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Space regularity for evolution operators modeled on Héormander
vector fields with time dependent measurable coefficients

MARCO BRAMANTI

Abstract. We consider a heat-type operator £ structured on the left invariant 1-homogeneous vector fields
which are generators of a Carnot group, with a uniformly positive matrix of bounded measurable coefficients
depending only on time. We prove that if Lu is smooth with respect to the space variables, the same is
true for u, with quantitative regularity estimates in the scale of Sobolev spaces defined by right invariant
vector fields. Moreover, the solution and its space derivatives of every order satisfy a 1/2-Holder continuity
estimate with respect to time. The result is proved both for weak solutions and for distributional solutions,
in a suitable sense.

Let G = (RY, o, D;) be a Carnot group and let X, ..., X, be the generators of its

Lie algebra, so that the canonical sublaplacian
q
G
i=1
and the corresponding heat operator
q
2
D Xi—
i=1

are hypoelliptic in RV and RN+, respectively. (Precise definitions will be given in
Sect. 1.) Let us now consider

q
L= Za,, ) XiX; — & (0.1)
ij=1
where { ajj (t)}?j:l is a real, symmetric, uniformly positive matrix of bounded mea-
surable coefficients:
q
vIER < D ay & < vl P 0.2)
i,j=1
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forsome v > 0, every £ € R?,a.e.t € (0, T'). We want to prove a regularity result for
L in the space variables, that is, roughly speaking: if u € W2 ((O, T), leOC (RN)) is
a weak solution to Lu = F, u (0,-) = 0 and F is smooth, with respect to the space
variables, in some domain (0, T') x €2, then the same is true for u, with quantitative
regularity estimates on u in terms of Lu. Also, we will prove that, if F is smooth w.r.t.
the space variables, then u and every space derivative 9%u are %-Hﬁlder continuous
with respect to 7. See Theorem 2.3 for the precise statements. This kind of regularity

is the best we can hope, even for a uniformly parabolic operator
Lu=u; —a(t)uy

assoon as a is only L™ (see Example 2.16). The above regularity result can be extended
also to distributional solutions belonging to w2 ((O, T),D (RN )) (see Theorem 3.3
for the precise statement). This can be seen as a kind of Hormander’s theorem with
respect to the space variables.

A result of this kind has been proved by Krylov [12], who considered operators

q
L=0— Z LI+ Lo
k=1
with
N
Le=Y ot x)0y,

i=1

where the functions o*f (¢, x) are assumed to have x-derivatives of every order uni-
formly bounded for x € RN andt e (0, 1), and the vector fields Lo, Ly, ..., Ly for
every fixed ¢ satisfy Hormander’s condition in R . Now, every operator (0.1) can be
rewritten as

q
—L=0-)Y Lj
k=1

with
) q
o (1,x) =) mjx (1) bji (x)

j=1
where

N

Xj=) bji(x)dy

i=1

and

q
aij (t) =y mig () mjx (¢)

k=1
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so that

q
‘Dga”‘ (t,x)‘ <Y | Dby ()
j=1
Since the coefficients b j; (x) of the generators on a Carnot group are polynomials, the
functions |D§‘ bji (x)] are not globally bounded on RY . Therefore, although the class
of operators that we consider is strictly contained in the class considered by Krylov
as to their structure, the assumption on o (¢, x) made in [12] is not satisfied in our
situation.

Actually, the technique employed in this paper is very different from that in [12]. In
[12], following the classical approach introduced by Kohn [11] and Oleinik-Radkevi¢
[15], pseudodifferential operators and Sobolev spaces of fractional order are used.
Here, instead, we adapt to the evolutionary case the technique introduced in [2] to give
a proof of Hormander’s theorem for sublaplacians on Carnot groups. The main idea
consists in measuring the regularity of solutions of an equation Lu = f, where L is
a left invariant operator, in terms of Sobolev spaces induced by right invariant vector
fields. Since aright invariant operator and a left invariant operator always commute, this
approach greatly simplifies the proof of higher-order estimates. We handle Sobolev
norms with respect to vector fields by means of equivalent norms defined in terms
of finite difference operators, in the directions of the vector fields X1, ..., X,. This
feature of our argument is reminiscent of the original proof of Hérmander’s theorem
given in [10], although in the richer framework of Carnot groups the proof becomes
much simpler.

Let us now give some motivation for the present research and describe some related
literature. The regularity result proved in [12] has been applied by the same Author
in [13] to prove an analogous result for stochastic PDEs, and in [14], in the context
of filtering problems. We refer to [13] for motivations to prove this result without any
continuity assumption on the coefficients with respect to time.

Hyperbolic operators of the kind

n
Hu =u; — Z aij () ty;x;
i,j=1
with merely bounded measurable a;; have been studied by many authors, see, for in-
stance, [6,7,9] and references therein. In particular, [9] gives some physical motivation
to study this class of operators under no regularity condition on a;; (t).
Operators of the kind

q
L= ajt.x)X;X;— 0. 0.3)
i,j=1
satisfying (0.2) have been studied by several Authors, assuming the coefficients a;; (¢, x)

either Holder continuous or with vanishing mean oscillation, and proving a priori es-
timates and regularity results in the scale of Holder or Sobolev spaces induced by
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the vector fields {X;}¢ ;i—; and the distance they induce. See, for instance, [3-5] and
references therein. In [4], for the operator £ with Holder continuous coefficients, a
heat kernel has been constructed and shown to satisfy sharp Gaussian estimates, which
also imply a scale invariant Harnack inequality.

The operators (0.1) studied in the present paper can also be seen as model operators
to study the more general class (0.3) with the coefficients satisfying some moderate
regularity assumption in x, but only L° with respect to time, an area of research that
we plan to attack in the future.

1. Preliminaries about Carnot groups

Letus recall some standard definitions and results that will be useful in the following.
For the proofs of these facts, the reader is referred to [8], [1, Chap.1]. A homogeneous
group (in RV) is a Lie group (RN , o) (where the group operation o will be thought as a
“translation”) endowed with a one parameter family {D; }, - o of group automorphisms
(“dilations”) which act this way:

Dy (x1,x2, ..., xn) = (Ax1, A%x2, ..., A% xp) (1.1)

for suitable integers 1 = o) < a2 < -+ < ay. We will write G = (RV, 0, D;) to
denote this structure. The number

N
0= Zai
i=1

will be called homogeneous dimension of G. A homogeneous norm on G is a contin-
uous function

I-ll : G — [0, +00),
such that, for some constant ¢ > 0 and every x, y € G,

(@) Ix|=0<==x=0

@) IDn I =2lx] VA >0
@@ii) ||x=1| < cllxll

@) lxoyll <cdxll+1lyl).

We will always use the symbol ||-||, without any subscript, to denote a homogeneous
norm in G. Examples of homogeneous norms are the following:

L
lxll = —max fxg|
k=1,2,...,.N

N 0\ V2
||x||=(2|xk|ak) :

k=1

or
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It can be proved that any two homogeneous norms on G are equivalent.
We say that a smooth function f in G\ {0} is D, -homogeneous of degree B € R (or
simply “B-homogeneous”) if

F(D,(x)=2F(x) VA>0,xeG\{0}.

Given any differential operator P with smooth coefficients on G, we say that P is
left invariant if for every x, y € G and every smooth function f

P(Lyf)(x) =Ly (Pf(x)),

where

Lyf(x)=fGox).

Analogously, one defines the notion of right invariant differential operator. Also, P
is said B-homogeneous (for some f € R) if

P (f (D (x)) =P (Pf) (Dy (x))

for every smooth function f, 2 > 0 and x € G.
A vector field is a first-order differential operator

N
X = ci(x) 0.
i=1

Let g be the Lie algebra of left invariant vector fields over G, where the Lie bracket
of two vector fields is defined as usual by

[X,Y]= XY — YX.

Letusdenoteby X1, X7, ..., Xy the canonical base of g, thatisfori =1,2,..., N,
X; is the only left invariant vector field that agrees with d,, at the origin. Also,
X {e , X 5 yees X 113, will denote the right invariant vectors fields that agree with
Ox,, Ox,, - .., Oxy (and hence with X1, X5, ..., Xy) at the origin.

We assume that for some integer ¢ < N, the vector fields X1, X, ..., X, are 1-
homogeneous and the Lie algebra generated by them is g. If s is the maximum length
of commutators

[Xl'l’ [Xiz’ ey [Xi.v—l’ Xis]]] s ij € {1,2, . ,q}

required to span g, then we will say that g is a stratified Lie algebra of step s, G is a
Carnot group (or a stratified homogeneous group) and its generators X1, X2, ..., X,
satisfy Hormander’s condition at step s in G. Under these assumptions, by Hormander’s
theorem (see [10]), the canonical sublaplacian

q
L= ZX?
i=1
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is hypoelliptic in RY, that is: for every domains Q' ¢ @ c R, whenever u € D’ ()
solves in distributional sense the equation Lu = f in €, then f € C*® (Q’) = u €
> ().

Analogously, the corresponding heat operator

q
H=Y X}-0
i=1

is hypoelliptic in RV *1,
The following compact notation will be used throughout the following. For a mul-
tiindex

I'=(@,...,0),ije{l,2,...,q}
we let

X=X Xi, ... X,
X = [Xil’ [Xiz’ S [Xikﬂ’ Xik]]]
Il =k

with an analogous meaning for X f, X [15].

We will make use of the Sobolev spaces W;’p (G), W;’,f (G) induced by the systems
of vector fields

R R R R
X = (X1, X X} xR = [xP xE L xB

respectively. More precisely, given an open subset 2 of RV, we say that f € W)k(’2 ()
if f € L?(Q) and there exist, in weak sense, X; f € L? () for every multiindex /
with | 7| < k. We set

120y = 1 2@y + D IX1f 2 -
[1<k

The space Wf(‘,g (£2) has a similar definition. We will also use local Sobolev spaces.
For example, we will say that f € W;:%OC () if for every ¢ € C§° (R2), we have
k2
of € Wy ().

For homogeneity reasons, the generators X1, ..., X, satisfy the simple relation
X* = —X; (where X* stands for the transposed operator of X). In other words,
/f(xig>=—/ Xif)g (1.2)
G G

whenever f € W)l(’,2 (G)and g € Cé (G).

loc
The validity of Hormander’s condition at step s implies the following important:



Space regularity for evolution operators modeled on Hormander vector

Proposition 1.1. (See [2, Prop. 2.1]) Under the above assumptions we have:
1.

AWE2 (@) c e @).
k=1

2. For any positive integer k and any Q' € Q there exists a constant ¢ > 0 such
that, for every u € W;s’z (2) we have

lellwezry < € llullyisz g -

where W2 (Q’ ) denotes the standard Sobolev space. Analogous properties hold for
the spaces W}’;’,? ().

Let us point out a relation between left and right invariant operators which will be
very useful in the following.

Proposition 1.2. (see [2, Prop. 2.2]) Let L, R be any two differential operators on
G with smooth coefficients, left and right invariant, respectively. Then, L and R
commute:

LRf=RLSf

for any smooth function f.

For every given couple of measurable functions ¢, ¢ : G — R, we define

w*w(x)szw(yw(y‘]ox)dy
whenever the integral makes sense. One can prove the following:

Proposition 1.3. For every couple of measurable functions f,  defined on G such
that the following convolutions are well defined, we have

i) if P is a left invariant differential operator then

P(f*v)=f=*Py, (1.3)

ii) if P is a right invariant differential operator then

P f)=Pyx*f

whenever P exists at least in weak sense.
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2. Subelliptic estimates for heat-type operators with z-measurable coefficients

For a domain Q2 C G, let
Qr =(0,7T) x Q.

We are going to define several function spaces on Gr = (0, T') x G that we will use
in the following.

The definitions of the spaces L2 ((0,T), X), W12 ((0,T), X), C° ([0, T, X)
when X is a Banach space are standard. For instance, we will often use the spaces

L2 ((0, Ty, wk? (G))

(fork =1, 2,3, ...) normed with

120 iz @) = 1 l2@n + Yo IXifllagy
=<k

and the analogous spaces L? ((0, T), W}];’Rz (G)).

We will say thatu € L? ((0, T), W)k(’}oc

uc € L2 ((0, ), wk? (G)).

(G)) when for every ¢ € C3° (G) we have

For a function f € L? ((O, T), W;(’z (G)), we will also use the shorthand notation

q
2 2 : 2
”VXf“LZ(GT) = ”Xif”Lz((GT) )
i=1

with the analogous meaning for H Vxr f Hiz Gr)

Definition 2.1. (Weak solution) We say that u € w2 ((O, T), leoC (G)) is a weak
solutionto Lu = F € L?((0, T), L}, (G)) if

loc

q
/ —ou (t,x) ¢ (x) + Z aij ) XiXjo (x)u(t,x)dx :/ F(t,x)¢ (x)dx
G

i j=1 G

@2.1)

forevery ¢ € C3° (G) anda.e.t € (0, T).
Note that W2 ((0, T), L} . (G)) C €° ([0, T1, L{. (G)), hence the initial value

loc loc

u (0, -) is a well defined element of leoc (G).

Definition 2.2. We say that a function u# belongs to L? ((O, T),C>® (ﬁ)) ifu €
L?>((0,T),C*(Q)) forevery k = 0, 1,2, ... In particular, this implies that

T
/O llu (t, -)Ilék@ dr < oo foreveryk =0, 1,2, ...
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We say that a function u belongs to co ([0, T],C®*® @) ifu e CY ([0, T], ck @)
foreveryk =0,1,2, ...

We can now state the first main result of this paper:

Theorem 2.3. Let G be a Carnot group of step s with generators X1, ..., X4, let £
be as in (0.1) and let (0.2) be in force. Let u € W2 ((O, T), leoc (G)), u0,-) =0,
be a weak solution to Lu = F € L? ((O, T), leoc (G)) in the sense of (2.1).

(i) For every k = 1,2,3,..., let {,51 € CP(G),¢ < &1. There exists ¢ =
c(k,,¢1,G,v) > 0 such that

ifaF e L2(0.7), Wik ™12 (©) then cu e L2 (0.7, Wi (G))

and

100 2.1y w8 3.00) <€ {||;1F||L2((O,T),W;s_l,z(®) + ||¢1u||Lz<GT)} ek)

2
(ii) In particular, if F € L? ((O, T, W)k(;sl;zs*l’z (G))forsomek =0,1,2,3,...
then u is also a strong solution to Lu = F and for every multiindex I with |I| < k we

have
xRy e ¢ ([o, 1, L2, (G)) and XRu (0, ) = 0.

(iii) For every (cartesian) derivative 9% and {,¢1 € C3°(G),¢ < 1, there ex-
ists c = c(a,¢,¢1,G,v) > 0 and a positive integer h such that whenever F €
L2 ((o, Ty, wh?2 ((G)) then

XR loc

¢ (x) [0%u (2, x) — 0%u (11, x) ||

sup  sup 7

0<t1<tr<T xeG [ty — 11]

<c {HQF”LZ((O,T),W;*I%(G)) + ||§lu||L2(GT)}

and

sup [¢ (¥) 85w (1, 0] < cle]'? {IIQFIILZ((O nwize) ¥ ||¢1u||Lz(GT)} Vi €0, 7],
xeG 7T xR

(iv) In particular, if
0F € L*((0,T), C™(G))
then
tu e CO([0,T1,C™(G)) and tu, € L* ((0,T), C® (G)).

The first step of the proof is a standard energy estimate. Before proving it, we need
to define some more function spaces:
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Definition 2.4. We let:
H =12 ((0, Ty, Wi? (G)) nw!'?2 ((o, Ty, L2 ((G))

- {u € L*(Gr) : up, Xju, X; X ju € L? (GT)} .

Note that H  C° ([0, T'1, L? (G)), so thatforu € Hand ¢ € [0, T1, u (¢, -) is a well
defined element of L2 (G).
We will also use

Ho = {u e w2 ((0, 7). L2, (G)) Vg € C°(G) ugp € Hand (ug) (0, ) = 0} .

Proposition 2.5. Under the previous assumption on L, for every u € H such that
u (0, ) = 0 we have

||VXM||L2(GT) <oy {”EL‘”Lz(GT) + ||“||L2(GT)} (2.3)
for a constant c,, only depending on the ellipticity constant v in (0.2).

Proof. For u € H we have, recalling that X" = —X; (see (1.2)):
—/ (uLu) drdx _/ (udsu) drdx — ff Z a;j (t) X; X ju | dedx
GT GT =

%/(}(/O ( )dt)dx—Z/ a,j(t)</ uXinu)dx)dt

i,j=1

%/ (u (T, x) — > (0, x))dx+ Z/ aij (1) (/ (Xiquu)dx)dt.
G

i,j=1
2.4

Since
Zf a,,(r)</ (X;uX ju) dx)dt>v2/ /(Xu) dxdt
i,j=1

we have
”VXMHLZ((GT) ||£”||L2(GT) ”“”LZ(GT) + ||’4 0, )||L2(G) (2.5)

In particular, for u vanishing on t = 0 we get (2.3). 0

In the following of this section, we will recall and adapt several definitions and
arguments taken from [2]. The reader is referred to that paper for some details.
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Definition 2.6. (Finite difference operators) For every h € G and function f defined
in G, let us define the operators:

Anf (x) = f(xoh) — f(x)
Anf (x) = f(hox)— f(x).

Whenever the function f also depends on ¢, we will simply write

Apf(t,x) =Ap[f (2, )] (x)
and analogously for Z;,f (t,x).
Definition 2.7. Form = 1,2,3,4, ..., let

A;’: = ApAp - Ay
— ————

m times

R = KBy A,
—
m times

Then, fora > 0 and f € L? (G7) we define the semi-norms

H A;?f” L2(G7) .
[ f .o = sup —||h||°‘ ch=Exp(X;)Vi=1,...,q,t e R:0< ||h|| <1
125712
h L*(G .
Iflﬁ,a=sup{W(” h=Exp(X)Vi=1,....q.i€R:0<|h]|<1}.

We also set for convenience

R
[flo=1flp = ||f||L2(GT)
[floe = 1 f I
R R
[f 1 = 1f i m -
The relations between the above seminorms and Sobolev norms with respect to

vector fields are contained in the following two results, which can be derived by [2,
Thm. 3.11, Prop.3.13] simply integrating in 7.

Proposition 2.8. For m = 1,2, .. .there exists c = ¢ (m,G) such that, for every
f € L* (Gr) we have:
LIffel? ((0, Ty, wi? (G)) then

m

2 e <ellagor wpae) 2.6)

k=0 X

Analogously,
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2.0f f € L ((0, Ty, W2 (G)) then
YoIfIf<e 12 (0.my wr20) @7
X

k=0

Proposition 2.9. There exists C = C (G) such that for every f € L*> (Gr) we have:
LIfIf], < oo then f € L2 ((0, Ty, W? (G)), with

”VXfHLZ(GT) <Clfly.
2. 0f|f IR < oo then f € L2 ((o, T), W2 (G)), with
“VXRf“LZ(GT) <CIAIF.

The following bound instead links the L? ((0, T, W}(’z (G)) norm with the oper-

ators Ay:

Proposition 2.10. Let Q be a bounded domain in G. There exists c = ¢ (2, G) such
that for every u € L? ((0, T), W;(’Z (G)) with sprtu (¢, ) C Q foreveryt € (0,T)
we have

| Anull o,y < RIS IVxUI 2, -
(Recall that s is the step of the Lie algebra.)

Proof. 1t is enough to apply to u (¢, -) the computations made in [2, Prop.3.7, Lemma
3.8] for functions in W}l(’2 (G) and then integrate on (0, T'). O

Ifu € H, u (t,-) is supported in some bounded domain €2 for every ¢ € [0, T'] and
u (0, -) = 0, then by the previous Proposition and (2.3 ) we get

| Anue] o,y < o IBIYS {ILul 2y + Tl 2 )
that is
ulf 15 < o {ILull2epy + lull 2} - 2.8)
Notation 2.11. Henceforth, we will write
fo<¢
if S0, ¢ € C°(G) such that 0 < ¢ < ¢ < land ¢ =1 on sprtg.

We have the following analog of Theorem 3.15 in [2]:
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Theorem 2.12. Let o, ¢ € Cg° (G) with §y < ¢. For every m € N the exists ¢ =
c(¢o, ¢, m, G,v) > 0 such that if u € Hy then

m—1

Coul s s < e | DI Lulf + licull, | (2.9)
j=0

whenever the right-hand side is finite.

Proof. We can repeat the proof of Theorem 3.15 in [2] applying (2.8) to the function
fou € 'H, since u € Hy, and exploiting the identity

q
L (o) = (L&o) u+ Lo (Lu) +2 Y aij (1) XigoX ju, (2.10)
i,j=1

and the fact that the operators 9, and Zh commute, so that £ and Zh still commute.
O

Also Proposition 3.16 in [2] (Marchaud inequality on Carnot groups) still holds,
with L? (G) norms replaced with L? (G7) norms, and this implies the following analog
of Corollary 3.17 in [2].

Corollary 2.13. Let u € 'H, u (0,-) = 0, and assume that for ¢ € (0, 1) and some
integer m > 1 the seminorm |14|,1,S 14¢ 18 finite. Then,
R R
ulf < e {Iulf 1y + 2 |
with ¢ = ¢ (G) .
We are now in position to state the first step of our regularity estimate:

Proposition 2.14. Let ¢y, ¢ € C° (G) with gy < ¢. There existsc = ¢ (o, ¢, G, v) >
0 such that

ifu € Ho and Lu € L2 ((o, Ty, w2 (G)) then u € L* ((o, Ty, W2 (G))

XR loc R loc

and

150013 7y w1 ) < € (u;cuan«Oj),Wﬁ @) * ||;u||Lz(GT>> S @l

Proof. Applying to {ou Corollary 2.13 and Theorem 2.12 withm = s+1ande = 1/s,
we can write:

S
ol < e {16oulR, 1 1 + Noulaen | <o | Do 1Lulf + licul e,y
Jj=0

From this inequality, by Propositions 2.9 and 2.8 we conclude the desired result. [
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To iterate this result to higher-order derivatives, we first need a regularization result
allowing to apply (2.11) to functions u satisfying weaker assumptions.

Proposition 2.15. Let u € W2 ((0,T), L} (G)),u(0,) = 0, be a weak solu-

loc

tionto Lu = F € L? ((0, T),L? (G)) in the sense of Definition 2.2. If F €

loc

L2 ((0, Ty, w2 (G)) then u € L? ((0, Ty, wh? (G)) and for every ¢, {1 €

XR loc XR loc
Co° (G) with £ < &y the following estimate holds:

Il 2.y w1 ) c{||;1F||Lz((o,w;.§(@)> = ||;1u||Lz<GT)} 2.12)

withc = ¢ (Lo, ¢, G, v).

Proof. Let us define the e-mollified u. of u as follows. For ¢ € Cg° (G) such that

$ >0, ¢ () =0for x| > 1and / ¢ () dr = 1,
G
define, for any ¢ > 0,
¢ (x) = e 24 (D,-1x)

and
e 3) = G 0 = [ 60ty ox)dy = [ g (voruto e
G G

Now the function u, is smooth with respect to x (as can be seen computing X f Ug),
while

oug du

ot =¢‘°‘*5

and, for any couple of domains K € K’ € G and ¢ small enough,

Here we have used Young’s inequality in the form

dug ou

- () S|z @)

31‘ LZ(K) 31‘ LZ(K/)
dug ou

e
3t N L2¢0.1).02(K)) Ot || 12((0,1)..2 (k"))

If*@ellr2xy < N2k (2.13)

for K € K’, and ¢ small enough, since ¢, is compactly supported.
Also,

0 0.0 = [ 6. u(0y ex)ay =0,
G
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hence u, € Hp and we can apply to u, the estimate proved in Proposition 2.14:

||§M8”L2((0,T),W)I(’I%(G)) <c {||§1£ (”5)”L2((0,T),W;§(G)) + 1¢1ue ”Lz(GT)} .
(2.14)

We claim that
L (ug) = Fe (2.15)

for a.e. t and a.e. x. This is not trivial since Lu just exists in the above weak sense;
hence, we cannot simply write £ (us) = (Lu),. However, for every ¢ € Cg° (G),
letting

£= —81 + A
with
q
Au(t,x) =" aij () Xi Xju (£, x)
i,j=1

we can write:

/E(us)(t,xw(x)dx=/ —0 (us)(t,X)fp(x)dX+/ ug (1, x) Ag (x) dx
G G G

Next,
/us(t,x)Ago(x)dx
G
= / ¢e () (/ Ap (x)u (t,yfl ox) dx) dy
G
Z/qus(y) </A<p(yoz)u(t,z)dz)dy
and

/ 0 (ug) (1, x) @ (x)dx =/ (/ Qe (y) Ou (t,y_l OX) dy)w(X)dx
G G
=/6<bg(y) (/Bzu(t,z)w(yoz)dZ>dy

letting ¥, (z) = ¢ (y 02)
/ L (ug) (t, x) @ (x) dx
G

Z/(}¢a ) (/@ —0u (1,2) ¥y (2) + Ay (Z)M(Z)dZ> dy
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=f¢a ) </ Yy (Z)F(t,z)dz> dy

G G

=/<p(x)</ ¢a(y)F<t,y_IOX)dy>dx=/w(x)Fg(t,x)dx
G G G

and (2.15) follows. By known properties of the mollifiers, as e — 0 wehave ¢ xu — u
in L? (RN ) assoonasu € L? (RN ) Also, for every left invariant differential operator
L we can write L (¢ * u) = ¢ * Lu as soon as Lu exists in L? (IR{N) . Therefore,

0L () =G Fe — 0 F in Wy (G), fora.e. (2.16)
as soon as F € L2 ((0, Ty, Wk, (G)).

To prove convergence in L> ((O, T), W;(’,% loc

(G)) we make the following rough
estimates (see Proposition 1.1):

||§1£ (ug) — CIF”Lz((O,T),W;IZ.\,(G)) <c ||§'1 Fe — §1F||L2((O,T),WS.Z(G))

SclloFe — §1F||L2((0 - W‘z'z(G)) . (217
A1) Wy
We want to show that, for F € L? ((O, T), W;%igc (G)),
— 0. (2.18)

167 = F s o)

Now:

F.— 0 F|?
”gl e ;‘1 ”Lz((O,T),W;f‘Z(G))

T T
= F.(t,))—F @, )| dr = 1) dt
/O IaF 6 =P eI, /Oggo
where by (2.16), we already know that

ge (t) > Oforae.t €[0,T],ase — 0.

To apply Lebesgue theorem and conclude the desired result we need to bound g, with
an integrable function independent of &. Now:

D) — . < . .
161Fe (t2) = §1F (1)l ) S NEFe (2o e+ NEF @l 2o o
161 Fe (1, ) 172Gy < IFe (0 ) Gy S IF (1 )32, € L1 O, T)

where K € K’ € G and ¢ small enough (see (2.13)). By (1.3), we have X; (F,) =
(XiF),, then

Xi (Q1Fe) = (Xi¢) Fe + 01 (X F)g
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2
1X; @ Fe (6 D2y < 0 (15 )2y + [P 2922 )
2 2 1
< c (”F (l, .)”LZ(K’) + ”XIF (tv ')||L2(K/)> eL (Ov T) s
and an iterative reasoning allows to conclude (2.18). Recalling (2.17) and the fact that

ISiuellr2Gry = NS1ullp2yp s

we conclude that the right-hand side of (2.14) is bounded. Hence, the sequence {u,
is bounded in L2 ((0, T, W)l(,f (G)), and there exists a subsequence of {u, weakly
converging in L? ((O, T), W;(,f ((G)) to some g and in particular weakly converging
in L2 (Gr) to zu. This is enough to say that ¢u € L? ((0, T), W)l(‘,g (G)). Moreover,
) < liminf IIKMeIILz(

Iull 1,2 1,2
L2<(O,T),WXR((G) (O,T),WXR((G))

s¢e { ”QF”LZ((o,T),W;,i(G)) * ”Q””Lz(GT)}
hence (2.12) holds. O
We are now in position for the

Proof of Theorem 2.3. (i) We will prove (2.2) by induction on k. For k = 1, this
is exactly Proposition 2.15. Assume that (2.2) holds up to an integer k and let u €

2
Ho such that Lu € L? ((O, T), W?E 2 (G)). By the inductive assumption, {u €

L? ((0, T, Wi’,% (G)). Let X f be a right invariant differential operator with || < k,
then ¢ X f u € L*(Gr). We would like to apply Proposition 2.15 to X f u, but in
order to do that we would need to know that Xfu e wh2 ((0, T),L? (G)) with

loc
X fu (0, -) = 0, which is unclear. Then, let u, be the mollified version of u as in the

proof of Proposition 2.15, so that:
XK (o) (t.0) = / (xFoe) (xoz)u.dz
G

which is a smooth function in x, and since X f ¢ is integrable (although its L'(G)
norm is not uniformly bounded with respect to ¢) we have

XK (up) e 12 ((0, T). L3, (G))

(see (2.13)) and since d;u € L2 ((0, T), L12OC (G)), the same is true for E)tXf2 (ue),
which equals X f (0su),. Then,

XK (ug) e w12 ((0, 7). L2, (G))
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which also implies
X7 (ue) (0, x) = / (qusg) (x o z—l) u(0,2)dz =0
G
since u (0, -) = 0 in L? (G). We claim that
£(XF@o) = XF (L@ = xF (Fo
at least in weak sense. Actually, noting that £ and X f commute,
[ (xF @) e mar= [ XE @ xp e ds
G G
= —/ L (ug) (1, x) (Xf(p) (x)dx
G
since ngo € C{° (G) and L (u;) = F, fora.e. t and x (see (2.15))
== [ R (xfo) s = [ X (5 (g
G G

for a.e. t. Therefore, we can apply Proposition 2.15 to X f (ug) getting

Lz(Gm} '

L2((0,T>,W;(',§ (G))

e xf o

12 ((o, T)Wha (G))

<c{H<:1Xf (F)

xR
L2(0.1), W3 ) + H Xy (ue)

Noting that

”§le (ue)

< HCIX;S (ue)

L2(Gr)

for some I’ with |I ! | = |I| — 1, we can proceed iteratively getting, for some different
cutoff function & > ¢,

H(X;e (ue)

<e { [e2xf (o) + ||;-2ug||Lz(GT)} .

(2.19)

L2 ((O,T),W;(’,ﬁ (G)) L2 ((O.T), Wi (G))

From this bound, which is uniform with respect to &, reasoning like in the proof of
2
Proposition 2.15 we read that, under the assumption X f FelL? ((O, T), W;( ,52 ((G)),

2
which is true as soon as F € L2 ((0, T, W)];J,? 2 (G)), we have the uniform bound-

edness of

e xft o

LZ((O,T),W;('I% (G)) ’
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which implies the weak convergence in L? ((0, T), W)l(,f (G)) of (a subsequence of)

X f (ug) to some g. In particular, the convergence is in L? (Gr), which implies that
forevery n € L? (0, T) and ¢ € CS° (G)

T T
f n(t)/ ¢ @) X7 (ue) (l,x)¢(x)dxdl—>/ 77([)/ g (1, x) ¢ (x)dxdr.
0 G 0 G

Pick the cutoff function ¢ (x) = 1 on some bounded open set €2, then for every
¢ € C3° () we have

T T
/ n(t)/ Xf (ug) (t,x)¢(x)dxdt—>/ n(t)/ g (t,x) ¢ (x)dxdr.
0 G 0 G
On the other hand,
T
f mn/Xfwamw¢uNMr
0 G
T
=(_1)"'/ n(t)/ ue (1, x) XX (x) dxdr
0 G
T
N (—1)‘”/ n(t)/ u(t, x) XRep (x) dxdr,
0 G
hence
T T
f mofgmm¢unmn=enm/ mafuawxﬁ¢ummt
0 G 0 G
which implies, for a.e. f and a.e. x € €,
g(t,x) = XRu(t,x)

in the sense of weak derivatives. This means that ;Xfu e L? ((0, T), W1 2 (G)) and

¢XR (us) — £ XRu weakly in L ((o, Ty, W2 (G)) which also implies, by (2.19),

) + ”QuHLZ(GT)} .

xful |
HC ¥ LZ((OT) W1§(G)) { QX F

L2((0,T),W;§ ©)

So we are done.

(i) Let £ € C°(G) and u € ij,fl (G). Inequalities

Iguly2a < clEulneg) < cligullyza
show that

Wiinoe @ C Wy (G).

XR loc
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Letu € WH2((0,7), L2, (G)),u(0,-) = 0, be a weak solution to Lu = F €

loc

L2 ((o, Ty, wh? (G)). By point (i), if | F € L2 ((o, T), whis 12 (G)), then

XR loc
tu e L2 ((0, Ty, wh? (G)). In particular, if # > 25 + s> — 1 then

we L2(0.7), wy;

Jloc
to the equation Lu = F, so that for a.e. 7 and a.e. x we have

(G)) and this implies that u is actually a strong solution

q
—uy (t,x) + Z aij ) X Xju,x)=F(t,x). (2.20)
ij=1

This identity allows to transfer further x-regularity of both F and u to u,: if, for
some k = 1,2,3,..., we know that h > k + 2s + s2 — 1, then by point (i)
ue L2 ((0, Ty, whts2 (G)), so that X; X ju € L ((0, Ty, wk2 (G)), hence

XR loc XR loc
by (2.20) u, € L2 ((o, T). WiR oo (G)) and u € W2 ((o, T). WL . (G)).

This implies that for |7| < k, XFu e C°([0, T1, L}, (G)). Moreover, we can
write, for every t1, 1, € [0, T] and a.e. x € G,

n

u(tr,x) —u(ty, x) =/ ou (¢, x)dt (2.21)

n

Xfu (th,x) — X;eu (t1,x) = /

1

15

2
3 XRu (¢, x)dr. (2.22)
Letting f{ = 0 in (2.21), we get
4]
u(th,x)= / oru (t, x)dt,
0
an identity which can also be differentiated with respect to X f , giving
n
XRu (12, x) = / XRou (z, x) dt,
0
which implies

xRu©,)=o0.

This completes the proof of (ii).
(iii) Next, multiplying both sides of (2.22) for ¢ € C° (G) and taking L? (G)-norms
we get, recalling that X f commutes with £:

/C(x>2\Xfu(zz,x)—xfu(m,x))zdx
G

</¢(x>2
G

2

dx

153 q
/ {—xfﬁu t.x)+ Y ayj (1) X,-X,Xfu(z,x)} dt
1

i,j=1
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2
t, q
< / ;“(x)z (/2 i)XfF(t,x)‘+c,, Z XinXfu(t,x)’]dt) dx
G n i,j

=1

T 2 q T 2
</{(x)2 |t2—t1|i/ ’XfF(t,x)‘ dr + e, 2/ ’X,»ijfu(t,x)‘ dt]dx
G 0 f 0
i,j=1

2
L2Gp |-

2
wp Jo ¢ 2 [ XRu (tz, x) — XRu (12, x)|” dx

O<ti<tr<T |t — 1]

2 q
R R
=t — 1| [H{X, i, T 2 1 Jexix;xfu
L=

By point (i) of this theorem, this implies that

2
g C {”é‘lF”LZ((O,T),W)}?Rg(G)) + ”g]M”LZ(GT)}

for some & large enough and any cutoff function ¢ such that ¢ < ¢;. On the other
hand, letting

v (x) = u (2, x) —u(t,x)

and noting that every cartesian derivative 9% v (x) can be bounded, uniformly on a
compact set of G by a suitable linear combination of X f v, we arrive to a bound

I [0%u (12, ) — 8%u (11, ')]”LZ(G)
12

sup
O<ty<trp<T |l2 _tl|

< C{||§‘F||L2(<o,r),wz;2<¢;>) + ||§1M||L2(GT)}

for some integer 1 > h. And since also the sup of ‘Bﬁ‘u (t2,-) — 0gu (11, ~)| can be
bounded, by Sobolev embeddings, by suitable L norms of higher order derivatives,
we also have a control

| () [0%u (12, x) — 0%u (11, x)]|
1/2

sup  sup
0<t1<tr<T xeG [tr — 1]

<cylliaFll m2 o\t 1Giullge }
{ LZ((O,T),WX§e (G)) L2%(Gr)
for some integer /1, > hy. Also, since 9 u (0, x) = 0, this implies
a <cl e F .
sup [¢ () 0w (6, 0] < MV IEF N o o 1) i ey) + 1026

This ends the proof of (iii). The previous result also shows that

G F e L*(0,T),C®(G) = tu e C°([0,T1,C® (G)).
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Then, the equality
q
Uy = Z aij ) XiXju—F
i,j=1
also implies that
tu; € L*((0,7), C™(G)),
that is (iv). [l

We end this section with an easy example showing that the regularity properties of
the solution cannot be improved for bounded measurable coefficients a;; (¢).

Example 2.16. Let us consider the uniformly parabolic operator
Lu=—u;+a(t)uyy,

witha € L® (R), a (t) > v > 0. The function

t
u(t,x) =exp (—/ a(t) d‘l,') sin x
0

satisfies Lu = 0; u is smooth w.r.t. x and only Lipschitz continuous w.r.t. #. Let
1
U (t,x) = t*u (t, x) for some o € > 1).

Then, U solves the problem

LU =FforxeR,t>0
U@©,x)=0

with F (t,x) = —at* 1y (t, x), so that, as soon as o > %
FeL?>((0,T) xR).
Moreover,
Up (t,x) = et u(t,x) — t%a (t)u (1, x) € L* (0, T), C* (R))
Hence,
Uew"(0,7),C®®R)NCc* ([0, T1,C™ R)).

Since o > % can be chosen as close to 1/2 as we want, this shows that the regularity
with respect to ¢ expressed by Theorem 2.3 cannot be improved. Also, note that the
Holder continuity w.r.t. ¢ cannot be improved to Lipschitz continuity just remaining
far off + = 0: if we multiply the above U (t, x) for |t — 19]|* we get a similar example
exhibiting a «-Ho6lder continuity w.r.t.  near t = t.
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3. Regularization of distributional solutions

In this section, we want to extend our smoothness result, established in Theorem 2.3
(iv) for functions in W12 ((0, T), leoc (G)), to more general distributions. First of all,

we need to make precise the distributional notions that we will use.

Definition 3.1. Let € G be an open set. We will say thatu € L* ((0, T), D' (Q2))
if u € D' (Q27) and for every ¢ € D (R2) there exists a function hy € L?(0, T) such
that for every v € D (0, T),

T
(. ¢ ® ) =/0 he (W (1) dr.

In this case we will write, more transparently, hy (t) = (u (¢, -) , ¢) and

T
. () ¥ (1) =f0 W), $) ¥ (1) di

for every ¢ € D () and ¥ € D (0, T) (and therefore also for every ¥ € L? (0, T)).
Analogously, we will say thatu € W2 ((0, T), D’ (Q)) if u € D’ () with both
u and its distributional derivative d;u belonging to L? ((O, T),D (Q)).
We will say that u is a distributional solution to Lu = F in Qr, with F €
L?((0,7), D' (Q)ifu e W2 ((0,T), D' (Q)) and:

q
(=0 (t,), @)+ Y aij ) (XiXju(t,), ¢) = (F(1,-), )

i, j=1

for every ¢ € D (2) and a.e. t € (0, T), or equivalently:

T q
/O (=0 (t, ), @)+ Y aij (O {u(t, ), XX ;) ¢ ¥ (1) dt

i,j=1
T
=/0 (F(t.). ) (t)dr

Yo € D(Q),y € L*(0,T).

The proof of a regularity result for distributional solutions usually begins identifying
the given distribution, locally, with some derivative of a continuous function, in view
of the classical result about the local structure of distributions. For distributions in
the class L2 ((O, T),D (Q)), we could not find in the literature any reference for a
similar result. So we will explicitly assume that our distribution could be seen, on a
fixed domain compactly contained in €2, as a space derivative of a suitable function:

Definition 3.2. Let u € L? ((O, T),D (Q)) for some open set Q2 € G. We will say
that u satisfies the x-finite order assumption on 2 if:
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there exists a function 4 € L2 ((O, T), L} (Q)) and a multiindex « such that

loc

o

D (@) 3.1)

0x®

u =

that is

T ol 8a¢
(u, ¢ (x) ¥ (1) :/ ((—1) / h(t, x) I (x) dX) ¥ (1) de
0 Q X

Yo € D(Q),y € L*(0,T).
Ifu e W2 (0, T), D' ()), we will say that u satisfies the x-finite order assump-
tion on  if (3.1) holds with 2 € W2 ((0, T), L] . ().

loc

Note that if u € W2 ((0, T), D’ (Q)) satisfies the x-finite order assumption on
Q' thenh € C° ([O, T], LllOC (Q)). In particular, saying that u (0, -) = 0 means that
h(0,)=0ae.in Q.

The aim of this section is to prove that:

Theorem 3.3. For some bounded domain Q2 C G, let u be a distributional solution
to Lu = F in Qr with F € L? ((O, T),D (Q)). Assume that u satisfies the x-finite
order assumption (see Definition 3.2) and u (0, -) = 0 in Q. Then, for every domain
Qe i

FeL?((0,T),C™(Q)
then
e’ ([0, T],C® (@)) and u; € L2 ((0, T), ™ (@)) .

In order to prove Theorem 3.3, we will follow the technique used in [2, §4] for sub-
laplacians. Therefore, some proofs, which contain almost straightforward adaptations
of corresponding arguments in [2, §4], will be omitted.

Let us consider the second-order differential operator

J=1

built using the whole canonical base of right invariant vector fields. This is a right
invariant (but no longer homogeneous) uniformly elliptic operator in G, which at the
origin coincides with the standard Laplacian. Therefore, the fundamental solution of
the Laplacian, y (x) = cy |x|>~", can be used to build a parametrix for £X: letting
Y (x) = y (x) n (x), where 7 is a cutoff function equal to 1 in a neighborhood of the
origin, one can prove the following:

Proposition 3.4. (see [2, Prop. 4.2.]) Let V. C G be a neighborhood of the origin.
There exist y € C* (G\ {0}) and w € C*® (G\ {0}), both supported in V, satisfying

- c
ly (0] < W 3.2)
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~ c .
|ax,.y(x)}<W i=1,2,...,N (3.3)

and such that in the sense of distributions
LAY = =5 + w.
(Here § is the Dirac mass as a distribution in RV .)

Let us now consider three open sets in G, Q' € Q" € Q and let V be aneighborhood
of the origin such that V1o Q" € Q”. Define " as in Proposition 3.4, with 7 supported
in V. The convolution with % defines a regularizing operator that acts on functions

TS LlloC (Gr) as follows. For every x € Q" and ¢ € [0, T'], we set

Tt =Frue )@= [ 7(xoy)uend.  Ga

The subscript V in Ty recalls that the definition of the operator depends on the choice
of the neighborhood V used to define .
Note that

Ty : L2 ((0, Ty, L (sz”)) 12 ((o, Ty, L (Q’)) .

Namely, for x € " and x o y~! € sprt 7, the point y = (x o yf‘)f1 o x ranges in

V=10 Q' c Q" hence, introducing characteristic functions,

Xer (¥) Tyu (&, x) = /@ Fxv) (x o y_l) u(t,y) xar () dy,
or
xeTvu(t,) =Yxv xu(t,-) xo (3.5)
which by Young’s inequality gives, at least for a.e. ¢,
ITvu (t, iy < WYMoy llu @ ) llpngn
and hence
||TVM||L2((0,T),L1(Q/)) < ||)7||L1(V) ||”||L2((0,T),LI(Q//)) .

Also, Ty acts on distributions u € L? ((O, 7),D (Q)) as follows. For every ¢ €
D (Q') we set

<TVL£ (t’ ) s ‘P> = <M (t9 ) s T;‘P) (36)
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where
T&"so(y>=/ 7 (xor™) g mdx.
G

Observe that the assumption on V implies that 777 ¢ is a test function in . Namely,
for x € sprtg and x o y~! € sprt ¥ the point y ranges in Q” € . The function Tye
is smooth, as one can see writing

T;¢(Y)=L7(Z)¢(Zoy)dx

and computing left invariant derivatives

X1 (Tye) () = /(;V(Z) (X19) (zoy)dx.

Therefore, the pairing (3.6) is well defined. Also, from the previous identity we easily
read that if ¢x — 01in D (Q) then Tji¢x — 0in D (Q'). Hence, Tyu (1, ) € D' ().
Moreover,

T T
/0 (Tyu (1, '),w)lzdtzfo @, ), Tig)| d < o0

(just by definition of L* ((0, T), D’ (2))), so that
Ty : L*((0,7),D () — L*((0, T), D' (2)).

Next, we need to prove the regularizing properties of 7y . The following result is an
adaptation of [2, Prop. 4.4.].

Proposition 3.5. (Regularizing properties of Ty) Let Q' @ Q" € Q. There exists
a neighborhood V of the origin such that the operator Ty defined in (3.6) has the
following properties.
(1)Letu € D' ((0, T) x Q) suchthatu = £ g.forsomeg € L ((0, T), L}, . (Q))
and multiindex . Then Tyu € L? ((0, T),D (Q’)) and
Tyu = Z 3 Agin (0,T) x
18IS | -1
for suitable Ag € L* ((0,T), L{. (2')).
(2)Letu € L> ((0,T), L{_ (Q)) for some 1 < p < 5, then
/ 1 1 2
Tyu € L2 ((0, T),LP (Q’)) for— ==
P p N
and

”TVMHLZ((O,T),LI’/(Q/)) <c ”u”L2((0»T)~L1€>c(Q)) .

(3) Letu € L2 ((0, ), L2 () then Tyu € L2 ((0, Ty, W? (Q’)).

loc

(4) Letu € L2 ((0,T), C* (), then Tyu € L ((0, Ty, C® (@)) .
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The proof of this result is a quite straightforward adaptation of the proof of [2, Prop.
4.4] and therefore will be omitted.

Corollary 3.6. Let Q' @ Q & G. For every distribution u € D' ((0, T) x ) such
that u = 9% g for some multindex o and g € L? ((0 T), Lloc (Q)) there exist a neigh-

borhood of the origin V and an integer K such that (TV)K elL? ((0, T, W)l(’2 (Q’))
The proof follows exactly that of [2, Corollary 4.5].

Proposition 3.7. Let Q' @ Q and V small enough so that V o Q' € Q. Then, for
any distribution u € L? ((0, T),D (Q)) and every left invariant operator P on G we
have

PTyu = TyPuin L* (0, T), D' (X)) (3.7)
Also, ifu € W2 ((0,T), D' (Q)) then

LTyu =Ty Luin L* ((0,T), D (') (3.8)
Remark 3.8. The previous proposition can be obviously iterated writing

PTfu=T§PuinL*((0,7),D (2))
LTS u=Tf Luin L* (0, T), D (X))

for any fixed positive integer K, provided V is chosen small enough to have

VoVo---oVoQ €.
— ———

K times

Proof. Letu € L? ((0, T),D (Q)), then Tyu € L? ((0, T),D (Q’)) and for every
@ € D (L) we can write, denoting by P* the transpose operator of P and recalling
that P* is still left invariant,

<PTVM(I, ')7§0>=(Tvu(1, )’P*(ﬂ>=<u(f7)’)a/ 57 xoy_l),]j*(p(x)dx>
=(uy), /V(w)P*<p(woy)dw>

=(u(,y),P" /V(w)so(woy)dw>

where the above equalities hold for a.e. ¢, as usual. This implies (3.7).
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To prove (3.8), it is enough to show that
9 Tyu = Tyduforu e W2 ((0,7),D (Q)).
Actually, for every ¥ € D (0, T) and ¢ € D (Q/ ) we have

T
/0 V(@) (@0 Tyu(t, ), @)dt = (0 Tyu, ¢ @ V)

T
— —(Tyu, ¢ @ Uy = —/0 B () (Tyu (1, ), o) di

T
— [Cavoluan. [7(er)omara
0 G

= — <u, T{/k(p ® aﬂ/’) = <8;M, T{/kw ® 1//>

T

= [ vofouen. [7(vort)omar)r
0 G
T

- /0 Y () (Tydu 1. ) . o) dr.

Hence, 0;Tyu = Ty o:u.

J. Evol. Equ.

O

Lemma 3.9. Let Q' € Q" € Qandu € L? ((O, T),D (Q)) satisfying the x-finite

order assumption in Q2. There exists V small enough so that if
Tyu e L2 ((o, Ty, C® (W))

thenu e L2 (0, T), Wy (2)).

The proof of this lemma is very similar to that of [2, Lemma 4.8] and therefore will

be omitted.

Proof of Theorem 3.3. Fix Q' € Q" € Q" & Q. By Corollary 3.6, there ex-
ist a positive integer K and a neighborhood V of the origin such that T‘f ue L?

((O, T), W}](’2 (Q”’)). Applying Corollary 3.6 also to d;u, and possibly choosing a

larger integer K and a smaller neighborhood V, we can also assume
o =T u e L2(0.1), Wy (27)).
so that
Tue w2 (0.1), Wy (@")).
Let now U C V aneighborhood of the origin such that

UoUo---oUoQ" &€Q”.
—_—

2K times
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Let

Qj=UoUo~~~oUoQNf0rj=1,2,...,2[(
—
j times
i
Qo = Q7
so that Qyx € Q. Clearly, it is still true that

1w e 12(0.7), wy* (27))

(having replaced the operator Ty with Ty, based on a smaller neighborhood).
By Proposition 3.7 and Remark 3.8, we have

c (Tlfu) =TXFin L2 (0. T), D (2x)) . (3.9)

Since, F € L*((0, T), C* (Q)), by point (4) in Proposition 3.5 we have TX F €
L?((0,T), C* (S2k)).By (3.9 then £ (TXu) € L? ((0. T), C* (R2k)) and, since
Tllfu e wi2 ((O, T, W;(’z (ng)), we can apply Theorem 2.3 (iv) to conclude that

TXu e €0 ([0, T], C*® (k1)) and

TXu, e L2 (0, T), C™® (Q2k-1)) -

Applying Lemma 3.9 tou and d,u, we see that TX ~'u & W12 ((0, ). Wh? (QZK_2)).

Iterating this argument K times shows that u € W2 ((O, T, W;(’z (Q” )) Since
F € L*((0,T), C>(Q)) we can apply again Theorem 2.3 (iv) to conclude u €
ol ([0, T], C® (@)) and u; € L2 ((o, T),C® (@)) 0
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