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Abstract—Probabilistic electricity price forecast (EPF) systems
represent a fundamental tool to achieve robust production
scheduling and day-ahead bidding strategies. However, most
EPF methods, including recently proposed deep learning based
techniques, are still targeting point predictions, following the
common Gaussian assumption. In this work, we propose a
novel probabilistic EPF approach based on the integration of
a Gaussian Mixture layer, parametrized by a Recurrent Neural
Network with Gated Recurrent Units, including an L1-norm
based feature selection mechanisms. The network is conceived
to approximate general conditional price distributions through
learning. Moreover, we developed a multi-hours prediction ap-
proach exploiting correlations and patters both in hourly and
cross-hour contexts. Experiments have been performed on the
Italian market dataset, showing the capability of the proposed
method to achieve accurate out-of-sample predictions while
providing explicit uncertainty indications supporting enhanced
decision making.

Index Terms—Electricity markets, Price forecast, Probabilistic
Forecast, Recurrent Neural Network, Gaussian Mixture Model

I. CONTEXT AND MOTIVATION

The last two decades have witnessed a dramatic change
in energy markets and policies. Market deregulation has
been pushed to improve efficiency of the electricity supply.
Contextually, balancing power markets have been expanded
to increase the security of the transmission system. Among
these emerging competitive markets are the day-ahead markets
where the price is cleared hourly, based on the received genera-
tion and demand bids conditioned on the equilibrium between
the two. Being able to predict the hourly price allows the
participant of these markets to exploit new opportunities and
increase their profit. However, accurate price prediction is very
challenging, and the greater is the uncertainty on the predicted
price, the lager is the risk margin [1]. The main issue of electric
energy regulation is that, unlike other commodities, electricity
is not storable. Thus, production-consumption equilibrium
has great implications for grid security. Several exogenous
factors make the prediction hourly prices challenging [2].
Demand patterns are changing following the increasing market
involvement. Production is becoming more volatile due to the
increasing penetration of renewable energies. All these factors
have led the electricity price to be strongly nonlinear with non-
stationary mean and variance, in addition to high seasonality.

Consequently, a substantial scientific effort has been devoted
to developing forecasting tools; a detailed review is reported
in [3]. While fundamental and multi-agent models are often
employed for strategic analysis and long-term predictions of
markets dynamics, statistical and computational intelligence-
based techniques have been proved to be most effective for
prediction of short term electricity price [4]. While both are ca-
pable of capturing the nonlinear behavior of the energy price,
computational intelligence techniques have been increasingly
proved effective in handling complex dynamics such as the
one presented in day-ahead markets. Among those, deep neural
network architectures have gained considerable attention due
to their capability in extracting hierarchical features from
the data [5]. A comprehensive study on the state-of-the-art
implementation of these models can be found in [6].

Regardless of the model applied, almost all the previous
studies have been focused on point forecasts [1]. However,
a probabilistic model capable of providing insight into the
uncertainty in the prediction can be an invaluable tool both
for generation companies and large-scale consumers who deal
with the various source of stochasticity in their processes and
need to account for risk in the decision-making chain. To
the best of our knowledge, the only previous work exploring
modern deep neural networks in a probabilistic framework is
[7], but still in a simplified Gaussian distribution assumption.
Indeed, as stated in the recent review [1], probabilistic EPF is
a “fascinating but still underdeveloped” field.

In this paper, we extend the aforementioned developments
by proposing a neural network-based probabilistic EPF ap-
proach beyond the Gaussian distribution assumption. To this
end, we introduce a Gaussian Mixture output layer to approx-
imate generic conditional distributions. Then, we parametrize
the mixture by a recurrent neural network with Gated Re-
current Units, aimed to extract useful features from multi-
input sequences including the exogeneous variables, summa-
rized within the latent state. Also, we develop a multi-period
forecasts approach employing only input data available in
real bidding conditions, including a L1-norm based automated
feature selection mechanism, to identify correlations and pat-
terns both in hourly and cross-hour contexts. Our method is
conceived to intrinsically tackle heteroskedasticity, by learning
input conditioned variances on each hour constituting the day-
ahead prediction horizon.



We have compared our method to a deterministic RNN and
a Bayesian Neural Network on the Italian day-ahead market
datasets, showing increases in prediction accuracy as well as
the capability to provide forecast distributions.

The paper is structured as follows. Section II starts intro-
ducing the EPF problem following the conventional Gaussian
assumption, as typically adopted in point forecast methods.
Then, the proposed approach is described, covering the ap-
proximation of broader classes of conditional distributions by
a mixture layer, the architecture design and the developed
training method. Section III reports the results achieved.

II. EPF METHOD

Neural EPF models providing point forecast are typically
learned by minimizing the sum of squares error over the
training data set. By adopting such EPF framework, the
conditional distribution of the energy prices given the input
variables set is often implicitly assumed to be Gaussian [1],
thus leading to the following expression:

Pθ(yt+1|xt) =
1√
2πσy

e
− 1

2σy2 (f̂θ(xt)−yt+1))
2

(1)

where yt+1 ∈ Rny represents the target prices whereas f̂θ is
the employed forecasting network, parametrized by θ ∈ Rnθ .
xt ∈ Rnx comprises the current and past price values, as well
as current and past values of a chosen set of input conditioning
variables, such as load demand, solar/wind predictions, etc.

From a statistical perspective, the main goal of EPF network
training is to achieve the best approximate representation of
the unknown underlying generator, thus supporting forecast in
test conditions. Following this Gaussian assumption, statistics
of the target data are achieved by learning the best - often sub-
optimal - approximation of the conditional mean through the
network, followed by the estimation of the variance parameter.
This is obtained in practice by minimizing the negative log-
likelihood of the available observations. Therefore, commonly
adopted neural EPF models approximate the conditional aver-
age of the prices in the dataset, as a function of the input data,
through the network parametrization at the local minimum of
the loss function reached during training. Afterwards, a global
variance parameter is calculated from the residuals using the
network predictions (i.e., as average prediction variance) as
follows:

σ̂2
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1
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where we calculate the variance σ̂2
y over the whole length

of the data set. S is the number of samples in the training
set and θ∗ the learned network parameters values. It is worth
noting that the exploitation of neural EPF models trained by
sum of squares loss does not strictly require the underlying
distribution to be Gaussian. Nevertheless, the network cannot
distinguish it from other distributions characterized by the
same statistics [8].
In practical situations, the price distribution to be identified
strictly depends on the specific characteristics of the energy

market under treatment, thus requiring probabilistic models
overcoming the Gaussian assumption. Hence, we developed
a neural EPF architecture aimed to model a broader class of
conditional distributions, as detailed in the following section.

A. Probabilistic EPF network architecture

The developed EPF network architecture is represented in
Figure 1. First of all, we replaced the linear layer employed in
previous neural EPF models with a Mixture layer, following
the Mixture Density Network (MDN) concept. Representing
more a class of techniques than a specific network design,
MDN has been introduced in the seminal work of [8] by
stacking a feedforward neural network (FFNN) with a Mixture
layer, to develop machines capable to approximate conditional
distributions.
In MDNs, the neural network is employed to learn the
parameters of the Mixture model. The approach has been
demonstrated in [8] on a toy problem to map the inverse
kinematics of a simple 2-link robot arm. Afterwards, MDNs
have been investigated in several application fields including
text generation [9], trajectory predictions [10] and games [11],
showing promising results. Nevertheless, to the best of our
knowledge, MDNs are still not explored within the day-ahed
energy price forecast research field.

Starting from the general MDN concept, several neural EPF
models can be conceived. A first design choice regards the
specification of the kernels and covariance matrices structure.
Several alternatives have been proposed in the literature (see
e.g. [9], [12], [13]). In this work, we employed a spherical
Gaussian kernel, characterized by a common variance param-
eter within each mixture component. In this way, we avoid the
computational expense of full covariance matrices while still
supporting the capability to approximate the underlying den-

Fig. 1. Probabilistic EPF network



sity function to arbitrary accuracy [14]. ALso, the statistical
independence assumption of outputs is avoided, as opposed
to the Gaussian formalization performed in (1). Formally, the
spherical Gaussian kernel is defined as:

φk(y|x) =
1

(2π)ny/2σk(x)ny
exp

{
−‖y − µk(x)‖

2

2σk(x)2

}
(3)

where µk(x) ∈ R and σk(x) ∈ R represents the mean and
variance parameters of the nk kernels. The conditional density
of the energy prices is thus expressed as:

p(y|x) =
nk∑
k=1

αk(x)φk(t|x), with
nk∑
k=1

αk(x) = 1 (4)

where αk(x) ∈ R are the mixing coefficients, functions of the
inputs through the network, combining kernel outputs into the
overall distribution.
The functional mapping of input data into mixture parameters
must be defined. In this work, we exploited a recurrent
neural network based conditioning. The rationale behind such
decision is twofold. On the one hand, as opposed to the static
nonlinear mapping on a predefined window, RNNs perform
the same learning task across the input sequence by weight
sharing, extracting patterns on different positions. On the other
hand, RNNs support the implementation of lossy summaries,
forcing structuring representations in the latent state from
arbitrary long input sequences. The state size becomes a
hyper-parameters, tuned by analyzing the consequent effect
on prediction accuracy.
Basic RNNs often result difficult to be trained, suffering the
vanishing/exploding gradient problem, which results from the
recurrent application of nonlinear activations [15]. Several
extensions of the basic RNN unit have been proposed to
address this issue. Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU) are the most used in practical
applications nowadays. Compared to LSTMs, GRUs employ a
single gating unit to control the state update and the forgetting
factor [16]. It has been shown that the former provides
enhanced representation power, operating as an automata with
external memory, at the cost of higher complexity in terms
of parameters, whereas the latter behaves more as a finite
state machine [17]. In this work, we implement an RNN
based on GRU cells that are well fitted with the characteristics
of the problem at hand while computationally cheaper than
LSTM. Rcurrence introduces a partial depth into the networks;
indeed, some computational are characterized by element-
wise nonlinear activations on linear input transformations
[18]. Such shallow paths limits the identification of complex
nonlinear mappings. Consequently, we exploited a stacked
GRU architecture, aimed to extract patterns at different time
scales through flexible latent representations.

A further characteristic of the proposed architecture is
constituted by the input feature selection mechanisms. The
identification of the subset of features to be provided to the
network (including specific lags) from the available data series
is often performed by time consuming trial-error procedures,

leveraging on experts knowledge [19]. Automated selection
results fundamental in context lacking specialized skills, as
e.g., in the industrial demand side. To this end, we included
an L1-norm based shrinkage factor to the input data weights
of the network. As opposed to conventional L2-norm based
regularizers contracting parameters to small values, sparse
solutions are fostered via L1-norm, thus introducing de-facto a
selection mechanism across the lags of the multi-input series.
The specific penalty must be properly tuned. To such an aim,
we adopted cross-validation.

The developed network architecture is formalized as fol-
lows, where we introduce a single recurrent layer to simplify
notation:

zt =sigm(Wzxt + Uzht−1 + bz)

rt =sigm(Wrxt + Urht−1 + br)

ht =(1− zt)� tanh(Whxt + Uh(rt � ht−1 + bh))

+zt � ht−1
µk =hµkt

αk =
exp (hαkt )∑nk
j=1 exp

(
h
αj
t

)
σk = ln (1 + exp (hσkt ))

(5)

where zt defines the update gate, rt the reset gate, � the
Hadamard product, Wz,Wr,Wh ∈ Rnh×nu , Uz, Ur, Uh ∈
Rnh×nh , the weight matrices and bz, br, bh ∈ Rnh , the bias
vectors. The gates include an element-wise sigmoid activation,
sigm(z) = 1

1+e−z , while an hyperbolic tangent activation
tanh(x) = ez−e−z

ez+e−z , is used for the hidden state equation.
hαkt ,hµkt ,hσkt represent hidden state components related to spe-
cific kernel parameters. Kernel mean parameters are mapped to
network outputs by adopting the uninformative prior approach.
The outputs related to kernel variances are transformed by an
SmoothReLU function to achieve proper variance values (i.e.,
positive), and to avoid convergence to solutions including null
values. Mixing coefficients are processed by a softmax opera-
tion to achieve proper probability distributions. We trained the
overall network by an end-to-end approach, as detailed in the
following section.

B. Network training method and predicted density analysis

To train the Probabilistic EPF network, we developed the
following objective function:

Obj = L − γ
nk∑
k=1

αk ln(αk) + δ

nWin∑
j=1

|Wj | (6)

The first term represents the negative log-likelihood including
the Gaussian Mixture layer, that yields:

L = −
S∑
s=1

ln(p(y(s)|x(s))) =

S∑
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L(s) (7)
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The sample-wise gradients of the log-likelihood with reference
to the mixture parameters are calculated as:
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where πk ∈ Rnk represents the posterior probabilities of
the mixture components, often referred to as responsabilities,
obtained by Bayes theorem from the prior probabilities αk.
Posterior probabilities are obtained for each mixture compo-
nent as follows:

πk =
αkφk∑nk
j=1 αjφj

, with
nk∑
k=1

πk(x) = 1 (12)

The second term weights the L1-norm on the RNN input
parameters, dedicated to features selection.
We introduced the third term as a regularizer on the size of
the mixture by the priors entropy, increasing when mixing
parameters tend to attain equivalent values [20].

The overall network is trained end-to-end by a time series
cross validation approach. To this end, we adopted the Adam
algorithm, conceived to tackle noisy and sparse gradients [21].
Afterwards, the trained network predicts the approximated
density function of the hourly prices, conditioned on the
specific values of the input sequences. From such overall
description of the data generator, specific analysis can be
performed. First of all, the distribution moments can be
calculated. For instance, mean and variance are calculated as:

ŷ(x) =

nk∑
k

αk(x)µk(x) (13)

σ̂2(x) =

nk∑
k

αk(x)

σ2
k(x) +

∥∥∥∥∥∥µk(x)−
nk∑
j

αj(x)µj(x)

∥∥∥∥∥∥
2


(14)

It is worth noting that the variance is determined as a
function of the input, providing a deeper characterization than
conventional sum of squares-based approaches. Moreover, spe-
cific mixture components characteristics can be investigated,
e.g., in terms of the related probability mass.
The extraction of the price values with higher density is typi-
cally valuable in practical application. Both iterative nonlinear
optimization methods and approximated approaches can be
exploited for such purpose [13]. In this work we adopted
the latter, as it is computationally cheaper and faster during
prediction. In particular, we approximate the most likely values
by the mean of the mixture components with the larger weight,
as:

µk∗(x) with k∗ = argmax
k

(αk(x)) (15)

Fig. 2. Italian day-ahead market price over different months of 2017

The investigation of further statistics, e.g., to support specific
application requirements, is left for future extension of the
present work. Finally, the EPF model has been designed to
provide multi-period forecasts (i.e., 24 hours of the next day)
by employing only input features available in real bidding
conditions (i.e., measures and predictors accessible on the
morning of the day before). Hence, the network is expected to
identify correlations and patterns both in hourly and cross-hour
contexts during training.

III. RESULTS AND DISCUSSION

We investigated the proposed probabilistic EPF approach by
the application to the Italian day-ahead energy market. The
dataset has been obtained from the open repositories provided
by GME and Terna websites [22], including samples starting
from January-2015 till the end of October-2018. The employed
set of conditioning variables is composed of the overall
electricity demand, the foreseen generation and the solar/wind
power plants contributions. The major characteristics of the
time series to be predicted are shown in Figure 2, reporting
price fluctuations across different months of the same year.
The observable coupled-peak structure is correlated to the
major electricity load demands, typically occurring in early
morning and late afternoon, characterized by season specific
locations and volatility. A clearer view of the hour specific
distributions of the energy price is given by the histograms in
Figure 3. Besides, sensible shifts occur between working days
and holidays, mostly due to different consumption patterns. A
more detailed analysis of the Italian day-ahead market dataset,
including descriptive statistics, can be found in [7].

We devoted the last year of the available data (i.e., from
2017/11/1 to 2018/10/31) to test set in order to investigate
the performance of the EPF models across different seasonal
conditions. Such subset is left to one-shot out-of-sample
predictions to support a fair calculation of the performance
indicators, whereas hyper-parameters tuning is tackled by a
k-fold time series cross-validation (kFTsCv) approach. To
this end, batches of ordered sub-sequences (including both
past price values and related conditioning variables) are built
by sliding a window with configurable width throughout the
overall sequences. Considering the analysis performed in [7],



Fig. 3. Hourly price Distributions. Working(Bl) and non-working(Or) days

reporting major auto-correlations on first 24 lags, we set the
width to 24. The regressors set of the feed-forward neural
network and the Back Propagation Through Time length of
the recurrent neural network have been configured accordingly.
Subsequently, validation subsets of previous folds are included
within the training set of following folds, thus increasing the
amount of data used to shape model parameters and providing
the latest patters of the generating process and related con-
ditioning variables to the predictor. In detail, we employed 5
folds and a mini-batch size of 32 samples, balancing gradient
estimation accuracy and related computational cost. Besides,
we standardized the input series to zero mean and unit variance
and interpolated daylight saving related samples.

To perform quantitative analysis of models predictions,
we employed Symmetric Mean Absolute Percentage Error
(sMAPE) and Continuous Ranked Probability Score (CRPS):

sMAPE =
100

S

S∑
s=1

∣∣ŷ(s) − y(s)∣∣(∣∣ŷ(s)∣∣+ ∣∣y(s)∣∣) /2 (16)

CRPS =
1

MS
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S∑
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∣∣∣ŷ(s) − ŷ′(s)∣∣∣


(17)
where ŷ represent the predicted price, y the target value, M a
set of independent probabilistic EPF model samples. sMAPE
provides a scale independent view of the forecast performance,
reducing conventional MAPE sensitity to small values. CRPS,
summarizing calibration (i.e., forecast error) and sharpness
(i.e., distribution concentration) has been employed following
the indication of [1] on probabilistic EPF models analysis.

We developed the neural networks by means of Tensorflow
2.0, including the Tensorflow Probability library providing
facilities to develop probabilistic network layers. The Gaussian
Mixture component has been implemented through a custom
Keras layer, by coding specialized ’init’, ’call’ and ’loss’
functions. The hyperparameter set includes the layers, the
units in each layer, epochs and related early stop patience
(i.e., interrupt training loop when prediction accuracy stop
decreasing), and objective function penalties δ, γ. By kFTsCv,
we identified a configuration of 20 epochs with a patience of

30, δ = 0.01, γ = 0.02, and a network architecture with 2
layers of 50 GRU cells to perform test set experiments. We
did not measure sensible performance increases during tests
of larger architectures, while still impacting on computational
costs. Table 1 reports the results achieved on the test set.

The proposed EPF approach has been compared to the
Bayesian Neural Network (BNN) based method proposed in
[7] and to a deterministic RNN based model. We consid-
ered the former since it represents, to the best of author
knowledge, the unique probabilistic EPF method exploiting
a Neural Network in the literature. The latter EPF model is
constituted by the same network configuration of the MDN-
RNN, replacing the GMM layer with a conventional linear
layer trained by sum of square error. It has been included
within the experimental set-up in order to investigate the
contribution within the model of the defined recurrent network
architecture, not discussed within the literature. For the BNN,
we maintained the configuration of the original paper. We
did not compute CRPS for the deterministic RNN due to the
infeasible sampling.
Notably, the developed RNN-based model provides a relevant
increase of forecast performances, as compared to the FFNN
based architecture. Indeed, it is worth noting that the BNN
was compared to a deterministic feedforward neural network in
[7], achieving consistent results. The MDN-RNN obtained also
lower prediction errors than the RNN. Perhaps, such result is
related to the specific characteristics of the EPF problem under
treatment (e.g., actual distribution form vs Gaussian assump-

TABLE I
HOURLY PRICE PREDICTION PERFORMANCES

00 01 02 03 04 05
sMAPE Bayes-NN 9.3 10.2 8.9 11.1 10.8 12.4
sMAPE Deter-RNN 9.3 10.7 10.6 10.3 12.2 10.1
sMAPE MDN-RNN 8.0 8.9 9.6 11.1 12.2 10.4

CRPS Bayes-NN 4.6 4.7 4.8 5.3 5.2 4.8
CRPS MDN-RNN 3.8 3.9 3.9 4.3 4.9 4.5

06 07 08 09 10 11
sMAPE Bayes-NN 10.2 13.0 9.3 11.8 9.8 12.8
sMAPE Deter-RNN 9.6 9.5 11.0 10.1 9.3 9.5
sMAPE MDN-RNN 10.0 10.4 10.9 10.0 9.3 9.5

CRPS Bayes-NN 5.3 6.6 8.3 7.5 6.5 6.5
CRPS MDN-RNN 5.0 5.7 6.7 6.0 5.2 5.1

12 13 14 15 16 17
sMAPE Bayes-NN 13.2 11.8 11.3 11.7 13.4 10.9
sMAPE Deter-RNN 9.5 10.6 12.0 11.8 11.1 11.2
sMAPE MDN-RNN 9.7 10.2 11.6 12.0 11.4 10.8

CRPS Bayes-NN 6.0 6.2 6.2 7.2 8.0 7.4
CRPS MDN-RNN 4.8 4.7 5.4 6.0 6.4 6.5

18 19 20 21 22 23
sMAPE Bayes-NN 12.1 11.9 10.8 13.8 12.1 13.1
sMAPE Deter-RNN 9.5 9.5 9.0 12.6 8.1 8.9
sMAPE MDN-RNN 8.9 9.6 8.2 7.3 7.9 8.3

CRPS Bayes-NN 8.2 7.5 7.2 6.1 5.5 4.7
CRPS MDN-RNN 5.9 6.7 5.3 4.4 4.3 4.1

Bayes-NN Deter-RNN MDN-RNN
sMAPE 0.115 0.102 0.098
CRPS 7.46 - 5.15



Fig. 4. Samples of Price forecasts

tion, etc.). Further increases of performances are expected
by application to markets characterized by more complex
dynamics. Still, the major benefit of the proposed approach, as
compared to the deterministic RNN, is highlighted by Figure
4, including point forecasts as well as prediction/hour specific
standard deviations. Remarkably, the probabilistic formulation
extends conventional point forecast techniques by providing
uncertainty indications, representing a fundamental tool for
the user to achieve more informative decision making. For
instance, enhanced what-if multi-scenario analysis can be
performed as well as detailed assessment of the robustness
of the energy-aware production scheduling strategy [23].

IV. CONCLUSION AND NEXT STEPS

In this work we have presented a novel probabilistic energy
price forecast method enabling the identification of general
conditional distributions, extending previously proposed neural
model based on the Gaussian assumption. To such an aim,
we develop a EPF model including a Gaussian Mixture layer,
parametrized by a Recurrent Neural Network with Gated
Recurrent Units, processing conditioning variables sequences
including past values of the hourly price. Then, we developed
an architecture performing multi-hour predictions, conceived
to learn patterns both in hourly and cross-hour contexts. More-
over, we included an L1 norm based input feature selection
mechanisms within the input layer of the network, aimed
to identify the most informative subset across the lags of
the multi-input series. By application to a real price market
dataset, we showed the capability of the developed network to
achieve increased forecast accuracy. Compared to state of the
art point forecast techniques exploiting Neural Networks, the

proposed method provides explicit forecast uncertainty indi-
cations to the users, thus enabling more informative decision
making and enhanced energy-aware optimization strategies.
Next developments will include the integration of further ex-
ogenous variables within the input set (e.g, prices of connected
regional markets, etc.), the application to other energy markets
(e.g., NordPool) and the investigation of alternative network
configurations.
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