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Abstract—Millimeter wave (mmWave) wideband channels in
a multiple-input multiple-output (MIMO) transmission are de-
scribed by a sparse set of impulse responses in the angle-delay,
or space-time (ST), domain. These characteristics will be even
more prominent in the THz band used in future systems. We
consider two approaches for channel estimation: compressed-
sensing (CS), exploiting the sparsity in the angular/delay domain,
and low-rank (LR), exploiting the algebraic structure of channel
matrix. Both approaches share several commonalities, and this
paper provides for the first time i) a comparison of the two
approaches, and ii) new versions of CS and LR methods that
significantly improve performance in terms of mean squared
error (MSE), computational complexity, and latency. We derive
the asymptotic MSE bound for any estimator of the ST-MIMO
multipath channels with invariant angles/delays and time-varying
fading, with unknown angle/delay diversity order: the bound also
accounts for the degradation introduced by sub-optimal separa-
ble channel models. We will show that in the considered scenarios
both CS and LR approaches attain the bound. Our performance
assessment over ideal and 3rd generation partnership project
(3GPP) channel models, suitable for the fifth-generation (5G)
and beyond of cellular networks, shows the trade-off obtained by
the methods over various metrics: i) CS methods are converging
faster than the LR methods, both attaining the asymptotic MSE
bound; ii) the CS methods depend on the array manifold, while
LR methods are independent of the array calibration; iii) CS
solutions are more complex than LR solutions.

Index Terms—Channel estimation, Compressed sensing, Low-
rank approximation, mmWave, Multiple-input-multiple-output
(MIMO).

I. INTRODUCTION

M ILLIMETER waves above 10 GHz communication are
currently considered for the fifth generation (5G) of

cellular networks [1]–[3], and the higher-frequency spectrum
in the Terahertz (THz) band is raising the attention of the
scientific community for future networks (see [4] and [5]). The
high attenuation incurred at these frequencies makes manda-
tory the use of a large number of antennas at least on one
end of the link, resulting in a multiple-input multiple-output
(MIMO) system. Multipath MIMO channels are characterized
by a sparse set of responses in the angles (of departure and/or
arrival)-delays, or space-time (ST), domain. While this has
been widely known for mmWave, it is also expected to occur in
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THz transmissions, as confirmed by preliminary measurement
campaigns [6] that show a further reduced number of effective
paths available for communication.

Training-based channel estimation is the preferred method
in radio access systems to track the temporal channel vari-
ations. Channel estimation in millimeter wave (mmWave)
MIMO involves several aspects that depend on the system
configurations (see [7] for an overview), although all meth-
ods exploit the channel sparsity, either by constraining the
optimization problem or by recognizing the algebraic prop-
erties of the channel matrix. More specifically, compressed-
sensing (CS) techniques estimate the MIMO channel responses
under the sparsity constraints of the ST domain, with the
main drawback of a high sensitivity to antenna calibrations,
e.g., irregular sampling of ST and phase errors/drift of radio
frequency (RF) converters [8]. Off-grid methods have also
been considered, using the implicit Dirichlet kernel structure
in the angular domain [9] and continuous angle-delay pa-
rameters [10]. Moreover, in [9] the spatial-wideband effect is
considered, i.e., the fact that the delay by which a transmitted
signal reaches different receive antennas may span multiple
data symbols. In low-rank (LR) methods sparsity is converted
into a LR structure of the MIMO channel matrices, where
powerful algebraic methods can be applied, regardless of the
array configurations [11].

Although the complexity of transceivers is reduced by hy-
brid analog/digital structures, specific solutions for mmWave
channel estimation have been proposed for a static environ-
ment in [9] and [12]–[15]. However, mmWave and THz MIMO
channel estimation in a dynamic environment has not been
considered in the literature, and this key aspect is addressed
herein. Considering a radio access context with moving termi-
nals connected to a fixed array unit, one can take for granted
that the ST features of the mmWave MIMO channel remain
constant for several (say L) temporal intervals organized in
time-slots. This invariance depends on the temporal and spatial
resolution of the MIMO system. To gain insight, for a speed
of 50 km/h in an urban scenario, it can be easily proved that
the angles are invariant for approximately 240 ms when the
movement is tangential from the array at a distance of 200 m
(for a beamwidth of 6 deg, or approximately 120 antennas in
the array), and delays are invariant for approximately 108 ms
for a radial movement (bandwidth is 200 MHz). Overall,
the ST domain is invariant on, at least, 108 ms, that means
L ≤ 108 training slots, for a frame length of 1 ms (see [16] and
[17]), but it scales accordingly for a smaller pilot repetition
frequency, as reasonable for mmWave/THz transmissions in
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a dynamic environment. This paper proposes to exploit this
invariance in mmWave/THz wideband systems specialized for
MIMO-OFDM communications. The CS and LR methods are
tailored for dynamic environments constraining the invariance
of the ST domain of the MIMO channel. More specifically,
in the proposed CS method we find the most recurrent po-
sitions of the channel paths in the angular domain over the
L training blocks, thus exploiting the slowly time-varying
features. Similarly, in the proposed LR methods the spatial
(or angular) and temporal signatures of the channel span the
spatial and temporal subspaces that are invariant over the L
slots [18]–[20]. The proposed solutions can be applied to
existing mmWave systems; however, they will become even
more relevant in the THz context, where more antennas are
needed and more challenging channels are experienced [6].

The contributions of this paper are:

• For dynamic mmWave MIMO channels, based on time-
invariant features of the ST domain (angles of arrivals and
departures, and/or delays), we derive the lower bound to
the mean squared error (MSE) of the channel estimate for
asymptotic conditions (L→∞), regardless of the fading
fluctuations, by extending the approach in [18] and [21].
With respect to these former works, the bound here is
derived for ST-MIMO multipath channels with unknown
angle/delay diversity orders, accounting for the MSE
increase introduced by diversity order estimate errors.
The fundamental limits are valid for any channel esti-
mator and are specialized also for suboptimal methods
assuming separable transmit-receive MIMO correlation
and ST channel structures.

• With respect to the preliminary works [11], [18], and
[20], here the LR channel estimator is tailored for
mmWave/THz MIMO systems with realistic channel
modeling. A major issue of the optimal LR approach [20]
in MIMO scenarios is its slow convergence (typically
L > 1000 slots), which is hardly compatible with
the constraint of about 100 slots imposed by dynamic
mmWave/THz systems. To accelerate the convergence
here we propose a set of novel joint ST LR methods that
are sub-optimal but fast-converging, and with far lower
complexity.

• Starting from [22], where a narrowband communication
was assumed, we propose three compressed-sensing (CS)
methods targeting broadband communications. The first
solution is based on the accelerated gradient descent with
adaptive restart (AGDAR) algorithm, which has been
shown to be fast and effective. Moreover, two further
improved CS algorithms are introduced, namely the selec-
tive AGDAR (S-AGDAR) and the adaptive AGDAR (A-
AGDAR): S-AGDAR compensates for the use of norm-
1 (instead of norm-0) minimization by removing small
paths and redistributing their power to the largest paths;
A-AGDAR refines the estimation of the channel path
positions in the angular domain, by processing multiple
channel estimates, a solution particularly useful when
operating at a low signal to noise ratio (SNR). Note that
the broadband version of AGDAR and S-AGDAR can

also be applied to mmWave transmissions subject to the
spatial-wideband effect.

The rest of the paper is organized as follows. Section
II introduces the mmWave/THz channel model. The novel
LR and CS channel estimation techniques are introduced in
Sections III and IV, respectively. In Section III we also derive
MSE bounds on the channel estimation. Numerical results on
both simplified and 3rd generation partnership project (3GPP)-
compliant channel models are presented in Section V, before
conclusions are outlined in Section VI.

II. SYSTEM MODEL

We consider1 a mmWave wireless MIMO-orthogonal fre-
quency division multiplexing (OFDM) system with NT trans-
mitting and NR receiving antennas. Let Ktot be the total
number of OFDM subcarriers, K the number of pilot sub-
carriers allocated for channel estimation and T the sampling
time of the OFDM transmitter output. X

(nT)
` ∈ CK×1 is the

vector containing the pilot symbols transmitted over the K
subcarriers from antenna nT = 1, . . . , NT, within the OFDM
block ` = 1, . . . , L. Here, index ` runs over the OFDM
blocks containing pilots, i.e., the training blocks. The cyclic
prefix (CP) comprises W − 1 samples, where W denotes
the maximum temporal support of the channel response, with
K ≥ NTW .

At the receiver side, after CP removal and the computation
of the Ktot-point discrete Fourier transform (DFT), the vector
signal Y

(nR)
` ∈ CK×1 received by the nR-th antenna during

the `-th block can be written as

Y
(nR)
` =

NT∑
nT=1

diag
(
X

(nT)
`

)
H

(nR,nT)
` + N

(nR)
` , (1)

where H
(nR,nT)
` = Fh

(nR,nT)
` ∈ CK×1 is the channel for

the link (nR, nT) in the frequency domain, obtained as the
DFT of the corresponding W × 1 channel impulse response
h

(nR,nT)
` = [h

(nR,nT)
` (1) · · ·h(nR,nT)

` (W )]. The DFT matrix

has entries [F]k,w =
1√
Ktot

exp (−j2πfkw/Ktot), with fk

denoting the frequency index of the k-th pilot subcarrier,
k = 0, . . . ,K − 1, and w = 0, . . . ,W − 1. The w-th
tap of the ST MIMO channel for the `-th training block is
denoted as h`(w) ∈ CNR×NT ; note that [h`(w)]nR,nT

=

h
(nR,nT)
` (w). The additive Gaussian noise-plus-interference

signal N
(nR)
` ∈ CK×1 is assumed to be uncorrelated over the

frequencies (i.e., E
[
N

(nR)
` N

(nR)H
`

]
= Kσ2

nIK) and spatially
correlated, due to the geometrical distribution of the interfer-
ers. By stacking column-wise the NR noise vectors into matrix
N` =

[
N

(1)
` · · ·N

(NR)
`

]
, the noise-plus-interference spatial

1Notation: scalar variables are in italic, while matrices and vectors are
in boldface. XT and XH denote the transpose and Hermitian operators on
matrix X, respectively. diag(x) denotes a diagonal matrix with vector x on its
diagonal. vec(X) is a column vector stacking the columns of X. vec−1(X)
denotes the inverse operation of vec. E[x] denotes the expectation of random
variable x. � denotes the Hadamard product, and ⊗ denotes the Kronecker
product. rank(x) denotes the rank of matrix x. tr(X) denotes the trace of
matrix X, while ||X||2 = tr[XXH] is the Frobenius norm of matrix X.
cov(x) is the covariance matrix of random vector x.
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covariance is Q = 1
KE

[
NH
` N`

]
, which is to be estimated

as the arrangement of the interferers is unknown in general.

A. MmWave/THz Space-Time Channel

The mmWave/THz channel is modeled as in [23] and [24],
by the sum of P paths,

h` (w) =
P∑
p=1

αp,`A (θp) g ((w − 1)T − τp) , (2)

each path p having fading amplitude αp,` and delay τp, and
g(·) being the impulse response of the cascade between the
transmitter and receiver filters. The matrix

A (θp) = aRX(θRX
p )aTX(θTX

p )T (3)

accounts for the antenna array responses at the receiver,
aRX(θRX

p ), and at the transmitter, aTX(θTX
p ). These responses

depend on the azimuth (φ) and elevation (ψ) angles, at arrival
θRX
p =

[
φRX
p , ψRX

p

]
and at departure, θTX

p =
[
φTX
p , ψTX

p

]
. Fast

varying fading amplitudes αp,` are block-dependent, while
delays τp and angles θp =

[
θTX
p ,θRX

p

]
are typically invariant

over a large number of blocks and are thus assumed to be
constant within L blocks. When comparing mmWave and THz
channels, the THz channels are characterized by even fewer,
more attenuated paths than mmWave channels [6].

The overall ST MIMO channel at block ` is arranged for
analytical convenience into the NTNR ×W matrix

H` = [vec (h` (1)) · · · vec (h` (W ))] = A (θ)D`G(τ)T, (4)

where the NRNT × P complex matrix A (θ) =
[a(θ1) · · ·a(θP )] and the W × P real matrix G(τ) =
[g(τ1) · · ·g(τP )] collect all the static ST channel components
associated to the P paths, with a (θp) = vec(A(θp))
and g(τp) = [g(−τp) · · · g((W − 1)T − τp)]

T. The fading
amplitudes D` = diag([α1,` · · ·αP,`]) ∈ CP×P are assumed
to follow the wide-sense stationary uncorrelated scattering
(WSSUS) model, and to be uncorrelated over blocks:

E
[
D`+mDH

`

]
= Ωδ (m) , (5)

where Ω = diag ([Ω1 · · ·ΩP ]) and Ωp > 0 is the average
power of the p-th path, normalized to have

∑P
p=1 Ωp = 1.

B. Pre-processing for ST Channel Estimation

Model (1) is conveniently rearranged to isolate the temporal
channel responses as:

Y
(nR)
` = B`h

(nR)
` + N

(nR)
` , (6)

where the K × NTW matrix B` =[
diag

(
X

(1)
`

)
F · · · diag

(
X

(NT)
`

)
F
]

collects the
NT training matrices, and the NTW × 1 vector

h
(nR)
` =

[
h

(nR,1)T
` · · ·h(nR,NT)T

`

]T
the NT channel

impulse responses. The unconstrained least squares (LS)
estimate of h

(nR)
` is obtained from (6) as:

ĥ
(nR)
` = B†`Y

(nR)
` = h

(nR)
` + B†`N

(nR)
` , (7)

TABLE I
LS CHANNEL ARRANGEMENTS

Notation Meaning Dimensions
ĥ` Space Time Space NRNTW × 1

ĥ`(w) Separate-Space Time NR ×NT

Ĥ` Doubly-Space Time NTNR ×W
ĥ` Joint Space Time WNTNR × 1

with B†` =
(
BH
` B`

)−1
BH
` . The LS estimate is optimal in a

Gaussian setting, it is unbiased, and its variance is minimized
by adopting optimally designed pilot sequences X

(nT)
` with

correlation matrix RBB = BH
` B` = Kσ2

xINTW (see [25]
and [26]). The noise spatial covariance is estimated as

Q̂ =
1

KL

L∑
`=1

N̂H
` N̂`, (8)

from the noise-plus-interference estimates aggregated over the
antennas, N̂` =

[
N̂

(1)
` · · · N̂

(NR)
`

]
, where N̂

(nR)
` = Y

(nR)
` −

B`ĥ
(nR)
` .

Throughout the paper, we will use different rearrangements
of the LS estimate as summarized in Table I. Denoting by
ĥ

(nR,nT)
` (w) =

[
ĥ

(nR)
`

]
(nT−1)W+w

the w-th tap for link

(nR,nT), we further define the NR×NT space matrix ĥ` (w)
still at w-th tap, and the NTNR ×W ST matrix Ĥ`, by re-
ordering the LS estimates according to the channel arrange-
ments in (2) and (4). The resulting equivalences are

ĥ
(nR,nT)
` (w) =

[
ĥ` (w)

]
nR,nT

=
[
Ĥ`
]

(nT−1)NR+nR,w
. (9)

To conclude, we define the LS channel vector ĥ` =[
ĥ

(1)T
` · · · ĥ(NR)T

`

]T
∈ CNRNTW×1, with covariance C =

cov
[
ĥ`

]
= Q ⊗ R−1

BB. This is conveniently rearranged into

the vectorization ĥ` = vec
(
Ĥ`
)
∈ CWNTNR×1, whose

covariance C = cov
[
ĥ`

]
can be obtained by reordering the

samples in C, as detailed in the Appendix.

III. LOW-RANK CHANNEL ESTIMATION

The mmWave/THz MIMO wireless channel is sparse and
the conventional LS estimation is extremely noisy in mas-
sive ST settings. A common strategy to reduce errors is to
decouple the spatial and temporal domains by first aligning
the transmit and receive beamformers, and then performing
an LS estimation of the temporal channel components. Here
we propose a different approach that exploits the invariance of
the directions of arrival/departure (DOA/DOD), as well as the
delays and the average powers of the propagation paths. This
enables the identification of the LR algebraic structure of the
channel: rather than estimating DOD/DOA and delays based
on a parametric model, we describe the multipath components
in terms of ST-invariant subspaces and estimate the channel
by filtering the LS estimate through a set of ST projections.
In this way, we avoid a joint angle and delay estimation that
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TABLE II
LR CHANNEL ALGORITHMS

Method Covariance R Projector Πr(R̂)

JST R̃ST Π̂JST

DST R̃T ⊗ R̃S Π̂∗T ⊗ Π̂S

SST R̃T ⊗ R̃TX
S ⊗ R̃RX

S Π̂∗T ⊗ Π̂∗S,TX ⊗ Π̂S,RX

LL-JST R̃T ⊗ R̃TX
S ⊗ R̃RX

S ŨSSTΠ̂LLJSTŨH
SST

is computationally expensive and highly sensitive to antenna
calibration. The LR channel models and the corresponding
estimators are detailed in the following.

A. LR Algebraic Channel Structure

1) JST model: To highlight the relevant parameters and
isolate the slowly-varying ones from the fast-varying terms,
we consider the vectorized ST channel h` = vec (H`) ∈
CWNTNR×1 re-parametrized as:

h` =
P∑
p=1

(g (τp)⊗ a (θp))︸ ︷︷ ︸
op

αp,` = O (τ ,θ)α`, (10)

where O (τ ,θ) = [o1 · · ·oP ] ∈ CNRNTW×P collects the
block-invariant ST signatures of the P paths (depending on
angles and delays), while α` = [α1,`, · · · , αP,`]T ∈ CP×1

embeds the block-varying amplitudes. According to the WS-
SUS assumption, the ST channel correlation matrix is

RST =E
[
h`h

H
`

]
= O (τ ,θ) ΩO (τ ,θ)

T

=
P∑
p=1

Ωp
(
RT,p ⊗RTX

S,p ⊗RRX
S,p

)
, (11)

(12)

where RT,p = g (τp) g (τp)
T ∈ CW×W is the p-th path

temporal term, while RTX
S,p = aTX

(
θTX
p

)
aTX

(
θTX
p

)T

∈

CNT×NT and RRX
S,p = aRX

(
θRX
p

)
aRX

(
θRX
p

)T

∈ CNR×NR

are the spatial terms at the transmitter and receiver side,
respectively. The number of resolvable paths given the system
resolution (i.e., the antenna array aperture and the system
bandwidth) is

r = rank (O (τ ,θ)) ≤ min (NRNTW,P ) . (13)

Based on the LR constraint (13), we can rewrite the channel
(10) according to the joint space-time (JST) LR model for
MIMO channels [20]

h` = USTγ`, (14)

where UST ∈ CWNTNR×r is a block-independent full-rank
matrix that collects the r eigenvectors of RST and spans the
invariant ST subspace R (UST) = R (O (τ ,θ)), while γ` ∈
Cr×1 contains the related block-dependent weights.

2) DST model: To reduce the complexity of channel esti-
mation, we also introduce a simplified LR model that assumes
a separable ST structure for the correlation matrix RST in (12),
according to the Kronecker model of [27] and [28], reported

in Table II (second row). Note that this is an approximation as
the Kronecker structure holds only for each single path in (12),
not for the multipath combination. Following the approach in
[18] for single-input-multiple-output (SIMO) channels, here
we consider a separate ST LR channel model, referred to as
doubly-space time (DST) model, with UST = U∗T ⊗US, or
equivalently:

h` = (U∗T ⊗US)γ`, (15)

where US ∈ CNTNR×rS and UT ∈ CW×rT contain the
leading eigenvectors of the channel correlation matrices

RS = E[H`HH
` ] = A (θ) ΛSA (θ)

H
, (16a)

RT = E[HH
` H`] = G(τ )ΛTG(τ )T, (16b)

respectively, with ΛS = Ω�
(
G(τ )TG(τ )

)
and

ΛT = Ω�
(
A (θ)

HA (θ)
)

. Matrices US and UT span,
respectively, the spatial and temporal channel subspaces
R (US) = R (A (θ)) and R (UT) = R (G (τ )). The
corresponding spatial and temporal rank orders

rS = rank(A) ≤ min(P,NRNT), (17a)

rT = rank(G) ≤ min(P,W ), (17b)

represent the number of resolvable angles and delays.
3) SST model: A further approximation, that we propose

to lower the complexity of channel estimation, is based on
the extension of the Kronecker model to the spatial MIMO
correlation RS as detailed in Table II (third row). This reduces
(15) to the separate space-time (SST) channel model

h` =
(
U∗T ⊗UTX∗

S ⊗URX
S

)
γ`, (18)

where UTX
S ∈ CNT×rS,TX and URX

S ∈ CNR×rS,RX are
the transmit and receive spatial bases collecting the leading
eigenvectors of the channel correlation matrices

RTX
S =

W∑
w=1

E
[
h (w)

H
h (w)

]
= ATXΛSATX,H, (19a)

RRX
S =

W∑
w=1

E
[
h (w) h (w)

H
]

= ARXΛSARX,H, (19b)

respectively, with ATX =
[
aTX(θTX

1 ) · · ·aTX(θTX
P )
]
∈ CNT×P

and ARX =
[
aRX(θRX

1 ) · · ·aRX(θRX
P )
]
∈ CNR×P . The spatial

diversity orders, which represent the number of angles that
can be resolved by the transmitting and receiving array,
respectively, are

rS,TX = rank
(
ATX

)
≤ min (NT, P ) , (20a)

rS,RX = rank
(
ARX

)
≤ min (NR, P ) . (20b)

This new parametrization yields R
(
UTX

S

)
= R

(
ATX

)
and

R
(
URX

S

)
= R

(
ARX

)
.

B. LR Estimation Methods

The LR algorithms perform a maximum likelihood (ML)
estimation of the ST MIMO channel from the signals (6),
under the LR constraints (14), (15), or (18). Following the
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approach in [18], the LR estimate can be computed, for a
known rank order r, as

ĥLR,` = Ĉ
H
2 Π̂Ĉ

−H
2 h` = Ĉ

H
2 Π̂h̃`, (21)

i.e., by projecting the pre-whitened LS estimate

h̃` = Ĉ
−H

2 ĥ`, (22)

onto the subspace spanned by the r leading vectors Û =
eigr[R̂] of a channel correlation estimate R̂, through the
projector Π̂ = Πr(R̂) = ÛÛH. As detailed in the following
for the specific methods, matrix R̂ is a sample estimate over
L blocks of the ST channel correlation, obtained according to
the JST model (12), or the related DST and SST Kronecker
approximations in Table II. A low-latency low-complexity
(LL) suboptimal algorithm is finally proposed to approach
the optimal LR performance with lower complexity and faster
convergence.

1) JST Estimator: The JST method [20] follows from the
LR model (14) and is based on the projector

Π̂JST = Πr(R̃ST), (23)

computed from the ST sample correlation matrix

R̃ST =
1

L

L∑
`=1

h̃`h̃
H

` , (24)

for a known rank order r.

2) DST Estimator: The DST method is a suboptimal ap-
proach that simplifies the projector computation by assuming
the separable ST model (15), with known diversity orders
(rS, rT). This provides the projector [18]

Π̂DST = Π∗rT

(
R̃T

)
⊗ΠrS

(
R̃S

)
, (25)

with spatial and temporal sample correlations

R̃S =
1

L

L∑
`=1

H̃`H̃H
` , (26a)

R̃T =
1

L

L∑
`=1

H̃H
` H̃`, (26b)

where H̃` = vec−1(h̃`) is the whitened LS channel estimate
rearranged into a matrix of dimensions NTNR×W (see Table
I).

3) SST Estimator: The SST LR method is a new method
that further extends the separable structure assumption to the
spatial domain (18), with diversity orders (rT, rS,RX, rS,TX).
It uses the projector

Π̂SST = Π∗rT

(
R̃T

)
⊗Π∗rS,TX

(
R̃TX

S

)
⊗ΠrS,RX

(
R̃RX

S

)
,

(27)
with spatial correlations at the two sides of the MIMO link

R̃RX
S =

1

L

L∑
`=1

W∑
w=1

h̃` (w) h̃H
` (w) , (28a)

R̃TX
S =

1

L

L∑
`=1

W∑
w=1

h̃H
` (w) h̃` (w) , (28b)

and h̃` (w) being the rearrangement of H̃` according to (9).
4) LL-JST Estimator: The computational cost of the above

LR algorithms mainly depends on the eigen-decomposition, as
detailed in Table III. For the JST method the complexity be-
comes unbearably high and as L� NRNTW , the number of
blocks required for the correlation estimation is unfeasible for
practical (latency-constrained) mmWave/THz systems. This
expensive and unfeasible computation is avoided by the low-
latency low-complexity joint space-time (LL-JST) algorithm,
herein proposed, which reduces the channel dimensions by
exploiting the ST bases estimated by the SST algorithm (with
L� NRNTW ):

ŨSST = Ũ∗T ⊗
(
Ũ∗S,TX ⊗ ŨS,RX

)
, (29)

where ŨT = eigrT

[
R̃T

]
, ŨS,TX = eigrS,RX

[
R̃TX

S

]
, and

ŨS,TX = eigrS,TX

[
R̃TX

S

]
. The rS,TXrS,RXrT × 1 projection

of the LS channel estimate onto basis

ŝSST,` = ŨH
SSTh̃` = s` + nSST,`, (30)

is the sum of the channel-related component s` =

ŨH
SSTC

−H
2 h` and the projected LS estimate error nSST,` =

ŨH
SSTC

−H
24hLS,`, with 4hLS,` = ĥ` − h`. Note that

R (USST) ⊇ R (UJST) and for L → ∞, it is Ĉ → C and
ŨSST → C−

H
2 USST, thereby the rank-r channel is entirely

embedded in s`. The residual nSST,` is white and includes
both the component laying in the channel subspace R(ŨJST)
(which can no longer be removed) and the artifacts laying in
the orthogonal subspace R(ŨSST) \ R(ŨJST), captured by
the intersections of the three separate domains due to the SST
Kronecker approximation. In order to remove these artifacts,
we propose to apply the optimal JST approach to the rank-
r signal ŝSST,` and therein identify the long-term channel
subspace. The sample correlation:

R̂v =
1

L

L∑
`=1

ŝSST,`ŝ
H
SST,` (31)

isolates the truly invariant channel structure, thus the subspace
projector is

Π̂LLJST = Πr(R̂v) (32)

and the LL-JST estimate is computed as:

ĥLR,` = Ĉ
H
2 ŨSSTΠ̂LLJSTŝSST,`. (33)

C. Asymptotic MSE Bounds

Following the approach in [21], a closed form expression
for the MSE of the LR channel estimate is derived here
as MSELR = E[||4hLR,`||2], with 4hLR,` = ĥLR,` − h`.
The impact of a possible mismatch between the estimated
rank orders r̂ = [r̂, r̂T, r̂S, r̂S,TX, r̂S,RX] and the true values
r = [r, rT, rS, rS,TX, rS,RX] is taken into account. The choice
r̂ = r is the minimum order that gives an unbiased channel
estimate, but in general it does not provide the lowest MSE.
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To highlight this, in the Appendix we derive the LR per-
formance for any rank-order selection, comprised within the
correlations’ dimensions. The performance, here referred to as
asymptotic MSE bound, is computed analytically for L→∞.
The asymptotic MSE bound will be used in the following
sections to analyze the impact of rank-order selection on the
performance of mmWave/THz systems and provide a baseline
for the algorithms’ comparison. Note that for L→∞ the noise
covariance Q can be considered as known (as Q̂` → Q) and
the estimated ST projectors equal to the projectors onto the
subspaces spanned by C−

H
2 h`. Combining (21) and (22) with

(7), it can be shown that the error based on the rank orders
r̂ is the sum of two terms, one accounting for the distortion
due to rank mismatch (i.e., for [r̂]i < [r]i, 1 ≤ i ≤ 5) and the
other for the noise, i.e.,

4hLR,` = C
H
2 Πr̂C

−H
24hLS,` +C

H
24Πr̂C

−H
2 h`, (34)

where C−
H
24hLS,` is the white error on the LS channel

estimate and 4Πr̂ = Πr − Πr̂. This leads to the additive
MSE model

MSELR(r̂) = MSEn(r̂) + MSEb(r̂), (35)

where
MSEn(r̂) = tr

(
C

H
2 Πr̂C

1
2

)
(36)

represents the noise filtered by the base of the projector, hence
increasing with the rank orders in r̂ as a larger base is selected,
while

MSEb(r̂) = tr
(
C

H
2 4Πr̂C

−H
2 RST

)
(37)

represents the bias due to the under-parametrization in the
rank order selection, decreasing with the values in r̂ as
the mismatch between the projectors becomes smaller. The
closed forms of MSE for the LR algorithms are obtained by
specializing the generic projector Πr̂ with the expressions
derived in Section III-B and summarized in Table II.

IV. TIME-DEPENDENT ACCELERATED GRADIENT
DESCENT

We now introduce a second method for channel estimation,
based on the sparsity of the channel in a dual domain. First
we introduce the angular domain channel representation and
then we exploit it for the estimate.

The problem of efficiently estimating the entries of the
angular-domain channel for the proposed model has already
been tackled in [22], for a narrowband transmission scenario.
In this work we exploit the AGDAR algorithm of [22], for
a broadband transmission scenario. Furthermore, by noticing
that the AGDAR algorithm is an upper-bound of the optimal
solution (more on this later), we propose two new estimators,
namely S-AGDAR and A-AGDAR, which improve the iden-
tification of channel paths and the estimation of their gains.
Therefore, the AGDAR algorithm provides a baseline for all
the proposed CS-based algorithms.

A. Angular Domain Channel Representation
In this section we introduce the space-space angular-domain

representation of the channel in the angular domain [29]

and the novel ST angular domain representation. We assume
that uniform linear arrays (ULAs) are deployed at both the
transmitter and the receiver.

The w-th tap of the channel impulse response between all
transmitter and receiver antennas can be represented by the
angular domain matrix V`(w) as

h`(w) = FHR V`(w)FT , (38)

where FR and FT are the NR × MR and NT × MT DFT
matrices respectively. The vector form of h`(w) is obtained
as

vec(h`(w)) = Fv`(w), (39)

where v`(w) is the vectorized form of V`(w), and F =(
F TT ⊗ FHR

)
. The overall channel matrix is obtained as (see

(4))
H` = [Fv`(1), · · · ,Fv`(W )]. (40)

B. Channel Estimation In The Angular Domain

The AGDAR estimation of the w-th tap is obtained by
solving the following minimization problem

vLS,`(w) = argmin
%

(
‖F%− vec (h`(w))‖22 + ρ ‖v`‖0

)
,

(41)
as described in [22], where ρ is the weight assigned to the
sparsity imposing constraint. As the norm 0 is not convex, the
objective function (41) is approximated via the norm 1 as

vLS,`(w) = argmin
%

(
‖F%− vec (h`(w))‖22 + ρ ‖v`‖1

)
,

(42)
which is convex. However, as the wideband channel has most
of the paths concentrated in the first taps and considering that
the sparse solution is obtained by approximating the norm 0
with a norm 1, solving a CS problem for each tap is widely
suboptimal, as the same power is allocated to taps that contain
different channel paths. In order to obtain a sparser solution
we jointly estimate the wideband channel taps.

As outlined in (40) the angular domain representation of
the wideband channel is obtained by a DFT of each of the W
taps. Therefore, starting from (40), the ST LS estimate of the
channel HLS,` can be approximated by

HLS,` ≈ F [v`(1) · · ·v`(W )] +N`, (43)

whose vector form is obtained as

hLS,` ≈ FKv` + n`, (44)

where v` = vec ([v`(1) · · ·v`(W )]), FK = I ⊗F , and I is
the W ×W identity matrix.

We now define the sparse channel estimation problem as

v̄LS,` = argmin
$

(
‖FK$ − hLS,`‖22 + ρ ‖$‖0

)
, (45)

where the sparsity constraint imposed via the norm 0 is
approximated via the norm 1, in order to have a convex
objective function. The sparsity of vector v` depends on
MR and MT : if the antenna array is not aligned toward the
direction of the DFT, a DFT of the same size of the number of
antennas may not be accurate enough to isolate the P paths.
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Algorithm 1: AGDAR algorithm
Data: FK , hLS,`, ρ, ε, α, β, It
Result: v̄LS,`

1 x0 = FH
KhLS,` ;

2 y0 = 0;
3 ω0 = j = 1, Ξ = 2ε;
4 t = 1/||∇FK ||22 ;
5 ∇0 = FH

K (FKx0 − hLS,`);
6 while j ≤ It And Ξ > ε do
7 zj = xj−1 − t∇j−1;
8 [zj ]n = sgn([zj ]n) max(|[zj ]n| − ρt, 0), ∀n =

1, · · · ,MRMT ;

9 ωj = 2/(1 +
√

1 + 4ω2
j−1);

10 if (xj−1 − zj)(zj − zj−1) > 0 then
11 xj = zj ;
12 else
13 xj = zj + (1− ωj)(zj − zj−1);
14 end
15 Ξ = ||xj−1 − xj ||22;
16 ∇j−1 = ∇j ;
17 ∇j = FH

K (FKxj − hLS,`);

18 t̂ =
1(||zj−z−j−1||22)

2
(
(zj−z−j−1)H (∇j−1−∇j)

) ;

19 t = min(αt,max(βt, t̂));
20 j = j + 1;
21 end

By increasing the precision of the DFT matrix, i.e., with larger
values of MR and MT , we obtain that different paths are
aligned with the DFT grid and are hence associated to a single
entry in the angular-domain channel matrix. 2

Problem (43) is similar to that analyzed in [22] and we can
hence resort to the proposed AGDAR algorithm. The steps
of the AGDAR algorithm are reported in Algorithm 1: at the
input it requires the extended DFT matrix (used to compute
FK), the LS estimate, and the sparsity regulation parameter ρ.
Additional parameters are: α and β (to update the step size),
ε (representing the precision required as stopping criterion),
and the maximum number of iterations It. The algorithm is
described in more detail in [22].

C. Selective AGDAR

In the AGDAR algorithm, due to the non-convexity of the
norm-0 constraint, sparsity is imposed via a norm-1 constraint.
As a consequence, spurious paths are present in the estimate,
having small gains. Therefore, we propose to improve our
estimate by removing entries with gain below a threshold value
θth, and redistributing their power among the paths with gains
above θth. In particular, given the angular domain channel
estimate v̄LS,` obtained with the AGDAR algorithm, let I` be
the set of indices of the paths with power above θth, i.e.,

I` = {i : |v̄(i)
LS,`|

2 ≥ θth}, (46)

where v̄(i)
LS,` denotes the i-th entry of vector v̄LS,`. Then we

re-estimate the gains of paths in I` as

v̂
(I`)
LS,` = argmin

$
‖FK(I`)$ − hLS,`‖22 , (47)

2An alternative approach would consider directly off-grid path estimation.

Algorithm 2: A-AGDAR algorithm
Data: L, hLS,` ∀` = 1, · · · , L
Result: v̂

(I)
LS,` ∀` = 1, · · · , L

1 for ` = 1, · · · , L do
2 compute v̄LS,` via AGDAR;
3 I` = {i : |v̄(i)

LS,`|
2 ≥ θth};

4 end
5 P̂ = 1

L

∑L
`=1 |I`|;

6 I = {P̂ most recurrent entries in ∪L
`=1I`};

7 for ` = 1, · · · , L do
8 v̂

(I)
LS,` = argmin

$

(
‖FK(I)$ − hLS,`‖22

)
;

9 end

where columns of FK(I`) are those of FK with indices
in I`. The overall estimation process is defined as the S-
AGDAR algorithm, and v̂

(I`)
LS,` represents the new angular

domain channel estimate for entries in I`, while other entries
are assumed to be zero.

D. Adaptive AGDAR

The S-AGDAR algorithm operates on a slot-by-slot basis.
However some features of fading channels remain unchanged
for more slots. In particular, typically DOAs and DODs are
slowly time-varying and we can exploit this in the path
selection process (46). In particular, we propose to refine the
construction of set I` as follows. First we compute the average
number of channel paths over L LS estimates as

P̂ =
1

L

L∑
`=1

|I`|, (48)

where |I`| is the cardinality of I`. Then, the set of indexes
over which the path gain estimation (47) is solved is given by
the P̂ most recurrent entries in the union of the sets of the
selected indexes, ∪L`=1I`. The overall estimation process is
denoted as adaptive AGDAR (A-AGDAR). The steps for the
A-AGDAR algorithm are shown in Algorithm 2. We note that
initially L angular domain channel estimates must be obtained
via the AGDAR algorithm, and for each one we create the set
of indexes I` of the paths having gain larger than θth. Then
we compute the average number of paths P̂ and create the set
I of the P̂ most recurrent paths. For each of the L estimates
obtained via AGDAR, the gains of the paths are then computed
via (47) on set I.

Comparing A-AGDAR and S-AGDAR we observe that
in general A-AGDAR improves over S-AGDAR, by better
detecting paths of the virtual channel. The improvement is
more relevant at low SNRs (and high L), where A-AGDAR is
able to average out the effects of noise, while for a lower power
S-AGDAR detects the correct path positions over the discrete
DFT grid, and both S-AGDAR and A-AGDAR have the same
performance. Lastly, the benefits of A-AGDAR come at the
price of a longer channel estimate, as a larger number (L) of
LS estimates must be collected. Indeed, when L is small the
averaging process (48) may lead to the wrong estimate of P̂
which then affects L channel estimates, possibly increasing the
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Fig. 1. a) Optimal value ρ∗ for AGDAR methods for different SNR values and different DFT sizes M for the LOS and NLOS synthetic channels. b)
Sensitivity of MSE to parameter ρ. Results are obtained for SNR = 0 dB and different DFT sizes M .

MSE with respect to S-AGDAR, which performs independent
estimations at each slot.

E. Computational Complexity

The computational complexity of the AGDAR algorithms
is assessed through the number of complex multiplications
following the derivation of [22]. By letting Mtot = MRMTW
being the dimension of the overall DFT computed on the
vectorized ST channel, the overall computational complexity
is given by [22]

CAGDAR = O(3MtotNit + 2NitMtot log2Mtot), (49)

where Nit is the number of iterations. Note that we assume
Mtot > NTOT, as the angular domain has typically more
entries than the number of antennas.

The S-AGDAR algorithm requires an additional comparison
step with respect to the AGDAR algorithm and the solution of
problem (47). In particular, each entry of the obtained angular-
domain channel estimate is compared to a threshold value to
select relevant paths. Then, the LS estimation of the selected
paths’ gain is obtained by solving an overdetermined system
of P̂ linear equations, where P̂ represents the average number
of channel entries above θth, with complexity at most O(P̂ 3).
Therefore we can express the computational complexity of S-
AGDAR as

CS AGDAR = O(3MtotNit +2NitMtot log2Mtot + P̂ 3). (50)

The A-AGDAR algorithm, which obtains an estimate of
the locations of the channel paths in the angular domain
by exploiting L LS estimates, requires the computation of
L angular-domain channel estimates and the selection of the
main paths by comparison with a threshold value for all of
them. For each of the L LS estimates A-AGDAR requires the
computation of the location of the paths in the angular domain
via AGDAR and a successive comparison with a threshold
value. Then, as the mean locations have been computed from

the L LS estimates, A-AGDAR requires the solution of a
linear system similar to the one in S-AGDAR, where the
average number of channel entries above θth is denoted as
P̂ . Therefore, the complexity of A-AGDAR once the channel
paths have been computed is

CA−AGDAR = O(L(3MtotNit + 2NitMtot log2Mtot) + P̂ 3).
(51)

V. NUMERICAL RESULTS

In this section we assess the (normalized) MSE of the
proposed estimation methods, i.e.,

MSE =
E
[
|∆h`|2

]
E [|h`|2]

, (52)

where h` =
[
h

(1)
` · · ·h

(NR)
`

]
and ∆h` = h` − hEST,`, with

hEST,` denoting the generic NTW × N estimated channel.
Performance is assessed in terms of MSE, obtained as a
function of the signal-to-interference-and-noise ratio (SINR)

SINR =
E[|h`|2]
E[|N̂`|2]

. The noise covariance can be expressed as:

Q = σ2
nINR

+ QI, (53)

where the two terms represent the receiver noise and the
interferers’ contribution, respectively. We model the interferers
as single rays impinging the receiving array, thus

QI =

NI∑
i=1

ΩI,iσ
2
I,ia

RX(θRX
I,i )aRX(θRX

I,i )H, (54)

where NI is the total number of interferers, while σ2
I,i, ΩI,i,

and θI,iRX represent the single interferer transmitted power,
the path gain, and the DOA, respectively. The SNR is the
SINR in the absence of interference. In order to evaluate the
convergence rate to the asymptotic bounds, we compute the
MSE versus the number of slots L used for the estimation
of the channel subspaces and path gains for the LR and
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Fig. 2. a) Optimal value θ∗th to be used for different SNR values and different DFT sizes M for the LOS and NLOS synthetic channels. b) Sensitivity of
MSE to parameter θth. Results are obtained for 0 dB SNR for different DFT size values M .
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Fig. 3. Average number of iterations vs M for the AGDAR algorithm.

CS algorithms, respectively. The number of pilot subcarriers
allocated for the channel estimation is K ≥ NTW , and the
optimal sequences introduced in Section II are used for pilots.

[b]
The MIMO-OFDM system consists of two vertical ULAs,

with NR = 16 and NT = 16 elements3 and inter-element
spacing d = λ

2 . Both the transmit and receive devices use
polarized antenna elements with polarization angles of −45◦

and 45◦ for each array, respectively, and antenna gains as
specified in Section 7.3 of [30]. The signal bandwidth is set
to 100 MHz and the cascade of the transmit and receive
filters is a raised cosine with roll-off factor 0.2. The time-
slot duration is 1 ms. The performance is evaluated over two

3Note that mmWave and THz links may require a larger number of
antennas, but the relative performance between CS and LR method is found
also with other array sizes. Moreover, the considered scenario may also
represent the equivalent digital channel when both the transmitter and the
receiver are equipped with hybrid analog/digital transceivers.

different sets of channels: simplified deterministic channels
and 3GPP stochastic channels, generated according to the
specifications in [30], assuming a urban macro cell (UMa)
propagation environment.

A. CS Parameters Selection

The effectiveness of the channel estimation based on the CS
approaches partially depends on the selection of its parameters.
In particular, we must properly select ρ, the weight of the
norm-1 term, M , the DFT size, and θth, the threshold of S-
AGDAR. The choice of the optimal value of ρ (common to
AGDAR, S-AGDAR, and A-AGDAR) is a known problem
in literature [31]–[33]. Among the different approaches we
consider the exhaustive search of the optimal value, computing
the MSE over a set of testing channels. Fig. 1(a) shows the
optimal value ρ∗ for different SNR values, different DFT
sizes M , and both the line-of-sight (LOS) and non-line-of-
sight (NLOS) simple channel models described in Section
V-B, assuming MT = MR = M . We notice that the optimal
ρ is linearly decreasing with the SNR. Therefore, given the
knowledge of the SNR, the optimal ρ can be obtained by
interpolation from a look-up table built off-line. We notice that
a high weight of the norm-1 path leads to worse performance
in terms of MSE, as we are imposing an amount of sparsity,
which is not present in the original channel. Recalling that,
as outlined in Section IV-B, paths may not fall on the DFT
grid, we explore different values of M . Figs. 1 and 2 show
the MSE obtained with different DFT sizes M , and we notice
that increasing M leads to a lower MSE. Furthermore, from
Fig. 1(b), we notice that, by setting M = 64, all the channel
paths are properly estimated and we do not benefit from a
higher DFT precision. From Fig. 1(b) we note that errors up
to 20% on the value of ρ lead to a performance degradation
of only 2 dB (from -20 to -18 dB) in MSE, thus showing that
AGDAR methods are reasonably robust to a wrong choice
of ρ. Note however that the optimal ρ is also related to the
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Fig. 4. MSE vs L for a) LR and b) CS channel estimation algorithms over the simplified NLOS channel with white noise. M = 128.

specific channel model. Still, from Fig. 1(a) we note that LOS
and NLOS models have approximately the same optimal ρ,
thus the choice of ρ is (in this case) robust also with respect
to the channel model.

Parameter θth controls instead whether an entry in the
estimated virtual channel matrix is to be considered as noise or
as useful channel. Its value is chosen in order to minimize the
MSE, through simulations. Fig. 2(b) shows the optimal value
θ∗th vs SNR for different DFT sizes for both the LOS and
NLOS synthetic channels. Note that θ∗th is not reported for all
SNR values: its absence in the figure means that AGDAR is
outperforming S-AGDAR. This occurs when the DFT size is
small and we do not obtain a precise location of channel paths
by sparsification. As for ρ∗, the optimal θ∗th may be obtained
by interpolation from a pre-built look up table. Fig. 2(b) shows
the MSE vs the threshold parameter θth for different DFT
sizes MT = MR = M , using the optimal parameter ρ∗.
By comparing results in Figs. 1 and 2 for the same value
of M , we note that a proper selection of the channel paths
and a successive estimation of their gains via LS effectively
decreases the MSE. This confirms that the AGDAR algorithm
estimates spurious channels due to the use of the norm 1.

As outlined in Section IV-E, the computational complexity
of the AGDAR solutions depends on the number of iterations
Nit, which is common to all AGDAR algorithms. Fig. 3 shows
the average number of AGDAR iterations vs the DFT size
M , assuming MT = MR = M , for the different channel
models with white noise. We notice that, as the DFT size
grows, the number of iterations needed to reach convergence
increases. Indeed, for a larger DFT size, the channel has more
entries in the angular domain, therefore more variables must
be optimized by the gradient-descent algorithm, regardless of
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Fig. 5. MSE vs SNR for the best LR, S-AGDAR and A-AGDAR channel
estimation algorithms over the simplified NLOS channel, for M = 128 and
LA−AGDAR = 30.

the considered channel model.

B. Simplified Channel Scenario

We first analyze the algorithms’ performance over a sim-
plified channel model characterized by four paths, both in
LOS and NLOS propagation conditions.The four paths have
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Fig. 6. MSE vs L for a) LR and b) CS channel estimation algorithms over the simplified LOS channel with colored noise for M = 128.

elevation angles
(
ψRX
p , ψTX

p

)
(115.17,64.83), (145.17,94.83),

(85.17,94.83), and (85.17,34.83) [deg], for p = 1, . . . , 4,
respectively, compatible with a base station placed at (0, 0, 25)
and a user at (0, 50, 1.5) in 3D Cartesian coordinates. With
this choice of angles, the spatial diversity orders become
rS,RX = 3, rS,TX = 3, and rS = 4, leading to a low-rank
channel structure. To account for the temporal sparsity, path
delays are set as τp = (p − 1)T , p = 1, . . . , 4. Being T the
temporal resolution of the system, the temporal diversity order
is rT = 4, while W = 10. Path powers are compatible with the
distributions for the UMa channels in [30], with a delay spread
of DS = 30 ns and delay scaling parameter rτ = 2.3 and
2.5, for NLOS and LOS, respectively. Furthermore, our model
includes antenna gains, per-cluster shadowing and, for the LOS
case, the Rice component with factor 9 dB. Powers are then
set as ΩNLOS = [0.319, 0.272, 0.227, 0.182], for the simplified
NLOS scenario, and ΩLOS = [0.924, 0.030, 0.025, 0.021], for
the simplified LOS scenario. Notice that the provided results
are consistent as long as the rank values are preserved, while
variations of the channel powers affect the MSE for SNR < 0,
as the asymptotic bounds for high SNR values depend only
on the ratio between the rank values and the channel entries
(see the Appendix for a proof).

Fig. 4(a) shows the MSE of the LR algorithms against L,
for SNR = 0 dB over the simplified NLOS channel and
without interference. The performance is compared to the
asymptotic bound derived in Section III-C, assuming optimal
rank selection. The JST algorithm has been included in the
analysis for comparison purposes with the existing literature.
We notice that all algorithms attain the corresponding lower
bound, outperforming the conventional unconstrained LS esti-
mator. However, the four estimators converge at different rates:

a larger number of slots is required by the JST method with
respect to the other methods, due to the higher number of
channel parameters to be estimated in the joint ST domain. On
the other hand, the LL-JST method reduces the dimensions
of the estimation problem as the ST bases are identified in
the projected domain selected by the first stage of decoupled
filtering. It follows that LL-JST outperforms all the other LR
algorithms for L > 4, while at lower values it is interestingly
upperbounded by the SST algorithm. This holds as long as
the channel rank r is properly estimated: selecting a wrong
number of channel bases leads to a higher MSE than that
of the SST algorithm. Within L = 100 slots, the MSE of
LL-JST is 2 dB above the asymptotic bound. Moreover, we
observe that, despite of the better asymptotic performance,
DST outperforms SST only for L > 50 slots, while JST needs
more than L = 100 slots to outperform both SST and DST,
which can be critical for mmWave/THz channels.

Fig. 4(b) shows the performance of the CS algorithms, for
the same scenario of Fig. 4(a). The figure includes the JST
lower bound, which holds for any estimator operating on the
considered channel model. We note a very fast convergence
within L = 40 for A-AGDAR and even faster for the
other solutions, that however achieve a higher MSE. We
here recall that the performance of the S-AGDAR algorithm
is independent of L, as the set of non-zero indexes in the
virtual channel domain is obtained independently in each slot.
Therefore, the MSE is constant with respect to L for the S-
AGDAR algorithm. For the A-AGDAR algorithm instead we
observe that for L < 6 the MSE can be higher than S-AGDAR,
since the estimate of P̂ is inaccurate and affects L channel
estimates, as discussed in Section IV-D. Comparing Figs. 4(a)
and 4(b) we note that for L = 100 both the LL-JST and the A-
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AGDAR techniques achieve the same MSE, while A-AGDAR
shows a faster convergence, thus we do not show the MSE for
L > 100 in Fig. 4(a).

We now investigate the behavior of the estimation methods
as a function of the SNR. Fig. 5 reports the MSE vs SNR
for the best LR and the S-AGDAR and A-AGDAR channel
estimation algorithms. Also in this case the two methods have
a similar performance and provide an MSE reduction of more
than 20 dB with respect to the LS estimate. Moreover, when
comparing S-AGDAR and A-AGDAR we observe that for
SNR < 10 dB A-AGDAR has a significantly reduced MSE,
as it averages out the noise before detecting paths in the
angular domain; at higher SNR the gap between S-AGDAR
and A-AGDAR is reduced, as they both detect the correct path
positions on the discrete DFT grid.

Fig. 6(a) shows the MSE of LR algorithms over the sim-
plified LOS channel, assuming the presence of 3 interferers
paths impinging the receiving array, so that one interferer
path is superimposed to one channel path, i.e., has the same
DOA as the channel’s path, while the other interferers and
channel’s path have different DOAs. We assumed Q known, in
order to perform the whitening and de-whitening operations.
The MSE vs L is shown for SINR = 0 dB. With respect
to Fig. 4(a), we observe lower asymptotic bounds, as most
of the interference is concentrated within directions that do
not correspond to channel’s DOAs. Since the convergence
rate is similar, we observe that it takes more slots for all the
algorithms to converge and only SST is at 3 dB from its lower
bound after L = 100 slots, while only the LL-JST algorithm
reaches the JST bound, with a longer latency of L = 1000
slots.

Fig. 6(b) shows the performance of the CS algorithms,
for the same scenario of Fig. 6(a). Note that in this case
the CS algorithms do not take into account that the noise is
colored, i.e., has different powers at the various entries in the
angular domain. Also in this case the convergence is fast, and
both S-AGDAR and A-AGDAR outperform AGDAR. We see
that the A-AGDAR algorithm has a lower MSE than the S-
AGDAR algorithm, due to fact that also in this case angular
domain channel entries are better located when considering an
increasing number of slots. Overall, when comparing Figs. 6(a)
and 6(b) we observe that both the SST and LL-JST methods
outperform the best CS solution for any L > 10, reducing
the MSE by about 10 dB at L = 100. This is due to the fact
that AGDAR does not consider the presence of the interferers,
while they are accounted for by the LR methods through Ĉ.

C. 3GPP Channel Model

We now show the MSE of the proposed estimation algo-
rithms over the 3GPP stochastic channel, generated according
to the specifications in [30] assuming a UMa propagation
environment, white noise, and the worst-case synchronization
error, i.e., the first arrival placed between two sampling instants
(here we set τ1 = 5.5T ).

Fig. 7 shows the MSE for both LR and CS algorithms
vs L. As for the simplified scenarios, all LR algorithms
have a significant gain with respect the LS estimator, but
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Fig. 7. MSE vs L for the LR and AGDAR channel estimation algorithms
over the 3GPP LOS channel, for M = 128.

faster rate of convergence due to the low-rank nature of the
channel, despite of its numerous clusters and rays. In this
scenario, the LL-JST does not gain significantly with respect
to the SST algorithm, but yields a lower MSE than both
DST and JST, as in all of the other considered scenarios.
The figure shows that synchronization errors have a negligible
impact on performance. About the CS methods, we observe
an even faster convergence (within L = 2) with respect to the
simplified channel model.

D. Algorithm Comparison

The comparison among the proposed algorithms should take
into account various metrics. Here we focus on the estimation
MSE, the computational complexity, and the latency required
for convergence, i.e., L.
In terms of MSE, from Fig. 7 we conclude that the two
approaches have a similar performance in the considered
scenario, with MSE reductions at SNR = 0 dB that range
between 20 and 25 dB, with respect to the common base-
line LS. This is further confirmed by Fig. 8, showing the
estimate MSE as a function of the channel SNR, for the
best performing LR and CS algorithms. Also in this case
we note that both proposed algorithms considerably reduce
the MSE with respect to the LS estimate for any value of
SNR, by a factor between 15 dB (at SNR = 10 dB) and
30 dB (at SNR = −10 dB). Also, below L = 100 slots,
A-AGDAR outperforms LL-JST. By Fig. 8(b) we observe
that the improvement of the proposed methods holds also
for asymmetric MIMO configurations (here NT = 8 and
NR = 32). We notice that A-AGDAR exhibits a smoother
behavior than LL-JST in both plots of Fig. 8. However, we
also notice that the A-AGDAR MSE decreases more slowly
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Fig. 8. MSE vs SNR comparison of the best LR and AGDAR channel estimation algorithms over 3GPP LOS Channel with different array sizes, for M = 128
and L = 100 (10) slots for LL-JST (A-AGDAR).

at low SNRs in Fig. 8(a), due to the effects of noise and the
non-linearity of CS.
The computational complexity of the algorithms for the re-
sults of Fig. 8 with SNR = 0 dB, L = 100 for LR
algorithms and L = 2 for A-AGDAR (providing the same
MSE) is reported in Table III, in terms of multiplications
per slot, normalized to the multiplications required by one
LS estimate, i.e., CLS =

(
NR (NTW )

2
)

. The computational
complexity of the LR methods is obtained using of a sub-
space tracking algorithm such as [34], in order to reduce
both the latency due to the batch processing of L slots and
the costs of the eigenvalue decomposition. When spatially-
correlated noise is considered, (22) requires an additional cost
of OLR = O(N3

R)+O(WNTN
2
R) for the computation of both

the whitening factors for ĈLS and the overall filtering oper-
ation; this complexity can be significantly reduced when the
interference has low-rank spatial correlation (e.g., in case of
few directional interferers), by exploiting efficient approaches
as subspace tracking. Note that the JST complexity is ruled by
the overestimation of r̂ (here r̂ = 100, as L << WNTNR),
while for all other cases the selected ranks are unitary, leading
to similar computational costs for the DST, SST, and LL-
JST methods, with a slightly heavier load for SST and LL-
JST, when compared to DST. Indeed, the computational ad-
vantage of the former algorithms becomes evident only when
r̂S >> r̂S,TX + r̂S,RX. For the CS method, formulas have been
obtained in Section IV-E. It can be observed that for low-ranks
channels, as in mmWave/THz systems, the complexity grows
only linearly with the ST channel dimensions, when using
an efficient subspace-tracking implementation. We notice that,
in general, the CS-based methods require a significantly larger
number of operations than the LR-based ones. In terms of con-

vergence latency, from Fig. 8 we note that CS methods have
a very fast convergence (L < 10) with respect to LR methods
that require 10 times more LS estimates before convergence.
Still, we observe that LR methods can capture also the spatial
correlation of noise (or interference). Both LR and CS methods
require the tuning of channel-model-dependent parameters,
namely the rank and the norm-1 coefficient (and the threshold
for S-AGDAR), respectively. Notice that in dense multipath
scenarios, even if still grouped into few clusters as for 3GPP
model, the rank estimation via MDL may over/under-estimate
the ranks. This can be seen in 8(b) where some fluctuations are
introduced in the LR method, peaking around the SNR=10 dB.
In summary, i) CS methods are converging faster than LR;
ii) the CS methods depends on the array manifold, while
LR methods are independent on the array calibration; iii) the
complexity of the LR methods is reduced with respect to the
CS methods; iv) the LR methods require accurate estimate of
the rank, while for CS methods processing parameters (ρ and
θth) must be optimized.

VI. CONCLUSIONS

We have proposed new estimation methods for the
mmWave/THz channel, based on LR and CS approaches. Their
new design takes into account many peculiarities of the MIMO
channel at those frequencies. Estimated channel statistics over
a few transmission periods are exploited to improve both
approaches over previously existing techniques. Extensive
numerical results on both simple and well-established 3GPP
models show the merit of the proposed solutions, providing
gains up to 30 dB over the LS channel estimate, with gains
from 5 to 25 dB over existing LR and CS solutions. The
solutions have also been compared in terms of achieved MSE,
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computational complexity, and convergence latency, conclud-
ing that a different trade-off among these metrics is achieved
by each solution.

APPENDIX

The MSE bound for the LR estimators is here derived as-
suming that RBB is diagonal. The channel covariance reduces
to:

CLS = γ
(
IW ⊗ INT

⊗QT
)︸ ︷︷ ︸

C̄LS

, (55)

where γ = 1/(σ2
xK). The closed form expressions of the noise

and bias MSE contributions can be obtained by plugging (55)
into (36) and (37), respectively.

Let us first consider the noise contribution and simplify the
notation with Φ (A,B) = tr

(
B

H
2 AB

1
2

)
, we get:

MSEn(r̂) = γΦ
(
ΠLR,r̂, C̄LS

)
. (56)

By substituting the projectors of Table II we obtain, after some
rearrangements,

MSEJST
n (r̂) = γΦ

(
ΠLR,r̂, C̄LS

)
, (57a)

MSEDST
n (r̂) = γtr (ΠT,r̂T) Φ

(
ΠS,r̂S , INT

⊗QT
)
, (57b)

MSESST
n (r̂) = γtr (ΠT,r̂T) tr

(
ΠS,r̂S,TX

)
Φ
(
ΠS,r̂S,RX

,QT
)
,

(57c)
which simplify in presence of white noise, i.e., when Q =
σ2
nINR

, into
MSEJST

n (r̂) = γσ2
nr̂, (58a)

MSEDST
n (r̂) = γσ2

nr̂Tr̂S, (58b)

MSESST
n (r̂) = γσ2

nr̂Tr̂S,RXr̂S,TX. (58c)

For the bias contribution, we can apply the cyclic-
shift property of the trace operator, obtaining MSEb(r̂) =

γtr
(
4ΠLR,r̂R̃STC̄

1
2

LSC̄
H
2

LS

)
, which can be rearranged as:

MSEb(r̂) =
P∑
p=1

Ωptr
(
4ΠLR,r̂

(
RT,p ⊗RTX

S,p ⊗ R̄RX
S,p

))
,

(59)
where R̄RX

S,p = Q−
∗
2 RRX

S,pQ
∗
2 . It can be shown that for

the DST channel model, the projector can be computed as
4ΠLR,r̂ = 4ΠT

T,r̂T ⊗4ΠS,r̂S − IW⊗4ΠS,r̂S −4ΠT
T,r̂T ⊗

INRNT
, where 4ΠT,r̂T = ΠT,rT − ΠT,r̂T and 4ΠS,r̂S =

ΠS,rS −ΠS,r̂S . This holds also for the SST channel model,
where 4ΠS,r̂S is replaced with 4ΠT

S,r̂S,TX
⊗ 4ΠS,r̂S,RX −

INT
⊗ 4ΠS,r̂S,RX

− 4ΠT
S,r̂S,TX

⊗ INR
, with 4ΠS,r̂S,TX

=
ΠS,rS,TX −ΠS,r̂S,TX and 4ΠS,r̂S,RX = ΠS,rS,RX −ΠS,r̂S,RX .
The final expressions for the bias are:

MSEJST
b (r̂) =

P∑
p=1

Ωptr

4ΠLR,r̂

RT,p ⊗RTX
S,p ⊗ R̄RX

S,p︸ ︷︷ ︸
R̄S,p


 ,

(60a)

MSEDST
b (r̂) =

P∑
p=1

Ωp

(
−tr

(
4ΠT

T,r̂TRT,p ⊗ R̄S,p

)
− tr

(
RT,p ⊗4Πr̂SR̄S,p

)
+tr

(
4ΠT

T,r̂TRT,p ⊗4Πr̂SR̄S,p

))
,

(60b)

MSESST
b (r̂) =

P∑
p=1

Ωp

(
−tr

(
4ΠT

T,r̂TRT,p ⊗ R̄S,p

)
−tr (RT,p ⊗P) + tr

(
4ΠT

T,r̂TRT,p ⊗P
))

,

(60c)

where P = 4ΠT
S,r̂S,TX

RTX
S,p ⊗ 4ΠS,r̂S,RXR̄RX

S,p − RTX
S,p ⊗

4ΠS,r̂S,RXR̄RX
S,p −4ΠT

S,r̂S,TX
RTX

S,p ⊗ R̄RX
S,p .
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