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This work addresses the design and implementation of a prototype relative nav-

igation tool that uses camera-based measurements collected by a servicer spacecraft

to perform far-range rendezvous with a non-cooperative client in low Earth orbit.

The development serves the needs of future on-orbit-servicing missions planned by

the German Aerospace Center. The focus of the paper is on the design of the nav-

igation algorithms and the assessment of the expected performance and robustness

under real-world operational scenarios. The tool validation is accomplished through a

high-�delity simulation environment based on the Multi-Satellite-Simulator in combi-

nation with the experience gained from actual �ight data from the GPS and camera

systems on-board the Prototype Research Instruments and Space Mission technology

Advancement (PRISMA) mission.
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Nomenclature

Â,A = matrices of the partials of the non-linear dynamics equations for the complete linear time

varying LTV system and its relative dynamics subpart

a = semi-major axis of the servicer satellite

B̂,B = control input matrices for the complete LTV system and its subpart

b = biases vector of the relative orbit estimate

Ĉ,C = measurement sensitivity matrices for the complete LTV system and its subpart

∆• = �nite variation of a quantity

δ• = relative quantity

δα = non-dimensional relative orbital elements set

δe = non-dimensional relative eccentricity vector

δi = non-dimensional relative inclination vector

δλ = non-dimensional relative mean longitude

e = eccentricity of the servicer satellite

ε = uncorrelated measurement errors

Φ̂,Φ,Φb = state transition matrices for the complete system and its subparts

H = matrix of accumulated partials of measures w.r.t. the initial state

η = azimuth angle of line-of-sight unit vector from servicer to client

i = inclination of the servicer satellite

φ = mean argument of latitude of the relative perigee

κ = one-pixel camera resolution in radians

Λ = information matrix

mi = i-th merit function

µ = Earth constant

n = mean angular motion of the servicer satellite

θ = ascending node of the relative orbit

P = covariance matrix of the estimation state

Ry
x = rotation matrix from frame x to y

r = relative position vector between the servicer and client
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σ = standard deviation of state and/or measurement errors

t = time

u = mean argument of latitude of the servicer satellite

uc = line-of-sight LOS unit-vector in camera-frame

Ω = right ascension of the ascending node of the servicer satellite

ω = argument of perigee of the servicer satellite

v = relative velocity vector between the servicer and client

W = covariance matrix of the measurements

Wo = observability Gramian of the LTV system Â,Ĉ

x = �lter state vector

y = linearly modeled measurements via sensitivity matrix

z = modeled observations: couple of azimuth and elevation

ξ = single-measure to refer either to azimuth or to elevation angles

ψ = elevation angle of line-of-sight unit vector from servicer to client

ζ = true observations

I. Introduction

THIS work addresses the design and implementation of a prototype relative navigation tool that

makes use of camera-based measurements only. Its development was mainly motivated by the need

to build an intuition for vision-based navigation and prepare for future on-orbit servicing missions

of the German Aerospace Center (DLR) such as DEOS (DEutsche Orbitale Servicing) [1]. In this

class of space missions, a servicer satellite has to approach a non-cooperative client spacecraft from

far-range distance. The capability to safely accomplish this with no need of a device that directly

measures the range distance represents an asset for the servicer's system design. Although sev-

eral theoretical studies have been conducted on angles-only relative navigation, a solid assessment

of the expected performance and robustness under real-world rendezvous scenarios, whether with

ground-in-the-loop or fully autonomous, is needed. This paper takes advantage of the DLR's contri-

butions to the Swedish Prototype Research Instruments and Space Mission technology Advancement
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(PRISMA) mission [2, 3] and makes use of actual �ight data collected during the related technol-

ogy demonstrations to validate a novel non-cooperative relative navigation prototype. Among the

several sensors on-board, the servicer spacecraft of PRISMA is also equipped with a star tracker

developed by the Danish Technical University (DTU) called Vision Based System (VBS) which is

able to provide the line-of-sight (LOS) measurement to a non-stellar target object. User experience,

image data, and GPS precise orbit determination results acquired during the DLR's experiments

are a most valuable resource for the design of the navigation approach and for the prediction of

related performances.

The �rst part of the work deals with the �lter design. Here the problem is described in terms

of available measurements and desired state to be reconstructed. Measurements consist of azimuth

and elevation of the LOS to the client satellite. The relative dynamics is described through relative

orbital elements. Such a choice is justi�ed by the clear geometrical insight that these elements

provide to understand the relative geometry and, therefore, the LOS behavior. Moreover, relative

orbital elements allow the straightforward inclusion of Earth oblateness e�ects due to the J2 in the

relative motion model [4]. Finally the un-observability of the relative navigation problem is mostly

condensed in only one component of the state: the relative mean argument of latitude. Therefore

the shape of the relative motion can be determined from the very early phases of the approach based

on the observable relative orbital elements. The estimation error of the relative mean argument of

latitude is stepwise decreased while executing a maneuver pro�le. Nevertheless the knowledge of

the geometry allows safe approaches to be performed simply by setting a proper relative eccentricity

and inclination vector separation [5].

As well-known from the literature, the angles-only navigation problem is not fully observable in

the absence of maneuvers. Su�cient conditions to achieve observability are provided in Ref. [6, 7] for

the bearing-only target motion analysis. In the �eld of orbital rendezvous, they are presented in Ref.

[8]. According to these contributions, a maneuver that produces a variation of the LOS natural trend

makes the system observable. In this work it is shown that relative orbital elements can support

a direct physical interpretation of the un-observability issues. Moreover results are generalized for

the case in which the perturbations due to the equatorial bulge are taken into account. It is here
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shown that observability properties improve for certain families of relative orbits as the trends of

the mean relative elements deviate from the one they have within the Kepler assumptions. The

exploitation of relative orbital elements is of great bene�t also when dealing with the assessment

of the estimation accuracy achievable when maneuvers are performed. In the literature di�erent

methods to quantify the observability of the problems are suggested. They span from the de�nition

of a range error metric [9], to the exploitation of the covariance of the estimated state [10] or of

the condition number of the observability matrix [11]. In our work simple metrics are proposed

to quantify the e�ectiveness of the maneuvers performed. They are based on the immediate idea

of what changes will take place in the LOS behavior due to the relative orbital elements variation

determined by a maneuver. In this frame an optimization problem can be easily set up in order to

select direction and location of a maneuver of �xed magnitude size so that the best metrics score is

gained.

The validation of the tool has been accomplished through the Multi-Satellite Simulator em-

ployed at the German Space Operations Center (GSOC) to support various projects in the �elds of

formation �ying and proximity operations [12]. Speci�cally, a high-�delity simulation environment

provides all the information usually available in the telemetry of the servicer satellite. A camera

model mimics the measurement data delivered by an image processing unit. The model is tailored

to capture the performance observed by processing the actual PRISMA VBS image data, collected

during the DLR's Formation Reacquisition experiment(August 2011) [13]. Modeled measurement

data, servicer absolute information together with the estimated maneuver plan are used by the nav-

igation tool to perform relative orbit determination. As a result, the simulations provide the typical

navigation accuracy which is achievable through a speci�c maneuver pro�le under realistic opera-

tional conditions. The proposed navigation tool contributes to the preparation of the DLR/GSOC

Advanced Rendezvous Demonstration using GPS and Optical Navigation (ARGON) experiment,

which at the time of this writing was scheduled for the extended phase of the PRISMA mission [14].
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II. Mathematical Description

The relative orbit determination problem consists of estimating at a certain time the relative

state of a client satellite with respect to the servicer, making use of a set of observations, given that

the initial relative state is unknown and an a-priori �rst guess might be available. In the case of

angles-only measurements, observations at each instant of time consist of two angle measurements,

i.e. azimuth η and elevation ψ, which subtend the line-of-sight LOS unit-vector, uc, to the client

satellite (see Figure 1).
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Fig. 1 Azimuth and elevation angles de�nition in the camera frame. The sensor's boresight
is aligned with the zc axis. The xc and yc directions identify the image's plane.

The superscript "c" denotes the camera frame, i.e. the frame attached to the sensor, and angles

are modeled according to the following nonlinear functions of the relative state x:

 η

ψ

 =

 arctan(ucx/u
c
z)

arcsin(ucy)

 = z(t,x(t)) (1)

Concerning the relative orbit estimation problem, the complete estimation state is composed by:

x =

 aoδα

b

 (2)
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Where the relative state is parameterized in terms of relative orbital elements according to:

δα =



δa

δex

δey

δix

δiy

δu



=



δa

δe cosϕ

δe sinϕ

δi cos θ

δi sin θ

δu



=



(a− ao)/ao

e cosω − eo cosωo

e sinω − eo sinωo

i− io

(Ω− Ωo) sin io

u− uo



(3)

Here a, e, i, ω, Ω, and M denote the classical Keplerian elements, whereas e = (e cosω e sinω)T,

and u = M + ω represent the eccentricity vector and the mean argument of latitude. Here the

superscript "o" denotes quantities referring to the reference spacecraft which de�nes the origin of

the orbital frame (here the servicer). From now on, the absolute orbital elements which appear

in the equations will always belong to the servicer satellite, therefore the superscript is dropped.

Under the assumptions of the Hill-Clohessy-Wilshire equations (HCW) [15], the magnitude of the

relative eccentricity and inclination vectors, δe and δi, provide the amplitudes of the in-plane and

out-of-plane relative motion oscillations, whereas their phase angles describe the orientation of the

relative motion. The relative semi-major axis, δa, and relative mean longitude, δλ = δu+ δiy cot i,

provide mean o�sets in radial and along-track directions respectively [4, 5].

The last two components of the estimation state are represented by the biases of the sensor:

b =

 bη

bψ

 (4)

The nonlinear di�erential equations governing the relative dynamics simpli�es to linear di�erential

equations under the assumptions of relative separation much smaller than the servicer absolute

radius.

ẋ(t) = Â(t)x(t) + B̂(t)dv(t) (5)
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The solution of the obtained set of linear di�erential equations can be expressed via the state

transition matrix that maps the relative state vector from one time to another. The nonlinear

measurements equations Eq.(1) can be linearized about a nominal reference relative state xref . This

procedure leads to the following set of functions in the presence of control inputs and measurements

uncertainties:

x(t) = Φ̂(t, t0)x(t0) +
∫ t
t0

Φ̂(t, τ)B̂(τ)dv(τ)dτ

y(t) = Ĉ(t)x(t) + ε(t)

(6)

Given Eqs.(2) and (4), the matrix quantities that compare in Eqs.(5) and (6) are composed by the

following subparts:

Â(t) =

 A(t) O6×2

O2×6 O2×2

 , Φ̂(t, t0) =

 Φ(t, t0) O6×2

O2×6 Φb(t, t0)


B̂(t) =

 B(t)

O2×3

 , Ĉ(t) =

(
C(t) I2×2

) (7)

Therefore, the 8 × 8 state transition matrix Φ̂ relates the 8-dimensional state vector x(t0) at time

t0 to the state x(t) at time t. The 6 × 3 control input matrix B expresses the variation of the

relative orbital elements caused by an impulsive maneuver ∆v = (∆vR ∆vT ∆vN)T at time tM with

components in radial (R, positive in Zenith direction), along-track (T, positive in �ight direction),

and cross-track (N, normal to the orbital plane) directions. The partial derivatives of the modeled

angle measurements z with respect to the state are given by the 2 × 8 measurement sensitivity

matrix Ĉ. The two-dimensional vector, ε, of uncorrelated measurement errors is characterized by

a normal distribution with zero mean and covariance W = E[ε εT] = diag(σ2
η, σ

2
ψ).

Regarding the spacecraft relative dynamics, in this work it is assumed that the servicer satellite

is on a circular orbit and the following simple model which captures the most relevant perturbations
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in low Earth orbit is employed [4, 5]:

A(t) = A =



0 0 0 0 0 0

0 0 −ϕ̇ 0 0 0

0 ϕ̇ 0 0 0 0

0 0 0 0 0 0

0 0 0 3γ sin2(i)n 0 0

−1.5n 0 0 −12γ sin(2i)n 0 0



, (8)

with

ϕ̇ = 1.5γn(5 cos2 i− 1)

γ = 0.5J2(RE/a)2
(9)

where RE is the Earth equatorial radius; n, i and a are the mean motion and mean absolute

inclination and semi-major axis of the servicer. Under the assumptions of Kepler orbits, only the

term A6,1 is nonzero and the relative state of Eq.(3), δα, is composed by the integration constants

of the HCW equations. Therefore, for orbits of equal energy (i.e., δa = 0), δα(t) = δα0. When the

servicer and client satellites have unequal semi-major axis (e.g., δa > 0), the relative mean argument

of latitude changes over time. If δa and δu are small quantities (i.e., δa and δu << 1), its drift can

be expressed to �rst order as −1.5nδa.

Earth oblateness e�ects due to J2 are introduced in the relative dynamics model under the additional

assumptions of small magnitudes of the relative eccentricity/inclination vectors (i.e., δe and δi << 1)

and small eccentricity (i.e., e << 1). The resulting secular variations of the relative orbital elements

can be derived from the theory of Brower [16]. These e�ects are proportional to the elapsed time ∆t

and J2 and are expressed in the dynamics through the parameters ϕ̇ and γ (see Eq.(9)). Speci�cally,

the Earth equatorial bulge causes a rotation of the relative eccentricity vector, δe (i.e., A2,3 and

A3,2), a vertical linear drift of the relative inclination vector, δi (i.e., A5,4), and a linear drift of δu

(i.e., A6,4).

Thus the particular choice of the variable state allows the following simple relationship between the
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matrix of the dynamics of the system A and the state transition matrix Φ(t, t0):

Φ(t, t0) = I6×6 + (t− t0) ·A, (10)

leading to the following state transition matrix:

Φ(t, t0) =



1 0 0 0 0 0

0 1 −ϕ̇∆t 0 0 0

0 ϕ̇∆t 1 0 0 0

0 0 0 1 0 0

0 0 0 3γ sin2(i)n∆t 1 0

−1.5n∆t 0 0 −12γ sin(2i)n∆t 0 1



(11)

Biases are modeled as exponentially correlated measurement errors, therefore their time evolu-

tion is expressed by the following state transition matrix:

Φb(t, t0) =

 exp (− |∆t| /τ) 0

0 exp (− |∆t| /τ)

 (12)

where τ is the correlation time constant. Whenever τ =∞, then the modeling of the biases simpli�es

to uncorrelated measurement errors.

The variation of the relative orbital elements caused by an impulsive maneuver (or an instanta-

neous velocity change) at time tM can be modeled under the same assumptions of our linear relative

dynamics. In particular the inversion of the solution of the HCW equations expressed in terms of
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relative orbital elements provides the following relationship [4, 5]:

B(tM) = − 1

n



0 2 0

sinuM 2 cosuM 0

− cosuM 2 sinuM 0

0 0 cosuM

0 0 sinuM

−2 0 − sinuM cot i



(13)

where uM = u(tM) identi�es the mean argument of latitude of the servicer at the delta-v time.

Eq.(13) shows how along-track maneuvers cause instantaneous variations of δa and δe, radial

maneuvers cause instantaneous variations of δu and δe, whereas cross-track maneuvers a�ect δu

and δi. It is noted that cross-track maneuvers do not change the mean along-track separation,

δλ = δu+ δiy cot i, because the e�ects on δu and δiy cancel out, thus the in-plane and out-of-plane

relative motion remain fully decoupled in this formulation. Given Eqs.(11) and (13), the zero state

transition of the system (i.e., the integral in Eq.(6)) can be immediately solved.

The partial derivatives of the angle measurements with respect to the relative orbital elements

about the reference state are computed through the application of the following chain rule:

C(t) =
∂z

∂δα

∣∣∣∣
δα

=
∂z

∂δrc
· ∂δrc

∂δrJ2000
· ∂δr

J2000

∂δrRTN
· ∂δr

RTN

∂δα

∣∣∣∣
δα

=

(
∂η

∂δrc
∂ψ

∂δrc

)T
·Rc

J2000 ·RJ2000
RTN ·

∂δrRTN

∂δα

∣∣∣∣∣
δα

(14)

Here usage has been made of the fact that the derivative of the angle measurements with respect to

the relative velocity ∂z/∂δvc is zero. The expansion given by Eq.(14) contains the following main

terms, namely 1) the derivative of the azimuth and elevation angles with respect to the relative

position in the camera frame δrc, 2) the absolute attitude of the sensor, that is the rotation matrix

from J2000 to the camera frame, 3) the rotation matrix from the RTN frame to the inertial frame,

and 4) the derivatives of the relative position in the RTN frame δrRTN with respect to the relative

orbital elements δα. The mapping between relative orbital elements and relative position in the
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orbital frame is given by the adopted linear model as [4, 5]:

∂δrRTN

∂δα

∣∣∣∣
δα

=


1 − cosu − sinu 0 0 0

0 2 sinu −2 cosu 0 cot i 1

0 0 0 sinu − cosu 0

 (15)

The measurements partials with respect to the relative position in the camera frame can be computed

using the following equivalence [17]:

∂δrc

∂δrc
= I3x3 = uc ∂δr

∂δrc
+ δr

∂uc

∂η

∂η

∂δrc
+ δr

∂uc

∂ψ

∂ψ

∂δrc
(16)

where appear the three orthogonal directions: LOS unit-vector, (∂uc/∂η) and (∂uc/∂ψ). Among

these, the last two vectors are computed from Eq.(1):

∂uc

∂η
=


cosψ cos η

0

− cosψ sin η



∂uc

∂ψ
=


− sinψ sin η

cosψ

− sinψ cos η



(17)

Now the derivative of the azimuth and elevation angles with respect to the relative position in

the camera frame can be computed by alternatively pre-multiplying Eq.(16) by (∂uc/∂η)
T
and

(∂uc/∂ψ)
T
, as the contributions in the remnant orthogonal directions vanish. As a result one

obtains:

∂η

∂δrc

∣∣∣∣
δα

=
1

δr cos2(ψ)

(
∂uc

∂η

)T
∂ψ

∂δrc

∣∣∣∣
δα

=
1

δr

(
∂uc

∂ψ

)T (18)
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At this stage all the quantities of Eq.(14) are known in order to compute C(t). Finally, the last part

of the sensitivity matrix Ĉ(t) is constituted by the identity sub-matrix that represents the partial

derivatives of the angle measurements with respect to the estimated biases.

A. Observability of the estimation problem based on angles-only measures

The problem of estimating the linearized unperturbed relative motion between two satellites

making use of angles-only measurements is not fully observable. Physically this phenomenon is

produced by the fact that in�nite relative orbits generate the same LOS unit-vector trend over

time. Equivalently the lack of measurements on the range cannot allow unequivocally solving for the

separation between the satellites. Some authors emphasize that with a proper choice of parameters

the main characteristics of the geometry of the natural motion can be reconstructed despite this not

complete observability [8, 18]. That means that shape and orientation of the orbits are identi�ed,

leaving the ambiguity on a scale factor, i.e. the size of the relative motion, that is function of the

separation between the satellites. To this aspect, formulating the relative dynamics through the

relative orbital elements of Eq.(3) is particularly convenient, since the range is well approximated

by only one term of the state, i.e. the relative mean argument of latitude. This can be noted by

taking the average of the relative separation over an orbital period:

1

2π

∫ 2π

0

δrRTN(u)du = a


δa

δiy cot i+ δu

0


= δ̄r

RTN
(19)

where δrRTN(u) as function of δα(t) is given by the linear mapping of Eq.(15). The magnitude of

δ̄r is:

δ̄r =
∥∥∥δ̄rRTN∥∥∥ = a

√
δa2 + δλ2 (20)
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Therefore for bounded orbits (δa = 0) with δiy = 0, the average separation coincides with aδu. For

δu >> δa, the relative mean argument of latitude well approximates the average range magnitude.

The �rst �ve elements of Eq.(3) (i.e., aδa, aδe, and aδi), on the other hand, describe the shape and

orientation of the relative motion. A graphical explanation is provided with the aid of Figure 2,

where a sketch of the meaning of the relative orbital elements is presented. To this aim, the relative

linearized unperturbed motion of the client vehicle is mapped in the RTN orbital frame centered

on the servicer satellite. The along-track drift due to the di�erent orbit energies is neglected for

visualization purposes. The un-observable range acts through aδu in�uencing the size of the relative

orbit projected in the R-N plane. By recalling Eqs.(19) and (20), the relative mean argument of

latitude is related to the relative mean longitude δλ which helps in visualizing the magnitude of the

mean separation to target δ̄r.

Fig. 2 Description of the client relative motion in the servicer-centered orbital frame through
relative orbital elements. The snapshot does not include the drift corresponding to δa. The
bottom-left view presents a possible mounting con�guration of the sensor.

In the bottom-left subplot of Figure 2, a possible attitude con�guration of the sensing instrument

is presented. According to the sketch, the client satellite is preceding the servicer along the �ight

direction and the local camera frame is aligned to the orbital frame in such a way to point its
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boresight zc in anti-�ight direction:

Rc
J2000 =


1 0 0

0 0 1

0 −1 0

 ·R
RTN
J2000 = Γ ·RRTN

J2000 (21)

It is emphasized that, an early reconstruction of the relative motion in the R-N plane is a key

factor when performing a rendezvous. It allows, in fact, setting a proper relative eccentricity and

inclination vector separation, thus ensuring a safe approach to the client satellite [5].

In addition to these geometrical aspects and di�erently from other geometry-based parame-

terizations, the relative orbital elements of Eq.(3) support a powerful though simple model of the

dynamics (see Eq.(8)), able to capture some of the most relevant perturbations in low Earth orbit

(i.e., the Earth equatorial bulge). Later in this paragraph it is discussed how this additional feature

provides a weak observability though still dealing with a linearized relative motion.

The observability criteria of the relative state determination based on angles-only measurements

have been widely tackled in the literature, across di�erent �elds of applications. Mainly works focus

on observability as a structural property of the problem, thus the ideal condition of absence of

noise in the measurements is assumed. Biases of the sensor are also neglected. Due to the presence

of nonlinear expressions of the measurements as function of the relative state, either approaches

based on nonlinear observability techniques or local methods for the linearized problem have been

investigated. In the next section we focus only on results achieved within this second methodology.

In the �eld of bearing-only target motion analysis, Nardone and Aidala [6] and Hammel and

Aidala [7] respectively developed the 2D and 3D necessary and su�cient conditions to ensure ob-

servability. In their working frame, a ship/submarine has to estimate the motion of a target which

moves at constant absolute velocity. The relative dynamics is expressed through a linear model

in the Cartesian relative position and velocity de�ned with respect to the active own-ship element.

Nonlinear measurements equations, of a similar form of Eq.(1), are recast as linear expressions in the

unknown-initial state vector. Therefore a criterion for observability for linear time varying systems

is used [19]. It exploits successive time derivatives of the reshaped measurements equation, in order
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to obtain a set of independent equations in the unknown-initial state vector.

In the �eld of orbital rendezvous, Wo�nden and Geller [8] developed an analytical form to

ensure the su�cient conditions for the observability of the relative orbit determination problem.

To accomplish this, they rewrite the nonlinear measurements equations in the form of LOS unit-

vector function of the initial-unknown Cartesian relative position and velocity. To this aim the state

transition matrix of the linearized relative orbital motion is exploited. Subsequently observability

criteria are deduced through geometrical considerations on the comparison of di�erent measurement

pro�les generated starting from same initial conditions.

Both the criteria conclude that at least a maneuver is necessary in order to achieve the complete

observability. Moreover such a maneuver has to produce a change in the relative position not

aligned with the instantaneous direction of the natural LOS pro�le. In developing these criteria the

formulation of the relative motion via Cartesian coordinates was exploited. Angle measurements

and LOS unit-vectors can in fact be expressed as straightforward functions of the initial state vector.

According to our formulation, the LOS unit-vector is given by:

δrc = Γ · ∂δr
RTN

∂δα
· aδα

uc =
δrc

‖δrc‖

(22)

where the mapping matrix between relative orbital elements and relative position is Eq.(15) and

the camera frame is oriented according to Eq.(21).

All the results achieved for the Cartesian relative state are valid for the state of Eq.(3) as long

as the parameterization via relative orbital elements can be seen as the following change of state

variable

 δrRTN

δvRTN

 =


∂δrRTN

∂δα

∂δvRTN

∂δα

 · aδα (23)

and both zero input response and zero state response are invariant to state transformations. In

addition to this and as mentioned before, the utilization of relative orbital elements provides a
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Table 1 Set of typical relative orbits (RO).

RO Elements set aδα, m Description
1 (0, 400, 0,−400, 0,−30000) Bounded (anti)-parallel horizontal δe/δi vectors
2 (−100, 300, 0,−300, 0,−20000) Drifting of circa 1 km per orbit towards the client
3 (0, 0,−200, 0, 200,−3000) Bounded (anti)-parallel vertical δe/δi vectors
4 (0, 0, 0, 0, 0,−100) V-bar station keeping

direct physical interpretation that separates the observable portion of the state variable from the

un-observable part. Numerically this can be proven by analyzing the behavior of the matrix of the

accumulated partials of the measurements w.r.t. the initial state de�ned as follows:

H =


C(t0)Φ(t0, t0)

...

C(tn)Φ(tn, t0)

 (24)

In particular, if H has rank equal to 6, the matrix HTH is positive de�ned, thus invertible. Therefore

the complete initial state can be reconstructed via the measurements that contributed in building

H. Let us �rst consider the same case discussed in the literature, i.e. the relative dynamics is

represented by the HCW equations. Then, the state transition matrix in the state variable aδα is

given by Eq.(11) with ϕ̇ = γ = 0. Thus it simpli�es to the identity matrix with Φ6×1 = 1.5n∆t.

In Table 1 is introduced a set of relative orbits (RO) that represents a sample of typical relative

motions; a brief description of their main characteristics is provided. Their graphical representation

is given in Figure 3, where the servicer is at the origin of the orbital frame. These ROs span

from separations of 30 km to 100 m. In particular RO1 represents a possible con�guration for the

beginning of an approach to a non-cooperative client satellite. RO2 presents a drift of almost 1

km towards the client, while keeping a safe separation in the R-N plane [20]. RO3 can represent

the hold-point were transition between far-range and close-range sensors can be performed. Finally

RO4 can represent the starting point of a docking phase.
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Fig. 3 Relative orbits listed in Table 1 plotted in the RTN frame centered on the servicer
satellite.

In Table 2 are collected the rank and condition numbers achieved by these RO, when 6 mea-

surements separated by the time correspondent to 30 deg of variation of the servicer mean argument

of latitude ∆u are accumulated. The size of H is 12× 6 and the condition number of HTH is used

as a practical measurement criterion of the observability of the estimation problem, in agreement

with Ref. [11]. There the value of 1016 is suggested as the limit of observability.

In Table 2, for each i-th RO, four cases are considered. In the �rst one, i.e. �rst row of each

sub-block, the state vector is represented by δα. In the other cases di�erent sub-sets of the state

variable are addressed: with "-" are marked the excluded relative elements. As expected, within

the natural motion assumption, no RO achieves full rank. When the dimension of the state variable

is reduced to 5, the observability properties vary substantially depending on which component is

excluded. Speci�cally the best performance is obtained when the relative mean argument of latitude

δu is not estimated, see RO2. When the relative orbit to be estimated has no drift, i.e. δa = 0, then

5D subsets that try to estimate δu are not fully observable (rank equal to 4, i.e. RO 1, 3 and 4). In

this case, in fact, in�nite orbits produce the same LOS trend and the relative separation cannot be

determined. Finally, by assuming that the true values of δa and δu are known, the reconstruction

of just the relative eccentricity and inclination vectors is always characterized by rank equal to 4,

and a high accuracy can be achieved.
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Table 2 Observability properties for the relative orbits of Table 1, for the Keplerian problem.

RO δa δu rankH cond(HTH)
1 x x 5 1.619

x - 5 22.94
- x 4 1.918

- - 4 1.06
2 x x 5 2.718

x - 5 22.75
- x 5 1.26

- - 4 1.06
3 x x 5 3.718

x - 5 29.45
- x 4 1.418

- - 4 1.33
4 x x 5 ∞

x - 5 24.33
- x 4 ∞
- - 4 1

In our work the matrix of the dynamics of the system A is not exactly a transformation of

the HCW equations: it includes also the �rst order e�ects due to the Earth equatorial bulge. As

discussed before, these produce secular variations in four components of the mean relative orbital

elements set, proportional to the J2 value and the elapsed time ∆t. By including these phenomena

in the description of the dynamics, the observability properties of the problem can improve. To

support this topic, in Table 3 are collected the results achieved by the same RO analyzed before,

when the e�ects of J2 are accounted for. Here two situations are compared: the di�erence consists

in how H is generated. In the �rst column 6 measures spaced by ∆u = 30 deg are used, as

accomplished for Table 2. In the second column the six measurements are separated by 60 deg,

therefore spanning a double ∆t. The aim is to evaluate the improvement of the observability when

e�ects of J2 becomes more relevant. One can note that RO1 and 2 are now characterized by rank 6.

Still the condition number is quite high, an index of poor accuracy of the achievable estimation. As

expected performances improve with the passing of the time. Regarding RO3 and 4, the J2 cannot

help as long as δix is zero (the satellites lay on orbits of same inclination).

To conclude this section, the parameterization through relative orbital elements is convenient

also when dealing with the analysis of the maneuvers needed to ensure observability. Performances

are assessed through di�erent metrics, that are discussed in the next section. Table 4 summarizes
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Table 3 Observability properties for the relative orbits of Table 1, including J2 e�ects.

RO ∆t1 ∆t2
rank(H) cond(HTH) rank(H) cond(HTH)

1 6 6.3515 6 3.4114

2 6 3.7815 6 1.6114

3 5 2.6218 5 1.7619

4 5 ∞ 5 ∞

Table 4 E�ect of maneuvers on the relative orbital elements and their derivatives and, conse-
quently on the angles to the LOS, given the attitude of Eq.(21). Variations in brackets stand
for indirect e�ects via δr and δu.

∆v direction Instantaneous e�ect on E�ect on measures
δα δα̇

∆vR δe, δu ∆η, (∆ψ)
∆vT δa, δe δu̇ ∆η, (∆ψ)
∆vN δi, δu (not δλ) ∆ψ, (∆η)

the e�ects of impulsive maneuvers on the set of relative orbital elements in accordance with Eq.(13).

It is straightforward to verify that whatever maneuver is performed the geometry of the relative

motion varies in such a way that the natural trend of the LOS is modi�ed.

B. Maneuver planning to optimize observability

Once assessed that the presence of at least a maneuver is enough to achieve the full observability

of the relative orbit estimation problem, the next step consists in quantifying the level of observability

that di�erent maneuver pro�les can provide. This topic is interesting as long as the degree of

observability is related to the accuracy achievable in the estimation. Moreover, during a rendezvous

it can be useful to perform more e�ective maneuvers at the beginning, when errors in the estimations

are bigger and when the large separation determines a less favorable situation. In Ref. [8] the authors

suggest that the greater the LOS pro�le change produced by the maneuver, the higher the level of

observability of the system, as the amount of change in the angle measurements is related to the

range value before the maneuver. They extend further this topic in Ref. [9] de�ning a metric of

detectability range error to quantify the achievable range accuracy, hence the level of observability

of the problem. The optimal maneuver pro�le is the one that minimizes this metric. The range

error, given a �xed accuracy of the sensor, is shown to be proportional to the change in position due
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to the maneuver and to the reciprocal of the sine of the angle between the natural and modi�ed LOS

pro�les. Therefore, assuming for example a servicer satellite in a positive V-bar station keeping, i.e.

aδα = (0, 0, 0, 0, 0, aδu0) according to our formulation, the optimal maneuver is to burn in positive

radial direction (thus acting on δe and δu). Geometrically the result implies the establishment of

a relative motion that is characterized by maximum radial displacement and minimum tangential

separation, assuming a �xed delta-v magnitude. Tangential maneuvers were not taken into account

due to the a-priori practical constraint of not changing the energy of the servicer orbit (in the paper

the initial separation is of 100 m which corresponds to the very �nal part of a rendezvous).

When mentioning the change in position due to a maneuver, it is meant the variation in the whole

relative motion geometry, thus in the LOS natural trend, appreciable over orbit-period time spans.

The capability to reconstruct the relative motion making use of measurements accumulated over

long-time periods is referred to as non-instantaneous observability. In this context the exploitation

of relative orbital elements is of great bene�t as it provides an immediate idea of what changes will

take place in the LOS behavior after a extended-time maneuver (see Table 4 and Eq.(13)). The

same e�ect can be mapped directly on the measurements, by expressing azimuth and elevation as

functions of the relative orbital elements. Given Eq.(22) and the sensor attitude of Eq.(21), the

separation to target in the camera frame is given by:

δrc = a


δa− δex cosu− δey sinu

δix sinu− δiy cosu

−2δex sinu+ 2δey cosu− δu− δiy cot i

 (25)

and the measures de�ned in Eq.(1) can be explicitly expressed as functions of the δα components:

η = arctan

(
δa− δex cosu− δey sinu

−2δex sinu+ 2δey cosu− δu− δiy cot i

)

ψ = arcsin

(
aδix sinu− aδiy cosu

‖δr‖

) (26)

In absence of maneuvers, these angles are orbital-period periodic functions whose amplitudes are

related to the geometry of the motion. Whenever a maneuver takes place at uM , the relative motion
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changes shape a�ecting the behavior of Eq.(26). This suggests a simple metric of observability based

on the maximum amount of change in the measurement angles, according to:

m1 =

(
1

κ

)
· max
u∈[uM ,uM+2π]

|ξforced(u)− ξnatural(u)| (27)

Exploiting the decoupling of the problem, ξ is azimuth for in-plane maneuvers and elevation for out-

of-plane maneuvers; κ is the one-pixel angular resolution of the sensor expressed in radians. The

metric m1 allows an assessment of the minimum delta-v magnitude needed to obtain observability.

It is the one that allows m1 to overcome the instrument minimum sensitivity scale.

Metric m1 can be rewritten as a function of the relative orbit before the maneuver. Let the ratio

N/D represent the argument of the inverse trigonometric functions of Eq.(26) (e.g., N/D = tan η)

then, to the 1st order approximation, the variation of the measurement angles is proportional to the

variation of the quantity
(
N/D|post-man − N/D|pre-man

)
, here indicated as ∆(N/D). By writing

the post-maneuver quantity as:

N/D|post-man =
N + ∆N

D + ∆D
, (28)

the variation term becomes:

∆(N/D) =
N

D
·

∆N

N
− ∆D

D

1 +
∆D

D

 (29)

Therefore the maximum of the variation of the measurement angles is given by:

m2 = max
u∈[uM ,uM+2π]

|∆(N/D)| (30)

Here pre-maneuver quantities, i.e. N and D, are functions of u, whereas ∆• quantities are constant

�nite variations determined by the type and size of the extended-time maneuver. In particular, N

stands for δrcx or δr
c
y; D for δrcz or δr, respectively for in-plane and out-of-plane cases. This metric is

not de�ned when the pre-maneuver relative orbit either has δa = ‖δe‖ = 0 or ‖δi‖ = 0, respectively
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before in-plane and out-of-plane maneuvers.

Finally, Eq.(25) can be used to express how the covariance of the measurements, i.e. ση and

σψ, in�uence the achievable accuracy in δu and δr when a given relative motion is established. To

this aim, it is assumed that the servicer's �nal orbital elements are perfectly known and that the

only source of error is the uncertainty in the angular measurements:

±σpost-manδu =
δrcx

tan(η ± ση)
+ δrcz

±σpost-manδr =
δrcy

sin(ψ ± σψ)
− δr

(31)

The measurement errors are small angles, hence, by making use of trigonometric identities, small

angles approximation, and by keeping only 1st order contributions, one gets:

±σpost-manδu =
±ση(tan η · δrcx + δrcz)

tan η ± ση

±σpost-manδr =
∓σψ · δr · cosψ

sinψ ± σψ cosψ

(32)

As expected the achievable accuracies are functions of the separation between the satellites. Similarly

to Ref. [9] the problem of choosing the optimal maneuvers to improve observability can be formulated

as the selection of that maneuver that minimizes the �nal achievable separation covariance:

m3 =


minu∈[uM ,uM+2π]

∣∣σpost−manδu

∣∣
minu∈[uM ,uM+2π]

∣∣σpost−manδr

∣∣ (33)

Let us consider again the RO collected in Table 1, where RO4 is the example discussed in Ref. [9].

Table 5 collects the scores achieved by the three metrics when maneuvers with �xed delta-v size

are performed starting from RO1-4 initial relative orbits. In addition to the type and magnitude

of the maneuver, all the metrics are also function of the direction and location of the maneuver.

The values here presented simply refer to uM = 0 deg (i.e., ascending node of servicer orbit). The

directions are chosen to provide a reduction of the separation between the satellites. The magnitude

of the maneuvers is 0.01 m/s. The instrument resolution is set equal to 0.024 deg per pixel. It is
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Table 5 Values assumed by the metrics when maneuvers of 0.01 m/s of magnitude are per-
formed at uM = 0 deg.

RO ∆vR = ∆v · (1; 0; 0) ∆vT = ∆v · (0; 1; 0) ∆vN = ∆v · (0; 0; 1)
m1 m2 σδu m1 m2 σδu m1 m2 σδr

pixels - m pixels - m pixels - m

1 0.78 3.3e− 4 186.80 2.96 1.2e− 3 187.45 0.78 3.3e− 4 175.48
2 1.19 0.5e− 3 83.77 4.47 1.9e− 3 82.65 1.17 4.9e− 4 102.41
3 6.76 2.8e− 3 3.87 28.92 1.1e− 2 3.07 7.56 3.2e− 3 2.91
4 288.07 N.A. 0.05 > 3e3 N.A. 0.003 226.98 N.A. 0.09

emphasized that these computations do not take into account constraints on the �eld of view of the

instrument and on safety.

As expected, performances improve with the decreasing of the separation (from RO1 to RO4). At

big separations, tangential maneuvers are more e�ective in terms of detectability of the maneuver

by the instrument (m1 and m2). Regarding the optimal value of the achievable accuracy (m3),

one should investigate also the location of the maneuver. Concerning RO4, m2 is not applicable

as mentioned before. The value of m1 could be rescaled if the instrument resolution used is not

appropriate for such a small relative separation. The tangential maneuver is shaded due to safety

constraints: it will lead to collision in one orbit. In con�guration RO4 metrics do not depend on

uM and δr = aδu. Thus, in agreement with Ref. [9] a positive radial maneuver is the optimal one

with respect to the achievable range accuracy. Finally, it is emphasized that the inclusion of safety

and visibility constraints in the optimization problems is straightforward when using relative orbital

elements. In Ref. [14] one can derive their explicit expressions.

C. Observability of the complete estimation problem

According to the de�nition of observability, the pair of matrixes (Â(t),Ĉ(t)) of the linear time

variant (LTV) system of equation Eq.(5), is observable on the time interval [t0, tn], if whatever the

initial state and the system input, one can uniquely determine x0 from y(t) and ∆v(t). Moreover,

the zero state response contribution does not play any role in the observability characteristics, as

it is a known term directly computed from ∆v(t) and Φ̂. The observability Gramian for the pair
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(Â(t),Ĉ(t)) is de�ned as:

Wo(t0, tn) =

∫ tn

t0

Φ̂(τ, t0)TĈ(τ)TĈ(τ)Φ̂(τ, t0)dτ (34)

And the observability of the LTV system is equivalently stated by det Wo(t0, tn) 6= 0.

By passing in the discrete time domain, the observability Gramian can be written as:

Wo(t0, tn) =

n∑
k=0

[
Φ̂(tk, t0)TĈT

k

]
·
[
ĈkΦ̂(tk, t0)

]
= HTH (35)

This corresponds to the normal matrix of the least squares solution of the initial-state determination

problem when measurements are a�ected by observation errors [21]. Here the matrix H represents

the accumulated partials of the measures with respect to the initial state for the system with the

variable state that includes the biases. To achieve observability, the Gramian matrix has to be

positive de�nite, i.e. H shall be full rank. Given Eq.(7) and Eq.(12), each sub-block associated with

a i-th time has the following structure:

Hi =

(
CiΦ(ti, t0) νiI2x2

)
(36)

where νi = exp (− |ti − t0| /τ) and equals 1 when τ = ∞. The i-th term of the sum in Eq.(35)

becomes:

Wo,i(t0, ti) =

 Φ(ti, t0)TCT
i CiΦ(ti, t0) νiCiΦ(ti, t0)

νiΦ(ti, t0)TCT
i ν2i I2x2

 (37)

Thus the introduction of the biases in the estimation state does not vary the rank of H. Moreover

the eigenvalues of the Gramian matrix associated with the biases are for sure positive (ν > 0). In

other words, the observability issues are con�ned to the reconstruction of the relative state from the

available angle-measurements.

Whenever the observation errors have zero-mean time-uncorrelated characteristics, the observ-
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ability properties are expressed by the following information matrix Λ [21]:

Λ = HTW̃−1H (38)

where the weighting matrix W̃ = diag(W1, · · · ,Wn) is the accumulated error covariance matrix

and accounts for di�erent accuracies of the angle measurements within the same data batch. In this

situation the quantity P = Λ−1 represents the covariance matrix of the estimation error associated

with the least squares estimated state. Therefore P is related to the accuracy of the obtained

estimate: the larger the elements of the matrix, the less accurate the correspondent components of

the estimated state [21]. In Ref. [10] the covariance of the relative position and velocity estimation

has been used to de�ne a metric of observability of the problem.

The introduction of the biases of the sensors into the estimation state leads to an information

matrix that is numerically badly conditioned. Thus the estimation of the relative dynamics together

with the biases is a weakly observable problem. The availability of some a-priori information related

to the reference state used in the linearization process can aid in handling this numerical issue. The

total information matrix of the problem becomes:

Λtot = HTW̃−1H + P−1apr (39)

A non singular a-priori information matrix is su�cient to ensure that det Λtot 6= 0 [22]. In particular,

by giving a small a-priori weight to the relative state (that is assuming a big standard deviation of the

a-priori state) a small quantity will be added to the diagonal of Λ. Therefore Λtot becomes a quasi-

diagonal matrix, with great improvement of its conditioning characteristics. Moreover the level of

con�dence related to the a-priori state can be exploited to weight di�erently the e�ort in estimating

di�erent components. This aspect is particularly fruitful when an independent calibration system is

able to provide a good estimation of the biases of the sensors. In that case, the accurate knowledge

translates in small standard deviations on the biases, thus the estimation problem focuses more on

the relative state, which will be fully observable in the presence of maneuvers. On the other hand,

if a true knowledge of the relative state is available, some a-posteriori characterization of the biases
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can be accomplished by weighting the accurately known δα components more heavily.

III. Filter Design and Validation

The estimation problem de�ned by the linear relative dynamics of solution Eq.(6) and nonlinear

measurement equations of Eq.(1) is solved via a least-squares (LSQ) methodology. In the context of

a ground-based scenario, this choice is motivated by the possibility to process at the same time the

complete history of data thus allowing an e�cient data editing. Moreover a deeper understanding

of the systematic errors could be achieved as modeling errors are not absorbed by the process noise.

The least-squares relative orbit determination aims at �nding the state xlsq0 that minimizes

the weighted squared sum of the di�erence between the actual measurements and the modeled

observations z of Eq.(1) [21]. Thus the loss function to be minimized is function of the observation

residual ρ, and a local minimum can be found in the proximity of a reference state xref0 = xapr0 ,

normally available within the application context. In addition to that, information on the accuracy

of this reference value is usually also available, in the form of the a-priori covariance Papr of the state.

This further piece of information can be incorporated into the least-squares estimation. As a result,

the estimation is accomplished through an iterative dynamics batch least-squares estimator with

a-priori information [22]. The estimation state which best �ts the observations in a least-squares of

the residuals sense is given by the iterations

xlsqj+1 = xlsqj +
(
Λapr + HT

j W̃−1Hj

)−1 [
Λapr(xlsqj − xapr0 ) + HT

j W̃−1ρj

]
Plsq
j+1 =

(
Λapr + HT

j W̃−1Hj

)−1 (40)

which are started from xlsq0 = xapr0 and continued until convergence, typically after 4-5 iterations.

It is emphasized that the estimation time is the time at which the �lter is initialized. Thus it

could correspond either to the earliest or to the latest time of the batch. As a consequence the

propagation of the state has to be accomplished coherently with the direction of changing of the

time. This is achieved by design in Eqs.(11) and (12).

In order to validate this relative navigation tool a modeling and simulation environment has been
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developed making use of the libraries and functionalities of the Multi-Satellite-Simulator developed

at DLR/GSOC to support various projects in the �eld of multi-satellites applications [12]. The

purpose of this module is to emulate the behavior of the space segment of a two-satellites mission.

Meanwhile the estimated delta-v of the performed maneuvers and the absolute state and attitude of

the servicer satellite are logged. According to our �lter design, this information is used to propagate

the estimated relative state and to model the measurement observations z of Eq.(1).

The inertial orbits of both satellites are numerically integrated subjected to the gravity potential

of a non homogeneous mass distribution of the 30th order and degree, together with the main orbit

perturbations acting in low energy orbits (e.g., aerodynamic drag, solar radiation pressure, Sun and

Moon bodies perturbations). The attitude mode of the servicer satellite is emulated. Maneuvers are

introduced as time-tagged delta-v which are afterwards translated into extended-time thrust burns.

Regarding the simulations here discussed, the space systems are customized on the PRISMAmission.

Therefore the satellites possess all the main characteristics of the Mango and Tango satellites, that

respectively play the roles of servicer and client spacecraft. The model of the camera instrument

also emulates the behavior of the Visual Based System (VBS) camera mounted on Mango, in

terms of resolution, �eld of view, blinding angles, measurement noise and biases. Its output are

the x-y coordinates on the image plane according to Eq.(1). That coincides with the output that

would be provided by an image processing unit elaborating real images. It is emphasized that the

characteristics of the camera lens are not taken into account. The maneuvers pro�le provided to the

simulation module is produced by a maneuver planning tool, which computes the ideal impulsive

maneuvers that are needed to achieve a given relative formation, starting from the latest estimated

relative state.

The main goal of the validation process is to assess the closed-loop-control accuracies achievable

when performing a rendezvous (RdV) from far-range distance to a non-cooperative client satellite.

To accomplish this the following realistic operational conditions are considered:

• The whole simulation is settled on the true orbit passes plan generated from the Tango orbit

information available at the time. In particular the far-range RdV here discussed was scheduled

between 23-Apr-2012 and 27-Apr-2012. Eventual Moon and Sun eclipses are accounted for.
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• Constraints related to a typical operational day are included. They involve the location of

the delta-v opportunities and the presence of data gaps in the measurements. These gaps can

be caused either by mass memory and telemetry (TM) downlink limitations or by eclipses

and instruments temporary malfunctioning. Regarding the RdV here presented, a data gap

of about 7 hours, ending approximately around 14:00 UTC, is introduced daily. It could

represent the e�ect of a repositioning of the mass memory reading pointer so that the latest

available TM refers to the current state of the space segment.

• The camera model provides measurements every 30 s. Such sampling interval represents

typical time frequencies of the image processing unit output, when exploiting relative target

and stars movements from picture to picture.

• Measurements biases are included.

• When computing the extended-time thrust pro�le correspondent to the ideal delta-v pro-

vided by the maneuver planning tool, errors in the execution of the maneuver are introduced.

Moreover the estimated delta-v that are logged during the simulation include also the errors

accomplished by the estimation process. Aa a result the information used within the �lter to

model the measurement observations is a�ected by both maneuver execution and estimation

uncertainties.

In addition to these operational constraints, in order to emulate an approach to a non-

cooperative client satellite, the whole simulation is structured as follows. Each main task, i.e.

maneuver planning (MAP), simulation and relative orbit determination (ROD), is accomplished by

independent teams. The simulation-specialist plays the role of the administrator of the RdV re-

hearsal. He is the only person aware of the true state of the client satellite, of the actual instrument

biases and of the magnitude of maneuver execution and estimation errors. The simulation-specialist

provides to the other teams an initial relative state and sets the aimed �nal hold-point of the ren-

dezvous, e.g. Table 6. The error between true and provided initial conditions (IC) is of order of

magnitude of the error incurred when using a NORAD two-line element set (TLE) to compute the

�rst-guess relative state. In the current simulation, biases were set at a magnitude of about 1/8 of
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Table 6 Initial conditions (IC) provided to the ROD-team. They refer to initial time of the
simulation environment: 23-Apr-2012 14:30:14).

Elements' set aδα, m
Provided IC -1.00 -41.16 -377.60 19.53 246.50 -30658.14
(Unknown) true relative state -9.32 -79.24 -395.29 46.42 557.99 -30179.70
(Unknown) error at initial time 8.33 38.07 17.69 -26.89 -311.48 -478.44
Aimed �nal hold-point 0.0 0.0 -200.0 0.0 200.0 -3730.0

pixel ( ≈ 10 arcsecs).

The rehearsal of the whole RdV develops through several steps, i.e. iterations, each composed by an

execution of maneuver planning, simulation and relative orbit determination tasks. The objective

is to re�ne step-wise the estimation of the relative state between the satellites. The process starts

from the provided IC. Afterwards, during each iteration, given the latest estimation of the relative

state, the maneuver planning module provides the next maneuvers to be accomplished. These are

commanded to the simulation environment, that applies their e�ect on the space segment. The

new acquired TM data together with the maneuver pro�le are subsequently used to perform a

ROD run on the new data batch to update the estimation of the relative state, thus completing

an iteration. As a result the errors committed by the relative orbit determination in�uence the

performances of the maneuver plan. Errors in execution of the maneuvers a�ect the result of the

aimed maneuvers. Therefore the complete functional chain allows assessing the realistic closed-loop-

control performances of the rendezvous.

During the RdV, the maneuver planning module computes step by step the ideal delta-v needed

to track a speci�c guidance pro�le that is designed to bring the servicer from the provided IC to the

aimed �nal conditions. Such pro�le satis�es the relative eccentricity/inclination vector separation

criteria suggested in Ref. [20]. In addition to that, the guidance pro�le shall account for visibility

constraints of the camera, safety constraints of the formation, delta-v budget limitations, delta-v

execution opportunities and maneuver selection to improve the observability of the relative naviga-

tion problem. All these topics and the results discussed in section II B lead to the choice to perform

couples of along-track maneuvers and cross-track corrections during the most far apart phase of

the approach. Combinations of radial�along-track maneuvers and cross-track burns to re�ne the

out-of-plane motion are performed in the �nal part of the approach. Regarding the distribution of
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delta-v opportunities, it is here assumed that two windows are daily available. Therefore, at least

two ROD runs per day can bene�t from the presence of new maneuvers. Figure 4 reports all the

delta-v recorded in the TM for the RdV de�ned in Table 6. The values nearer to zero are due to

the errors in the execution and estimation of the maneuvers. The total delta-v spent is ≈ 0.87 m/s.
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Fig. 4 Estimated values of the maneuvers performed during the RdV of Table 6.

A. Rendezvous simulation results

In Table 7 are described all the ROD runs performed during the RdV from the initial conditions

to the aimed �nal hold-point reported in Table 6. Runs are tagged with labels from R1 to R9. Each of

them is associated with the latest active orbit contact, the time span covered by the measurements

and the number of camera outputs used for the relative orbit determination. Due to how the

measurements are modeled in the simulation environment, there is no need to perform any data

editing. Therefore all the measures outside data gaps can be used by the �lter. Runs R1-6 exploit all

the available data till the latest time; whereas R7-9 use just the most recent 24 hours of data. The

choice of which data batch to use comes from some analysis accomplished during the ROD module

development. Moreover, the strategy was �nally re�ned by tailoring it to the results gained by

di�erent simulation scenarios, though sharing the same guidance approach during the rendezvous.

As explained before in the �lter design section, the LSQ �lter can be initialized either at the

initial or at the �nal time of the data batch. Depending on the direction of the time propagation,

the �lter can be labeled as forward (FW) or backward (BW). As the dynamics is modeled by a

linear system and the LSQ approach �ts the whole data set at once, the accuracy of the estimated
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Table 7 Summary of the ROD runs performed during the RdV.

ROD Pass # Data time span # measures
number from, GPS time to, GPS time number

R1 9767 23-Apr-2012 14:30:14 23-Apr-2012 19:28:44 598
R2 9778 23-Apr-2012 14:30:14 24-Apr-2012 13:49:15 1991
R3 9782 23-Apr-2012 14:30:14 24-Apr-2012 20:26:45 2786
R4 9793 23-Apr-2012 14:30:14 25-Apr-2012 14:50:45 4185
R5 9797 23-Apr-2012 14:30:14 25-Apr-2012 21:24:45 4973
R6 9807 23-Apr-2012 14:30:14 26-Apr-2012 14:09:15 6175
R7 9811 25-Apr-2012 19:47:54 26-Apr-2012 20:45:24 2189
R8 9821 26-Apr-2012 14:09:23 27-Apr-2012 13:26:54 1956
R9 9826 26-Apr-2012 19:08:43 27-Apr-2012 21:39:54 2321

state is the same, disregarding the direction of time propagation. In the case of sequential relative

orbit determinations during the rendezvous, the �lter is set to BW, as its output directly feeds the

maneuver planning tool.

Concerning how successive RODs are linked one can focus on what data batches they use. A i-th

ROD can be followed by one that uses just new data, i.e. sequential link, or by one that overlaps new

and old data in a nested way. For BW LSQ, the estimation time will be the same, the data �tted by

the nested link, however, will be more and distributed on a wider time span. Numerical simulation

of di�erent guidance pro�les showed that a nested link should be preferred for the following reasons.

The trends of estimation errors over consecutive ROD runs are less irregular for the nested link

case. This aspect is important for the closed-loop control of the rendezvous, as ROD output can

be considered reliable since the �rst steps. Unexpected bigger errors in�uence the MAP pro�le

and, consequently, the delta-V budget to achieve the �nal target hold-point. Furthermore, when

a nested approach is used, each ROD run can contain a greater equal number of maneuvers than

the sequential run terminating with the same estimation time. This aspect improves the degree

of observability of the estimation problem. Finally, taking into account the ground-in-the-loop

architecture, it is convenient to exploit the maximum amount of available data; consistent with the

choice to employ a LSQ approach.

The last issue involved in the de�nition of time spans in Table 7 is related to how big the

nested data batch can become. The rule employed in the RdV was determined by comparing the

magnitude of the estimation errors after each run when either all available data or the most recent
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24 hours were used, during previous rendezvous rehearsals. Within the simulation characteristics

and the modeling limitations of this application, it turned out to be convenient to switch to shorter

data batches from the second part of day-4. Regarding the investigated guidance pro�les, at that

time the average along-track separation was less than 4 km. The maximum time span covered by

the data batch should be traded o� considering when the bene�t of having an extensive sample of

measurements is countered by the deterioration of the capability to model the measurements due

to un-modeled phenomena over time. To this topic contribute the accuracy of the model of the

relative dynamics and the behavior of the true observations over time. Our model of the relative

dynamics does not include the di�erential drag e�ects (see Eq.(11)). In the simulation frame, the

reality is represented by the numerical integration of the absolute dynamics of the two satellites.

True observations are modeled disregarding many aspects of the instrument functioning. Therefore

camera lens characteristics, di�erent lighting conditions, dimension of the client spot and behavior

of the centroiding function are not taken into account. As a consequence the true-measurements are

always of the same quality during the RdV, thus favoring the choice of data batches of wide time

spans.

The initial condition for the biases was set to 0 radians. Due to the bad conditioning of the

information matrix of the complete LSQ problem it is set that the �lter cannot substantially modify

the values of the estimated biases. This is remedied by attributing an a-priori standard deviation

to the biases signi�cantly smaller than the one of the other parameters. In particular the following

values were used during the RdV:

σb,η = 1e−5[deg], σb,ψ = 1e−7[deg] (41)

The standard deviation of the measurements, i.e. ση = σψ, was set to 1/2 pixel (≈ 0.012 deg),

consistent with the instrument noise employed in the MOS simulation. The consequent weight

matrix W was kept constant throughout the whole simulation.

The remaining �lter parameter of each run is the a-priori covariance matrix Papr computed from

the a-priori standard deviation set for the relative orbital elements σδα. Table 8 lists all the sets
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Table 8 A-priori standard deviation of the relative orbital elements at each run.

ROD σδa σδex σδey σδix σδiy σδu
m m m m m m

R1 20.00 100.00 100.00 100.00 100.00 10.00
R2 1.34 1.88 1.95 1.88 2.10 50.00
R3 0.25 0.32 0.59 0.32 0.82 50.00
R4 0.28 0.34 0.59 0.34 0.77 50.00
R5 0.36 0.35 0.65 0.34 0.79 50.00
R6 0.01 0.01 0.01 100.00 100.00 0.01
R7 47.80 48.87 48.84 229.25 232.14 50.00
R8 0.64 0.78 2.46 0.77 2.58 50.00
R9 0.32 0.37 2.87 0.35 3.00 50.00

employed during each run of the RdV. In particular, in R1 σδα represents the typical con�dence that

the provided IC, computed via TLE, can guarantee. In addition to that it was arti�cially set σδu

smaller than the one of the other elements, since the �lter should not modify too much the related

element of the initial guess state. This is motivated by the fact that during the �ight time of R1 no

maneuvers were executed, which reduced the degree of observability of the problem. By �xing the

average along-track separation, the �lter can act only on the remaining parameters which de�ne the

shape of the projection of the relative motion on the radial�cross-track (R-N) plane. Given Eq.(21),

camera boresight direction and mean tangential separation at the beginning of the rendezvous, the

R-N plane almost coincides with the plane of the image of the camera. Thus the �tting leads to

the identi�cation of the family of the relative motion, with an error in the scale factor related to

the ambiguity on aδa, aδu and bη. Nevertheless, the less accurate components of the initial guess

from TLE, i.e. aδe and aδi, can be e�ciently adjusted [c.f. the third line of Table 6 and the R1

abscissa of Figure 6]. Such an early correction, accomplished without need of maneuvers, brings

great bene�t to the successive MAP planning. σδα settings in R2-5 R7-9 are related to the choice

of how to link the estimation information from run to run. The LSQ �lter provides the covariance

matrix of the least-squares solution according to Eq.(40). This quantity is a function of the a-priori

con�dence and of the number of observations used. Therefore the magnitude of the elements of

the obtained Plsq, i.e. the formal standard deviation of the estimated state, are not representative

of the estimation error committed, depicted in Figure 6. Moreover it has been observed that by

simply letting Plsq be the a-priori con�dence of the initial conditions of next run, the �lter reaches
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a saturation point after a few runs. In particular the estimated state is trusted more than the fresh

information brought by new measurements, leading the �lter to diverge.

In order to avoid this phenomenon a rule has been established to link the Plsq to the a-priori

con�dence of the successive ROD run. A minimum-reference con�dence σref−min is set, consistent

with the expected order of magnitude of the estimation error in the �nal phases. During the

simulation such quantity was �xed to:

σref−min = (3, 10, 10, 10, 10, 50) [m] (42)

Then, whenever any element was satisfying σδα < σref−min, the whole set was rescaled so that

its most violating term would be equal to its correspondent in σref−min. Thus, values reported in

Table 8 are computed via the above mentioned rule, starting from the solution of Eq.(40) (elevation

de�ned with respect to the local cross-track direction). In R6 a di�erent decision was employed:

the idea was to exploit the execution of the �rst radial maneuvers to re�ne the estimation of the

biases. A radial maneuver in fact inserts a variation in the aδu, thus adding information to resolve

the ambiguity on the scale factor of the projection of the motion on the R-N plane. The bias in

azimuth, is perceived as a shift in the radial direction, thus it couples itself with the estimation of

aδa. The bias in elevation has no justi�cation with respect to the solution of the relative dynamics,

given the attitude of Eq.(21). To this aim a loop of runs were performed in which only some

elements were allowed to be adjusted each time, leading to the �nal settings reported in Table 8.

The true bias values in the simulation environment were of 10 arcsecs; in the current simulation

the process just described did not improve the accuracy of the estimation of b. It should be noted,

however, that R6 achieved the minimum value of estimation error in aδu (abscissa R6 in Figure 6).

The e�ectiveness of this loop of runs varied across the di�erent simulations performed. It revealed

more e�cient when both the biases in the simulation environment and the error between biases

initial-guess and true-value were bigger.
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Fig. 5 Estimated and reference relative orbital elements at the estimation time of each run.
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Fig. 6 Estimation error at the estimation time of each run.

Figures 5 and 6, report the accuracies achieved component by component for each run of the

RdV. The di�erence between the estimated state and the true one de�nes the estimation error

committed at each step. These �gures allow respectively understanding what was the rendezvous
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Table 9 Residuals merit features for each run of the RdV.

ROD Residuals mean±σ, arcsecs
ρη ρψ

R1 0 ± 66 131 ± 31
R2 4 ± 53 148 ± 32
R3 −11 ± 70 140 ± 37
R4 −1 ± 70 102 ± 72
R5 1 ± 68 100 ± 80
R6 1 ± 59 97 ± 59
R7 14 ± 84 86 ± 64
R8 2 ± 56 78 ± 38
R9 −3 ± 126 101 ± 96

guidance strategy and with what accuracy it was achieved. Note that features regarding aδu are

plotted in km. By observing Figure 6, one can note that the error committed in aδa stays in

±8 m during the rendezvous and decreases with the proceeding of the runs. Both aδex and aδix

are well estimated. Their y-components are estimated with an error of ±30 m. The mean along-

track separation is always estimated within an error minor than the 7.5% of the current true mean

along-track separation, which spans from circa 30 to 3 km.

Finally, Figure 7 and Table 9 report the characteristics of the observation residuals during the

RdV. One can note that the residual in elevation, i.e. cross-track direction, is biased throughout the

simulation. Regarding our experience, during all the simulations performed that shared the same

sensor attitude, the bias in elevation has been estimated with less accuracy. Together with this,

the residuals present a periodical pattern superposed to a nonzero mean value that clearly is an

evidence of some unmodeled phenomenon that in�uences the residuals. This is related to how the

instrument is modeled in the simulation: information from absolute positions and attitude are used

to reproduce the x-y coordinates of Tango on the image plane, therefore true measurements are not

completely independent information. As a con�rmation, if biases are set to 0 during the simulation,

the behavior of the residuals obtained during a relative orbit determination phase, presents a mean

trend around zero, and less marked oscillations.
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Fig. 7 Observation residuals during each run of the RdV: behavior over time.

IV. Conclusion

This work addressed the design and the implementation of a relative navigation tool that makes

use of camera-based angles-only measurements.

The �rst part of the paper dealt with the theoretical background of the estimation problem and

with the subsequent �lter design. The relative dynamics has been parameterized through relative

orbital elements. This choice allowed exploiting a simple model of the dynamics which includes the

e�ect of the Earth oblateness, that is one of the main perturbations in low energy orbits. Moreover

the parameterization allowed having a direct physical interpretation of the range un-observability

of the relative orbit determination using line-of-sight measurements. Observability properties were

discussed for the Kepler and the perturbed problems. Given the need to perform a maneuver in

order to achieve the full observability, in the paper has been introduced some possible metrics to

quantify the subsequent level of observability. Such metrics exploit the simple relations between

maneuvers and changes in the relative orbital elements. Finally it is discussed how the observability

properties behave when sensor biases are included in the variable state.

The estimation problem of a far-range orbital rendezvous was solved with an iterative least-
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squares approach that makes use of a-priori information. The proposed relative orbit navigation tool

has been validated within a high-�delity simulation environment. There several realistic operational

conditions have been included. Despite this, still some topics cannot be fully addressed through

a simulation environment. The choice of the size of the data batches, for example, could be less

than optimal for a real-world application. This is related to the di�erence between the reality

and the simpli�ed simulation environment. Moreover the behavior of the true measurements over

time, due to di�erent illumination conditions and decreasing relative separation was not included

in the simulation. Again this could lead to a preference for shorter or longer data batches than

were chosen here. Finally, in the simulation environment the behavior of the observation residuals

revealed arti�cial biases and provided very little information compared to what it provides when

real measurements coming from �ight data are used.

The set up of a realistic rehearsal of a rendezvous from far-range distance to a non-cooperative

client satellite allowed assessing the achievable closed-loop-control performances. The feasibility

of a rendezvous guidance pro�le was demonstrated based on (anti-)parallel eccentricity/inclination

vectors whose magnitude shrinks with the passing of the time. Moreover the robustness of the

relative navigation tool was assessed with respect to realistic errors in execution and estimation of

the maneuvers.

The development of this tool happened in the frame of the preparation to the DLR/GSOC

Advanced Rendezvous Demonstration using GPS and Optical Navigation (ARGON) experiment.

Future re�nement will take advantage of the �ight data collected during the execution of this

experiment.
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