning the first integral, by the Holder and the Sobolev inequalities

|(II-1)|§ |(PnUi,n) - UN 2|N|¢zn|2*|wln|2*
(B.4)
§C|(PnUi,n) - UN 2|N||¢1nHszn”
We recall that ||¢; || = 1 for every n. Moreover, since 0 < P,U;,, < U, ,, in ©,, by the maximum

principle, applying Lemma A.4 we have

4

4 4 __
|(PnUi,n) Nz - Uil,jz% |% < |Uil,vn72 1(PnUi,n - Uln)|% + |(PnUi,n - Ui,n) N72|

v|Z

1 N

_4 (6-—N)N
<2U5 7 (PaUin — Uin)|y =2 </ U7 | PoUs — z‘,n|z2v>

n

Thus, using Corollary A.2, the fact that €, ~ 67,, (see ansatz (2.5)), and Lemmas A.6 and A.7, we
obtain for N =3

4
1 N—2
|(PaUipn) 72 Ui,n |%

2

N (6-N)N N\ 2 5 Ugs(;vl\i)g ~
- 3(N—2) sN-3 i,Mm _ N—-2
< O5z,n </ Ui,n ) + Cai,n / T N2y - 051 no

Q. Q, v —a;| 2

and similarly for N =4

(Palin) ¥ = U2y < O8N log 6%

Thus, coming back to (B.4), we proved that |(I1.1)| = o(1)[|winl g1 (q,)-
Let us consider now |(I1.2)|. By the Hélder and the Sobolev inequalities

|(11.2)] < Clls mll|UN, 2 (Pt — 1) 2

N+2

The right hand side can be controlled using Corollary A.2 and Lemmas A.6 and A.7. We focus on

the case [ = 1,..., N, which is completely analogue with respect to [ = 0, and we compute
N+2
THNTD l 1|2 -
|(II2)| < Ui,n |P" wn o dji,n N2
Qn
an \ S
— N+2
oty | N2 51'27]1\[ '
<C / =2 (NF2 52 + s
—_— ,n 1, . N—-2
Qn |z — al
N+2
8N
N+2 NS NS 2N
N2—2 = 2)(N+2) 2N %N—4 Ui(g 2)(N+2) N3
S 061,77, U’L n + 061,77, 2N (N —2) S C(Sz,n .
Qp Qn |:1:‘—CL,L| N2

Coming back to (B.3) (and recalling that N = 3,4), we proved the validity of the second estimate
n (3.10), as desired.

Estimate of (I11): we show that (I1T) = o(d7,) as n — oo, focusing here on the case [ = 0; the
one l =1,..., N is, once again, completely analogue. Recalling that 0 < P,U; ,, < U, ,, using the
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Holder and the Sobolev inequalities we compute

p=3 +1
52, / (Bals ) 5 (Pals0) 5 1n (Pl

= 612,71 / (PﬂUi,n)pTig (Pnt; )erl (bl n [wz n + ( n"/}z n 1/% n)}
Q,
(B.5)
<ot [ T U kol 08 [ UE U Pt - 0Ll
2 2L 2 b2 et !
< C82, 6snll Ui Uy 1kl o +C02 165l [V Uy 1Putsh = 00|,
+2 N+2
=:(II1.1) =:(I11.2)
In order to estimate (I11.2), we use Corollary A.2, the ansatz (2.5), and the fact that ||¢; .| =1
3N—4
oy <cluvzus (o7 ¢ Gn
( ,m Jm ,Mm |£C—ai|N_2
2N
N+2
N(4-N 5
— <J\2r 5D o= B )
Qn
N42
2N (4—N) aN?2 2N

U(N 2)(N+2)U(N 2)(N+2)

SN—-4 in
2
+ O5i,n / 2N(N 2)
Qp |x —a |4(N+2)

By Lemmas A.6 and A.8
N+2
N_4 2N(4—N) N2 SN
5. 2 (/ U(N 2)(N+2)U(N 2)(N+2)>
e,
N+2
XA Ngé+é\]) Z\Zl\fz Ngé+é\]) J\Qrﬁz N+2 % =
< C‘Si,ﬁ 9;. 0 +9; 0 +CO; /Q Uin ,
and discussing separately the case N = 3 and N = 4, it is not difficult to check that in both cases
N+2
2N (4—N) aN?2 2N
) < Cé;n =0(1)

N-—4
2 (N— 2)(N+2) (N 2)(N+2)
51' n (L Uz n U

as n — oo. The second term on the right hand side in (B.6) can be controlled using Lemmas A.6

and A.9, in a similar way:
N+2
2N (4—N) 2N
N =2)(N+2) [ TN~ 2)<N+2>
saN-a U, U,
,n 2N(N 2)
Q. |x —a; | (N+2)
N+2
N(4—N) N_N@-=N)_2N(N-2) N
N+2 N+2 > — 0(1)

3 (4— N(4-N)
<ozt (5 v 5”*2 o, N N +05N+25m
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as n — oo. Therefore, (I11.2) — 0 as n — oco. Concerning the term (/1I.1), by Lemmas A.3, A.6
and A.8, we obtain

1 p—1l ptl
- 2 2
(| < coptloir v |
N2
N+2
1 ( 4)]2[ )17 ( 2])\22 ) -
_ N—2)(N+2 N-2)(N+2
S 061,77, / Ui,n Uj,n
n

Co) (5%59&2 +o¥ g +6;525%)2N < Cljm = o(1)
,n ,n 7,m ,n 7,m ,n 7,m — J,n
as n — o0o.

To sum up we showed that (I71.1) and (I1I.2) tend to 0 as n — oo, and coming back to (B.5)
we infer that (I1T) = o(d7,,), as desired.
Estimate of (IV): this is similar to the estimate of (I17), and this time we focusonl=1,..., N.
We have

ol [ (Palin) 5 (PU30) 5 i (Pt
(B.7) p=1_p-1 =1 p-1
§O5z2,n ||¢1,n|| Uz,ri U_],vzz |¢£,n| IN +C§12,n|‘¢z,n” Uz,ﬁ U],ri |P" ﬁ,n_ i,n| oN
N+2 Nt2
=:(1V.1) =:(1V.2)

The term (IV.2) can be controlled using Corollary A.2:

3N-4
p=1_ p-1 [ N2 Zn
2 2 2 3
(1V2) S CUT U |60 + s
* 2N
N+2
N+42
N2 N NFD NN )
5 - -
(B.S) < C(Sim Ui,n Uj,n
Qp
N+2
o

+C52)

2N (N—2)

(NHNTD 17 (N B NTD)
N—-2)(N+2 N—-2)(N+2
3N—4 / Uin Uin

Qn |x—az| (N+2)

By Lemmas A.6 and A.8, the first integral on the right hand side gives

N+2 N+2
N N NFD D | Py =T =R
2 - - 2 —
61',71 Ui,n Uj,n < O5z,n 5i,n 5j,n - 0(1)5
Qn
and, by Lemmas A.6 and A.9, the second integral gives

N+2
2N

N-2)

( 4)1?7 ) ( 4)1(\7 )
N—2)(N+2 N—2)(N+2
3N—4 Ui,n U_],n
2N
Qn |x — ai| (NF2)

3N—4 2N 2 N%*N) 2N 2N
2 +2 §N+2 +2 +2
<Co7, O 7007 0, 7 65,

J,n
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as n — oo. As far as (IV.1) is concerned, using Lemmas A.3, A.7 and A.9, we infer that

+
|(IV.1)| < Co; 0 U, RS 2U 2 o — &4
N+2
N+2
—1 23 NS no 2\ 2N
< C(Sz,n / Ui,n Uj,n |xl - 5i,l|N+2
! N+2
B 2N N N4 2N N
1 N %13 N+2 N+2 _

S O5z,n <61 n5] n 5j,n 5i,n ) - 0(1)

asn — oo. Altogether, we proved that (IV.1) and (IV.2) tend to 0 as n — oo, so that (IV) = o(67,,)
as n — oo.
This completes the proof of the validity of the estimates (3.10).

ApPENDIX C.

In this appendix we show that (3.13) gives (3.14). At first, we notice that
I)Csi,n/~ (PuUson)" ™ Gt = po2, / UL Ewm + On )P mt)
Qv Qrn

+ p5f2£,"/~ [(mn) -Ur, 1(5% n+ 0kn )]J’nn‘/)

K,n

Arguing as in Appendix B, estimate of term (I1.1), it can be proved that the last integral on the
right hand side tends to 0 as n — co. Moreover, the first integral can be explicitly computed:

1

2N
S +z (RN
L+ [yP? ®")

2
UP= (6 + Sem (1) — oﬁv‘l( ) bly) = UET ()

(where we recall that Uy o denotes the standard bubble with ¢ = 1 and £ = 0), and hence by weak
convergence (;5,.@ N (;5,.@ in L2 (RM)

p5’2i7"/~ (mn)Pfqu;mnw = péi,n/ Up 1(5/{ nt 61{ n )¢K n1/) + 0( )
(C.1) e, O N ~
:p/( UTS bt + (1) :p/RN UPo it + o(1)

K,n

as m — 00.

Now we show that the remaining terms on the right hand side of (3.13) tend to 0 as n — oc.
We start observing that, if j # &, for any compact set K C RY there exists C > 0 (depending on
K) such that for sufficiently large n

inf |&xn + 0nny = &inl 2 [€ein — Ein| = Cdm
yeK
(C.2)

Y

1
§|0J,{ —aj| — Cdp > Z|a,< — ajl.
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Thus, for any j # k

Sl [ (AT (P05 bt
Y 2 p=3 p+1 ~
< Cél{,n/ UN,% (gn,n +6N,n .)Uj,’rzl (§N,n + 5%,71 )|¢N,n||¢|
K,n ﬂ 47N
5; VA e
S0612171‘/ = mr Den(W)||Y(y)| dy
" Joow \ T o by &) \Tr ) [P @IWW
N N ~ N N~
<COL [ Mm@ dy £ CO207 bnler 6] g, = o)
supp ¢
as n — 0oQ.
Similarly, always for any j # i
52, / (Polnn) ' (Pals) 2 Gt
<ci, | e e 1) )] 0
= o T Vi By — G Ty

< Copndim / 8in )] dy = o)
supp

as n — oo. .
Finally, also the last term on the right hand side in (3.13) tends to 0, since ”hmnHHg(m )

||h,iﬁn||Hé(Qn), ||d’f<7n||H(}(an) = ||w,.€7n||Hé(Qn), both hy, ,, and w,, ,, converge to 0 strongly in Ha (£2,,)
(hs,n by assumption, wy , by step 1), and émn — qgl weakly.

APPENDIX D.

In this appendix we prove the validity of the estimates (3.23) and (3.26). In order to ease the
notation, we write P and U; instead of P, and Us;, ¢, .
We start with the proof of (3.23).

Estimate of |R37715|LJ§$2 @) By Lemma A.4 and the fact that 0 < PU; < U;,

|PU? — U?| < C (|U;|P~1|PU; — Ui| + |PU; — Ui P) < C|U; [P~ |PU; — Uy

Therefore, recalling that € ~ §2 by (2.5) (we fixed n from the beginning), Corollary A.2 and
Lemmas A.6 and A.7 give

N+2 N42
. 2N 8N oN 2N
/ |PUf — Uf|m <C / Ui(N72><N+z) |PU¢ _ Uil N13
Qg Qs
2N N+i2
(D.1) oN N2 5%(N—2) 2\ 2N
. < C Ui(N72)(N+2) 51 7 4 z_ T
Qe |z — ai
N+2

IN

2N (N —2) 3N(N—-2) |, N(2—N) 2N
—+ _ N-—2
N+2 N+2 N+2 N-2 2=
O(éi +4; > <Cop "<Cez .
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We also have, by Lemmas A.6 and A.8

p+1 p—1
<|\U.ZzU?>?
2N J ? 2N

N+2 N+2

(PU;) % (PU) T

N+2

2N?2 4N N
— (/ Uj(N+2)(N72) Ui(N+2)(N2)> S Céi(sj S Ce.
Qs

This estimate and (D.1) imply that, for € > 0 small enough, there exists C' > 0 such that

(D.2) |RY

N-2 N-2
el an §C’(62 +5)§C’52,
TRILNT2(Qe)

where we used the fact that N = 3,4, so that ¢ < ™72 for small e.

Estimate of |N37T7€(d))| 2 ) At first, with the aid of Lemma A.4, we compute

LN+2(Q.
~ . 6N N+2
1Ph 7 (@) a2, < CUPUNPT262 + |63l7] aae, < CUN 62 ane + [0l
(D'3) 6—N 9 N+2 2 N+2
< ClUilg 2 [dilze + (@il < Clldall” + sl V>

Regarding the remaining term inﬁ,,_)s(qb), we focus at first on N = 3. Using Lemma A.5 2 and the
usual arguments we deduce that

~. __1
@ire(@ly < Ol T PU 10yl

__1 __1
+lp; 7 PU A+ 16l iy 77 PUS + 195117101 |51

__1 __1
Hlug 7 PU; 1l 7 PU; + [ l1651

[
5

< C U362y +163621y + UiU20i0515 + |Uidid?ly + [U26251

(D.4a) 2 2 2,3 2,2
HUZU; 621y + [UZ6315 +1U;0263] s |

< C||Ujl3- 1o

é;
2« +|U;

5o+ Gil3- 10515+ + |Uil2+|U;13- |
Gil2- 0515+ + U5 |0i 135
B3l + U o+ |6il3- 153

<C (Il +l91°) = € (Il2 + ¢l 3% ).

2% 2%

+|U;

2
2%

Uj

o

2
2%

2
2%

2
2%

2% 2%

+|U;

2
2%

2
2%

Let us consider now the easier case N = 4. We have

_1 _1 _1 1 _1
iy 2 PU;j + ¢ (1; 2 PUs + 6i) — (n; > PU;)?(n; * PUs) — (1 * PUs, ¢,)* i
_1 _1 _1 1
= 2(p; * PUs; ;) (p; * PU:)s = p; * PU; &5 + 205 > PU; ¢ + i
R
p—1

I
2in the Lemma, we consider = = p, PU;, y = I p=1 PU;, h1 = ¢i, k1 = ¢j, ha =0, k2 = 0.
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Therefore
Qi re@)ly <O (U5 6213 +1Usi0515 + |6i633 )
i#£j
(D.4b) <O (|Uila 16513 + [Ulae 1il2 65120 + ilr513-)
i#£]

N2
<c (Il + 1ol*) = ¢ (Io)2 + 6 7% ).
Collecting (D.3) and (D.4), we conclude that for every ¢ = 1,...,m, and provided that ||¢]| < 1,

N+2

I3 (@)l 5, < C (1912 + 16177 ) < Cllop)®

N+2

for some C' > 0 depending only on the data.

Now we pass to the proof of the validity of (3.26)
We apply again Lemma A.5 (notice that if N =4 then p = 3, while if N = 3 then p = 5): thus

|in,-r,s(d)1) - in,‘l’,é(d)zﬂ 2N

N+2
-3 p+1
< B2 U + I3l + 103117 1ot + 1621l |} — 2]

J#i Ntz
p—3 p—1
+CY Ui+t + 1071 = |U; +1oj] + 1631 7 (1651 + 1631]|¢f — &7 ]
(D5) j#i 1\352
p=3 p=1
+ O[T+ 101 + 1621 7 |U; + 168+ 1621 T 16t + 1621][6} — 62|
i iz
p—1 p=3
+C Y|+ 1651 +1671] 7 |Us + loj1 + 1651  llgj 1 + 1511105 — 31
j#i N+2

where we wrote U; for U;. To estimate the right hand side, we apply the Holder and the Sobolev

inequalities. We notice at first that the first term survives only if NV = 3. In such case, for any
N—2

@', ¢* € Y. (recall that then ||¢'|, ||¢*|| < Ce™2)

\IUj+|¢}|+|¢§||3\|¢%|+|¢%|||¢3—¢?| < U + 163+ [621]5. 18] + 1621]. 16) — 622
< C(llpll + 1021) g} — @21l < O™ |1} — 2.
Similarly
U+ 1621+ 16211 |0 + 1631+ 163117 g1+ 193110t~
< U+ 181 + 1621157 |Us + 164 + 1621107 (1841 + 162]],. 16} — 62la-

N

-2
< CeT g = 4,

and estimating the remaining terms on the right hand side in (D.5) in the very same way (the
terms are obtained one from the other after a permutation of the exponents), we deduce that

N

Q7 e(8") = Qhir (@) g, < C77 @' — @7

for any ¢', ¢p* € Y, as desired.
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APPENDIX E.

In this appendix we prove the validity of estimate (3.29).
In this proof we write U; for Us, ¢,, Yl for 1/}?1',&’ and P for P: in order to keep the notation as
short as possible.

Step 1) We consider 0, , Ly 7-,5(45)’ with ¢ € Kd +.o Let us focus at first on the case k =i. We
have

Os, Ly 7o (@) =11 04 | p(p — 1)(PU)P2(PY) i+

3 __1 p—>5 7+
L E— ( p Zﬁl] 71PU) (Mz pilPUi)7M1‘ g I(szh)@
J#i
+1)( = e p=3 —ob
$ PEDOZD S g 0 PUy) = (1 7 P P (Pl |
J#i

Therefore, using the continuity of II'* and i*, and the fact that 0 < PU; < U;, we deduce that

10s, L r (@) < CIUP2(PUM)i] o +C 3 |UST UST (PUl)s] o,

N+2
J#i
p=5 _pt1
+O(p_3)Z|Ui2 Uj2 (P1/)zh)¢z|13112
J#i
p—2,h L2t h
< CNUP2 il g, +C U™ Uy ™ 765
i

=:(I) =:(I1)

cr-3)> U U wzlwmt
J#i

=:(I1I)

where n.t stays for “negligible terms”, and denotes a quantity which is a small o of the previous
ones as ¢ — 0. The exact shape of these terms can be computed using Corollary A.2 (similarly
as we have already done in Appendix B), but it’s not so important for what follows and hence it
is omitted for the sake of brevity. Notice also that term (I17) is present only in case N = 3, in
which case p = 5.

Now, by the Hoélder and the Sobolev inequalities, and using Lemmas A.6-A.9, we compute for
h=0

(B1) (o) < clor2oliylod <o ([ 0F) " o < oot o,

Q.
2
2\ F
) 6]

p—3 p—1 N
i< cw T o tiylel < o5 ([ o7y

< 05;(|log ;| + |log ;1) ¥ |5,

(E.2)

and in case N = 3
2

3 _9\3
) < clooelly < s e ([ viv})

(E.3) e
< 05;1(51'53‘)%“@“-
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Moreover, for h=1,..., N,

2

BN N\ B
©0 ol <o tetiylol <ot ([ 0P e - aal®) e < o5 o,
) - B £\ ¥
ey OIS Clolo= 0Tty < ool ([ 07507 e
< C6; 1 8511(8:65),
and for N =3
®6) () < cloodelly < os o ([ vfoto-ent) <cslolal

Altogether, recalhng the ansatz (2 5) and that ||¢| < C="7" by Lemma 3.3, we conclude that for
everyi=1,....mand h=0,...,N

; N-3
105, La,r- (D) Hi.) <Ce™7,

as desired.
Now, if k # i, we have still to consider

ask hLd T s(¢)

-1 1 1 ot
:HilOZ* Wﬁki(ukrlPU@ 2 ( ,p 1f)U) 2 /L]qp lpl/)kd)l
-1 1 -3
$ L DRED g ™ PUY S T PO lpwm’f]

This term can be treated exactly as the one with k = ¢ (actually the computations are easier).

Step 2) We consider s, , R . .(¢), and again we present the details only for the (a bit harder)
case k = ¢. We have

l
Ouy Rl 7 e =11 01 lm p ((PU~ Pyl U7l

_ 1 po3 1
Zﬂu TP PU)E (T PUY S (T Pyl |

J#i
and hence
, ptl p-3
105, Rl | < CUPUP T Pl = UP 00 an +C Y U7 U PO oy,
J#i
L
< C|PUPH Pyl — ] on 2, +C||PU” L UPT Nl o 2 _+CY ;T U S b |, et
J#i
< ClUP Pyl — ol 2y, FOWIUL” 2|PU; — U] 2n_ 2 +CZ|U U S b |, et
J#i
=:(I) =:(II) =:(I11I)

where we used Lemma A.4 and the fact that 0 < PU; < U;.
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As in the first step, using the lemmas collected in Appendix A, we estimate separately the three
terms on the right hand side, starting from the case h = 0:

SN—4
W <clum= (o7 + =%
=R e )],
Ntz
N+2
(E7) N—4 8N 1\;;\32 3 U(N+28)J(VN72) 2N
NToN =Ty 3N—4 ;
< C(Si ] (/Q Ui(N+2)(N 2)) +C§i2 ‘/Q ||—2N(N22)
e e | — Q4
<co T T g osN T <o
~ i i )
3N _3
()| < cortjort (677 4 0
N ' |z = ail N2 )]
(E.8) N -
N4 BN sn_4 [T 2
< 051 : </ Ui(N+2)(N2)> + 051’2 / * 2N(N—2) < 05?[737
Q Q |z —a;| N2
B9 T (R ) T
(E.9) ((IID] < C67HU; = U | o, <871 (6776 < C4;.
Analogously, for h =1,..., N, we have
s N-2 (SEN 4 N-2 | N— N—3
(E.lO) |(I)|§O U; 51-2 “FW §0512 2 4+ 062 2 <06
g
s ngs
|(IT)| < C8; M {UN2 |z, — & a2
2N
N+2
N+2
N-4 12N oON 2N
(E 11) < Cél- 2 (/ UZ_(_N+‘2><N—2) |£Ch _ §i7h|N+2)
. Qe
N+2
$N—4 e EsaTore) |$h—§ih|]\%l+V2 =
—l—Céf / Ui(+)(f)w
Qe |x — ai|N—+2
<05 T T posN T <ol
— 7 1 1 I
E.12
12 B T
((ID)] < C67 U2 U [on = &ionll 2
2 N+2
8N 2N oN 2N
< 05;1 (/ Ui(NJr?)(N*?) Uj(NJr?)(N*?) |Ih _ gz h| N+2>
Qs
AN N2 AN 2N?2 N2 8N oN A;TVZ
SCoTH 6NN 401 / R / US|z, — & | V5
Qg Qs

3

< Co ! (020 + 535ﬁ|1og5j|%) — o(e™F).

Notice that the logarithm appears in the computations only for N = 4, see Lemma A.7.
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Collecting together the previous estimates, we deduce that [|9s, , Rg - .|| < Ce"7, as desired.

Step 3) We consider 9, , Nj . .(¢), with ¢ € Ky Once again, we focus on the case k = 1,

d,r.e"
which presents the heaviest calculations. We have

6Sk,thii,-r,a(d))
=11 oi* [ (f’(ul- PTPU A+ ¢) — (g T PUD) — T (wy FPUZ-)@-) pr Pyt

p—1 = pi1, =2l S
+TZﬂij|Hj PPU + 5] |y T PU + | T pg T Py

i
1 1 _1 3 __1_
- pTZﬂij(,uj TTPUNE (i T PUD) T g T PO
I
~1(p-3 T T
VR S g Py T P T P

J#i
(P+Dp-1) -5t po1, -l p=3 -l
- 1 2 Bl TTPU)E (T PUD) T PUL
J#i
Therefore, if N = 3 we can use the Lagrange theorem to deduce that

105, Né 7 ()| < C|(UF + 67)6 PU| o

403 (110 + 164105 + 1051Pos Pol]y + 105 + 6sl1ox Put]

J#i

I3
5

+ U2 ¢; Py

s + |[UiU7 o; PU)?Ig);
if on the other hand IV = 4, then by direct computations
151 N7 (D) < Cle7 PY} 4

+CY (|Uj &; PYP|s + |67 PUi]s + |U; ¢ Pwﬂg)-
J#i

In both cases, using the lemmas in Appendix A as in the previous steps, it is not difficult to check

that

N-3

105, Na - (@) < Ce™>
This completes the proof of (3.29).
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