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Abstract. We consider a heat-type operator L structured on the left invariant 1-homogeneous vector fields
which are generators of a Carnot group, with a uniformly positivematrix of boundedmeasurable coefficients
depending only on time. We prove that if Lu is smooth with respect to the space variables, the same is
true for u, with quantitative regularity estimates in the scale of Sobolev spaces defined by right invariant
vector fields. Moreover, the solution and its space derivatives of every order satisfy a 1/2-Hölder continuity
estimate with respect to time. The result is proved both for weak solutions and for distributional solutions,
in a suitable sense.

Let G = (
R

N , ◦, Dλ

)
be a Carnot group and let X1, . . . , Xq be the generators of its

Lie algebra, so that the canonical sublaplacian

q∑

i=1

X2
i

and the corresponding heat operator

q∑

i=1

X2
i − ∂t

are hypoelliptic in R
N and R

N+1, respectively. (Precise definitions will be given in
Sect. 1.) Let us now consider

L =
q∑

i, j=1

ai j (t) Xi X j − ∂t (0.1)

where
{
ai j (t)

}q
i, j=1 is a real, symmetric, uniformly positive matrix of bounded mea-

surable coefficients:

ν |ξ |2 �
q∑

i, j=1

ai j (t) ξiξ j � ν−1 |ξ |2 (0.2)
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for some ν > 0, every ξ ∈ R
q , a.e. t ∈ (0, T ). We want to prove a regularity result for

L in the space variables, that is, roughly speaking: if u ∈ W 1,2
(
(0, T ) , L2

loc

(
R

N
))

is
a weak solution to Lu = F , u (0, ·) = 0 and F is smooth, with respect to the space
variables, in some domain (0, T ) × �, then the same is true for u, with quantitative
regularity estimates on u in terms of Lu. Also, we will prove that, if F is smooth w.r.t.
the space variables, then u and every space derivative ∂α

x u are 1
2 -Hölder continuous

with respect to t . See Theorem 2.3 for the precise statements. This kind of regularity
is the best we can hope, even for a uniformly parabolic operator

Lu = ut − a (t) uxx

as soon asa is only L∞ (seeExample 2.16). The above regularity result can be extended
also to distributional solutions belonging toW 1,2

(
(0, T ) ,D′ (

R
N
))
(see Theorem 3.3

for the precise statement). This can be seen as a kind of Hörmander’s theorem with
respect to the space variables.
A result of this kind has been proved by Krylov [12], who considered operators

L = ∂t −
q∑

k=1

L2
k + L0

with

Lk =
N∑

i=1

σ ik (t, x) ∂xi

where the functions σ ik (t, x) are assumed to have x-derivatives of every order uni-
formly bounded for x ∈ R

N and t ∈ (0, 1), and the vector fields L0, L1, . . . , Lq for
every fixed t satisfy Hörmander’s condition in R

N . Now, every operator (0.1) can be
rewritten as

−L = ∂t −
q∑

k=1

L2
k

with

σ ik (t, x) =
q∑

j=1

m jk (t) b ji (x)

where

X j =
N∑

i=1

b ji (x) ∂xi

and

ai j (t) =
q∑

k=1

mik (t)m jk (t)
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so that
∣∣
∣Dα

x σ ik (t, x)
∣∣
∣ � cν

q∑

j=1

∣
∣Dα

x b ji (x)
∣
∣ .

Since the coefficients b ji (x) of the generators on a Carnot group are polynomials, the
functions

∣∣Dα
x b ji (x)

∣∣ are not globally bounded on RN . Therefore, although the class
of operators that we consider is strictly contained in the class considered by Krylov
as to their structure, the assumption on σ ik (t, x) made in [12] is not satisfied in our
situation.
Actually, the technique employed in this paper is very different from that in [12]. In

[12], following the classical approach introduced by Kohn [11] and Oleı̆nik-Radkevič
[15], pseudodifferential operators and Sobolev spaces of fractional order are used.
Here, instead, we adapt to the evolutionary case the technique introduced in [2] to give
a proof of Hörmander’s theorem for sublaplacians on Carnot groups. The main idea
consists in measuring the regularity of solutions of an equation Lu = f , where L is
a left invariant operator, in terms of Sobolev spaces induced by right invariant vector
fields. Since a right invariant operator and a left invariant operator always commute, this
approach greatly simplifies the proof of higher-order estimates. We handle Sobolev
norms with respect to vector fields by means of equivalent norms defined in terms
of finite difference operators, in the directions of the vector fields X1, . . . , Xq . This
feature of our argument is reminiscent of the original proof of Hörmander’s theorem
given in [10], although in the richer framework of Carnot groups the proof becomes
much simpler.
Let us now give some motivation for the present research and describe some related

literature. The regularity result proved in [12] has been applied by the same Author
in [13] to prove an analogous result for stochastic PDEs, and in [14], in the context
of filtering problems. We refer to [13] for motivations to prove this result without any
continuity assumption on the coefficients with respect to time.
Hyperbolic operators of the kind

Hu = utt −
n∑

i, j=1

ai j (t) uxi x j

with merely bounded measurable ai j have been studied by many authors, see, for in-
stance, [6,7,9] and references therein. In particular, [9] gives some physical motivation
to study this class of operators under no regularity condition on ai j (t).
Operators of the kind

L =
q∑

i, j=1

ai j (t, x) Xi X j − ∂t , (0.3)

satisfying (0.2) havebeen studiedby severalAuthors, assuming the coefficientsai j (t, x)
either Hölder continuous or with vanishing mean oscillation, and proving a priori es-
timates and regularity results in the scale of Hölder or Sobolev spaces induced by
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the vector fields {Xi }qi=1 and the distance they induce. See, for instance, [3–5] and
references therein. In [4], for the operator L with Hölder continuous coefficients, a
heat kernel has been constructed and shown to satisfy sharp Gaussian estimates, which
also imply a scale invariant Harnack inequality.
The operators (0.1) studied in the present paper can also be seen as model operators

to study the more general class (0.3) with the coefficients satisfying some moderate
regularity assumption in x , but only L∞ with respect to time, an area of research that
we plan to attack in the future.

1. Preliminaries about Carnot groups

Let us recall some standard definitions and results thatwill be useful in the following.
For the proofs of these facts, the reader is referred to [8], [1, Chap.1]. A homogeneous
group (inRN ) is a Lie group

(
R

N , ◦) (where the group operation ◦will be thought as a
“translation”) endowedwith a one parameter family {Dλ}λ>0 of group automorphisms
(“dilations”) which act this way:

Dλ (x1, x2, . . . , xN ) = (
λα1x1, λ

α2x2, . . . , λ
αN xN

)
(1.1)

for suitable integers 1 = α1 � α2 � · · · � αN . We will write G = (
R

N , ◦, Dλ

)
to

denote this structure. The number

Q =
N∑

i=1

αi

will be called homogeneous dimension of G. A homogeneous norm on G is a contin-
uous function

‖·‖ : G → [0,+∞),

such that, for some constant c > 0 and every x, y ∈ G,

(i) ‖x‖ = 0 ⇐⇒ x = 0
(i i) ‖Dλ (x)‖ = λ ‖x‖ ∀λ > 0
(i i i)

∥∥x−1
∥∥ � c ‖x‖

(iv) ‖x ◦ y‖ � c (‖x‖ + ‖y‖) .

Wewill always use the symbol ‖·‖, without any subscript, to denote a homogeneous
norm in G. Examples of homogeneous norms are the following:

‖x‖ = max
k=1,2,...,N

|xk |
1
αk

or

‖x‖ =
(

N∑

k=1

|xk |
Q
αk

)1/Q

.
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It can be proved that any two homogeneous norms on G are equivalent.
We say that a smooth function f inG\ {0} is Dλ-homogeneous of degree β ∈ R (or

simply “β-homogeneous”) if

f (Dλ (x)) = λβ f (x) ∀λ > 0, x ∈ G\ {0} .
Given any differential operator P with smooth coefficients on G, we say that P is

left invariant if for every x, y ∈ G and every smooth function f

P
(
Ly f

)
(x) = Ly (P f (x)) ,

where

Ly f (x) = f (y ◦ x) .

Analogously, one defines the notion of right invariant differential operator. Also, P
is said β-homogeneous (for some β ∈ R) if

P ( f (Dλ (x))) = λβ (P f ) (Dλ (x))

for every smooth function f , λ > 0 and x ∈ G.
A vector field is a first-order differential operator

X =
N∑

i=1

ci (x) ∂xi .

Let g be the Lie algebra of left invariant vector fields overG, where the Lie bracket
of two vector fields is defined as usual by

[X,Y ] = XY − Y X.

Let us denote by X1, X2, . . . , XN the canonical baseofg, that is for i = 1, 2, . . . , N ,
Xi is the only left invariant vector field that agrees with ∂xi at the origin. Also,
X R
1 , X R

2 , . . . , X R
N will denote the right invariant vectors fields that agree with

∂x1, ∂x2 , . . . , ∂xN (and hence with X1, X2, . . . , XN ) at the origin.
We assume that for some integer q < N , the vector fields X1, X2, . . . , Xq are 1-

homogeneous and the Lie algebra generated by them is g. If s is the maximum length
of commutators

[
Xi1 ,

[
Xi2 , . . . ,

[
Xis−1 , Xis

]]]
, i j ∈ {1, 2, . . . , q}

required to span g, then we will say that g is a stratified Lie algebra of step s, G is a
Carnot group (or a stratified homogeneous group) and its generators X1, X2, . . . , Xq

satisfyHörmander’s condition at step s inG.Under these assumptions, byHörmander’s
theorem (see [10]), the canonical sublaplacian

L =
q∑

i=1

X2
i
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is hypoelliptic inRN , that is: for every domains �′ ⊂ � ⊂ R
N , whenever u ∈ D′ (�)

solves in distributional sense the equation Lu = f in �, then f ∈ C∞ (
�′) ⇒ u ∈

C∞ (
�′) .

Analogously, the corresponding heat operator

H =
q∑

i=1

X2
i − ∂t

is hypoelliptic in RN+1.
The following compact notation will be used throughout the following. For a mul-

tiindex

I = (i1, . . . , ik) , i j ∈ {1, 2, . . . , q}
we let

XI = Xi1Xi2 . . . Xik

X[I ] = [
Xi1 ,

[
Xi2 , . . . ,

[
Xik−1 , Xik

]]]

|I | = k

with an analogous meaning for X R
I , X R

[I ].

Wewill make use of the Sobolev spaces Wk,p
X (G),Wk,p

X R (G) induced by the systems
of vector fields

X = {
X1, X2, . . . , Xq

}
, X R =

{
X R
1 , X R

2 , . . . , X R
q

}
,

respectively. More precisely, given an open subset� ofRN , we say that f ∈ Wk,2
X (�)

if f ∈ L2 (�) and there exist, in weak sense, XI f ∈ L2 (�) for every multiindex I
with |I | ≤ k. We set

‖ f ‖Wk,2
X (�)

= ‖ f ‖L2(�) +
∑

|I |≤k

‖XI f ‖L2(�) .

The spaceWk,2
X R (�) has a similar definition. We will also use local Sobolev spaces.

For example, we will say that f ∈ Wk,2
X,loc (�) if for every ϕ ∈ C∞

0 (�), we have

ϕ f ∈ Wk,2
X (�).

For homogeneity reasons, the generators X1, . . . , Xq satisfy the simple relation
X∗
i = −Xi (where X∗ stands for the transposed operator of X ). In other words,

∫

G

f (Xi g) = −
∫

G

(Xi f ) g (1.2)

whenever f ∈ W 1,2
X,loc (G) and g ∈ C1

0 (G).
The validity of Hörmander’s condition at step s implies the following important:
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Proposition 1.1. (See [2, Prop. 2.1]) Under the above assumptions we have:

1.

∞⋂
k=1

Wk,2
X (�) ⊂ C∞ (�) .

2. For any positive integer k and any �′ � � there exists a constant c > 0 such
that, for every u ∈ Wks,2

X (�) we have

‖u‖Wk,2(�′) � c ‖u‖Wks,2
X (�)

,

where Wk,2
(
�′) denotes the standard Sobolev space. Analogous properties hold for

the spaces Wk,2
X R (�).

Let us point out a relation between left and right invariant operators which will be
very useful in the following.

Proposition 1.2. (see [2, Prop. 2.2]) Let L,R be any two differential operators on
G with smooth coefficients, left and right invariant, respectively. Then, L and R
commute:

LR f = RL f

for any smooth function f.

For every given couple of measurable functions ϕ,ψ : G → R, we define

ϕ ∗ ψ (x) =
∫

G

ϕ (y) ψ
(
y−1 ◦ x

)
dy

whenever the integral makes sense. One can prove the following:

Proposition 1.3. For every couple of measurable functions f, ψ defined on G such
that the following convolutions are well defined, we have

i) if P is a left invariant differential operator then

P ( f ∗ ψ) = f ∗ Pψ, (1.3)

ii) if P is a right invariant differential operator then

P (ψ ∗ f ) = Pψ ∗ f

whenever Pψ exists at least in weak sense.
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2. Subelliptic estimates for heat-type operators with t-measurable coefficients

For a domain � ⊆ G, let

�T = (0, T ) × �.

We are going to define several function spaces on GT = (0, T ) × G that we will use
in the following.
The definitions of the spaces L2 ((0, T ) , X), W 1,2 ((0, T ) , X), C0 ([0, T ] , X)

when X is a Banach space are standard. For instance, we will often use the spaces

L2
(
(0, T ) ,Wk,2

X (G)
)

(for k = 1, 2, 3, . . .) normed with

‖ f ‖
L2
(
(0,T ),Wk,2

X (G)
) = ‖ f ‖L2(GT ) +

∑

|I |≤k

‖XI f ‖L2(GT )

and the analogous spaces L2
(
(0, T ) ,Wk,2

X R (G)
)
.

We will say that u ∈ L2
(
(0, T ) ,Wk,2

X,loc (G)
)
when for every ζ ∈ C∞

0 (G)we have

uζ ∈ L2
(
(0, T ) ,Wk,2

X (G)
)
.

For a function f ∈ L2
(
(0, T ) ,W 1,2

X (G)
)
, we will also use the shorthand notation

‖∇X f ‖2L2(GT )
=

q∑

i=1

‖Xi f ‖2L2(GT )
,

with the analogous meaning for
∥∥∇X R f

∥∥2
L2(GT )

.

Definition 2.1. (Weak solution) We say that u ∈ W 1,2
(
(0, T ) , L2

loc (G)
)
is a weak

solution to Lu = F ∈ L2
(
(0, T ) , L2

loc (G)
)
if

∫

G

⎧
⎨

⎩
−∂t u (t, x) φ (x) +

q∑

i, j=1

ai j (t) Xi X jφ (x) u (t, x)

⎫
⎬

⎭
dx =

∫

G

F (t, x) φ (x) dx

(2.1)

for every φ ∈ C∞
0 (G) and a.e. t ∈ (0, T ).

Note that W 1,2
(
(0, T ) , L2

loc (G)
) ⊂ C0

(
[0, T ] , L2

loc (G)
)
, hence the initial value

u (0, ·) is a well defined element of L2
loc (G).

Definition 2.2. We say that a function u belongs to L2
(
(0, T ) ,C∞ (

�
))

if u ∈
L2
(
(0, T ) ,Ck

(
�
))

for every k = 0, 1, 2, . . . In particular, this implies that

∫ T

0
‖u (t, ·)‖2

Ck
(
�
) dt < ∞ for every k = 0, 1, 2, . . .
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We say that a functionu belongs toC0
(
[0, T ] ,C∞ (

�
))
ifu ∈ C0

(
[0, T ] ,Ck

(
�
))

for every k = 0, 1, 2, . . .

We can now state the first main result of this paper:

Theorem 2.3. Let G be a Carnot group of step s with generators X1, . . . , Xq, let L
be as in (0.1) and let (0.2) be in force. Let u ∈ W 1,2

(
(0, T ) , L2

loc (G)
)
, u (0, ·) = 0,

be a weak solution to Lu = F ∈ L2
(
(0, T ) , L2

loc (G)
)
in the sense of (2.1).

(i) For every k = 1, 2, 3, . . ., let ζ, ζ1 ∈ C∞
0 (G) , ζ ≺ ζ1. There exists c =

c (k, ζ, ζ1,G, ν) > 0 such that

if ζ1F ∈ L2
(
(0, T ) ,Wk+s2−1,2

X R (G)
)
then ζu ∈ L2

(
(0, T ) ,Wk,2

X R (G)
)

and

‖ζu‖
L2
(
(0,T ),Wk,2

X R (G)
) � c

{
‖ζ1F‖

L2
(
(0,T ),Wk+s−1,2

X R (G)
) + ‖ζ1u‖L2(GT )

}
. (2.2)

(ii) In particular, if F ∈ L2
(
(0, T ) ,Wk+s2+2s−1,2

X R ,loc
(G)

)
for somek = 0, 1, 2, 3, . . .,

then u is also a strong solution to Lu = F and for every multiindex I with |I | � k we
have

X R
I u ∈ C0

(
[0, T ] , L2

loc (G)
)
and X R

I u (0, ·) = 0.

(iii) For every (cartesian) derivative ∂α
x and ζ, ζ1 ∈ C∞

0 (G) , ζ ≺ ζ1, there ex-
ists c = c (α, ζ, ζ1,G, ν) > 0 and a positive integer h such that whenever F ∈
L2
(
(0, T ) ,Wh,2

X R ,loc
(G)

)
then

sup
0<t1<t2<T

sup
x∈G

∣∣ζ (x)
[
∂α
x u (t2, x) − ∂α

x u (t1, x)
]∣∣

|t2 − t1|1/2

� c

{
‖ζ1F‖

L2
(
(0,T ),Wh,2

X R (G)
) + ‖ζ1u‖L2(GT )

}

and

sup
x∈G

∣∣ζ (x) ∂α
x u (t, x)

∣∣ � c |t |1/2
{
‖ζ1F‖

L2
(
(0,T ),Wh,2

X R (G)
) + ‖ζ1u‖L2(GT )

}
∀t ∈ [0, T ] .

(iv) In particular, if

ζ1F ∈ L2 ((0, T ) ,C∞ (G)
)

then

ζu ∈ C0 ([0, T ] ,C∞ (G)
)
and ζut ∈ L2 ((0, T ) ,C∞ (G)

)
.

The first step of the proof is a standard energy estimate. Before proving it, we need
to define some more function spaces:
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Definition 2.4. We let:

H = L2
(
(0, T ) ,W 2,2

X (G)
)

∩ W 1,2
(
(0, T ) , L2 (G)

)

=
{
u ∈ L2 (GT ) : ut , Xiu, Xi X ju ∈ L2 (GT )

}
.

Note thatH ⊂ C0
(
[0, T ] , L2 (G)

)
, so that for u ∈ H and t ∈ [0, T ], u (t, ·) is a well

defined element of L2 (G).
We will also use

H0 =
{
u ∈ W 1,2

(
(0, T ) , L2

loc (G)
)

: ∀φ ∈ C∞
0 (G) uφ ∈ H and (uφ) (0, ·) = 0

}
.

Proposition 2.5. Under the previous assumption on L, for every u ∈ H such that
u (0, ·) = 0 we have

‖∇Xu‖L2(GT ) � cν

{‖Lu‖L2(GT ) + ‖u‖L2(GT )

}
(2.3)

for a constant cν only depending on the ellipticity constant ν in (0.2).

Proof. For u ∈ H we have, recalling that X∗
i = −Xi (see (1.2)):

−
∫ ∫

GT

(uLu) dtdx =
∫ ∫

GT

(u∂t u) dtdx −
∫ ∫

GT

⎛

⎝u
q∑

i, j=1

ai j (t) Xi X ju

⎞

⎠ dtdx

= 1

2

∫

G

(∫ T

0
∂t

(
u2
)
dt

)
dx −

q∑

i, j=1

∫ T

0
ai j (t)

(∫

G

(
uXi X ju

)
dx

)
dt

= 1

2

∫

G

(
u2 (T, x) − u2 (0, x)

)
dx +

q∑

i, j=1

∫ T

0
ai j (t)

(∫

G

(
XiuX ju

)
dx

)
dt.

(2.4)

Since

q∑

i, j=1

∫ T

0
ai j (t)

(∫

G

(
XiuX ju

)
dx

)
dt ≥ ν

q∑

i=1

∫ T

0

∫

G

(Xiu)2 dxdt

we have

‖∇Xu‖2L2(GT )
� 1

ν
‖Lu‖L2(GT ) ‖u‖L2(GT ) + 1

2ν
‖u (0, ·)‖L2(G) . (2.5)

In particular, for u vanishing on t = 0 we get (2.3). �

In the following of this section, we will recall and adapt several definitions and
arguments taken from [2]. The reader is referred to that paper for some details.
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Definition 2.6. (Finite difference operators) For every h ∈ G and function f defined
in G, let us define the operators:

�h f (x) = f (x ◦ h) − f (x)

�̃h f (x) = f (h ◦ x) − f (x) .

Whenever the function f also depends on t , we will simply write

�h f (t, x) = �h [ f (t, ·)] (x)
and analogously for �̃h f (t, x) .

Definition 2.7. For m = 1, 2, 3, 4, . . ., let

�m
h = �h�h · · · �h︸ ︷︷ ︸

m times

.

�̃m
h = �̃h�̃h · · · �̃h︸ ︷︷ ︸

m times

.

Then, for α > 0 and f ∈ L2 (GT ) we define the semi-norms

| f |m,α = sup

{∥∥�m
h f
∥
∥
L2(GT )

‖h‖α : h = Exp (t Xi ) ∀i = 1, . . . , q, t ∈ R : 0 < ‖h‖ � 1

}

| f |Rm,α = sup

{∥∥�̃m
h f
∥∥
L2(GT )

‖h‖α : h = Exp (t Xi ) ∀i = 1, . . . , q, t ∈ R : 0 < ‖h‖ � 1

}

.

We also set for convenience

| f |0 = | f |R0 = ‖ f ‖L2(GT )

| f |m = | f |m,m

| f |Rm = | f |Rm,m .

The relations between the above seminorms and Sobolev norms with respect to
vector fields are contained in the following two results, which can be derived by [2,
Thm. 3.11, Prop.3.13] simply integrating in t .

Proposition 2.8. For m = 1, 2, . . .there exists c = c (m,G) such that, for every
f ∈ L2 (GT ) we have:

1. If f ∈ L2
(
(0, T ) ,Wm,2

X (G)
)
then

m∑

k=0

| f |k � c ‖ f ‖
L2
(
(0,T ),Wm,2

X (G)
) (2.6)

Analogously,
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2. If f ∈ L2
(
(0, T ) ,Wm,2

X R (G)
)
then

m∑

k=0

| f |Rk � c ‖ f ‖
L2
(
(0,T ),Wm,2

X R (G)
) . (2.7)

Proposition 2.9. There exists C = C (G) such that for every f ∈ L2 (GT ) we have:

1. If | f |1 < ∞ then f ∈ L2
(
(0, T ) ,W 1,2

X (G)
)
, with

‖∇X f ‖L2(GT ) � C | f |1 .

2. If | f |R1 < ∞ then f ∈ L2
(
(0, T ) ,W 1,2

X R (G)
)
, with

∥∥∇X R f
∥∥
L2(GT )

� C | f |R1 .

The following bound instead links the L2
(
(0, T ) ,W 1,2

X (G)
)
norm with the oper-

ators �̃h :

Proposition 2.10. Let � be a bounded domain in G. There exists c = c (�,G) such

that for every u ∈ L2
(
(0, T ) ,W 1,2

X (G)
)
with sprt u (t, ·) ⊂ � for every t ∈ (0, T )

we have

∥∥�̃hu
∥∥
L2(GT )

� c ‖h‖1/s ‖∇Xu‖L2(GT ) .

(Recall that s is the step of the Lie algebra.)

Proof. It is enough to apply to u (t, ·) the computations made in [2, Prop.3.7, Lemma
3.8] for functions in W 1,2

X (G) and then integrate on (0, T ). �

If u ∈ H, u (t, ·) is supported in some bounded domain � for every t ∈ [0, T ] and
u (0, ·) = 0, then by the previous Proposition and (2.3 ) we get

∥∥�̃hu
∥∥
L2(GT )

� cν ‖h‖1/s {‖Lu‖L2(GT ) + ‖u‖L2(GT )

}

that is

|u|R1,1/s � cν

{‖Lu‖L2(GT ) + ‖u‖L2(GT )

}
. (2.8)

Notation 2.11. Henceforth, we will write

ζ0 ≺ ζ

if ζ0, ζ ∈ C∞
0 (G) such that 0 � ζ0 � ζ � 1 and ζ = 1 on sprt ζ0.

We have the following analog of Theorem 3.15 in [2]:
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Theorem 2.12. Let ζ0, ζ ∈ C∞
0 (G) with ζ0 ≺ ζ . For every m ∈ N the exists c =

c (ζ0, ζ,m,G, ν) > 0 such that if u ∈ H0 then

|ζ0u|Rm,m/s � c

⎛

⎝
m−1∑

j=0

|ζLu|Rj + ‖ζu‖2
⎞

⎠ , (2.9)

whenever the right-hand side is finite.

Proof. We can repeat the proof of Theorem 3.15 in [2] applying (2.8) to the function
ζ0u ∈ H, since u ∈ H0, and exploiting the identity

L (ζ0u) = (Lζ0) u + ζ0 (Lu) + 2
q∑

i, j=1

ai j (t) Xiζ0X ju, (2.10)

and the fact that the operators ∂t and �̃h commute, so that L and �̃h still commute.
�

Also Proposition 3.16 in [2] (Marchaud inequality on Carnot groups) still holds,
with L2 (G) norms replacedwith L2 (GT ) norms, and this implies the following analog
of Corollary 3.17 in [2].

Corollary 2.13. Let u ∈ H, u (0, ·) = 0, and assume that for ε ∈ (0, 1) and some
integer m > 1 the seminorm |u|Rm,1+ε is finite. Then,

|u|R1 � c
{
|u|Rm,1+ε + ‖u‖L2(GT )

}
,

with c = c (G) .

We are now in position to state the first step of our regularity estimate:

Proposition 2.14. Let ζ0, ζ ∈ C∞
0 (G)with ζ0 ≺ ζ . There exists c = c (ζ0, ζ,G, ν) >

0 such that

if u ∈ H0 and Lu ∈ L2
(
(0, T ) ,Ws,2

X R ,loc
(G)

)
then u ∈ L2

(
(0, T ) ,W 1,2

X R ,loc
(G)

)

and

‖ζ0u‖
L2
(
(0,T ),W 1,2

X R (G)
) � c

(
‖ζLu‖

L2
(
(0,T ),Ws,2

X R (G)
) + ‖ζu‖L2(GT )

)
. (2.11)

Proof. Applying to ζ0u Corollary 2.13 andTheorem2.12withm = s+1 and ε = 1/s,
we can write:

|ζ0u|R1 � c
{
|ζ0u|Rs+1,1+1/s + ‖ζ0u‖L2(GT )

}
� c

⎛

⎝
s∑

j=0

|ζLu|Rj + ‖ζu‖L2(GT )

⎞

⎠

From this inequality, by Propositions 2.9 and 2.8 we conclude the desired result. �
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To iterate this result to higher-order derivatives, we first need a regularization result
allowing to apply (2.11) to functions u satisfying weaker assumptions.

Proposition 2.15. Let u ∈ W 1,2
(
(0, T ) , L2

loc (G)
)
, u (0, ·) = 0, be a weak solu-

tion to Lu = F ∈ L2
(
(0, T ) , L2

loc (G)
)
in the sense of Definition 2.2. If F ∈

L2
(
(0, T ) ,Ws2,2

X R ,loc
(G)

)
then u ∈ L2

(
(0, T ) ,W 1,2

X R ,loc
(G)

)
and for every ζ, ζ1 ∈

C∞
0 (G) with ζ ≺ ζ1 the following estimate holds:

‖ζu‖
L2
(
(0,T ),W 1,2

X R (G)
) � c

{
‖ζ1F‖

L2
(
(0,T ),Ws,2

X R (G)
) + ‖ζ1u‖L2(GT )

}
(2.12)

with c = c (ζ0, ζ,G, ν) .

Proof. Let us define the ε-mollified uε of u as follows. For φ ∈ C∞
0 (G) such that

φ � 0, φ (x) = 0 for ‖x‖ � 1 and
∫

G

φ (x) dx = 1,

define, for any ε > 0,

φε (x) = ε−Qφ
(
Dε−1x

)

and

uε (t, x) = (φε ∗ u) (t, x) =
∫

G

φε (y) u
(
t, y−1 ◦ x

)
dy =

∫

G

φε

(
x ◦ z−1

)
u (t, z) dz.

Now the function uε is smooth with respect to x (as can be seen computing X R
I uε),

while

∂uε

∂t
= φε ∗ ∂u

∂t

and, for any couple of domains K � K ′ � G and ε small enough,
∥∥∥∥
∂uε

∂t
(t, ·)

∥∥∥∥
L2(K )

�
∥∥∥∥
∂u

∂t
(t, ·)

∥∥∥∥
L2(K ′)∥

∥∥∥
∂uε

∂t

∥
∥∥∥
L2((0,T ),L2(K ))

�
∥
∥∥∥
∂u

∂t

∥
∥∥∥
L2((0,T ),L2(K ′))

.

Here we have used Young’s inequality in the form

‖ f ∗ φε‖L2(K ) � ‖ f ‖L2(K ′) (2.13)

for K � K ′, and ε small enough, since φε is compactly supported.
Also,

uε (0, x) =
∫

G

φε (y) u
(
0, y−1 ◦ x

)
dy = 0,
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hence uε ∈ H0 and we can apply to uε the estimate proved in Proposition 2.14:

‖ζuε‖L2
(
(0,T ),W 1,2

X R (G)
) � c

{
‖ζ1L (uε)‖L2

(
(0,T ),Ws,2

X R (G)
) + ‖ζ1uε‖L2(GT )

}
.

(2.14)

We claim that

L (uε) = Fε (2.15)

for a.e. t and a.e. x . This is not trivial since Lu just exists in the above weak sense;
hence, we cannot simply write L (uε) = (Lu)ε. However, for every ϕ ∈ C∞

0 (G),
letting

L= −∂ t + A

with

Au (t, x) =
q∑

i, j=1

ai j (t) Xi X ju (t, x)

we can write:
∫

G

L (uε) (t, x) ϕ (x) dx =
∫

G

−∂t (uε) (t, x) ϕ (x) dx +
∫

G

uε (t, x)Aϕ (x) dx

Next,
∫

G

uε (t, x)Aϕ (x) dx

=
∫

G

φε (y)

(∫
Aϕ (x) u

(
t, y−1 ◦ x

)
dx

)
dy

=
∫

G

φε (y)

(∫
Aϕ (y ◦ z) u (t, z) dz

)
dy

and
∫

G

∂t (uε) (t, x) ϕ (x) dx =
∫

G

(∫
φε (y) ∂t u

(
t, y−1 ◦ x

)
dy

)
ϕ (x) dx

=
∫

G

φε (y)

(∫
∂t u (t, z) ϕ (y ◦ z) dz

)
dy

letting ψy (z) = ϕ (y ◦ z)
∫

G

L (uε) (t, x) ϕ (x) dx

=
∫

G

φε (y)

(∫

G

−∂t u (t, z) ψy (z) + Aψy (z) u (z) dz

)
dy
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=
∫

G

φε (y)

(∫

G

ψy (z) F (t, z) dz

)
dy

=
∫

G

ϕ (x)

(∫

G

φε (y) F
(
t, y−1 ◦ x

)
dy

)
dx =

∫

G

ϕ (x) Fε (t, x) dx

and (2.15) follows.Byknownproperties of themollifiers, as ε → 0wehaveφε∗u → u
in L2

(
R

N
)
as soon as u ∈ L2

(
R

N
)
. Also, for every left invariant differential operator

L we can write L (φε ∗ u) = φε ∗ Lu as soon as Lu exists in L2
(
R

N
)
. Therefore,

ζ1L (uε) = ζ1Fε → ζ1F in Wk,2
X (G) , for a.e. t (2.16)

as soon as F ∈ L2
(
(0, T ) ,Wk,2

X,loc (G)
)
.

To prove convergence in L2
(
(0, T ) ,Ws,2

X R ,loc
(G)

)
we make the following rough

estimates (see Proposition 1.1):

‖ζ1L (uε) − ζ1F‖
L2
(
(0,T ),Ws,2

X R (G)
) � c ‖ζ1Fε − ζ1F‖L2((0,T ),Ws,2(G))

� c ‖ζ1Fε − ζ1F‖
L2
(
(0,T ),Ws2,2

X (G)
) . (2.17)

We want to show that, for F ∈ L2
(
(0, T ) ,Ws2,2

X,loc (G)
)
,

‖ζ1Fε − ζ1F‖
L2
(
(0,T ),Ws2,2

X (G)
) → 0. (2.18)

Now:

‖ζ1Fε − ζ1F‖2
L2
(
(0,T ),Ws2,2

X (G)
)

=
∫ T

0
‖ζ1Fε (t, ·) − ζ1F (t, ·)‖2

Ws2,2
X (G)

dt ≡
∫ T

0
gε (t) dt

where by (2.16), we already know that

gε (t) → 0 for a.e. t ∈ [0, T ] , as ε → 0.

To apply Lebesgue theorem and conclude the desired result we need to bound gε with
an integrable function independent of ε. Now:

‖ζ1Fε (t, ·) − ζ1F (t, ·)‖
Ws2,2

X (G)
� ‖ζ1Fε (t, ·)‖

Ws2,2
X (G)

+ ‖ζ1F (t, ·)‖
Ws2,2

X (G)

‖ζ1Fε (t, ·)‖2L2(G)
� ‖Fε (t, ·)‖2L2(K )

� ‖F (t, ·)‖2L2(K ′) ∈ L1 (0, T )

where K � K ′ � G and ε small enough (see (2.13)). By (1.3), we have Xi (Fε) =
(Xi F)ε, then

Xi (ζ1Fε) = (Xiζ1) Fε + ζ1 (Xi F)ε ,
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‖Xi (ζ1Fε (t, ·))‖2L2(G)
� c

(
‖Fε (t, ·)‖2L2(K )

+ ∥∥(Xi F)ε (t, ·)∥∥2L2(K )

)

� c
(
‖F (t, ·)‖2L2(K ′) + ‖Xi F (t, ·)‖2L2(K ′)

)
∈ L1 (0, T ) ,

and an iterative reasoning allows to conclude (2.18). Recalling (2.17) and the fact that

‖ζ1uε‖L2(GT ) → ‖ζ1u‖L2(GT ) ,

we conclude that the right-hand side of (2.14) is bounded. Hence, the sequence ζuε

is bounded in L2
(
(0, T ) ,W 1,2

X R (G)
)
, and there exists a subsequence of ζuε weakly

converging in L2
(
(0, T ) ,W 1,2

X R (G)
)
to some g and in particular weakly converging

in L2 (GT ) to ζu. This is enough to say that ζu ∈ L2
(
(0, T ) ,W 1,2

X R (G)
)
. Moreover,

‖ζu‖
L2
(
(0,T ),W 1,2

X R (G)
) � lim inf ‖ζuε‖L2

(
(0,T ),W 1,2

X R (G)
)

� c

{
‖ζ1F‖

L2
(
(0,T ),Ws,2

X R (G)
) + ‖ζ1u‖L2(GT )

}

hence (2.12) holds. �

We are now in position for the

Proof of Theorem 2.3. (i) We will prove (2.2) by induction on k. For k = 1, this
is exactly Proposition 2.15. Assume that (2.2) holds up to an integer k and let u ∈
H0 such that Lu ∈ L2

(
(0, T ) ,Wk+s2,2

X R (G)
)
. By the inductive assumption, ζu ∈

L2
(
(0, T ) ,Wk,2

X R (G)
)
. Let X R

I be a right invariant differential operator with |I | � k,

then ζ X R
I u ∈ L2 (GT ). We would like to apply Proposition 2.15 to X R

I u, but in
order to do that we would need to know that X R

I u ∈ W 1,2
(
(0, T ) , L2

loc (G)
)
with

X R
I u (0, ·) = 0, which is unclear. Then, let uε be the mollified version of u as in the

proof of Proposition 2.15, so that:

X R
I (uε) (t, x) =

∫

G

(
X R
I φε

) (
x ◦ z−1

)
u (t, z) dz

which is a smooth function in x , and since X R
I φε is integrable (although its L1 (G)

norm is not uniformly bounded with respect to ε) we have

X R
I (uε) ∈ L2

(
(0, T ) , L2

loc (G)
)

(see (2.13)) and since ∂t u ∈ L2
(
(0, T ) , L2

loc (G)
)
, the same is true for ∂t X R

I (uε),
which equals X R

I (∂t u)ε. Then,

X R
I (uε) ∈ W 1,2

(
(0, T ) , L2

loc (G)
)
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which also implies

X R
I (uε) (0, x) =

∫

G

(
X R
I φε

) (
x ◦ z−1

)
u (0, z) dz = 0

since u (0, ·) = 0 in L2 (G). We claim that

L
(
X R
I (uε)

)
= X R

I (L (uε)) = X R
I (Fε)

at least in weak sense. Actually, noting that L and X R
I commute,

∫

G

L
(
X R
I (uε)

)
(t, x) ϕ (x) dx =

∫

G

X R
I (L (uε)) (t, x) ϕ (x) dx

= −
∫

G

L (uε) (t, x)
(
X R
I ϕ
)

(x) dx

since X R
I ϕ ∈ C∞

0 (G) and L (uε) = Fε for a.e. t and x (see (2.15))

= −
∫

G

Fε (t, x)
(
X R
I ϕ
)

(x) dx =
∫

G

X R
I (Fε) (t, x) ϕ (x) dx

for a.e. t . Therefore, we can apply Proposition 2.15 to X R
I (uε) getting

∥
∥∥ζ X R

I (uε)

∥
∥∥
L2
(
(0,T ),W 1,2

X R (G)
)

� c

{∥∥∥ζ1X R
I (Fε)

∥∥∥
L2
(
(0,T ),Ws,2

X R (G)
) +

∥∥∥ζ1X R
I (uε)

∥∥∥
L2(GT )

}

.

Noting that
∥∥∥ζ1X R

I (uε)

∥∥∥
L2(GT )

�
∥∥∥ζ1X R

I ′ (uε)

∥∥∥
L2
(
(0,T ),W 1,2

X R (G)
)

for some I ′ with
∣∣I ′∣∣ = |I | − 1, we can proceed iteratively getting, for some different

cutoff function ζ2 � ζ1,

∥∥
∥ζ X R

I (uε)

∥∥
∥
L2
(
(0,T ),W 1,2

XR (G)
) � c

{∥∥
∥ζ2X R

I (Fε)

∥∥
∥
L2
(
(0,T ),Ws,2

XR (G)
) + ‖ζ2uε‖L2(GT )

}

.

(2.19)

From this bound, which is uniform with respect to ε, reasoning like in the proof of

Proposition 2.15 we read that, under the assumption X R
I F ∈ L2

(
(0, T ) ,Ws2,2

X R (G)
)
,

which is true as soon as F ∈ L2
(
(0, T ) ,Wk+s2,2

X R (G)
)
, we have the uniform bound-

edness of
∥∥∥ζ X R

I (uε)

∥∥∥
L2
(
(0,T ),W 1,2

X R (G)
) ,
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which implies the weak convergence in L2
(
(0, T ) ,W 1,2

X R (G)
)
of (a subsequence of)

ζ X R
I (uε) to some g. In particular, the convergence is in L2 (GT ) , which implies that

for every η ∈ L2 (0, T ) and φ ∈ C∞
0 (G)

∫ T

0
η (t)

∫

G

ζ (x) X R
I (uε) (t, x) φ (x) dxdt →

∫ T

0
η (t)

∫

G

g (t, x) φ (x) dxdt.

Pick the cutoff function ζ (x) = 1 on some bounded open set �, then for every
φ ∈ C∞

0 (�) we have

∫ T

0
η (t)

∫

G

X R
I (uε) (t, x) φ (x) dxdt →

∫ T

0
η (t)

∫

G

g (t, x) φ (x) dxdt.

On the other hand,

∫ T

0
η (t)

∫

G

X R
I (uε) (t, x) φ (x) dxdt

= (−1)|I |
∫ T

0
η (t)

∫

G

uε (t, x) X R
I φ (x) dxdt

→ (−1)|I |
∫ T

0
η (t)

∫

G

u (t, x) X R
I φ (x) dxdt,

hence
∫ T

0
η (t)

∫

G

g (t, x) φ (x) dxdt = (−1)|I |
∫ T

0
η (t)

∫

G

u (t, x) X R
I φ (x) dxdt

which implies, for a.e. t and a.e. x ∈ �,

g (t, x) = X R
I u (t, x)

in the sense of weak derivatives. This means that ζ X R
I u ∈ L2

(
(0, T ) ,W 1,2

X R (G)
)
and

ζ X R
I (uε) → ζ X R

I u weakly in L
2
(
(0, T ) ,W 1,2

X R (G)
)
, which also implies, by (2.19),

∥∥∥ζ X R
I u
∥∥∥
L2
(
(0,T ),W 1,2

X R (G)
) � c

{∥∥∥ζ2X R
I F

∥∥∥
L2
(
(0,T ),Ws,2

X R (G)
) + ‖ζ2u‖L2(GT )

}

.

So we are done.
(ii) Let ζ ∈ C∞

0 (G) and u ∈ W 2s,2
X R ,loc

(G). Inequalities

‖ζu‖W 2,2
X (G)

� c ‖ζu‖W 2,2(G) � c ‖ζu‖W 2s,2
X R (G)

show that

W 2s,2
X R ,loc

(G) ⊂ W 2,2
X,loc (G) .
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Let u ∈ W 1,2
(
(0, T ) , L2

loc (G)
)
, u (0, ·) = 0, be a weak solution to Lu = F ∈

L2
(
(0, T ) ,Wh,2

X R ,loc
(G)

)
. By point (i), if ζ1F ∈ L2

(
(0, T ) ,Wk+s2−1,2

X R (G)
)
, then

ζu ∈ L2
(
(0, T ) ,Wk,2

X R (G)
)
. In particular, if h ≥ 2s + s2 − 1 then

u ∈ L2
(
(0, T ) ,W 2,2

X,loc (G)
)
and this implies that u is actually a strong solution

to the equation Lu = F , so that for a.e. t and a.e. x we have

− ut (t, x) +
q∑

i, j=1

ai j (t) Xi X ju (t, x) = F (t, x) . (2.20)

This identity allows to transfer further x-regularity of both F and u to ut : if, for
some k = 1, 2, 3, . . ., we know that h ≥ k + 2s + s2 − 1, then by point (i)

u ∈ L2
(
(0, T ) ,Wk+2s,2

X R ,loc
(G)

)
, so that Xi X ju ∈ L2

(
(0, T ) ,Wk,2

X R ,loc
(G)

)
, hence

by (2.20) ut ∈ L2
(
(0, T ) ,Wk,2

X R ,loc
(G)

)
and u ∈ W 1,2

(
(0, T ) ,Wk,2

X R ,loc
(G)

)
.

This implies that for |I | � k, X R
I u ∈ C0

(
[0, T ] , L2

loc (G)
)
. Moreover, we can

write, for every t1, t2 ∈ [0, T ] and a.e. x ∈ G,

u (t2, x) − u (t1, x) =
∫ t2

t1
∂t u (t, x) dt (2.21)

X R
I u (t2, x) − X R

I u (t1, x) =
∫ t2

t1
∂t X

R
I u (t, x) dt. (2.22)

Letting t1 = 0 in (2.21), we get

u (t2, x) =
∫ t2

0
∂t u (t, x) dt,

an identity which can also be differentiated with respect to X R
I , giving

X R
I u (t2, x) =

∫ t2

0
X R
I ∂t u (t, x) dt,

which implies

X R
I u (0, ·) = 0.

This completes the proof of (ii).
(iii) Next,multiplying both sides of (2.22) for ζ ∈ C∞

0 (G) and taking L2 (G)-norms
we get, recalling that X R

I commutes with L:
∫

G

ζ (x)2
∣
∣∣X R

I u (t2, x) − X R
I u (t2, x)

∣
∣∣
2
dx

�
∫

G

ζ (x)2

∣
∣∣
∣∣
∣

∫ t2

t1

⎧
⎨

⎩
−X R

I Lu (t, x) +
q∑

i, j=1

ai j (t) Xi X j X
R
I u (t, x)

⎫
⎬

⎭
dt

∣
∣∣
∣∣
∣

2

dx
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�
∫

G

ζ (x)2

⎛

⎝
∫ t2

t1

⎧
⎨

⎩

∣∣
∣X R

I F (t, x)
∣∣
∣+ cν

q∑

i, j=1

∣∣
∣Xi X j X

R
I u (t, x)

∣∣
∣

⎫
⎬

⎭
dt

⎞

⎠

2

dx

�
∫

G

ζ (x)2 |t2 − t1|
⎧
⎨

⎩

∫ T

0

∣∣
∣X R

I F (t, x)
∣∣
∣
2
dt + cν

q∑

i, j=1

∫ T

0

∣∣
∣Xi X j X

R
I u (t, x)

∣∣
∣
2
dt

⎫
⎬

⎭
dx

= |t2 − t1|
⎧
⎨

⎩

∥
∥∥ζ X R

I F
∥
∥∥
2

L2(GT )
+ cν

q∑

i, j=1

∥
∥∥ζ Xi X j X

R
I u
∥
∥∥
2

L2(GT )

⎫
⎬

⎭
.

By point (i) of this theorem, this implies that

sup
0<t1<t2<T

∫
G

ζ (x)2
∣∣X R

I u (t2, x) − X R
I u (t2, x)

∣∣2 dx
|t2 − t1|

� c

{
‖ζ1F‖

L2
(
(0,T ),Wh,2

X R (G)
) + ‖ζ1u‖L2(GT )

}2

for some h large enough and any cutoff function ζ1 such that ζ ≺ ζ1. On the other
hand, letting

v (x) = u (t2, x) − u (t2, x)

and noting that every cartesian derivative ∂α
x v (x) can be bounded, uniformly on a

compact set of G by a suitable linear combination of X R
I v, we arrive to a bound

sup
0<t1<t2<T

∥∥ζ
[
∂α
x u (t2, ·) − ∂α

x u (t1, ·)
]∥∥

L2(G)

|t2 − t1|1/2

� c

{
‖ζ1F‖

L2
(
(0,T ),W

h1,2

X R (G)
) + ‖ζ1u‖L2(GT )

}

for some integer h1 > h. And since also the sup of
∣∣∂α

x u (t2, ·) − ∂α
x u (t1, ·)

∣∣ can be
bounded, by Sobolev embeddings, by suitable L2 norms of higher order derivatives,
we also have a control

sup
0<t1<t2<T

sup
x∈G

∣∣ζ (x)
[
∂α
x u (t2, x) − ∂α

x u (t1, x)
]∣∣

|t2 − t1|1/2

� c

{
‖ζ1F‖

L2
(
(0,T ),W

h2,2

X R (G)
) + ‖ζ1u‖L2(GT )

}

for some integer h2 > h1. Also, since ∂α
x u (0, x) = 0, this implies

sup
x∈G

∣∣ζ (x) ∂α
x u (t, x)

∣∣ � c |t |1/2
{
‖ζ1F‖

L2
(
(0,T ),W

h2,2

X R (G)
) + ‖ζ1u‖L2(GT )

}
.

This ends the proof of (iii). The previous result also shows that

ζ1F ∈ L2 (0, T ) ,C∞ (G) �⇒ ζu ∈ C0 ([0, T ] ,C∞ (G)
)
.
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Then, the equality

ut =
q∑

i, j=1

ai j (t) Xi X ju − F

also implies that

ζut ∈ L2 ((0, T ) ,C∞ (G)
)
,

that is (iv). �

We end this section with an easy example showing that the regularity properties of
the solution cannot be improved for bounded measurable coefficients ai j (t).

Example 2.16. Let us consider the uniformly parabolic operator

Lu = −ut + a (t) uxx

with a ∈ L∞ (R), a (t) ≥ ν > 0. The function

u (t, x) = exp

(
−
∫ t

0
a (τ ) dτ

)
sin x

satisfies Lu = 0; u is smooth w.r.t. x and only Lipschitz continuous w.r.t. t . Let

U (t, x) = tαu (t, x) for some α ∈
(
1

2
, 1

)
.

Then, U solves the problem
{LU = F for x ∈ R, t > 0
U (0, x) = 0

with F (t, x) = −αtα−1u (t, x), so that, as soon as α > 1
2 ,

F ∈ L2 ((0, T ) × R) .

Moreover,

Ut (t, x) = αtα−1u (t, x) − tαa (t) u (t, x) ∈ L2 ((0, T ) ,C∞ (R)
)

Hence,

U ∈ W 1,2 ((0, T ) ,C∞ (R)
) ∩ C0,α ([0, T ] ,C∞ (R)

)
.

Since α > 1
2 can be chosen as close to 1/2 as we want, this shows that the regularity

with respect to t expressed by Theorem 2.3 cannot be improved. Also, note that the
Hölder continuity w.r.t. t cannot be improved to Lipschitz continuity just remaining
far off t = 0: if we multiply the above U (t, x) for |t − t0|α we get a similar example
exhibiting a α-Hölder continuity w.r.t. t near t = t0.
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3. Regularization of distributional solutions

In this section, we want to extend our smoothness result, established in Theorem 2.3
(iv) for functions inW 1,2

(
(0, T ) , L2

loc (G)
)
, to more general distributions. First of all,

we need to make precise the distributional notions that we will use.

Definition 3.1. Let � ⊆ G be an open set. We will say that u ∈ L2
(
(0, T ) ,D′ (�)

)

if u ∈ D′ (�T ) and for every φ ∈ D (�) there exists a function hφ ∈ L2 (0, T ) such
that for every ψ ∈ D (0, T ) ,

〈u, φ ⊗ ψ〉 =
∫ T

0
hφ (t) ψ (t) dt.

In this case we will write, more transparently, hφ (t) = 〈u (t, ·) , φ〉 and

〈u, φ (x) ψ (t)〉 =
∫ T

0
〈u (t, ·) , φ〉 ψ (t) dt

for every φ ∈ D (�) and ψ ∈ D (0, T ) (and therefore also for every ψ ∈ L2 (0, T )).
Analogously, we will say that u ∈ W 1,2

(
(0, T ) ,D′ (�)

)
if u ∈ D′ (�T ) with both

u and its distributional derivative ∂t u belonging to L2
(
(0, T ) ,D′ (�)

)
.

We will say that u is a distributional solution to Lu = F in �T , with F ∈
L2
(
(0, T ) ,D′ (�)

)
if u ∈ W 1,2

(
(0, T ) ,D′ (�)

)
and:

〈−∂t u (t, ·) , φ〉 +
q∑

i, j=1

ai j (t)
〈
Xi X ju (t, ·) , φ

〉 = 〈F (t, ·) , φ〉

for every φ ∈ D (�) and a.e. t ∈ (0, T ), or equivalently:

∫ T

0

⎧
⎨

⎩
〈−∂t u (t, ·) , φ〉 +

q∑

i, j=1

ai j (t)
〈
u (t, ·) , Xi X jφ

〉
⎫
⎬

⎭
ψ (t) dt

=
∫ T

0
〈F (t, ·) , φ〉 ψ (t) dt

∀φ ∈ D (�) ,ψ ∈ L2 (0, T ).

The proof of a regularity result for distributional solutions usually begins identifying
the given distribution, locally, with some derivative of a continuous function, in view
of the classical result about the local structure of distributions. For distributions in
the class L2

(
(0, T ) ,D′ (�)

)
, we could not find in the literature any reference for a

similar result. So we will explicitly assume that our distribution could be seen, on a
fixed domain compactly contained in �, as a space derivative of a suitable function:

Definition 3.2. Let u ∈ L2
(
(0, T ) ,D′ (�)

)
for some open set � ⊆ G. We will say

that u satisfies the x-finite order assumption on � if:
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there exists a function h ∈ L2
(
(0, T ) , L1

loc (�)
)
and a multiindex α such that

u = ∂αh

∂xα
in D′ (�T ) (3.1)

that is

〈u, φ (x) ψ (t)〉 =
∫ T

0

(
(−1)|α|

∫

�′
h (t, x)

∂αφ

∂xα
(x) dx

)
ψ (t) dt

∀φ ∈ D (�) ,ψ ∈ L2 (0, T ).
If u ∈ W 1,2

(
(0, T ) ,D′ (�)

)
, we will say that u satisfies the x-finite order assump-

tion on � if (3.1) holds with h ∈ W 1,2
(
(0, T ) , L1

loc (�)
)
.

Note that if u ∈ W 1,2
(
(0, T ) ,D′ (�)

)
satisfies the x-finite order assumption on

�′, then h ∈ C0
(
[0, T ] , L1

loc (�)
)
. In particular, saying that u (0, ·) = 0 means that

h (0, ·) = 0 a.e. in �.
The aim of this section is to prove that:

Theorem 3.3. For some bounded domain � ⊂ G, let u be a distributional solution
to Lu = F in �T with F ∈ L2

(
(0, T ) ,D′ (�)

)
. Assume that u satisfies the x-finite

order assumption (see Definition 3.2) and u (0, ·) = 0 in �. Then, for every domain
�′ � �, if

F ∈ L2 ((0, T ) ,C∞ (
�
))

then

u ∈ C0
(
[0, T ] ,C∞ (

�′
))

and ut ∈ L2
(
(0, T ) ,C∞ (

�′
))

.

In order to prove Theorem 3.3, we will follow the technique used in [2, §4] for sub-
laplacians. Therefore, some proofs, which contain almost straightforward adaptations
of corresponding arguments in [2, §4], will be omitted.

Let us consider the second-order differential operator

LR =
N∑

j=1

(
X R

j

)2

built using the whole canonical base of right invariant vector fields. This is a right
invariant (but no longer homogeneous) uniformly elliptic operator in G, which at the
origin coincides with the standard Laplacian. Therefore, the fundamental solution of
the Laplacian, γ (x) = cN |x |2−N , can be used to build a parametrix for LR : letting
γ̃ (x) = γ (x) η (x), where η is a cutoff function equal to 1 in a neighborhood of the
origin, one can prove the following:

Proposition 3.4. (see [2, Prop. 4.2.]) Let V ⊂ G be a neighborhood of the origin.
There exist γ̃ ∈ C∞ (G\ {0}) and ω ∈ C∞ (G\ {0}), both supported in V , satisfying

|γ̃ (x)| � c

|x |N−2 (3.2)
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∣∣∂xi γ̃ (x)
∣∣ � c

|x |N−1 i = 1, 2, . . . , N (3.3)

|ω (x)| � c

|x |N−2

and such that in the sense of distributions

LR γ̃ = −δ + ω.

(Here δ is the Dirac mass as a distribution in R
N .)

Let us now consider three open sets inG,�′ � �′′ � � and let V be a neighborhood
of the origin such that V−1◦�′ ⊂ �′′. Define γ̃ as in Proposition 3.4, with γ̃ supported
in V . The convolution with γ̃ defines a regularizing operator that acts on functions
u ∈ L1

loc (GT ) as follows. For every x ∈ �′ and t ∈ [0, T ], we set

TV u (t, x) = (γ̃ ∗ u (t, ·)) (x) =
∫

G

γ̃
(
x ◦ y−1

)
u (t, y) dy. (3.4)

The subscript V in TV recalls that the definition of the operator depends on the choice
of the neighborhood V used to define γ̃ .

Note that

TV : L2
(
(0, T ) , L1 (�′′)) −→ L2

(
(0, T ) , L1 (�′)) .

Namely, for x ∈ �′ and x ◦ y−1 ∈ sprt γ̃ , the point y = (
x ◦ y−1

)−1 ◦ x ranges in
V−1 ◦ �′ ⊂ �′′; hence, introducing characteristic functions,

χ�′ (x) TV u (t, x) =
∫

G

(γ̃ χV )
(
x ◦ y−1

)
u (t, y) χ�′′ (y) dy,

or

χ�′TV u (t, ·) = γ̃ χV ∗ u (t, ·) χ�′′ (3.5)

which by Young’s inequality gives, at least for a.e. t ,

‖TV u (t, ·)‖L1(�′) � ‖γ̃ ‖L1(V ) ‖u (t, ·)‖L1(�′′)

and hence

‖TV u‖L2((0,T ),L1(�′)) � ‖γ̃ ‖L1(V ) ‖u‖L2((0,T ),L1(�′′)) .

Also, TV acts on distributions u ∈ L2
(
(0, T ) ,D′ (�)

)
as follows. For every ϕ ∈

D (�′) we set

〈TV u (t, ·) , ϕ〉 = 〈
u (t, ·) , T ∗

Vϕ
〉

(3.6)
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where

T ∗
Vϕ (y) =

∫

G

γ̃
(
x ◦ y−1

)
ϕ (x) dx .

Observe that the assumption on V implies that T ∗
Vϕ is a test function in�′. Namely,

for x ∈ sprt ϕ and x ◦ y−1 ∈ sprt γ̃ the point y ranges in �′′ � �. The function T ∗
Vϕ

is smooth, as one can see writing

T ∗
Vϕ (y) =

∫

G

γ̃ (z) ϕ (z ◦ y) dx

and computing left invariant derivatives

XI
(
T ∗
Vϕ
)
(y) =

∫

G

γ̃ (z) (XIϕ) (z ◦ y) dx .

Therefore, the pairing (3.6) is well defined. Also, from the previous identity we easily
read that if ϕk → 0 in D (�) then T ∗

Vϕk → 0 in D (�′). Hence, TV u (t, ·) ∈ D′ (�′).
Moreover,

∫ T

0
|〈TV u (t, ·) , ϕ〉|2 dt =

∫ T

0

∣∣〈u (t, ·) , T ∗
Vϕ
〉∣∣2 dt < ∞

(just by definition of L2
(
(0, T ) ,D′ (�)

)
), so that

TV : L2 ((0, T ) ,D′ (�)
) −→ L2 ((0, T ) ,D′ (�′)) .

Next, we need to prove the regularizing properties of TV . The following result is an
adaptation of [2, Prop. 4.4.].

Proposition 3.5. (Regularizing properties of TV ) Let �′ � �′′ � �. There exists
a neighborhood V of the origin such that the operator TV defined in (3.6) has the
following properties.
(1) Let u ∈ D′ ((0, T ) × �) such that u = ∂α

∂xα g, for some g ∈ L2
(
(0, T ) , L1

loc (�)
)

and multiindex α. Then TV u ∈ L2
(
(0, T ) ,D′ (�′)) and

TV u =
∑

|β|�|α|−1

∂β
x Aβ in (0, T ) × �′

for suitable Aβ ∈ L2
(
(0, T ) , L1

loc

(
�′)).

(2) Let u ∈ L2
(
(0, T ) , L p

loc (�)
)
for some 1 � p < N

2 , then

TV u ∈ L2
(
(0, T ) , L p′ (

�′)) for
1

p′ >
1

p
− 2

N

and

‖TV u‖
L2
(
(0,T ),L p′ (�′)

) � c ‖u‖L2
(
(0,T ),L p

loc(�)
) .

(3) Let u ∈ L2
(
(0, T ) , L2

loc (�)
)
then TV u ∈ L2

(
(0, T ) ,W 1,2

X

(
�′)

)
.

(4) Let u ∈ L2
(
(0, T ) ,C∞ (

�
))
, then TV u ∈ L2

(
(0, T ) ,C∞

(
�′
))

.
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The proof of this result is a quite straightforward adaptation of the proof of [2, Prop.
4.4] and therefore will be omitted.

Corollary 3.6. Let �′ � � � G. For every distribution u ∈ D′ ((0, T ) × �) such
that u = ∂α

x g for some multindex α and g ∈ L2
(
(0, T ) , L1

loc (�)
)
there exist a neigh-

borhoodof the origin V andan integer K such that (TV )K u ∈ L2
(
(0, T ) ,W 1,2

X

(
�′)

)
.

The proof follows exactly that of [2, Corollary 4.5].

Proposition 3.7. Let �′ � � and V small enough so that V ◦ �′ � �. Then, for
any distribution u ∈ L2

(
(0, T ) ,D′ (�)

)
and every left invariant operator P onG we

have

PTV u = TVPu in L2 ((0, T ) ,D′ (�′)) (3.7)

Also, if u ∈ W 1,2
(
(0, T ) ,D′ (�)

)
then

LTV u = TVLu in L2 ((0, T ) ,D′ (�′)) (3.8)

Remark 3.8. The previous proposition can be obviously iterated writing

PT K
V u = T K

V Pu in L2 ((0, T ) ,D′ (�′))

LT K
V u = T K

V Lu in L2 ((0, T ) ,D′ (�′))

for any fixed positive integer K , provided V is chosen small enough to have

V ◦ V ◦ · · · ◦ V︸ ︷︷ ︸
K times

◦ �′ � �.

Proof. Let u ∈ L2
(
(0, T ) ,D′ (�)

)
, then TV u ∈ L2

(
(0, T ) ,D′ (�′)) and for every

ϕ ∈ D (�′) we can write, denoting by P∗ the transpose operator of P and recalling
that P∗ is still left invariant,

〈PTV u (t, ·) , ϕ〉 = 〈
TV u (t, ·) ,P∗ϕ

〉 =
〈
u (t, y) ,

∫

G

γ̃
(
x ◦ y−1

)
P∗ϕ (x) dx

〉

=
〈
u (t, y) ,

∫

G

γ̃ (w)P∗ϕ (w ◦ y) dw

〉

=
〈
u (t, y) ,P∗

∫

G

γ̃ (w) ϕ (w ◦ y) dw

〉

=
〈
Pu (t, y) ,

∫

G

γ̃ (w) ϕ (w ◦ y) dw

〉

=
〈
Pu (t, y) ,

∫

G

γ̃
(
x ◦ y−1

)
ϕ (x) dx

〉

= 〈TVPu (t, ·) , ϕ〉 .

where the above equalities hold for a.e. t , as usual. This implies (3.7).
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To prove (3.8), it is enough to show that

∂t TV u = TV ∂t u for u ∈ W 1,2 ((0, T ) ,D′ (�)
)
.

Actually, for every ψ ∈ D (0, T ) and ϕ ∈ D (�′) we have
∫ T

0
ψ (t) 〈∂t TV u (t, ·) , ϕ〉 dt = 〈∂t TV u, ϕ ⊗ ψ〉

= − 〈TV u, ϕ ⊗ ∂tψ〉 = −
∫ T

0
∂tψ (t) 〈TV u (t, ·) , ϕ〉 dt

= −
∫ T

0
∂tψ (t)

〈
u (t, y) ,

∫

G

γ̃
(
x ◦ y−1

)
ϕ (x) dx

〉
dt

= − 〈
u, T ∗

Vϕ ⊗ ∂tψ
〉 = 〈

∂t u, T ∗
Vϕ ⊗ ψ

〉

=
∫ T

0
ψ (t)

〈
∂t u (t, y) ,

∫

G

γ̃
(
x ◦ y−1

)
ϕ (x) dx

〉
dt

=
∫ T

0
ψ (t) 〈TV ∂t u (t, ·) , ϕ〉 dt.

Hence, ∂t TV u = TV ∂t u. �

Lemma 3.9. Let �′ � �′′ � � and u ∈ L2
(
(0, T ) ,D′ (�)

)
satisfying the x-finite

order assumption in �. There exists V small enough so that if

TV u ∈ L2
(
(0, T ) ,C∞ (

�′′
))

then u ∈ L2
(
(0, T ) ,W 1,2

X

(
�′)

)
.

The proof of this lemma is very similar to that of [2, Lemma 4.8] and therefore will
be omitted.

Proof of Theorem 3.3. Fix �′ � �′′ � �′′′ � �. By Corollary 3.6, there ex-
ist a positive integer K and a neighborhood V of the origin such that T K

V u ∈ L2
(
(0, T ) ,W 1,2

X

(
�′′′)

)
. Applying Corollary 3.6 also to ∂t u, and possibly choosing a

larger integer K and a smaller neighborhood V , we can also assume

T K
V ∂t u = ∂t T

K
V u ∈ L2

(
(0, T ) ,W 1,2

X

(
�′′′)) ,

so that

T K
V u ∈ W 1,2

(
(0, T ) ,W 1,2

X

(
�′′′)) .

Let now U ⊆ V a neighborhood of the origin such that

U ◦U ◦ · · · ◦U︸ ︷︷ ︸
2K times

◦ �′′ � �′′′.
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Let

� j = U ◦U ◦ · · · ◦U︸ ︷︷ ︸
j times

◦ �′′ for j = 1, 2, . . . , 2K

�0 = �′′;
so that �2K � �′′′. Clearly, it is still true that

T K
U u ∈ L2

(
(0, T ) ,W 1,2

X

(
�′′′))

(having replaced the operator TV with TU , based on a smaller neighborhood).
By Proposition 3.7 and Remark 3.8, we have

L
(
T K
U u

)
= T K

U F in L2 ((0, T ) ,D′ (�2K )
)
. (3.9)

Since, F ∈ L2
(
(0, T ) ,C∞ (

�
))
, by point (4) in Proposition 3.5 we have T K

U F ∈
L2
(
(0, T ) ,C∞ (

�2K
))
. By (3.9) thenL (T K

U u
) ∈ L2

(
(0, T ) ,C∞ (

�2K
))
and, since

T K
U u ∈ W 1,2

(
(0, T ) ,W 1,2

X (�2K )
)
, we can apply Theorem 2.3 (iv) to conclude that

T K
U u ∈ C0

(
[0, T ] ,C∞ (

�2K−1
))

and

T K
U ut ∈ L2 ((0, T ) ,C∞ (

�2K−1
))

.

ApplyingLemma3.9 tou and ∂t u,we see thatT
K−1
U u ∈ W 1,2

(
(0, T ) ,W 1,2

X (�2K−2)
)
.

Iterating this argument K times shows that u ∈ W 1,2
(
(0, T ) ,W 1,2

X

(
�′′)

)
. Since

F ∈ L2
(
(0, T ) ,C∞ (

�
))

we can apply again Theorem 2.3 (iv) to conclude u ∈
C0

(
[0, T ] ,C∞

(
�′
))

and ut ∈ L2
(
(0, T ) ,C∞

(
�′
))

. �

Funding Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

REFERENCES

[1] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni: Stratified Lie groups and potential theory for their
sub-Laplacians. Springer, Berlin, 2007.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Bramanti J. Evol. Equ.

[2] M. Bramanti, L. Brandolini: A proof of Hörmander’s theorem for sublaplacians on Carnot groups.
Nonlinear Anal. 126 (2015), 170–200.

[3] M. Bramanti, L. Brandolini: Schauder estimates for parabolic nondivergence operators of Hörman-
der type. Journal of Differential Equations, 234 (2007), no.1, 177-245.

[4] M. Bramanti, L. Brandolini, E. Lanconelli, F. Uguzzoni: Non-divergence equations structured on
Hörmander vector fields: heat kernels and Harnack inequalities. Memoirs of the AMS 204 (2010),
no. 961, 1-136.

[5] M. Bramanti, M. Zhu: L p and Schauder estimates for nonvariational operators structured on Hör-
mander vector fields with drift. Analysis & PDE 6-8 (2013), 1793-1855.

[6] F. Colombini, D. Del Santo, M. Reissig: On the optimal regularity of coefficients in hyperbolic
Cauchy problems. Bull. Sci. Math. 127 (2003), no. 4, 328–347.

[7] F. Colombini, E. De Giorgi, S. Spagnolo: Sur les équations hyperboliques avec des coefficients qui
ne dépendent que du temps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), no. 3, 511–559.

[8] G. B. Folland: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13
(1975), no. 2, 161–207.

[9] C. Garetto, M. Ruzhansky: Hyperbolic second order equations with non-regular time dependent
coefficients. Arch. Ration. Mech. Anal. 217 (2015), no. 1, 113–154.

[10] L. Hörmander: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
[11] J. J. Kohn: Pseudo-differential operators and hypoellipticity. Partial differential equations (Proc.

Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 61–69. Amer. Math.
Soc., Providence, R.I., 1973.

[12] N. V. Krylov: Hörmander’s theorem for parabolic equations with coefficients measurable in the
time variable. SIAM J. Math. Anal. 46 (2014), no. 1, 854–870.

[13] N. V. Krylov: Hörmander’s theorem for stochastic partial differential equations. Reprinted in St.
Petersburg Math. J. 27 (2016), no. 3, 461–479. Algebra i Analiz 27 (2015), no. 3, 157–182.

[14] N. V. Krylov: Hypoellipticity for filtering problems of partially observable diffusion processes.
Probab. Theory Related Fields 161 (2015), no. 3-4, 687–718.
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