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Abstract Vortex-induced vibrations (VIV) in sys-

tems with more than one degree of freedom often

present complex synchronization among the motion

components, also hidden by the randomness that

characterizes the motion itself. A phase average

method has been here developed and applied to the

displacements of a tethered sphere, at low mass and

damping, to analyze its xy trajectories over a wide

range of reduced velocities, 5 B U* B 25 (Reynolds

numbers, 5.1 9 103 B Re B 2.67 9 104). This

method has allowed the identification of both the

periodic and chaotic contribution of each motion

component, accurately reconstructing the underlying

trajectory periodic pattern. The two classical vibration

modes, I and II, have been also observed. The method

developed here was able to better rebuild the exper-

imental data compared to other methods found in the

relevant literature, providing useful insights into the

study of the dynamic response of a freely-oscillating

tethered sphere immersed in a steady flow.

Keywords Vortex-induced vibrations � Tethered
sphere � Phase average � Trajectory � Reduced
velocity � Laboratory experiments

1 Introduction

The dynamic response analysis of bodies completely

or partly immersed in steady flows is crucial in marine

engineering, when analyzing the stability of various

off-shore structures including production and drilling

risers, pipelines, moorings, tethers of tension leg

platforms, spar platforms and the members of jacket

structures. Interest in this field of research has

increased, given its relevance in green-energy

exploitation techniques (e.g., [1]).

Most of the existing works focus on bodies with

multiple degrees of freedom, and mainly cylinders.

Only a few of them investigate the flow interactions

with a sphere, due to the difficulties encountered in

measuring, modelling, and analyzing its complex

three-dimensional wake [2–4].

Early studies evaluated the action of surface waves

on tethered buoyant spheres, empirically obtaining

drag and inertia coefficients through Morison’s equa-

tion [5, 6]. Later, the focus moved to analyzing the

tethered sphere oscillations, taking into account the

mass ratio, m* (ratio between the mass of the sphere,

m, and themass of displaced fluid,md), which defines a

body as ‘light’ (m*\ 1) or ‘heavy’ (m*[ 1).
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In 1997, Williamson and Govardhan [7] and

Govardhan and Williamson [8] mainly investigated

the VIV of light tethered spheres, finding large

crossflow oscillation amplitudes with typical figure-

of-eight or crescent topologies trajectories. When

experimenting with heavier spheres, the ratio between

crossflow and streamwise oscillations was observed to

be larger than that of light spheres. In both types of

sphere, they detected the classical resonance condition

and a synchronisation regime, which was reduced for

heavy spheres, with a saturation amplitude close to

one diameter.

In 2001, Jauvtis et al. [9] named the resonance

condition and the saturation amplitude as Mode I and

II, respectively, and found two new modes of dynamic

response through wind tunnel experiments on heavy

tethered spheres (80 B m* B 940) at reduced veloc-

ity, U* (ratio between the mean streamwise velocity,

U, and the product of the sphere diameter, D, with

natural frequency of the sphere in water, fn), between 0

and 300: one periodic Mode III, at 20 B U* B 40 for

m* = 80, and a Mode IV, at U*[ 100, characterized

by intermittent bursts of large-amplitude vibrations.

In 2005, Govardhan and Williamson [10] extended

their previous experimental research on tethered

spheres, which were shown to exhibit non-periodic

vibrations when passing from Mode I to Mode II. In

the case of light spheres, such transition regime was

clearly distinct and characterized by a difference in the

phase of the vortex force, consistent with a large

difference in the timing of the vortex formation

between the two modes.

Firstly in 2003, and later in 2005, Provansal et al.

[11, 12] discussed how a different configuration of a

tethered sphere towards the flow direction modified

the shape of the trajectories. In particular, they

analyzed the VIV of a heavy sphere (m* = 2.433), at

Re = UD/m (where m is the cinematic viscosity of the

fluid) between 600 and 800, in a flow parallel to the

thread, observing different modes of body oscillation

along circular, straight, and elliptical trajectories with

increasing reduced velocity.

Studies on a heavy tethered sphere (m* = 7.87)

were also carried out by van Hout et al. [2] who, at

2.8 B U* B 31.1, discovered three different bifurca-

tion regions: in the first region, the sphere did not

exhibit any crossflow oscillations but only a slight

streamwise deflection; the second region overlapped

with Mode I and II described by Jauvtis et al. [9] and

Govardhan and Williamson [10]; in the third region,

the sphere exhibited large crossflow non-periodic

vibrations, exceeding those in the second region and

comparable to theMode III of Jauvtis et al. [9]. Similar

results were obtained by the same authors [13] for

even heavier tethered spheres (m* = 22.20) and for a

narrower range of reduced velocities (3.18 B U*

B 14.1). Eshbal et al. [14] experimentally analyzed

the three-dimensional wave structures of a heavy

tethered sphere for low Reynolds numbers

(382\Re\ 1392), identifying different vortex con-

figurations: at U* = 3.6, the sphere did not oscillate

and hairpin vortices with vertical plane of symmetry

were periodically shed (similarly to the stationary

sphere); at U* = 5.8, the sphere motion was highly

periodic and vortices with horizontal plane of sym-

metry were alternatively shed from the two sides of the

sphere; for larger U*, the sphere oscillations were

intermittent and the vortex shedding less organized.

Parallel experiments on light tethered spheres

(m* = 0.392) in uniform flow at reduced velocities,

2.2 B U* B 10.1, corresponding to 430 B Re

B 1925, were carried out by Eshbal et al. [15]. They

detected two different bifurcation regions: the first one

in which the sphere did not oscillate, coinciding with

the onset of an asymmetric shedding of hairpin

vortices observed for a stationary sphere, and the

second (lock-in) region, which started atU* & 2.2. In

2013, the same authors [3] analyzed both light

(m* = 0.392) and heavy (m* = 7.87) tethered spheres

for 2.2 B U* B 13.5 which, after an initially station-

ary state, started to oscillate at U*[ 2.2 (Re = 430)

for m* = 0.392, as showed in the previous study [15],

and at U*[ 3.5 (Re = 673) for m* = 7.87.

In the last decade, more attention has been paid to

the study of the dynamic response of elastically

mounted spheres in steady fluid flows. Among the first

researchers to introduce elastically mounted spheres

were Govardhan and Williamson [10]. They experi-

mentally analyzed bodies of different mass ratio

forced to move only in the flow crossflow direction,

noting three responses (Mode I, II, and III), similar to

those found for tethered spheres. For lower m*, the

transition between the first two modes was quite

distinct, exhibiting a jump, whereas for higher m* a

more continuous transition regime was detected.

Computationally, Behara et al. [16] studied the

vibrations of an elastically mounted sphere of m* = 2

with three degrees of freedom at fixed Re = 300 and
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reduced velocity in the range of U* = 4-9. They

observed two distinct response branches correspond-

ing to two different vortex shedding (hairpin and

spiral) modes and to two different sphere oscillation

trajectories (a nearly straight line on the crossflow

plane and a perfectly circular orbit). Later, the same

authors [4] expanded the range of reduced velocities

(U* = 0-13) at Re = 300 and the range of Reynolds

numbers to 300 B Re B 1000, fixing U* = 9. They

showed how the vortex shedding mode and the sphere

motion were both strongly influenced by the Reynolds

number. In particular, forRe B 400, in the spiral mode

of the vortex shedding, the sphere moved along

circular orbits on the crossflow plane; for Re = 500-

600, however, passing from the spiral to the hairpin

mode, the trajectory changed from circular to elliptical

orbits.

Further interesting numerical results were obtained

by Rajamuni et al. [17] on an elastically mounted

sphere (m* = 2.865) forced to move only transver-

sally, through two sets of simulations, i.e. at Re = 300

with 3.5 B U* B 100 and at Re = 800 with 3 B U*

B 50. For Re = 300, large-amplitude (peaking at

0.4D) and highly periodic sphere oscillations were

observed, showing a resonance response of amplitude

0.6D in the U* = 4.5–13 range with increasing

Reynolds numbers up to 800. At both Re = 300 and

800, two sets of hairpin-type vortex loops were

detected around the sphere, in agreement with

Govardhan and Williamson [10] and Behara et al.

[16].

Differently from the above-mentioned studies,

Negri et al. [18] experimentally investigated an

elastically mounted sphere (m* = 1.24) under a range

of reduced velocities between 1.6 and 13.6. The sphere

showed a behaviour similar in amplitude and fre-

quency to the tethered sphere, exhibiting Mode I

(5 B U* B 8), with oscillations between 0.4D and

0.65D, andMode II (10 B U* B 14), characterized by

higher crossflow amplitudes between 0.8D and 1D. In

addition, the authors detected other trajectories dif-

ferent from the classical 8-shaped one, such as the

shape of a segment, a ‘‘rain-drop’’, and a D-shape.

Lately, the research focus moved more and more to

analyzing the influence of the free surface on the

movement of elastically mounted spheres. Experi-

mental studies of Mirauda et al. [19–24] investigated a

heavy elastically mounted sphere (m* = 1.34) at high

Reynolds numbers (Re = 1.7�104–7.0�104) and for a

range of U* between 1.90 and 7.58. When the sphere

was fully submerged, it showed periodic crossflow

oscillations and a transition trajectory between cres-

cent topology and figure-of-eight shape. Moving

towards the free surface, the sphere displayed non-

periodic crossflow displacements and a trajectory of

chaotic shape.

Sareen et al. [25] also experimentally investigated

the effects of free surface on fully and partly

submerged heavy elastically mounted spheres

(m* = 7.8), free to oscillate only transversally. The

fully submerged sphere displayed highly periodic

vibration amplitudes, progressively increasing from

Mode I to Mode II, and a Mode III characterized by

small intermittent and clearly non-periodic vibrations.

The partly submerged sphere, however, showed two

different responses: Regime I, where the presence of

the free surface widened the synchronization region

and sometimes increased the vibration amplitudes, and

Regime II in which, with the sphere moving nearer the

free surface, a very sharp reduction of amplitude, and

the two distinct modes, I and II, were observed.

Most of the above-mentioned studies underline

how VIV trajectories are characterized by a large

amount of periodicity but they can also contain a

significant chaotic part (e.g. [26]). Moreover, when

dealing with two-degree-of-freedom (xy) VIVs, the

synchronization between the two components of

motion may not be easy to detect. The identification

of the periodic and chaotic contribution of eachmotion

component, and hence of the trajectory pattern,

provides useful insights into the fluid–structure inter-

action. ‘‘Classical’’ xyVIVs are 8-shaped, and they are

encountered in elastically mounted circular cylinders

as well as spheres and in tethered spheres (e.g. [9, 27]).

Their VIVs are characterized by the presence of one

frequency, f, in the crossflow component and one

frequency, 2f, in the streamwise component of motion.

Other kinds of periodic trajectories have been recently

catalogued in circular cylinders with different natural

frequencies in the streamwise (fnx) and crossflow (fny)

directions, particularly when fnx/fny\ 1 [28], as well as

in square cylinders subjected to shear flow [29] and in

elastically mounted spheres [18]. Resembling trajec-

tories already observed in flexible cylinders [30],

named ‘‘drop’’ or ‘‘egg’’ type in Kang and Jia [28],

occur when the streamwise motion component

includes the first harmonic (which is the frequency

of the crossflowmotion), besides the second harmonic.
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The topological description of these trajectories was

presented in Negri et al. [18]. Trajectories with some

degree of chaos were also shown in Dahl et al. [26] for

a cylinder with different natural frequency in x and y,

although the underlying periodic pattern could not be

recognized. Kang and Jia [28] assessed that, for a

circular cylinder, these non-classic trajectories, and

hence the appearance of the first harmonic in the

streamwise motion, are due to the different natural

frequencies of the streamwise and crossflow motion.

On the other hand, Sun et al. [29] showed that, for a

square cylinder, the non-classic trajectories are due to

the non-uniformity of the velocity profile. Finally,

Negri et al. [18] observed these non-classical trajec-

tories on a sphere fixed to a cantilever beam, showing

that the shape of the trajectory mostly depends on the

phase lags between the crossflow component and the

two harmonics of the streamwise component.

Different methods exist to characterize the periodic

pattern of a xy VIV trajectory and, in particular, to

calculate the phase lag between the crossflow and

streamwise component of motion. To the authors’

knowledge, they are:

(1) Fourier analysis of the motion components for

calculating average amplitudes and phases of

each component.

(2) Regression of the motion components on a sum

of few sinusoids with frequencies multiple of

the main one [28]. This method provides the

average amplitudes and phases of each

component.

(3) Calculation of the instantaneous phases of x and

y through the analytical signals [30] or through

the linear interpolating phase (e.g. [31]).

(4) Phase average of x and y on the basis of the

periodic component (either x or y) and calcula-

tion of the first two Fourier coefficients of the

phase-averaged quantities [18]. Even in this

case, the method provides the average ampli-

tudes and phases of each component.

To the best of the authors’ knowledge, the fourth

method has been applied to VIV trajectories in only a

few works, involving cylindrical and spherical struc-

tures [18, 32, 33], despite its suitability for this matter,

since VIV trajectories often exhibit a sinusoidal

component of motion, which can be used as phase

reference. A possible reason for this infrequent use of

the phase average is that classical and very periodic

trajectories (8-shaped or crescent) are usually encoun-

tered in VIV studies, and methods 1-3 are also

effective in recognizing the periodic pattern of these

trajectories. Nonetheless, phase average is a common

technique in analyzing periodic signals, and it has

been used in many VIVworks to represent the velocity

and vorticity fields of the wake. For example, some

studies such as Krakovich et al. [3], Govardhan and

Williamson [10] and Eshbal et al. [15] applied this

technique to experimentally investigate the wake of

tethered spheres undergoing VIVs.

Phase-averaging methods are well summarized in

the work of Ostermann et al. [34], where the exper-

imental analysis of a fluidic oscillator was performed.

They mainly subdivide into signal conditioning and

mathematical methods. In detail, in the signal condi-

tioning methods a time-resolved signal is used as

phase reference, so that it identifies the oscillation

periods. This reference can be an external signal or the

signal itself to phase-average. There are two main

ways to identify periods inside a signal: zero-crossing

and autocorrelation. Mathematical methods include

the Hilbert transform and the proper orthogonal

decomposition (POD). In VIV studies, a signal

conditioning method is usually adopted, since the

periodic motion of the oscillating body provides a

phase reference for the flow field and for the motion of

the body itself.

In the work of Cagney and Balabani [32], the

oscillation and the wake of a pivoted cylinder with one

and two degrees of freedom (DOF) for low values of

reduced velocity (U*\ 3.5) were experimentally

analyzed. The raw displacements of the cylinder were

phase-averaged on the basis of the crossflow motion,

and an 8-shaped pattern was recognized. Then, the

phase-averaged streamwise and crossflow compo-

nents of motion were fit with sinusoidal waves with

frequency one (streamwise) double of the other

(crossflow).

In 2015, Thomas et al. [33] experimentally ana-

lyzed the motion and the wake of a flexible cylinder.

By applying the phase-average on the raw displace-

ments of the cylinder, the authors managed to extract

the periodic pattern of almost the sections of the

cylinder, which was a slightly asymmetrical 8-shaped

trajectory. Only for a particular section of the cylinder,

the phase average applied by the authors could not

reveal a precise periodical pattern.
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In the work of Negri et al. [18], the phase average

applied to the VIV trajectories of an elastically

mounted sphere allowed the recognition of periodic

patterns different from the classical 8-shaped or

crescent type and validating a trajectory model based

on the presence of (at most) two harmonics in the

streamwise component of motion. With this model,

even the less common trajectories encountered in the

VIV literature were modelled: asymmetrical 8-shaped,

D-shaped, and drop-shaped.

In this work, the phase-average method is exten-

sively described and used for analyzing the VIVs of a

tethered sphere. The method here presented is based

on the self-synchronized phase average presented in

Negri et al. [35] for the analysis of particle-streak-

velocimetry (PSV) velocity fields and used in Negri

et al. [18] for the analysis of the VIV trajectories of a

cantilevered sphere. Here, the technical solutions

developed for phase-averaging highly chaotic oscilla-

tions, and particularly for properly representing the

average synchronization between the periodic com-

ponent of motion (used as phase reference) and the

secondary component of motion, are shown in detail.

In addition, the present method proved its validity and

accuracy through comparison with the other ones

existing in literature (methods 1–3 listed above).

The paper is organised as follows: the experimental

details are presented in Sect. 2; the method of data

analysis is described in Sect. 3; the application of the

analytical method on an experimental case and the

dynamic response of a tethered sphere under VIVs are

discussed in Sect. 4; the main findings of the present

work are summarized in Sect. 5.

Main nomenclature

Axn Amplitude of the nth harmonic of the streamwise motion

Ay Crossflow oscillation amplitude

c Sphere damping in still water

CA Potential added mass coefficient (CA = 0.5 for the

sphere)

D Sphere diameter

f Main oscillation frequency of the sphere

fx Oscillation frequency of the sphere in x direction

fy Oscillation frequency of the sphere in y direction

fn Natural frequency of the sphere in water

fs Sampling frequency

fvo Vortex shedding frequency with stationary sphere

Main nomenclature

Fy0 Amplitude of the total crossflow force

Fy,v0 Amplitude of the vortex crossflow force

h Water level

hs Distance between the top of the sphere and the free

surface (still liquid and sphere)

Jk Number of samples in the kth phase bin

K Number of phase bins

L Tether length (distance between pivot and center of mass

of the sphere)

m Sphere mass

mA Sphere added mass

md Displaced fluid mass

M Number of samples from each period in a phase bin

n’ Index of goodness of the modelled trajectory

N Number of zero-crossing points

r Reference signal

t Time

t0 Instant of zero-crossing in the reference signal r

T Reference period of oscillation (approximation of T0)

Tmin Minimum period of oscillation

T0 Average period of oscillation

U Mean streamwise velocity

x Streamwise position of the sphere center

y Crossflow position of the sphere center

hK Vector of bin centers for the phase average

m Kinematic viscosity of the fluid

n Generic component of motion

nph Phase average of n

rn Standard deviation of n

rnph Phase standard deviation of n

rT Standard deviation of the oscillation period

ry0 Standard deviation of the random part of y

/ Instantaneous phase of a signal

/x Instantaneous phase of the streamwise position

/y Instantaneous phase of the crossflow position

/xy1 Phase lag between streamwise and crossflow position

(first harmonic)

/xy2 Phase lag between streamwise and crossflow position

(second harmonic)

Uy Phase lag between crossflow force and displacement

Uy;v Phase lag between crossflow vortex force and

displacement
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2 Experimental apparatus and measurement

techniques

The experiments were performed in a re-circulating

flume at the Hydraulics Laboratory of the Politecnico

di Milano. The test section had a total length of 6 m, a

width of 0.5 m and a height of 0.6 m and it was made

of Plexiglas to ensure optical access from all sides.

The mean streamwise velocity, U, was varied in a

range of 0.09–0.40 m/s, corresponding to the Rey-

nolds numbers between 5 9 103 and 2.5 9 104, while

the water level was maintained at h/D = 7 for all

experiments. The distance of the sphere from the free

surface was hs/D = 3 (considering the sphere at rest).

A Plexiglas sphere with diameter D = 0.06 m and

m* equal to 1.38, covered in black paint to avoid

reflection effects, was mounted far from the inflow

section. A dyneema wire (braided fishing line) of

diameter Dt = 0.15 mm, two orders of magnitude

smaller than the sphere diameter, acted as tether and

was positioned from a fixed aluminium structure,

mounted above the channel, down to the top of the

body (Fig. 1). This way, the body was allowed to

move on a spherical surface. The non-dimensionalized

tether length, L* (ratio between the tether length, L,

and the sphere diameter, D), was varied between 6.1

and 11.7 in order to increase the reduced velocity

without increasing the water velocity too much (and

causing free surface undulations), while still assuring

the small-angle approximation.

A charge-coupled device (CCD) camera, located

below the flume, acquired the sphere oscillations in the

xy plane at a frequency of 10 7 20 Hz and with a

resolution of 659 9 493 px. The technique used was

to record the motion of a fluorescent circular marker

placed at the bottom of the sphere (aligned with its

center of gravity) in the darkness, the same way a

bright point is detected on a black background.

Subsequently, the centroid of the blob associated to

the marker was evaluated after converting each frame

into a binary image at a set brightness threshold [18].

Since the sphere, during its motion, significantly

rose from its position at rest, the distance between the

camera and the horizontal plane that included the

sphere marker increased, so the image resolution [px/

m] decreased. Therefore, a perspective correction was

applied to the data, according to the procedure

reported in the ‘‘Appendix’’. This procedure basically

considered (1) the camera image resolution [px/m] as a

function of the distance between the camera and the

sphere marker and (2) the constraint of the sphere

marker moving on a spherical surface.

Before the flowing water tests, free decay oscilla-

tions in still water were performed, following the

procedure described in Negri et al. [18], to obtain the

natural frequency, fn, and the damping ratio of the

sphere in still water, f ¼ c
4pfn mþmAð Þ (where c is the

sphere damping in still water and mA is the sphere

added mass), assuming logarithmic decay of the

oscillation amplitude.

Fig. 1 a Experimental scheme. b Snapshot of the channel with the sphere, the wire and its support
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3 Method of data analysis

The phase average method here presented is a signal

conditioning method and deals with time-resolved

signals. Nonetheless, many equations are expressed in

the continuous-time formulation for the sake of sim-

plicity, even though all the quantities involved in the

analysis of the data are actually discrete-time functions.

Starting from the VIV trajectory analysis carried

out preliminarily by Negri et al. [18] on an elastically-

mounted sphere, the method is here furtherly devel-

oped and explained in details. Firstly, some general

considerations about the phase average applied to VIV

are deduced; secondly, the specific procedure of the

developed phase-average method is presented.

Each component of motion n (x or y) of a body

under VIVs can be decomposed as the following:

n tð Þ � �nþ �n tð Þ þ n0 tð Þ ð1Þ

where �n is the long-time average, �n tð Þ is the periodic
part, and n0 tð Þ is the random part. ~n tð Þ and n0 tð Þ have
zero mean value.

The amplitude of n tð Þ in terms of standard devia-

tion, rn, is:

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t
r n tð Þ � �n
� �2

dt

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2~n þ r2
n0
þ 2r~nn0

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2~n þ r2
n0

q

ð2Þ

where r~n and rn0 are the standard deviations of ~n tð Þ
and n0 tð Þ respectively, while r~nn0 is the covariance

between ~n tð Þ and n0 tð Þ and it is null, as ~n tð Þ and n0 tð Þ
are independent.

If rn represents the total variability of n tð Þ, the
quantities r~n and rn0 can be used to quantify the

periodicity and the randomness of n tð Þ.
If the instantaneous phase / tð Þ of the motion can be

calculated, the phase average nph hð Þ and its standard

deviation rnph hð Þ can thus be derived, for each value of
the phase h included in the range 0; 2p½ Þ, by averaging
(and computing the standard deviation of) the samples

of n tð Þ characterized by a same value h of the phase.

This process is indeed the phase average. / tð Þ can be

generated according to the leading component of

motion, which is almost harmonic.

Since the motion trajectory must be closed, any

phase-averaged motion component nph hð Þ will be

periodic with h. If n is the leading harmonic

component of motion, nph hð Þ will be a sinusoid. If n
is the secondary component of motion,nph hð Þ could

theoretically be characterized by infinite harmonics n/

2p (with n ¼ 1 ! 1) but, actually, in literature VIV

cases, it is characterized by two harmonics at the most

[18]. Therefore, the quantities r~n and rn0 can be

estimated as follows:

r~n ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2p
r
2p

0

n2ph hð Þdh
s

ð3Þ

rn0 ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2p
r
2p

0

r2nph hð Þdh
s

ð4Þ

In order to quantify the harmonics that compose

nph hð Þ, the Fourier coefficients are calculated:

Ann ¼
1

p
r
2p

0

nph hð Þe�j n
2phdh ð5Þ

where Ann is the complex amplitude of the nth

harmonic and j ¼
ffiffiffiffiffiffiffi

�1
p

. If n is the main component of

motion, n = 1. If n is the secondary component of

motion, n = 1 and/or 2 [18].

Let one consider that the motion components are

simultaneously sampled at a constant frequency fs.

The instantaneous phase / tð Þ of the motion is

calculated on the basis of the main component of

motion, which is usually harmonic. Similarly to the

approach reported in Negri et al. [35], the reference

signal r tð Þ is generated by applying a low-pass filter on
the harmonic component of motion, and zero-crossing

instants t0;i with positive slope are detected in r tð Þ
through linear interpolation (with i ¼ 1; 2; . . .;N

where N is the total number of zero-crossing points

detected). The signal r tð Þ is thus divided into N � 1

periods. The average oscillation period is defined as

the average difference between consecutive zero-

crossing instants:

T0 ¼
1

N � 1

X

N�1

i¼1

t0;iþ1 � t0;i
� �

ð6Þ

The period variability can be described by the

standard deviation rT of the periods detected in r tð Þ:

rT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 2

X

N�1

i¼1

t0;iþ1 � t0;i � T0
� �2

v

u

u

t ð7Þ
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Let one introduce the reference period T , approx-

imation of the period T0 such as it is a multiple of the

sampling time 1
fs
or a multiple thereof (Eq. 8):

T � ½ T0
M=fs

þ 0:5�M
fs

ð8Þ

where . . .b c is the floor function and M is an integer

number greater than or equal to 1. The approximation

error will be T � T0ð Þ� M
2fs
.

In this work, two different techniques of assigning

the instantaneous phase / tð Þ to r tð Þ are considered,

depending on whether the time instants t are non-

dimensionalized by a unique period, which is the

reference period T [Eq. (9)], or by the current period

t0;iþ1 � t0;i [Eq. (10)], variable from cycle to cycle.

Even if T0 is the best estimate of the oscillation period,

its approximated value T allows the optimization of

the phase average when the phase is defined according

to Eq. (9):

/c tð Þ ¼ 2p
t � t0;i
T

; t0;i � t\t0;iþ1;

i ¼ 1; 2; . . .;N � 1
ð9Þ

or

/s tð Þ ¼ 2p
t � t0;i

t0;iþ1 � t0;i
; t0;i � t\t0;iþ1;

i ¼ 1; 2; . . .;N � 1
ð10Þ

where t0;i are the N instants of zero-crossing of the

reference signal r tð Þ.
/c tð Þ and /s tð Þ are sine phases, since the 0-phase

value corresponds to the positive zero-crossing. /c tð Þ
and /s tð Þ are periodic functions made of line segments

(indeed, they are linear-interpolating phases).

The first phase assignment [Eq. (9)] has the

advantage that all time instants are non-dimensional-

ized for the same quantity, therefore the resulting

phase spacing of the samples is the same for all the

identified periods and is equal to 2p
T �fs. On the other

hand, it has the disadvantage that the phase within a

cycle does not exactly range between 0 and 2p, but it
ranges from 0 to a value smaller or larger than 2p,
whether the current period t0;iþ1 � t0;i is shorter or

longer than the reference period T . This issue is as

great as the variability of the period rT is large. If the

phase is assigned according to Eq. (10), on the

contrary the phase ranges from 0 to 2p in all the

cycles but the phase spacing of the samples is different

from cycle to cycle, since the time instants are non-

dimensionalized on the basis of different periods.

In order to perform the phase average of the

samples, the phase domain 0; 2p½ Þ is subdivided into K
equally-spaced bins, whose center coordinates are:

hK ¼ k � 0:5ð Þ
K

2p; k ¼ 1; 2; . . .;K ð11Þ

with K being an integer number.

If the phase is calculated according /c tð Þ, the phase
bins can be arranged so that every bin includes the

same number M of samples from each period, except

in the last bin(s), where, due to period variability,

samples from the shorter periods are missing. This is

possible only if the width of the phase bin 2p
K is a

multiple of 2p
T �fs, and, considering that K must be an

integer, if T is a multiple of Mfs [see Eq. (8)]. Hence, the

optimum number K of phase bins results:

K ¼ T � fs
M

ð12Þ

The smaller M, the larger K, which means that the

lower the smoothing, the finer the discretization of the

phase average. If M = 1, the phase average has the

same temporal resolution of the original signal.

If phase is calculated according /s tð Þ, the arrange-
ment of the phase bins cannot be optimized to evenly

include the samples from the different periods.

The kth values of the phase average nph;k and phase
standard deviation rnph;k of the generic motion com-

ponent are calculated as:

nph;k ¼
1

Jk

X

Jk

j¼1

n tk;j
� �

� �n
� �

;

tk;j ¼ tj hk �
p
K

�/ tð Þ\hk þ
p
K

� �n o

ð13Þ

rnph;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Jk � 1

X

Jk

j¼1

n tk;j
� �

� nph;k
� �2

v

u

u

t ;

tk;j ¼ tj hk �
p
K

�/ tð Þ\hk þ
p
K

� �n o

ð14Þ

where tk;j are the time instants such that their

instantaneous phase is included in the kth phase bin,

and Jk is the number of these time instants.

The type of phase assignment [Eq. (9) or (10)]

significantly affects the phase average. Two properties

are here considered for evaluating the accuracy of the

phase average:
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• Smoothness: the smoothness of the original oscil-

lation periods is conserved in their phase average.

• Periodicity: the last element nph;K well approaches

the first element nph;1 of the phase average.

The phase average can be usefully interpreted as a

moving average of the phase-sorted samples, which

are obtained by reorganizing the samples of n tð Þ
according to their (increasing) phase (/c or /s). n /ð Þ
can be interpreted as the phase-sorted samples.

Generally, n /ð Þ is a multivalued ‘‘function’’, since

more than one sample of n tð Þ can be characterized by

the same value of phase. Moreover, the elements of

n /ð Þ are not equally-spaced.
If the phase is assigned according to a constant

period [Eq. (9)], the sequence with which samples

from different periods follow one another in n /ð Þ is
constant and is repeated every 2p

T �fs radians: N � 1

samples (one sample from each period) are included,

with the same arrangement, inside every phase interval

of 2p
T �fs radians, as long as /\ Tmin

T 2p, where Tmin is the

shortest period detected in r tð Þ. Therefore, when

performing the moving average of n /ð Þ, a bin width of
M 2p

T �fs [see Eq. (12)] ensures that the smoothness of the

cycles is also preserved in their average nph;k, for
kþ0:5
K \ Tmin

T . The number of samples Jk in the kth phase

bin will be constant and equal toM N � 1ð Þ, as long as
kþ0:5
K \ Tmin

T . In the last bin(s), that is for kþ0:5
K � Tmin

T , the

number of samples Jk could be lower and neither the

smoothness nor the periodicity of the phase average is

guaranteed.

Instead, defining the phase according to the current

period [Eq. (10)] has the advantage that all the periods

have the same duration in terms of phase (2p), and thus
the periodicity of the resulting phase average is

guaranteed. On the other hand, samples from different

periods do not occur with a repeating sequence in

n /ð Þ, hence the arrangement of the phase bins cannot

be optimized to evenly group the elements of n /ð Þ.
Generally, the samples from each period will not be

uniformly distributed in the phase bins. Therefore, the

smoothness of the originally sampled periods is not

conserved in their average.

In order to exploit the benefits of the two methods

and to obtain both a periodic and smooth phase

average, an additional method is implemented: the

samples of every period are interpolated on K equally-

spaced points, corresponding to the phase values of hK

[Eq. (12)], with phase being calculated according to

the current period [Eq. (10)]. In this way, the new

interpolated samples are uniformly distributed

throughout the phase bins: N � 1 samples (one from

each period) fall in every bin center. The interpolation

instant with phase hK;k in the ith period is defined as

tk;i ¼ hK;k
2p t0;iþ1 � t0;i
� �

þ t0;i. Let �nk;i be the interpo-

lated value of n tð Þ at the instant tk;i. Then, the kth

elements of the phase average and phase standard

deviation are calculated as [Eqs. (15) and (16),

respectively]:

nph;k ¼
1

N � 1

X

N�1

i¼1

�nk;i � �n
� �

ð15Þ

rnph;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 2

X

N�1

i¼1

�nk;i � nph;k
� �2

v

u

u

t ð16Þ

4 Results

The results are subdivided into two sections: (1) the

detailed application of the presented method to a

single VIV case of a tethered sphere, and (2) the

analysis of the VIVs of a tethered sphere with varying

reduced velocity.

4.1 Application of the phase average to a single

VIV case

The case analyzed in this section was characterized by

D = 0.060 m, L* = 11.7, m* = 1.38, f = 0.03,

U* = 7.7, and Re = 7000. The sampling frequency fs
was 10 Hz and 1499 samples were acquired. In Fig. 2,

the streamwise (a) and crossflow (b) coordinates of the

sphere are depicted. Figure 2b reports the reference

signal r tð Þ for the phase average, obtained by low-pass
filtering the crossflow signal y tð Þ (which is the

harmonic component of motion), and the zero-cross-

ing points detected in r tð Þ. The Fourier transform of

the motion components is depicted in Fig. 3; the cut-

off frequency for the filter used to obtain r tð Þ from y tð Þ
is set at twice the main oscillation frequency, f, and is

indicated by the dashed line. In Negri et al. [35], the

value of the cut-off frequency slightly affected the

results, once that the frequency peak was included in

the band. The spectrum of the crossflow component
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clearly shows a frequency peak f 	 0:26 Hz, while the

spectrum of the streamwise component x(t) is noisier,

although a frequency peak approximately at 2f is

detectable.

The number of periods detected in the reference

signal r tð Þ is N � 1 ¼ 39. The average period and

period variability are T0 ¼ 3:806 s and rT ¼ 0:194 s,

respectively. The variability rT is about the 5% of T0.

Fig. 2 Time history of the

sphere positions non-

dimensionalized against the

sphere diameter, D:
a streamwise position;

b crossflow position

Fig. 3 Discrete Fourier Transform (DFT) of the non-dimensionalized a streamwise and b crossflow component of Fig. 2. The cut-off

frequency for generating the reference signal from the y-component of motion is 2f
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As showed by Fig. 3b, the periodicity of the crossflow

component of motion is quite high. In Fig. 4, the

duration t0;iþ1 � t0;i of the N � 1 periods detected in

r tð Þ is showed.
According to Eq. (8) and Eq. (12), adopting M = 1

(maximum resolution of the phase average that allows

the constancy of Jk through the phase bins), T = 3.80 s

and K = 38 are obtained. In Fig. 5, the instantaneous

phase/ tð Þ of y tð Þ, calculated according Eq. (9) (/c tð Þ)
and Eq. (10) (/s tð Þ), is depicted. /s tð Þ ranges from 0

to 2p in each period, while /c tð Þ starts at 0 and

generally does not end at 2p in each period.

Once the instantaneous phase / tð Þ is known, the

samples of y tð Þ are reorganized according to increas-

ing phase, in order to obtain y /ð Þ. Figure 6 shows y /ð Þ
using Eqs. (9) and (10). The limits of the phase bins

are also reported.

Figure 7 shows the number Jk of samples of each

phase bin. If the phase is calculated according to a

constant period [Eq. (9)], Jk is constant except for the

last bins, where it decreases due to the different

duration of the periods (Fig. 7). On the contrary, if

phase is calculated according to the current period

[Eq. (10)], Jk is not constant and there is not a decrease

of samples in the last bins.

In Fig. 8, the interpolated periods are reported. The

interpolant used is cubic, but it has been verified that

linear interpolation gives almost identical results.

In Fig. 9 and 10, the phase average and standard

deviation of the crossflow and streamwise component

are reported, using the three techniques previously

explained: (1) instantaneous phase calculated accord-

ing to a reference period [Eq. (9)], moving average

and standard deviation [Eqs. (13) and (14)], (2)

instantaneous phase calculated according to the

Fig. 4 Period duration

t0;iþ1 � t0;i throughout the
signal (plotted at

t ¼ t0;i þ t0;iþ1

� �

=2). The

average period T0 and the

standard deviation rT are

also shown

Fig. 5 Instantaneous phase

/ tð Þ of y tð Þ, calculated
according to Eqs. (9) and

(10)
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current period [Eq. (10)], moving average and stan-

dard deviation [Eqs. (13) and (14)], (3) instantaneous

phase calculated according to the current period

[Eq. (10)], interpolation of the periods, moving aver-

age and standard deviation [Eqs. (15) and (16)].

It can be seen that the first technique preserves the

smoothness in the phase average (except that in the last

bins) but not the periodicity. On the contrary, the

second technique guarantees the periodicity but does

not preserve the smoothness. The third technique,

which combines the benefits of both the previous two

techniques, guarantees both periodicity and smooth-

ness. This is also evident in the 2D trajectories

(Fig. 11): the trajectory calculated with the first

Fig. 6 Samples of crossflow motion y /ð Þ sorted according to

their phase y /ð Þ: a instantaneous phase calculated according to a
constant period [Eq. (9)]; b instantaneous phase calculated

according to the current period [Eq. (10)]. The limits of the

phase bins are indicated by the dashed lines

Fig. 7 Number of samples

Jk inside the phase bins,
depending on whether the

instantaneous phase is

calculated according to a

constant period [Eq. (9)] or

to the current period

[Eq. (10)]. For the case of

phase calculated according

to Eq. (9), additional bins

beyond 2p are considered
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technique is smooth but not closed; the trajectory

calculated with the second technique is indented but

closed; the trajectory calculated with the third tech-

nique is smooth and closed.

The oscillation of the bin standard deviation

through the period (Figs. 9, 10) indicates that the

amplitude of the random component (but not the

random component itself) is correlated to the periodic

component. For the crossflow motion (which is the

leading motion component in this case), the amplitude

of the random component is higher where the module

of the periodic component is higher, and thus it

accomplishes two oscillation cycles within the period.

This is intuitive for an almost harmonic signal. For the

streamwise motion (which is the secondary motion

component in this case), the amplitude of the random

component is almost in phase with the periodic

component.

Finally, the amplitude and phase of each motion

component were obtained by calculating the first

Fourier coefficients of xph;k and yph;k (two harmonics

for xph;k and one harmonic for yph;k, the two harmonics

Fig. 8 Phase-sorted [according to phase of Eq. (10)] and interpolated samples of the crossflow motion y /ð Þ

Fig. 9 Phase-averaged crossflow motion: a bin mean; b bin standard deviation
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corresponding to the frequencies 1= 2pð Þ and 2= 2pð Þ).
In Tables 1 and 2, the amplitudes of the first Fourier

coefficients are reported for the streamwise and

crossflow motion, respectively (the number of har-

monics reported exceeds by two the effective number

of harmonics of xph;k and yph;k). Moreover, the standard

error (SE) and the coefficient of determination, R2, of

the Inverse Discrete Fourier Transform (IDFT) of the

phase average are reported for the increasing number

of harmonics considered. It can be seen that the

streamwise motion is completely described by two

harmonics, while the crossflow motion is completely

described by one harmonic.

The original data x tð Þ and y tð Þ were also analyzed

with the other methods used in the VIV literature and

indicated in the introduction as 1, 2, and 3. Table 3

Fig. 10 Phase-averaged

streamwise motion: a bin

mean; b bin standard

deviation

Fig. 11 Phase-averaged xy trajectory. The arrows indicate the

trajectory direction. The flow is from left to right

Table 1 Amplitude of the harmonics of the streamwise

motion, Axn*, calculated through DFT; Standard Error (SE),

and determination coefficient R2 of the IDFT of the phase

average for an increasing number of harmonics considered

Harmonics

1 2 3 4

Axn* 0.010 0.059 0.001 0.001

SE 0.042 0.001 0.001 0.000

R2 0.026 0.999 0.999 1.000

Table 2 Amplitude of the harmonics of the crossflow motion,

Ayn*, calculated through DFT; Standard Error (SE) and deter-

mination coefficient R2 of the IDFT of the phase average for an

increasing number of harmonics considered

Harmonics

1 2 3

Ayn* 0.665 0.004 0.006

SE 0.005 0.004 0.000

R2 1.000 1.000 1.000
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shows the following quantities detected by each

method:

• main oscillation frequency f (main component of

motion);

• crossflow first harmonic amplitude A

y ;

• streamwise amplitudes A

x1 (first harmonic) and

A

x2(second harmonic);

• phase lags /xy1, between the first harmonics of x

and y, and /xy2, between the first harmonic of y and

the second harmonic of x, respectively.

In Fig. 12, the trajectory is modeled using the

methods reported in Table 3. The comparison between

the modeled trajectory and the original data is

proposed through two different plots: on the left hand

Table 3 Comparison among the different methods of trajectory analysis

f A

y A


x1 A

x2 /xy1 /xy2 n0

(Eq. 17)

Amplitude from standard deviation

A � r
ffiffiffi

2
p

– 0.685 0.129 – – –

Amplitude as mean half peak-to-peak distance – 0.663 – – – – –

Discrete Fourier Transform 0.260 0.388 0.017 0.025 0.74 2.63 60.0

Interpolation on a sum of sinusoid [27] – 0.409 0.018 0.024 0.69 2.70 62.5

Instantaneous phase through Hilbert transform [29] – – – – NA 5.53 76.6

Instantaneous phase through linear interpolating phase (maxima and

minima) [30]

– – – – NA 4.28 94.7

Present method (phase average ? DFT) 0.263 0.665 0.010 0.059 5.30 4.21 112.1

‘‘–’’ means that the method is not designed to calculate the parameter. ‘‘NA’’ means that the method is designed to calculate the

parameter but does not detect it

Fig. 12 Trajectory modeling with different methods. a The original data are represented as xy trajectory; b the original data are

represented as frequency distribution (the color is linked to the number of samples in each xy interval)
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side of the figure, the original data are plotted as time-

resolved trajectories; on the right hand side, the

original data are plotted as frequency distribution on

xy intervals, with width 0.0134D and 0.0432D in the x

and y directions, respectively. For an overall estima-

tion of the methods’ accuracy, the following parameter

was used and included in Table 3:

n0 �
PQ

q¼1 nq

s
ð17Þ

where nq is the number of samples belonging to the qth

xy interval crossed by the modeled trajectory (out of a

total numberQ of intervals, which is different for each

method considered) and s is the length of the modeled

trajectory (expressed in sphere diameters).

n0 represents the number of samples per unit length

of modeled trajectory: the larger n0 is, the more the

modeled trajectory traces the original positions of the

sphere. It must be noted that the parameter n0 is

dependent on the dimension of the xy intervals;

moreover, this estimation of accuracy cannot account

for the orientation of the trajectory.

The first row of Table 3 reports the amplitudes

calculated through the standard deviation. Since the

spectrum of y is concentrated on the main peak

(Fig. 3a), the y-amplitude calculated this way should

be indicative of the mean amplitude. On the contrary,

the spectrum of x (Fig. 3b) is very dispersed in the

range 0–0.6 Hz, therefore the x-amplitude indicates

only the mean variability and not the amplitude of any

of the harmonics. In the second row of Table 3, the y-

amplitude is calculated as mean peak-to-peak dis-

tance, while the x-amplitude cannot be calculated

because x is not harmonic.

The first method, DFT, is the most straightforward

one to calculate the main oscillation frequency, f, but it

is also the least accurate in reconstructing the sphere

trajectory since the amplitude and period duration of

both motion components vary with time (see Fig. 2 for

the amplitudes and Fig. 4 for the period duration of the

crossflow motion component).

The second method, used in Kang and Jia [28], is

the regression of x tð Þ and y tð Þ on a limited Fourier

series (5 harmonics) with fixed frequencies (multiple

of f) and unknown amplitudes and phases. Amplitude

coefficients calculated with this method are 0.0175,

0.0238, 0.0005, 0.0004, and 0.0006 for x and 0.4090,

0.0026, 0.0007, 0.0021, and 0.0015 for y, respectively.

It is clear that the significant amplitudes are the first

two for x and only the first one for y. The results of this

method are similar to those of the DFT method: the y-

amplitudes are underestimated and the modeled

trajectory does not resemble the real motion

(Fig. 12). The rotation direction of the trajectory is

clockwise, in agreement with the literature data [18].

The third method to characterize the xy trajectory is

to identify the synchronization between x and y (see

[30]). This can be done by (1) calculating the

instantaneous phases /x tð Þ and /y tð Þ of x tð Þ and

y tð Þ, (2) hypothesizing a frequency ratio fx=fy � m=n

(with m and n integer numbers), (3) calculating the

instantaneous phase lag between the two motion

components /xy;m:n tð Þ ¼ n/x tð Þ � m/y tð Þ, and (4)

calculating the mean phase lag from the frequency

distribution of the instantaneous phase lag. Two

techniques for calculating the instantaneous phase of

a signal are here considered: through the analytical

signal (Hilbert transform) of x tð Þ and y tð Þ [30] and

through the linear interpolating phase [31]. The latter

was here calculated by assigning the phases p=2 and

3p=2 to the relative maxima and minima respectively

(i.e. sine phase) of each motion component, and then

linearly interpolating between these points. Here, the

‘‘average’’ phase lag is taken as the mode of the

frequency distribution of the instantaneous phase lag.

The application of these two techniques allowed

calculating /xy2 (although with a certain degree of

uncertainty) but not /xy1 (the frequency histogram

does not show a recognizable peak). /xy2 calculated

with the two techniques are very different: the

analytical signal gives a counterclockwise trajectory

(Fig. 12a), which is not expected for the investigated

value U
 = 7.7. With both techniques, the amplitudes

derived from the standard deviations are used to

represent the trajectory.

The method developed here allows the determina-

tion of all the parameters of the average trajectory,

such as the DFTmethod. The mean period is similar to

the one detected through the DFT. The phase lag /xy2

is very close to that estimated with the linear

interpolating phase. The mean y-amplitude A

y is

similar to the average peak-to-peak amplitude. Com-

pared to the other methods found in the literature, the

present method of phase average better calculates all

properties and reconstructs the mean sphere trajectory

together with its rotation direction, as shown in
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Fig. 12. This is confirmed by high value of the

parameter n0 in Table 3.

4.2 VIV of a tethered sphere with varying reduced

velocity

In order to study the phenomenon of the VIVs of a

tethered sphere, a sufficiently wide range of reduced

velocities was investigated. The tests were performed

changing the tether length, to modify the natural

frequency of the system, and varying the mean

streamwise velocity (0.09\U\ 0.4 m/s).

The non-dimensionalized sphere mass was equal to

1.38, while the damping ratio was included in the

range of 0.023\ f\ 0.026. This led to a correspon-

dent range 0.043–0.049 of the mass-damping param-

eters, m 
 þCAð Þf, where CA is the potential added

mass coefficient equal to 0.5 for a sphere. According to

the Griffin plot, the mass-damping parameter affects

the crossflow amplitude motion if it is larger than 0.02

and thus the motion amplitude was expected to be

slightly reduced [10]. The dynamic response of the

sphere in the crossflow direction, A

y ; is influenced by

the set of non-dimensional groups defined in Table 4

and is expressable with the relationship of Khalak and

Williamson [36]:

A

y ¼

3

32p2
CysinUy

m
 þ CAð Þf
U


f 


� �2

f 
 ð18Þ

where Cy is the total crossflow force coefficient,Uy the

phase difference between the sphere crossflow

displacement and the total crossflow force, and

f* = f/fn the frequency ratio equal to:

f 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
 þ CAð Þ
m
 þ CEAð Þ

s

ð19Þ

Here, CEA is an ‘‘effective’’ added mass coefficient

that includes an apparent effect due to the total

crossflow fluid force in phase with the body acceler-

ation (Cy cosUy):

CEA ¼ 3

16p2A

y

U


f 


� �2

CycosUy ð20Þ

Figure 13 displays the trend of the crossflow

amplitude oscillations with varying U*.

The amplitude response of the sphere in the current

study is similar to the trend of a heavy sphere with

m* = 2.8 [9]. At U* & 5, Mode I is detected, which

corresponds to the vortex formation frequency lying

close to the natural frequency of the tethered body

(Fig. 14). For U*[ 7, the sphere starts having oscil-

lations higher than the amplitudes corresponding to

the first response, until it reaches the maximum

crossflow amplitude, A*y& 0.9, corresponding to

Mode II. This value is equal to the saturation value

0.9 found by Govardhan and Williamson [10] for

values of mass–damping lower than 0.02.

The transition between the modes is continuous and

gradual with U* and no separation is observed, unlike

the case of a tethered sphere with a very low mass

ratio, where the two vibration modes are distinct by a

Table 4 Non-dimensional

groups affecting the

crossflow dynamic response

Symbol Formula

Non-dimensionalized crossflow oscillation amplitude (first harmonic) A

y Ay=D

Non-dimensionalized streamwise oscillation amplitude (first harmonic) A

x1 Ax1=D

Non-dimensionalized streamwise oscillation amplitude (second harmonic) A

x2 Ax2=D

Non-dimensionalized tether length L* L/D

Total crossflow force coefficient Cy
Fy0

0:5qU2pD
2

4

Vortex crossflow force coefficient Cy,v
Fy;v0

0:5qU2pD
2

4

Damping ratio f c
4pfN mþmAð Þ

Frequency ratio f 
 f=fN

Mass ratio m
 m=md

Reduced velocity U
 U
fND

Reynolds number Re UD=m

Strouhal number St fvoD=U
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desynchronized region. The randomness of vibrations

increases with increasing U*, as shown by the

variability (represented with the bands) of oscillation

amplitude (Fig. 13) and frequency (Fig. 14), similarly

to van Hout et al. [2] and Sareen et al. [25].

Figure 14 shows that, for values ofU* around 5, the

oscillation frequency is very close to the natural

frequency of the body. With increasing U*, the

oscillation frequency increases, as does the variability

of the frequency, expressed by the bands.

As observed in Fig. 13, the transition between

Mode I and II is continuous with U*, and thus more

difficult to detect than from the plot of the phase

differences between the force and the sphere displace-

ment signals.

Indeed, Fig. 15 displays the variations of Uy and

Uy;v (phase difference between the sphere displace-

ment and the vortex force) versus the reduced velocity.

In the same figure, the trends of the total crossflow

force coefficient, Cy, and the vortex force coefficient,

Cy,v, are also reported. The phase of the vortex force,

Uy;v, is equal to 90� when Mode I occurs and exceeds

90� as the Mode II response reaches the peak

amplitude. The phase of the total crossflow force,

however, remains constant at values around zero in

Mode I and crosses 90� in Mode II. This difference

might be due to a change in the shape of vortex

structures in the wake of the vibrating sphere [10].

Figure 16 presents the sphere trajectories on the

transverse plane for several values ofU*, on which the

trajectories obtained through the phase average are

overlapped. For U*[ 5, the second harmonic appears

in the streamwise component and the parameter which

better represents the trajectories’ shape is the phase

lag, /xy2, between the streamwise and crossflow

motions showed in Fig. 17. As evident from the

figure, the phase lag increases with U* and is included

in the range p�/xy2 � 7p=4. /xy2 seems to have two

plateaus, one in Mode I (/xy2 	 p=6) and one in Mode

II (/xy2 	 5p=3). According to the definition of Dahl

et al. [37], Fig. 17 also indicates clockwise trajectories

(/xy2\3p=2) in Mode I and in the transition region,

and counterclockwise ones (/xy2 [ 3p=2) in Mode II.

Figure 16 displays how the clockwise trajectories are

more chaotic than the counterclockwise ones. An

explanation given in Dahl et al. [37] for cylinder VIVs

is that, in counterclockwise trajectories, the body goes

downstream after the vortices are shed, staying closer

to them as they go downstream too, and hence

exploiting the suction force more. As well as the

rotation direction of the trajectory, the phase /xy2 also

describes the shape of the trajectory [18]. In Mode I

and Mode II, the trajectory is 8-shaped. Between the

two modes, approximately at U* & 8.5, /xy2 crosses

3p=2 and the trajectory is crescent-type. In Mode I, the

trajectory is characterized by central symmetry. For

U*[ 5, the tips of the trajectory are downstream the

center of the trajectory.

In Fig. 18, the periodicity of the streamwise and

crossflow motion component is shown and was

calculated as the ratio between the amplitude of the

periodic contribution (according to Eq. (3)) and the

total amplitude. Since the periodicity of the crossflow

component is always high, the periodicity of the

streamwise component can be also read as the

synchronization degree between the two motion

components. In the investigated range, the periodicity

Fig. 13 Crossflow oscillation amplitude versus U*. The

standard deviation of the random component ry0=D [Eq. (4)]

is reported in the bands

Fig. 14 Crossflow oscillation frequency versus U*. The

variability of the oscillation frequency f 
rT=T is reported in

the bands
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of the crossflow components decreases as U*

increases, while the periodicity of the streamwise

components has a maximum corresponding to

U* & 8.5. In Mode II, both the crossflow and

streamwise periodicity decreases as U* increases.

In the present results, the sphere shows significant

oscillation amplitude up to a normalized velocity (U*/

f*)St & 2.7 (where St = fvoD/U and fvo is the vortex

shedding frequency with a stationary sphere), there-

fore the end of Mode II is not detected. Govardhan and

Williamson [10] (case m* = 2.8,

m 
 þCAð Þf = 0.029) and Sareen et al. [25] (case

m* = 7.8, m 
 þCAð Þf ¼ 0:017) found that Mode II

extended up to (U*/f*)St & 2.2. After this value,

Sareen et al. [25] found a plateau with still significant

oscillation amplitude, while Govardhan and Wil-

liamson [10] observed a strong decrease of the

oscillation amplitude before approaching Mode III.

Since the mass-damping parameter in this work is

higher, m 
 þCAð Þf ¼ 0:043� 0:049, the persisting

Mode II may be linked to the low value of the sphere

mass m* = 1.38.

5 Conclusions

In this work, a phase average method was developed in

order to analyze the motion of a tethered sphere with

m* = 1.38, which is characterized by both periodicity

and randomness. The method was applied to experi-

mental VIVs considering a wide range of reduced

velocities 4.96 B U* B 25.33 (Reynolds numbers

5x103 B Re B 2.5x104). Samples acquired at a con-

stant frequency were analyzed. The component of

motion showing periodic behavior (crossflow compo-

nent) was used as reference phase and the trigger

points were precisely detected through interpolation,

dividing periods throughout the time history of that

motion component. Due to the variability of the

oscillation period within the crossflow component, the

Fig. 15 Variation of the total force coefficient (a) and phase (c) and vortex force coefficient (b) and phase (d) with U*
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phase was assigned to each sample with respect to the

current oscillation period. The resulting non-uniform

distribution of samples against the phase was over-

come through an interpolation of the samples on the

basis of a phase vector of equally-spaced points.

The results showed how the mean and standard

deviation of the phase average identified and quanti-

fied the periodic and random part, respectively. The

Fourier transform of the periodic part revealed that the

streamwise motion component was characterized by

two harmonics (crossflow frequency and its double).

The amplitude (standard deviation) of the random part

was observed oscillating twice the crossflow

frequency, both in the streamwise and crossflow

direction, while it increased with increasing U* for

the crossflow motion only. Analogously, the variabil-

ity of the oscillation period increased with U*.

The method developed here proved to be efficient

in the presence of a periodic component of motion and

when the motion is stationary, being abler to extract

the periodic trajectory pattern than the other methods

used in the literature, especially with VIV trajectories

characterized by a level of randomness. Further work

is needed to adapt the present method to the analysis of

motions characterized by synchronization changes.

Additional results were obtained regarding the

dynamic response of the sphere. In particular, the

crossflow oscillation amplitude closely followed the

trend reported in the literature for similar mass ratios

showing the two response modes, Mode I andMode II.

A saturation peak of about 0.9D, equal to the one

found by Govardhan and Williamson [10], was also

observed. The frequency response was close to unity

in the resonance condition and increased with U*. For

higher values of U*, significant variability in ampli-

tude and frequency of vibration highlighted a less

periodic motion of the sphere. The transition between

Mode I and II was more evident in the plot of the

vortex phase corresponding to a shift in the timing of

vortex formation. The shape and rotation direction of

the trajectory are linked to the phase lag between the

crossflow and streamwise motion (2nd harmonic),

/xy2, which increased with U*, at least in the range

investigated here (U* = 5 7 25). The sphere trajec-

tories presented the classical 8-shape with a clockwise

direction of rotation in Mode I (/xy2\3p=2). An

increase of U* transformed the trajectory into a

crescent-like shape (U* & 8.5) as /xy2 crossed

3p=2; with higher U* (Mode II), /xy2 increased too

and the trajectory became 8-shaped again, but with

counterclockwise rotation. The highest degree of the

trajectory periodicity was found at U* & 8.5. As U*

increased within Mode II, the trajectory was more and

more characterized by a higher level of randomness.
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Studi della Basilicata within the CRUI-CARE Agreement. This

study has not received funding.

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

bFig. 16 Experimental trajectories in the xy plane with the

phase-averaged trajectories and the IDFT of the phase-averaged

trajectories superimposed for: a U* = 5.68, b U* = 7.64,

c U* = 8.52, d U* = 9.62, e U* = 12.72, f U* = 14.09,

g U* = 15.96, h U* = 25.33

Fig. 17 Phase lag between the streamwise and crossflow

motion component

Fig. 18 Periodicity of the streamwise and crossflow motion

component
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Appendix: a method for calculating the three-

dimensional position of the sphere using a single

framing

The motion of the sphere was recorded by a camera

placed under the sphere, with its optical axis being

vertical. The sphere had amarker at its bottom, aligned

along the tether direction. During the sphere motion,

the marker moved on a spherical surface, hence

changing its distance from the camera. This caused a

change in the resolution R [px/m] of the image of the

current plane, where the marker lied. In order to obtain

the true tridimensional position of the marker from

each frame, it was thus necessary to perform some

correction on the raw position of the marker in the

image.

Perspective correction

The perspective scheme is considered in Fig. 19. The

tether pivot is in C. The sphere is in a generic position

and its marker is in point P with coordinates

xP; yP; zPð Þ: The distance between the tether pivot

and the sphere marker is ‘. Three planes are indicated

in the scheme:

• the sensor plane in the camera, where the image is

created. The width of the sensor isw ¼ nplp, where

np and lp are the number and dimension of pixels

along the x direction, respectively;

• the reference plane, where the marker lies when the

sphere is at rest (point O). The image of this plane

has a resolution R0 [px/m];

• the current plane, where the marker lies when the

sphere moves (point P). The image of this plane has

a resolution R(z)\R0.

The point F is the focus of the camera. For now, the

refraction of the optic rays (due to the different

mediums they cross) may be ignored. Two coordinate

systems are considered: the absolute reference system,

whose origin and horizontal axis x lie in the reference

plane, and the image reference system, whose origin

and horizontal axis x’ lie in the sensor plane. Note that

here, for convenience, the origin of the absolute

reference system is different from the one in Fig. 1.

The coordinate x0P0 of the marker in the image can be

expressed as:

x0P0 ¼ x0O0 þ O0A0 þ A0P0 ð21Þ

where x0O0 is the coordinate (in the image) of the

marker at rest, which can be known by taking a picture

when the sphere is still. The lengths of the segments

O0A0 and A0P0 are easily calculable (in the subsequent

equations, the resolution R is a function of z, even

though it is not indicated):

O0A0 ¼ R � O
A ¼ R O
M � O ~M
� �

¼ R � O0M0

R
� O0M0

R0

� �

¼ O0M0 1� R

R0

� �

¼ x0M0 � x0O0
� �

1� R

R0

� �

ð22Þ

A0P0 ¼ R � AP ¼ R � xP � xOð Þ ð23Þ
Fig. 19 Perspective scheme
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where xO ¼ x0O0=R0. The resolution R0 of the image of

the reference plane can be calculated from the picture

acquired with the sphere at rest.

Finally, it is possible to make the real coordinate of

the marker explicit:

xP � xO ¼ 1

R zPð Þ x0P0 � x0O0 � x0M0 � x0O0
� �

1� R zPð Þ
R0

� �� �

ð24Þ

In the same way, for the other horizontal

coordinate:

yP � yO ¼ 1

R zPð Þ y0P0 � y0O0 � y0M0 � y0O0
� �

1� R zPð Þ
R0

� �� �

ð25Þ

However, by expressing the terms that depend on z

using the resolution R zð Þ, it is possible to bypass the

analysis of the refraction of the optic rays, which may

be intricate.

Calculating the image resolution R zð Þ at various
distances from the camera

Figure 20 is a scheme of the optical rays, from the

camera towards the target. They undergo refraction

when crossing surfaces of separation between the two

mediums, that is between air and channel wall and

between channel wall and water. Note that here, for

convenience, the origin of the absolute reference

system is different from the one in Fig. 1.

As long as there is no change of medium, the width

of the framing,W , linearly increases with the distance

from the camera. In the area with water, W can be

expressed as:

W zð Þ � pzþ q ð26Þ

The values of p and q are:

p ¼ 2 tan a3 ð27Þ

q ¼ 2 d tan a1 þ tw tan a2 þ d0 tan a3ð Þ ð28Þ

where d is the distance between the focal point and the

dry side of the channel wall, tw is the thickness of the

channel wall, and d0 is the distance between the wet

side of the channel wall and the reference plane.

a1; a2; and a3 are the angles included between the

most external optical rays and the vertical direction in

air, channel wall, and water respectively.

The angle a1 depends only on the camera sensor

and lens:

a1 ¼ tan�1 w

2fl

� �

ð29Þ

Fig. 20 Refraction of the optic rays
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where fl is the focal length of the lens.

The values of the angles a2 and a3 can be calculated
through Snell’s law:

a2 ¼ sin�1 n1
n2

sin a1

� �

¼ sin�1 n1
n2

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f 2l þ w2
p

 !

ð30Þ

a3 ¼ sin�1 n2
n3

sin a2

� �

¼ sin�1 n1
n3

sin a1

� �

¼ sin�1 n1
n3

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4f 2l þ w2
p

 !

ð31Þ

where n1, n2, and n3 are the refractive indexes of the

three mediums.

Therefore, p only depends on the characteristics of

the camera (and lens) and of the mediums where the

camera and the target are. Therefore, it does not

depend on the distance of the camera from the channel

or on the geometrical characteristics of the channel.

On the contrary, the coefficient q depends on the

distance between the camera and the channel and on

the channel thickness, so its value must be updated

every time the position of the camera is changed.

The resolution of the image can be calculated as:

R zð Þ ¼ w=lp
W zð Þ ¼

w=lp
pzþ q

� p1
zþ q1

ð32Þ

where p1 � w=lp=p and q1 � q=p. Again, p1 only

depends on the characteristics of the camera and the

properties of the mediums where the camera and the

target are. q1 depends also on the specific arrangement

of the experiment ðd, tw, d0, etc.)
Therefore, by taking pictures at different values, zi,

and measuring the resolution, Ri, it is possible to find

the coefficient p1 through the regression of the points

zi;Rið Þ. p1 will be valid for all the experiment

arrangements, provided that the camera, the lens and

the mediums of the camera, and the target (the sphere)

are the same for all the experiments.

Subsequently, only a reference image is necessary

to find the coefficient q1, which depends on the

specific arrangement of the camera and of the channel.

Choosing z ¼ 0 (the plane where the marker of the

sphere at rest lies), the following is straightforward:

R 0ð Þ ¼ R0 ¼
p1
q1

ð33Þ

The final expression for the resolution will be:

R zð Þ ¼ p1
zþ p1=R0

ð34Þ

System of equations

The last equation needed to find the real three-

dimensional position of the marker xP; yP; zPð Þ is that
expressing the three-dimensional surface

F xP; yP; zPð Þ ¼ 0 on which the marker moves. In the

case of the tethered sphere (i.e. pendulum), it is a

spherical surface:

F xP; yP; zPð Þ ¼ xP � xOð Þ2þ yP � yOð Þ2þ ‘� zPð Þ2�‘2

¼ 0

ð35Þ

The system of equations is thus:

xP � xO ¼ 1

R
x0P0 � x0O0 � x0M0 � x0O0

� �

1� R

R0

� �� �

yP � yO ¼ 1

R
y0P0 � y0O0 � y0M0 � y0O0

� �

1� R

R0

� �� �

R ¼ R zPð Þ
F xP; yP; zPð Þ ¼ 0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð36Þ

If the functions R zPð Þ and F xP; yP; zPð Þ are known,
the unknowns of the system are xP, yP; zP, and R and

the system is solvable. Therefore, the coordinates of

the sphere center can be easily calculated through

trigonometry from the coordinates of the marker.
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