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Abstract 17 

We propose and exemplify a framework to assess Natural Background Levels (NBLs) of 18 

target chemical species in large-scale groundwater bodies based on the context of Object Oriented 19 

Spatial Statistics. The approach enables one to fully exploit the richness of the information content 20 

embedded in the probability density function (PDF) of the variables of interest, as estimated from 21 

historical records of chemical observations. As such, the population of the entire distribution 22 

functions of NBL concentrations monitored across a network of monitoring boreholes across a 23 

given aquifer is considered as the object of the spatial analysis. Our approach starkly differs from 24 

previous studies which are mainly focused on the estimation of NBLs on the basis of the median or 25 

selected quantiles of chemical concentrations, thus resulting in information loss and limitations 26 

related to the need to invoke parametric assumptions to obtain further summary statistics in addition 27 

to those considered for the spatial analysis. Our work enables one to (i) assess spatial dependencies 28 

among observed PDFs of natural background concentrations, (ii) provide spatially distributed 29 

kriging predictions of NBLs, as well as (iii) yield a robust quantification of the ensuing uncertainty 30 

and probability of exceeding given threshold concentration values via stochastic simulation. We 31 

illustrate the approach by considering the (probabilistic) characterization of spatially variable NBLs 32 

of ammonium and arsenic detected at a monitoring network across a large scale confined 33 

groundwater body in Northern Italy. 34 

 35 

Keywords: Natural background level; groundwater quality; chemical status; Kriging; probability 36 

density function; uncertainty quantification. 37 
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1. Introduction 40 

Robust characterization of the natural chemical signature of a given groundwater system is a 41 

key component of modern environmental analysis. Critical aspects associated with this step include 42 

the identification of values of sampled concentrations of target chemicals that could be related to 43 

geogenic contributions. In this context, it is recognized that markedly high Natural Background 44 

Levels (NBLs) of chemical species/compounds of interest can potentially be linked to 45 

petrographical (e.g., Hinsby and Condesso de Melo, 2006) or lithological and sedimentological site-46 

specific characteristics (e.g., Redman et al., 2002; Molinari et al., 2013 and references therein) 47 

rather than being attributable to anthropogenic actions. Relating high values of sampled 48 

concentrations to an anthropogenic rather than a natural contribution may sometimes yield 49 

misleading assessments of environmental risks, improper classification of the chemical status (e.g., 50 

in terms of a good status, as defined by the European Water Framework Directive, WFD 51 

2000/60/EC GWDD 2006/118/EC Directive 2014/80/EU) of aquifer bodies, as well as setting 52 

remediation goals which can be unattainable and/or unsustainable. In this context, modern 53 

regulatory frameworks at the European level highlight the need for an appropriate assessment of 54 

baseline concentrations, i.e. those that can be ascribed to geogenic effects and are not caused by 55 

anthropogenic activities. 56 

Identification and implementation of a complete (generally multicomponent) geochemical 57 

model accounting for the complexity of processes driving flow and transport in porous media in the 58 

presence of the various sources of uncertainty associated with the ubiquitously heterogeneous 59 

subsurface is not always feasible. A series of investigations are then keyed to the development of 60 

procedures leading to embedding information within a management framework upon relying on a 61 

limited amount of data. The latter typically comprise monitored temporal series of concentration 62 

samples (Edmunds et al., 2003, Wendland et al., 2005, Panno et al., 2006, Walter, 2008, Urresti-63 

Estala et al., 2013, Kim et al., 2015; Liang et al., 2017, 2018, 2019). 64 
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As an example, one of the main outcomes of the EU funded project BRIDGE (2007), 65 

Background cRiteria for the IDentification of Groundwater thrEsholds, is a guideline that allows 66 

assessing the natural status of a groundwater body through a Pre-Selection methodology. The latter 67 

is based on the identification of pristine groundwater samples within an available collection of 68 

observations. This procedure typically yields the estimate of a unique (or bulk) NBL value, which is 69 

then assigned to the groundwater body under investigation. According to this approach, 70 

concentration values of a chemical species of interest exceeding such a threshold are then ascribed 71 

to anthropogenic activities. A notably weak point of such an approach is that it renders a unique 72 

NBL value, disregarding spatial variability, this aspect being critical when considering large scale 73 

heterogeneous (in terms of petrographic and hydrogeologic characteristics) aquifers. As a further 74 

evolution, some authors suggest that the NBL of a natural groundwater system should be expressed 75 

in terms of a range of values (e.g., Reimann and Garrett, 2005; Hinsby et al., 2008; Li et al., 2014) 76 

rather than being constrained to a single one. 77 

Studies related to characterizing the spatial variability of NBL concentrations include, e.g., 78 

the work of Ducci et al. (2016) and Dalla Libera et al. (2017). While the former relies on indicator 79 

kriging to demarcate regions associated with given probability of exceeding a target NBL value, the 80 

latter authors propose a zonation approach leading to piece-wise uniform NBL concentration maps. 81 

The analysis of Molinari et al. (2019) starts from values of the 90
th

 percentile of concentration 82 

samples observed at a set of monitoring boreholes. These are then subject to standard variography 83 

upon considering alternative variogram models which are then employed in a multimodel context to 84 

provide kriging-based spatial distributions of estimates of NBL concentrations. The resulting kriged 85 

values are used jointly with the ensuing estimation variance to evaluate spatial distributions of the 86 

probability of exceeding predefined threshold values of NBL concentrations, the latter being 87 

assumed to be characterized by a log-normal distribution. We emphasize that all of these works rely 88 

on the representation of observed temporal series of natural background concentrations by way of 89 

through scalar summaries (e.g., the 90
th

 percentile), which are then projected onto a set of locations 90 
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of interest where data are not available. Doing so results in a loss of information and requires 91 

resorting to additional hypotheses, such as assuming a log-normal distribution for NBL values 92 

which is parametrized according to the results of the kriging analysis (as in, e.g., Molinari et al., 93 

2019). The general concept underlying these studies is also consistent with approaches treating the 94 

characterization of spatial heterogeneity of aquifer systems within a probabilistic context (e.g., 95 

Winter et al., 2003; Short et al., 2010; Perulero Serrano et al., 2014; Bianchi Janetti et al., 2019 and 96 

references therein). 97 

Our study rests on the concepts underpinning Object Oriented Data Analysis (Marron and 98 

Alonso, 2014). Doing so enables us to consider the information content included in the entire 99 

distribution function of NBL concentrations monitored at a given observation borehole as the object 100 

of the spatial analysis, instead of being limited to selected moments or quantiles. Such a framework 101 

renders (a) predictions of the complete distribution of NBL concentrations in a non-parametric 102 

setting together with the associated uncertainty, and (b) joint assessment of all summary quantities 103 

of interest of the distribution (including desired quantiles and probability values). Accordingly, the 104 

NBL distributions are embedded in a mathematical space whose elements are probability density 105 

functions (Egozcue et al., 2006, Van den Boogaart et al., 2014). Our distinctive objective is to 106 

leverage on key elements of Object Oriented Spatial Statistics (O2S2, Menafoglio and Secchi, 107 

2017) to (i) quantify spatial dependencies among observations, (ii) provide spatially distributed 108 

kriging predictions, and (iii) yield a robust quantification of the uncertainty associated with NBL 109 

spatial distributions through stochastic simulation. As detailed in the following, we first illustrate 110 

the theoretical framework, and then demonstrate it to characterize spatial variability of NBL 111 

distributions of target chemical species by relying on an extensive set of hydrochemical data 112 

collected across a large scale confined groundwater body in Northern Italy. 113 

2. Materials and methods 114 

2.1. Study area and data-set 115 
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As a test bed to demonstrate the breadth and potential of our approach, we focus on a 116 

groundwater body located in the Emilia-Romagna Region (Northern Italy) and demarcated on the 117 

basis of both geological/sedimentological information and anthropogenic impact analyses (Regione 118 

Emilia-Romagna, 2010). The area is a portion of the Po Basin fill, a syntectonic sedimentary wedge 119 

(Ricci Lucchi, 1984) forming the infill of the Pliocene-Pleistocene fore-deep. 120 

Sedimentological and hydrogeological studies are available in the region (Amorosi et al., 121 

1996; Regione Emilia-Romagna-ENI-AGIP, 1998, Regione Emilia-Romagna, 2010), identifying 122 

three main hydrogeological complexes: Apennines alluvial fans, Apennine alluvial plain, and 123 

alluvial and deltaic Po plain. The complete aquifer system is characterized by a multilayered 124 

confined or semiconfined configuration. The thickness of fine deposits increases towards the 125 

northern portion of the plain (Regione Emilia-Romagna, 2010; Farina et al., 2014), where 126 

conditions of increased confinement are documented. 127 

Additional information regarding the hydrogeological setting of the region are available in 128 

Molinari et al. (2012) and Farina et al. (2014). Our study is keyed to one of the large scale 129 

groundwater bodies located in the upper confined portion of the aquifer system, within the 130 

hydrogeological complex named as Appenine alluvial plain. Figure 1 depicts limits and planar 131 

extent of the groundwater body considered, denoted with the identifier 0610 and characterized by 132 

an average depth of 75 m, average thickness of 130 m and area of about 2930 km
2
. 133 
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 134 
Figure 1. Planar extent of groundwater body 0610 within the Emilia-Romagna Region. Blue arrows 135 

correspond to the overall regional-scale groundwater flow direction. 136 

 137 

The groundwater body under study is considered to be significantly vulnerable, given its 138 

stratigraphic location within the aquifer system and the anthropogenic stresses associated with 139 

intensive exploitation for agricultural and civil purposes (Regione Emilia-Romagna, 2010). Being 140 

located in the upper confined portion of the complex aquifer system described, its southern limit is 141 

in continuity with the recharging areas of alluvial fans. A relevant amount of monitoring boreholes 142 

is set within its considerable planar extent, thus yielding a remarkable amount of available chemical 143 

data. As evidenced in prior investigations (Molinari et al. 2012, 2019), data about groundwater 144 

quality suggest the need to considering regional-scale, spatially heterogeneous distributions of NBL 145 

values. 146 

The analyzed data set includes time series of concentrations recorded at several monitoring 147 

stations managed by the “Agenzia Regionale per la Prevenzione e l'Ambiente dell'Emilia-148 

Romagna” (ARPAE - Regional Agency for Environmental Protection, Emilia-Romagna). We select 149 

monitoring boreholes where 20-year historical records of observations (1987-2008, collected at a 150 

six-month interval, albeit not continuously for some wells) are available. We focus on ammonium 151 

(NH4) and arsenic (As), whose documented concentrations locally exceed the limit set by current 152 

Italian regulations (also corresponding to the European Drinking Water Standards) set at 0.5 mg/l 153 

0610
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N

E
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and 10 µg/l, respectively, and are seen as critical elements for the achievement of a good chemical 154 

status according to Italian Regulation (D. Lgs. 30/09, i.e., Decreto Legislativo n. 30, 16 March 155 

2009) and GWDD 2006/118/EC. A total number of 90 monitoring stations was initially considered 156 

by ARPAE to characterize groundwater body 0610. Some of these were associated solely with 157 

quantitative measurements of piezometric level. On the basis of a subsequent detailed analysis, 158 

monitoring stations that could not be attributed with certainty to the target groundwater body 159 

(essentially on the basis of the screen depth) were excluded from the original collection of locations. 160 

This has reduced the initial number of monitoring stations attributed to groundwater body 0610 to 161 

62, with a total of 1428 observations. Exclusion of monitoring stations where observations are 162 

associated with a temporal window spanning less than 3 years leads to retain 57 monitoring stations 163 

with a total of 1354 observations available (among these, ammonium and arsenic have been 164 

measured in 1343 and 1193 samples, respectively). Concentrations below detection limit were set 165 

equal to half the detection limit. After application of PS, monitoring stations where less than 10 data 166 

points are available are further excluded from our analyses. As such, we use 1234 (associated with 167 

44 monitoring stations) for ammonium (see Section 3.1) and 1096 data (related to 43 monitoring 168 

stations) for arsenic (see Section 3.2). 169 

2.2 Methodology for Data analysis 170 

2.2.1 NBL estimates 171 

Concentration records are subject to a Pre-Selection (PS) procedure (BRIDGE, 2007) to 172 

identify NBL values. This approach enables us to remove samples exceeding certain concentration 173 

values, considered indicative of anthropogenic contamination, from the original record of 174 

observations. Typically employed criteria for the exclusion of samples deemed as influenced 175 

include: (a) chloride concentrations > 1000 mg/l, denoting salinity; and (b) nitrate (NO3) 176 

concentrations > 10 mg/l, as a signature of anthropogenic influence caused by e.g., fertilizers. 177 

Additional criteria (redox conditions, dissolved oxygen, sulfate concentration) can be considered for 178 
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sample exclusion (e.g., Hinsby and Condesso de Melo, 2006; Hinsby et al., 2008). For the purpose 179 

of our analyses, we follow Molinari et al. (2019) and apply the exclusion criteria listed above. 180 

Data resulting from filtering the raw dataset through PS are considered as observations of 181 

naturally occurring NBL concentrations at diverse observation times across the analyzed window. 182 

Our analysis rests on monitoring wells which exhibit a time series with more than ten records. We 183 

note that the procedure which is then employed for the evaluation of the NBL (e.g., Wendland et al., 184 

2005) relies on (a) estimating the median value for the concentrations of the target chemical species 185 

identified at each monitoring well via PS, and (b) assessing the unique value of NBL associated 186 

with the whole water body in terms of a selected percentile (typically the 90
th

, 95
th

, or 97.5
th

). 187 

As illustrated in details in Section 2.2.3, we adopt here a diverse perspective and fully 188 

account for the functional nature of the data. The latter are thus analyzed as functional random 189 

fields. In this context, the subject of our analysis is the collection of probability functions of NBLs 190 

obtained by applying the PS procedure at each monitoring station. By doing so, we go beyond the 191 

limitation of relying solely on selected percentiles of such probability functions and take advantage 192 

of the complete information content embedded in the entire probability function of NBL 193 

reconstructed from the observations at each well. 194 

We structure our study through the following main steps: 195 

1. perform sample selection for historical records at each observation borehole following the 196 

adopted exclusion criteria, as indicated in the original BRIDGE (2007) methodology; 197 

2. evaluate the (empirical probability) distribution function of NBLs of (log-transformed) 198 

concentrations of the selected chemical species at each observation well; 199 

3. perform spatial prediction and uncertainty quantification of NBL probability density 200 

functions (PDFs) at unsampled locations using an object-oriented geostatistical approach 201 

(Menafoglio et al., 2014). 202 

We describe the main theoretical elements and the ensuing implementation workflow 203 

associated with these steps in the following sections. 204 
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2.2.2 Data pre-processing 205 

Data pre-processing aims at extracting an estimate of the NBL PDFs from each temporal 206 

series of NBL observations. Each temporal series is considered separately (observations associated 207 

with the series being used to build a corresponding histogram) neglecting temporal autocorrelation 208 

(additional comments on this choice are given in Section 3). The resulting histogram is then 209 

smoothed to yield a continuous estimate of the underlying PDF, as advocated by Machalová et al. 210 

(2016) and consistent with the modeling framework employed for the following analysis steps 211 

(detailed in Sections 2.2.3-2.2.4). Note that the length of the time-series can have an effect on the 212 

accuracy of the PDF estimation, i.e., the longer the time series, the lower the uncertainty in the data-213 

preprocessing. Here, we include all monitoring stations where at least 10 records are available. This 214 

is seen as a minimum threshold value to maintain the ability of estimating a density function from 215 

the sampled data with a non-parametric approach. In general, the choice of such a threshold should 216 

attain a balance between the ability of estimating the PDF with sufficient accuracy, and the need to 217 

retain as many measurement sites as possible. This choice is case-specific and depends on the 218 

stability of the time-series, the data quality, possible missing data, the density of the measurement 219 

locations and their spatial distribution. 220 

2.2.3 Notation and background: geostatistics for PDFs 221 

The smoothed PDF data are considered as the objects of the geostatistical analysis. In the 222 

following we denote by         the   locations in the spatial domain   where the PDFs of NBL 223 

are observed, and by           the   smoothed PDFs available at the sampling locations. Here,     224 

denotes the PDF at location   , which is a positive function defined on an interval of (log-225 

)concentrations        , common to all data. We consider these PDFs as a partial observation of a 226 

functional random field         , that is a collection of random functional elements (the PDFs of 227 

NBL) indexed by a spatial variable   in  . The goal of the analysis is to provide a kriging 228 

prediction of the random field (i.e, the entire PDF,    ) at unsampled locations (  ) in  , based on 229 
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the observations available at the monitoring stations. Two key challenges need to be tackled to 230 

solve the kriging problem: (i) the curse of dimensionality (due to the virtually infinite 231 

dimensionality of PDF data, which would need an infinity of point evaluations to be fully 232 

characterized), and (ii) the data constraints (positivity and unit integral). 233 

To jointly face these challenges, we follow the approach of Menafoglio et al. (2014, 2016a, 234 

2016b), who provide a class of geostatistical methods to analyze datasets of geo-referenced PDFs. 235 

These methods are based on the idea of defining an appropriate mathematical space where data are 236 

embedded, and use the geometry of the space to perform prediction and stochastic simulation. For 237 

instance, if the NBL data were represented through their median (i.e., a scalar summary statistics), 238 

the data could be embedded in the space   of real numbers, and analyzed through a typical scalar 239 

geostatistics approach. If the NBL data were represented through a set of   summary indices (e.g., 240 

mean and standard deviation), a  -dimensional Euclidean space    could be used to perform 241 

analyses through multivariate geostatistical methods (e.g., Chilès and Delfiner, 1999). Considering 242 

functional and constrained data, Menafoglio et al. (2014, 2016a, 2016b) propose to consider a 243 

Bayes space (Egozcue et al., 2006; Van den Boogaart et al., 2014), whose elements are PDFs, for 244 

embedding and analyzing the data. Bayes spaces provide the generalization to the functional 245 

framework of the so-called Aitchison simplex (Aitchison, 1986). In Bayes spaces, appropriate 246 

notions of operations between PDFs (e.g., sum ( ), or product by a constant ( )) as well as of inner 247 

product (     ) are defined, allowing for the development of a proper theory of kriging and stochastic 248 

simulation. For the purpose of this study, we do not present all details of these mathematical 249 

constructions and introduce only the key concepts and notation. We refer to Menafoglio et al. 250 

(2013, 2014, 2016a, 2016b) for an in-depth introduction to the mathematics underpinning the 251 

methods we employ. 252 

2.2.4 Modeling spatial dependence and kriging 253 
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As a first step of the geostatistical analysis of the dataset           of PDFs, we model the 254 

spatial dependence among data. We assume that (a) data are elements of the Bayes space   , that is 255 

the space of positive functions, whose natural logarithm is square integrable, and (b) the field 256 

         is stationary. This enables us to consider the generalization of the classical variogram to 257 

the functional context, which is termed trace-variogram. In   , the trace-variogram is defined as 258 

the function           that associates with a pair of locations       (in  ) the expected square 259 

distance (in   ) between the NBL PDFs (   ,    ) at such locations, i.e., 260 

                
              

 

      
     

            

            
     

 

 

 

 
 . (1) 261 

Interpretation and properties of the trace-variogram for PDF data are very similar to their scalar 262 

counterpart. In particular, under stationarity, the trace-variogram depends only on the increment 263 

among locations (     ), stabilizes at a horizontal asymptote (sill), and the distance at which the 264 

variogram attains the sill determines the range of association among elements of the field (range). 265 

Variogram modeling can be performed in two steps: (i) estimating a binned trace-variogram 266 

      
 

      
    

                    
, (2) 267 

       being the number of pairs of sampled sites (approximately) separated by  ; and (ii) fitting a 268 

valid model (e.g., spherical, exponential, matérn) to the empirical estimate (1). 269 

Once the variogram model is estimated, the functional kriging prediction for a PDF of NBL at 270 

a target location    is based on the best linear unbiased (functional) predictor in the Bayes space   . 271 

This is defined as the predictor    
     

     
 
   , where symbols denote the linear combination in 272 

the Bayes space, and are explicitly written as 273 

   
     

    

  
 

    
   

     

  
 

 
        

 
 

, (3) 274 

  
      

  being scalar weights to be optimized through minimization of the variance of prediction 275 

error under unbiasedness. From a practical viewpoint, having estimated the trace-variogram model 276 
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  , finding the kriging weights reduces to the solution of the very same kriging system associated 277 

with scalar geostatistics (see, e.g., Menafoglio and Secchi, 2017, for details). 278 

2.2.5 Stochastic Simulation 279 

Uncertainty quantification for functional kriging can be performed by using conditional 280 

stochastic simulation, as originally proposed in Menafoglio et al. (2016b). For this purpose, one 281 

necessarily needs to reduce the dimensionality of the data, as it is hardly possible to produce 282 

realizations of an infinity of point evaluations of the PDF. Dimensionality reduction can be 283 

performed through functional principal component analysis in the Bayes space    (SFPCA, Hron et 284 

al., 2016). The SFPCA analysis allows identifying the main directions of variability (       ) of 285 

the dataset          . The elements         are the analogue of the loadings (i.e., the 286 

eigenvectors) in multivariate principal component analysis. In particular, loadings          form an 287 

orthonormal functional basis of space   . Projecting the data along the first   principal components 288 

enables one to represent the PDF     through a vector of   coordinates                    , thus 289 

reducing to   the formerly infinite dimensionality of the PDF. Stochastic simulation of the PDF can 290 

be then performed by simulation of the vector of coordinates along the truncated basis            291 

at the target location                    , based on the coordinate vector available at the sampled 292 

sites. Such simulation can be performed through the aid of well-known multivariate methods, such 293 

as those based on sequential Gaussian co-simulation (e.g., Chilès and Delfiner, 1999; Kim et al., 294 

2019). 295 

3. Results and discussion 296 

3.1. Ammonium 297 

As stated in Section 2.1, a total of 1234 historical records collected at 44 monitoring stations 298 

were available for ammonium concentration after PS, characterized by a number of 12 to 42 299 

observations per monitoring well (with an average of about 28). A preliminary analysis of the data 300 

reveals that most locations (41 out of 44) do not display any autocorrelation in the time series of 301 



14 

 

NBL concentrations (level 1%, as obtained through a Durbin-Watson test on each time series, the p-302 

value of single tests being corrected via Holm’s method). Autocorrelation within the temporal series 303 

was thus neglected in the data preprocessing. The PDF of NBL log-concentrations (hereafter termed 304 

NBL densities or NBL PDFs for ease of illustration) were then estimated at each borehole upon 305 

neglecting temporal autocorrelations. The ensuing results are depicted in Figure 2 in terms of 306 

smoothed data. 307 

 308 

Figure 2. Smoothed data for ammonium log-concentration values and corresponding spatial 309 

locations in the investigated aquifer system. Colors are assigned according to the value of the mean 310 

related to the corresponding smoothed density. Spatial coordinates are in meters. 311 

 312 

Visual inspection of Figure 2 suggests that the highest mean values are associated with the 313 

distal portion of the domain, mainly close to the coastal area where water is characterized by high 314 

chloride concentrations. A global stationarity assumption of the functional data appears to be 315 

supported by the sample trace-semivariogram depicted in Figure 3, which is characterized by a clear 316 

asymptote for increasing spatial distances. 317 

 318 
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Figure 3. Sample trace-variogram estimated from the smoothed functional data for ammonium log-319 

concentrations and interpreted model with estimated parameters. 320 

 321 

An exponential model with nugget was calibrated to the empirical variogram, estimated 322 

values of its parameters being included in Figure 3. One may notice the presence of a relevant 323 

nugget effect in the structure of spatial dependence, which provides an indication of possible spatial 324 

discontinuities in the field of NBL densities. Point Kriging was then performed across a regular grid 325 

of 2824 points (of side 983 m and 1048 m along the horizontal and vertical directions, which are 326 

taken to correspond to the West-East and South-North directions, respectively). Such a grid 327 

encompasses the full aquifer body domain, grid spacing being consistent with the spatial density of 328 

the available monitoring network and corresponding to a discretization of the variogram range 329 

(Figure 3) with about 50 points. Figure 4a depicts the resulting kriging-based predictions of PDFs 330 

of NBL of (log-transformed) ammonium concentrations. We note that, while point Kriging results 331 

do not depend on the cell size, the latter can be otherwise influential to the graphical representation 332 

associated with the color scale in Figure 4, which can nevertheless capture the overall spatial pattern 333 

of the quantities of interest. Cross-validation results (Appendix A) fully support the satisfactory 334 

performance of the prediction method. 335 

Figures 4b and 4c illustrate the mean and standard deviation of the predicted NBL densities, 336 

respectively. The highest mean values are mostly located in the eastern portion of the domain, close 337 

to the coastal groundwater body, with moderate values of standard deviation. These results are 338 

consistent with the observation that raw concentration data collected from this area tend to exhibit 339 

large NH4 values that persist over time (see also Figure 2), a finding which is possibly linked to 340 

ammonium being more soluble in saline environments as compared to freshwater bodies. 341 
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 342 

Figure 4. Kriging prediction of NBL densities for ammonium log-concentrations: (a) 343 

kriged/predicted densities; (b) mean values, and (c) standard deviation estimated from the kriged 344 

densities. 345 

 346 

A sector characterized by low mean and high standard deviation values is visible in the 347 

south of this area. This result is consistent with the documented pattern associated with 348 

experimental data in this region, which are characterized by a temporal evolution displaying high 349 

concentration values within a collection of otherwise low values. The central portion of the domain 350 

is characterized by modest mean concentration values with high standard deviations. Low mean 351 

values and low to moderate values of standard deviation are found within the western area. It is 352 

noted that demarcation of zones linked to differing behaviors of the target chemical species is one 353 

of the key advantages of the functional analysis approach we employ. Local high values of 354 

ammonium are consistent with the documented natural occurrence of paleo-peats (Amorosi et al., 355 

1996; Cremonini et al., 2008) in sample cores collected at other locations across the area of interest, 356 

with an overall tendency of ammonium concentrations to increase with depth and with increasing 357 

thickness of the fine deposits that confine the aquifer. Further large scale sampling campaigns 358 

would be required for a detailed assessment of correspondences with specific local conditions. 359 
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Figure 5a depicts the predicted spatial variability of the 90% quantile of the NBL 360 

concentration. These results are complemented by Figure 5b, where we depict the spatial 361 

distribution of the probability of exceeding the reference NBL value of 4.6 mg/l, which was 362 

suggested by Molinari et al. (2012) as representative of the global chemical status of the system 363 

upon relying on the classical PS procedure, as proposed by Wendland et al. (2005) and described in 364 

Section 2.2.1. The stark variability displayed by the 90
th

 percentile across the domain documents the 365 

presence of sectors within which the target chemical species shows differing behavior and suggests 366 

the need for considering spatially variable local NBL values. Our results indicate that the 367 

probability of exceeding the reference NBL value of 4.6 mg/l is very low across most of the 368 

domain, high probability of exceedance being confined within a limited portion of the system. 369 

We note that our results are in general agreement with the findings of Molinari et al. (2019), 370 

where areas where such probability was evaluated above 80% are slightly wider than in our 371 

findings, while being located in the same sector. We remark that the approach employed by these 372 

authors (i) is based solely on summary statistics and not on the entire PDFs and (ii) relies on a 373 

Gaussian assumption to represent (log-transformed) NBL concentrations. Additionally, it is noted 374 

that data associated with boreholes with less than 10 records (after PS) were excluded from our 375 

analysis to allow for PDF reconstruction and interpretation, while some of these were retained by 376 

Molinari et al. (2019). Finally, we highlight that our approach is fully compatible with the 377 

possibility of resorting to a multimodel analysis to comprise uncertainty about the choice of the 378 

functional format for the variogram model (see e.g., Molinari et al. (2019)). While this element can 379 

be of interest, we focus here on the main innovative aspect of our study, which is related to the 380 

treatment of the data within the context of a functional geostatistical approach. 381 
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 382 

Figure 5. Spatial distributions of predicted (a) quantile of order 90% and (b) probability of 383 

exceedance of an ammonium concentration threshold of 4.6 mg/l.  384 

 385 

The approach illustrated in Section 2.2.5 was then applied to the smoothed density data 386 

projected on the basis generated by the first k = 8 principal components (explaining 99.99% of the 387 

total variability) to generate a collection of random realizations of spatial distributions of NBL log-388 

concentration values. The scores               were modeled as uncorrelated for       and 389 

      in the domain, as supported by visual inspection of cross-variograms (not shown). An 390 

exponential model was calibrated to the empirical variogram for each spatial field of scores. 391 

Conditional Gaussian simulations were performed to yield a Monte Carlo (MC) collection of 100 392 

realizations. The practical implementation relies on the adoption of sequential Gaussian simulation 393 

(Abrahamsen and Benth, 2001) as implemented within the R package gstat (Pebesma, 2004), and 394 

setting a local neighborhood of 60 km to reduce computational burden. The collection of NBL 395 

distributions was then built from the MC ensemble of scores. 396 

Figure 6 depicts a realization of the spatial field of NBL densities (Figure 6a), the spatial 397 

distributions of the 90% quantile (Figure 6b) and the probability of exceeding the threshold value of 398 

4.6 mg/l (Figure 6c). Similar to what we observed in Figure 5, the overall spatial pattern in Figures 399 

6b, c is generally consistent with the results presented by Molinari et al. (2019) (see their Figure 2) 400 

and reinforces the concept that assigning a unique NBL value for a given chemical species to a 401 

large scale groundwater body can conceal the possibility of identifying regions with high (or low) 402 

geogenic contribution. These could in turn be ascribed to low (or high) anthropogenic activity, thus 403 
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potentially biasing expectations about results of groundwater protection measures. We recall that 404 

Molinari et al. (2019) (a) rely on the stringent assumption that the probability density of 405 

(log)concentrations can be described through a Gaussian model, and (b) parametrize the latter on 406 

the basis of kriging results relying solely on summary statistics evaluated from the available data. 407 

Rather, we are not limited by any assumption about the specific functional format of probability 408 

densities, which are entirely data-driven and are the object of the geostatistical analysis. As such, 409 

the tools and implementation workflow we propose is conducive to evaluations of the spatially 410 

heterogeneous field of NBL values in a probabilistic context upon maximizing the use of the 411 

amount of information embedded in the available data. This is seen as a critical element of a 412 

modern decision-making approach grounded on a firm environmental risk assessment practice. 413 

Future integration of these findings with other types of (hydro)geological and geochemical 414 

information can then yield a complete picture of the natural signature of the system analyzed. 415 

 416 

Figure 6. Example of a realization obtained from the (conditional) stochastic simulation of NBL 417 

distributions of ammonium log-concentrations. (a) Simulated NBL densities and corresponding 418 

spatial distributions, (b) 90% quantiles, (c) probability of exceeding a threshold value of 4.6 mg/l. 419 
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A total of 1096 data collected at 43 monitoring station were available for arsenic after PS 422 

(see Section 2.1), with a number of observations per sampling point ranging between 11 to 38 (with 423 

an average of about 25). Estimation of the PDF of the NBL concentrations is performed at each 424 

borehole location consistently with the approach exemplified in Section 3.1. The resulting smoothed 425 

data are depicted in Figure 7. 426 

 427 

Figure 7. Smoothed data for arsenic log-concentrations (a), and corresponding spatial locations in 428 

the investigated aquifer system (b). Colors are assigned according to the value of the mean related 429 

to the corresponding smoothed density. 430 

 431 

Visual inspection of Figure 7 suggests a significant spatially heterogeneous behavior. The 432 

highest mean values are scattered across the whole domain, suggesting that these could be 433 

associated with local conditions. These types of results are consistent with the behavior of arsenic, 434 

that is typically documented to display a remarkably high degree of spatial variability within a 435 

given groundwater body (e.g., Duan et al., 2017; Pi et al., 2018; Smith et al., 2003; Liang et al., 436 

2017, 2018, 2019). 437 

The sample trace-variogram associated with the available densities is depicted in Figure 8, 438 

its pattern supporting a global stationarity assumption. An exponential model with nugget was 439 

calibrated to the empirical variogram, its estimated parameters being listed in Figure 8. The 440 

contribution of the nugget to the total variance is equal to 15%, suggesting the occurrence of 441 

variability between sample pairs separated by short distance. 442 
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The available smoothed densities were then estimated through Kriging at the same set of 443 

unsampled locations considered in the ammonium case, grid spacing corresponding to a 444 

discretization of the variogram range (Figure 8) with about 10 points. Cross-validation results 445 

(Appendix A) fully support the satisfactory performance of the approach. 446 

 447 

Figure 8. Sample trace-variogram estimated from the smoothed functional data for arsenic log-448 

concentrations and interpreted model with estimated parameters. 449 

 450 

 451 

Figure 9. Kriging prediction of NBL densities for arsenic log-concentrations: (a) kriged/predicted 452 

density functions; (b) spatial distribution of mean values, and (c) standard deviation estimated from 453 

the kriged densities. 454 
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Figure 9a depicts the predicted (i.e., based on functional Kriging results) PDFs of NBL log-456 

concentrations of arsenic. Figures 9b and 9c depict the estimates of mean value and standard 457 

deviation of NBL densities, respectively. Moderate to high mean values are mostly located in the 458 

north-western and central portions of the domain. The associated standard deviation varies from 459 

moderate to high values. Areas characterized by high values of the mean value of predicted PDFs 460 

appear to be localized in the surrounding of some measurement stations rather than being spread 461 

across extended sectors of the domain. This finding is also consistent with possible occurrences of 462 

lateral variations of arsenic concentrations, similar to other documented studies across several 463 

regions worldwide. 464 

Figure 10a depicts the spatially heterogeneous distribution of the predicted quantile of order 465 

90% of the NBL As log-concentrations. To complement these results, Figure 10b shows the 466 

probability of exceeding the reference NBL value of 33 µg/l, which had been evaluated by Molinari 467 

et al. (2012) as representative of the global chemical status of the system through the classical PS 468 

procedure (Wendland et al., 2005). We found that the probability of exceeding such a threshold 469 

value is very modest throughout the system, with the exception of some localized spots where it 470 

attains moderate values. This has a clear consequence on the assessment of the chemical status of 471 

the system, which would have been (deterministically) classified as requiring attention on the basis 472 

of such a performance metric. 473 

 474 

Figure 10. Spatial distribution of predicted (a) 90% quantile and (b) probability of exceedance of 475 

an arsenic concentration threshold of 33 µg/l. 476 
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We note that Molinari et al. (2019) could not provide spatial maps of exceedance 478 

probabilities, because their analysis, grounded solely on summary quantities, resulted in a pure 479 

nugget semivariogram. Our results suggest that considering a functional analysis approach might 480 

enable one to observe the emergence of some degree of spatial correlation when the complete 481 

density associated with observations is embedded in the methodology. 482 

Similar to the case of ammonium, we applied the stochastic simulation approach described in 483 

Section 2.2.5 to the smoothed density data projected on the basis generated by the first k = 8 484 

principal components (explaning 99.99% of the total variability). Modeling of the scores and of the 485 

ensuing empirical variogram is performed as described in Section 3.1 for ammonium, conditional 486 

Gaussian simulations being then performed to yield a collection of 100 MC realizations. The same 487 

stochastic generation methodology described in Section 3.1 has been employed, a local 488 

neighborhood of 60 km being set to alleviate computational time. Figure 11 depicts a selected 489 

realization of the spatial field of NBL densities (Figure 11a), the corresponding spatial distributions 490 

of quantiles of order 90% (Figure 11b), and the probability of exceeding the threshold value of 33 491 

µg/l (Figure 11c). The occurrence of localized spots associated with significant probability of high 492 

natural arsenic concentrations are consistent with the documented presence at some depths in the 493 

aquifer system of sediments whose composition includes a vegetal-rich fraction (see, e.g., Molinari 494 

et al., 2013, 2014). These types of solid matrices are prone to potentially adsorb significant arsenic 495 

amounts that can then be mobilized by variations of redox conditions (see, e.g., Molinari et al., 496 

2013, 2014, 2015). A detailed analysis to evaluate possible relationships and consistency with local 497 

conditions would require additional large scale sampling campaigns which can be subject of future 498 

studies. 499 



24 

 

 500 

Figure 11. Example of a realization obtained from the (conditional) stochastic simulation of NBL 501 

distributions of arsenic. (a) Simulated NBL densities and corresponding spatial distributions of (b) 502 

90% quantiles, and (c) probability of exceeding the threshold value of 33 µg/l.  503 

 504 

4. Conclusions 505 

We propose and apply a theoretical framework and the ensuing operational workflow to 506 

obtain a rigorous (probabilistic) assessment of Natural Background Levels (NBL) of concentrations 507 

of target chemical species in large-scale groundwater bodies, which are usually characterized by a 508 

high degree of heterogeneity of sedimentological and hydrogeochemical conditions. Our approach 509 

enables one to fully consider the richness of information embedded in the available historical 510 

records of routinely monitored concentrations which are then typically employed (e.g., by 511 

Environmental Agencies) to assess the chemical status of a groundwater body. On these bases, we 512 

suggest a change of perspective in the way one should consider evaluating NBL concentrations in a 513 

modern probabilistic risk assessment context. Rather than focusing on selected (statistical) moments 514 

or percentiles (i.e., summary statistics) evaluated on the basis of sample probability distributions of 515 

concentrations at individual boreholes, we associate with each monitoring station the entire 516 

distribution of NBL concentrations. The latter is represented through its (estimated) density 517 
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function, which we model as a random point in a Bayesian Hilbert space and then analyze in the 518 

context of Object Oriented Data Analysis. The merits of the approach are exemplified through an 519 

application targeting the evaluation of the main characteristics of the spatial variability of the NBLs 520 

of two selected chemical species (ammonium and arsenic) within a large scale groundwater body in 521 

Northern Italy. 522 

Our study leads to the following major conclusions. 523 

1. The approach enables one to identify local trends within a given groundwater body, as 524 

quantified in terms of spatial heterogeneity of NBL concentrations, in a probabilistic 525 

context, without being limited to relying solely on selected quantiles of the distribution of 526 

concentrations extracted from historical records. As such, it is possible to demarcate sectors 527 

where distinct NBL spatial patterns emerge from an average system behavior, to be then 528 

integrated within a decision-making activity. 529 

2. The approach is fully consistent with modern requirements of tailoring the objective of 530 

environmental actions to spatially varying conditions. This forms the platform to set 531 

appropriate and cost-effective remediation goals and actions for deteriorated groundwater 532 

bodies which account for the complete set of information embedded in the historical records. 533 

Relying on rigorously assessed spatial distributions of probabilities of exceeding given NBL 534 

concentration thresholds hampers the risk of assigning exceedingly high values of natural 535 

background concentrations to areas subject to anthropogenic activities or otherwise setting 536 

very low background levels within regions where the geogenic contribution can be 537 

significant. Lack of consideration of these elements could lead to setting unrealistic 538 

remediation goals. 539 

3. Having the ability to generate multiple conditional spatial realizations of NBL densities 540 

enables a complete uncertainty quantification (see our exemplary results in Section 3) which 541 

would be otherwise impossible with standard methods of analysis currently adopted in 542 

practical applications targeting large scale groundwater bodies. These elements are markedly 543 
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relevant in such systems, whose hydrogeologic, lithologic, and geochemical characteristics 544 

can be associated with large spatial heterogeneity. 545 

Key values of the study are methodological as well as operational. From a methodological 546 

standpoint, the workflow we propose includes elements of innovation which go beyond limitations 547 

of other typically used approaches, including the possibility of effectively using the full information 548 

content embedded in data which are routinely monitored by local authorities and public 549 

environmental agencies. From an operational standpoint, it provides an appraisal of the probability 550 

that a given threshold value of concentration of geogenic origin can be exceeded in the exemplary 551 

areas considered. The ability to provide a robust and data-driven quantification of probability of 552 

exceedance provides an important element of flexibility in decision-making under uncertainty. The 553 

nature of the approach allows accounting for specific local needs, as viewed in the broad regional 554 

context, as well as the possibility of updating the results of the analysis as data become available. 555 

As such, it enables one to structure corrective actions according to levels of priorities related to 556 

target concentration thresholds and associated probability distributions linked to specific areas, 557 

which might be characterized by distinct local requirements. In this sense, our results can provide a 558 

support to identify localized areas where detailed hydrogeological studies can be promoted with the 559 

aim, e.g., to constrain uncertainty associated with predicted NBL values and associated probability 560 

of exceedance. 561 

  562 
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Appendix A 563 

The performance of the proposed approach is assessed through a leave-one-out cross-564 

validation (LOO CV) analysis. Here, for each site    in  , the PDF of the NBL PDF     is left out of 565 

the sample and a training set built upon all of the other NBL PDFs,          , is considered for 566 

calibration of the geostatistical model, following the same steps and parameter settings as in Section 567 

3. Kriging is then used to predict the left-out NBL PDF    , yielding a prediction    
     

. The 568 

prediction error for each site is evaluated through the sum of squared errors (SSE) as 569 

             
         

       
 

      
     

   
      

     
   

   
      

     
   
      

 

 

 

 
 (A1) 570 

Table A1 lists the summary statistics of    , as assessed via LOO CV for ammonium (first 571 

row) and arsenic (second row). It is noted that the LOO CV analyses for these chemical species are 572 

performed separately. Overall, the order of magnitude of the errors is fully consistent with the 573 

estimated sills of the trace-variograms (estimated sills: 36.35 and 33.00 for ammonium and arsenic, 574 

respectively). 575 

Chemical Species Min Q1 Median Mean Q3 Max 

Ammonium 8.81 18.16 26.58 29.97 40.01 109.08 

Arsenic 9.84 19.91 26.96 35.43 36.32 134.37 

Table A1: Summary statistics for SSE (A1). 576 

The LOO CV analysis is additionally used to evaluate the ability of our conditional simulation 577 

theoretical approach and operational workflow to represent prediction uncertainty. As an example, 578 

Figure A1 depicts the results obtained at two locations (denoted as FC17−01 and RE17−03) for 579 

ammonium (top panels) and arsenic (bottom panels). Predicted NBL PDFs at these locations are 580 

depicted with dashed black curves, whereas grey curves correspond to the       conditional 581 

simulations at the site. The observed PDFs are represented as thick black curves. Visual inspection 582 

of Figure A1 suggests that conditional simulations well represent the uncertainty associated with the 583 
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predictions for both chemical species. For instance, one can observe that, even as the kriging error 584 

for arsenic at location RE17-03 appears to be quite high, the conditional simulations at the site 585 

suggest that a high uncertainty is associated with the prediction. Note that here, the test NBL PDF is 586 

well captured by the simulated collection of realizations. 587 

To quantitatively assess the performance in terms of uncertainty quantification, we then 588 

compute the distance between the test curve and the ensemble of Monte Carlo simulations as 589 

                   
         

               (A2) 590 

where    
     

 denotes the  -th conditional simulation when the  -th observation is left out of the 591 

sample. In practice, the smaller            , the closer the ensemble is to the test observation    . 592 

For instance, values of             for ammonium at locations FC17-01 and RE17-03 are 5.96 and 593 

7.56, respectively, their counterparts corresponding to arsenic being 16.46 and 10.28, respectively. 594 

Table 2 lists the summary statistics associated with        for both chemical species. One can note 595 

that the ensemble is typically quite close to the test observation, with an average        of 10.67 596 

and 9.02 for ammonium and arsenic, respectively. 597 
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Figure A1. Leave-one-out cross-validation results at sites FC17-01 and RE17-03. Dashed black 599 

curves correspond to predicted NBL PDFs, whereas grey curves correspond to the       600 

conditional simulations at the site; observed PDFs are represented as thick black curves. 601 

 602 

Chemical Species Min Q1 Median Mean Q3 Max 

Ammonium 2.30 5.70 7.88 10.67 13.15 41.92 

Arsenic 1.05 5.31 7.14 9.023 10.56 30.38 

Table A2: Summary statistics for        (A2). 603 
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