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Abstract: This paper presents a general procedure for a rate-type creep analysis (based on the
use of the continuous retardation spectrum) which avoids the need of recalculating the Kelvin
chain stiffness elements at each time step. In this procedure are incorporated three different creep
constitutive relations, two recommended by national codes such as the ACI (North-American)
and EC2 (European) building codes and one by the RILEM research association. The approximate
expressions of the different creep functions with the corresponding Dirichlet series are generated using
the continuous retardation spectrum approach based on the Post–Widder formula. The proposed
rate-type formulation is implemented into a 3D finite element code and applied to study the long-term
deflections of a prestressed concrete bridge built in Romania, which crosses a wide artificial channel
that connects the Danube river to the port of Constanta in the Black Sea.

Keywords: prestressed concrete; concrete shrinkage; concrete creep; long-term behavior;
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1. Introduction

An accurate simulation of creep and shrinkage behavior is necessary for certain types of structures
such as long-span prestressed box girders; cable-stayed or arch bridges; large bridges built sequentially
in stages by joining parts; nuclear containments and vessels; large gravity, arch or buttress dams;
cooling towers; large roof shells; and very tall buildings [1,2]. In this paper reference will be made to
prestressed concrete beams, but the model developed is of general application.

Concrete creep can be modeled for service stress state levels (less than half of compressive strength)
using the framework of linear visco-elasticity with aging [1]. As a consequence, the principle
of superposition holds and the material behavior is uniquely described by a compliance or by a
relaxation function. However, in practice, all the reinforced concrete design codes use the compliance
(or creep) function to characterize the visco-elastic behavior, because the creep tests are much
more common and easy to do than the relaxation tests. They usually describe the compliance
function by a suitable formula with several parameters that can be calibrated by fitting experimental
data or estimated using empirical formulae that take into account the concrete mix composition,
curing conditions and time, member size and shape, and external relative humidity and temperature.

The compliance function expresses the evolution of uniaxial strain over time in a creep test for a
unit uniaxial stress. This stress–strain relation can be written as

ε(t) =
∫ t

0
J(t, τ)dσ(τ) (1)
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where J(t, τ) is the aging creep function and the times t and τ correspond to the age of concrete
starting from the initial setting time. However, the analytical evaluation of the integral in Equation (1)
is possible only for simple models and simple stress histories. For general applications in finite
element codes, the numerical integration of Equation (1) requires the storage of the entire stress
history at each integration point of each finite element and, as a consequence, the evaluation of
the integral requires an extensive memory allocation and an increasing number of calculations for
each time step as the observation time t progresses. Several methods have been presented in the
literature to simplify the calculation of creep strain under time history loading as in Equation (1),
such as the effective modulus method [3], rate of creep method [4], the ageing coefficient method
(AAEM method) [5] utilized in many applications, among others [6,7], the approach based on the aging
linear viscoelastic theory [8], and, recently, the parallel creep method [9] that is extended in [10,11] for
a general age-dependent constitutive law.

The computational cost of the integration of Equation (1) can be substantially reduced by replacing
the integral stress–strain relation with a differential one (rate-type formulation, first proposed in [4]).
This approach is based on the approximation of the compliance function by a Dirichlet series (i.e., a sum
of exponentials) corresponding to a Kelvin rheological chain whose units are described by a differential
equation that can be easily integrated in a step-by-step manner. This procedure transforms the original
integral approach into a differential (rate-type) approach in which it is not necessary to store the entire
load history but only a limited and fixed number of internal (history) variables. It also gives rise to a
number of numerical calculations constant for each time step, independently of the length of the time
interval considered.

In the rate-type approach the crucial point is the procedure adopted to convert the continuous
creep function into its Dirichlet series approximation, due to the difficulties which arise in
the identification of the series coefficients for aging formulations (typically used in codes
and recommendations). One method was proposed in [12,13] for the study of the deflection behavior of
the Koror-Babeldaob Bridge in Palau through a 3D finite element procedure. In their approach, to deal
with the aging properties of the compliance function in each time step and at each integration point,
use was made of the Widder’s formula to convert the aging compliance function into a continuous
retardation spectrum for the current age of concrete. A discretization of the spectrum would then yield
the current elastic moduli of the Kelvin units.

The purpose of this paper is to formulate a general procedure, also based on the use of the
continuous retardation spectrum, capable of readily converting the integral creep problem into a
rate-type one without the recalculation of the Kelvin chain stiffness elements at each time step.
This procedure is then particularized with reference to three different creep constitutive relations,
two important because recommended by professional associations in USA and Europe (ACI and
CEB-Euro-Code) and one important for its diffusion in the research community, the RILEM B3 model.

The procedure has then been implemented in a three-dimensional finite element model for
bridge design, capable of taking into account both the different shrinkage and drying creep properties
of the various parts of the bridge cross-section and the shear lag effect, both of which cannot be
captured by the classical beam theory commonly used in bridge design. In particular the shear lag effect
influences drastically the accuracy of the calculation of the prestress loss and of the bridge deflection.
As reported in [12,13] the shear lag occurs in different ways: In the transmission of vertical shear force
due to vertical reaction at the pier and in the transmission of the concentrated forces of tendon anchors
into the horizontal slabs and the vertical walls of the box.

In order to validate the proposed finite element formulation, two examples are considered,
a prestressed simply supported beam and a prestressed cantilever box girder, for which the results of
the 3D finite element analyses are compared with the one-dimensional calculations. Then the long-term
behavior of a real bridge of “balanced cantilever girder” type, characterized by a central 155 m span,
with two side symmetric 77.5 m spans, has been analyzed (and has been the motivation of this work).
The bridge belongs to the new Medgidia-Constanta Motorway crossing a wide artificial channel that
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connects the Danube River to the port of Constanta in the Black Sea. It holds the record span-length in
Romania for prestressed concrete deck type and has required for its construction concrete volumes
of 14,700 m3 for foundations and 7700 m3 for piers and decks, total reinforcing steel weight of 2600 t,
and total post-tensioning tendons weight of 390 t. For this bridge, the predictions of the various creep
formulations in terms of deflections, prestress loss and stress state in the upper and lower slabs of the
cross section are compared.

It must be remarked that an exact numerical analysis of this type of structures should be performed
through a multi-physics time-dependent approach based on a hygro-thermo-chemical-mechanical model,
as in [14–16], that could be useful in predicting the concrete time-dependent response. However,
the multi-physics modeling is out of the scope of the manuscript and also the dimensions of this type
of structures prevent its use for now. For general constitutive formulations that starts from early-ages,
an interested reader can also refer to the formulations presented in [17–21].

2. Numerical Analysis of Creep Behavior

2.1. Integral Formulation

Using the principle of superposition and knowing the compliance function J(t, t0) it is possible
to determine the uniaxial strain evolution from any general uniaxial stress history, σ(t), in a
integral-type form

ε(t) =
∫ t

0
J(t, τ)dσ(τ) (2)

where t is the current time, t0 is the historic time and t− t0 is the elapsed time and the integrals are
understood in the Stieltjes sense, so that they can be evaluated even for discontinuous stress and
strain evolutions. Equation (2) is the classical Volterra integral equation of creep that can be easily
extended for multiaxial stress/strain considering that creep does not affect the Poisson’s ratio and,
for this reason, it can be assumed as a constant. Under this assumption only the Young modulus is
affected by creep and therefore Equation (2) can be extended for 3D general analysis as

ε(t) =
∫ t

0
J(t, τ)Gdσ(τ) (3)

where matrix G is constant over time

G =



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)


(4)

The value ν = 0.18 will be used in all numerical simulations presented in this paper. Let us
express Equation (2) in the incremental discrete form for finite element applications. In the time
interval ∆t = ti+1 − ti we can define the stress and strain increments:

∆ε = ε(ti+1)− ε(ti) and ∆σ = σ(ti+1)− σ(ti) (5)

Using Equation (2), the strain increment in the time step ∆t is

∆ε = ε(ti+1)− ε(ti) =
∫ ti+1

0
J(ti+1, τ)σ̇dτ −

∫ ti

0
J(ti, τ)σ̇dτ (6)
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and rearranged as

∆ε =
∫ ti

0
[J(ti+1, τ)− J(ti, τ)] σ̇dτ +

∫ ti+1

ti

J(ti+1, τ)σ̇dτ (7)

Assuming a linear stress variation in the time interval, i.e., σ̇ = ∆σ/∆t, we can rewrite
Equation (7) as

∆σ = E∆ε− σ̂(ti) (8)

where

Ê =
∆t∫ ti+1

ti
J(ti+1, τ)dτ

and σ̂(ti) = E
∫ ti

0
[J(ti+1, τ)− J(ti, τ)] σ̇(τ)dτ (9)

To calculate the second expression in Equation (9) one needs to know the entire load history in
each material point and in each time interval. This requires to store during the analysis a huge amount
of information that increases drastically with the length of time interval considered. This makes the
integral approach for creep prohibitive in a finite element program for long-term analysis, while it
might be utilized for short-term processes such as early-age analyses, although this is not the most
efficient procedure.

2.2. Rate-Type Creep Law

As a remedy, it was showed [1,22] that through the approximation of the creep function as a sum
of negative exponentials (i.e., Dirichlet or Prony series) it is possible to convert the integral expression
(in Equation (2)) into a set of linear differential equations, which turn out to be the governing equations
of the well-known Kelvin chain rheological model with aging spring moduli Ej(t) and dashpot
viscosities ηj(t). These functions can be also identified as the coefficients of the Dirichlet series
expansion of J(t, t0). Using this approach, a convenient approximation of the J(t, t0) function can be
written as

J(t, t0) =
1

E0(t0)
+

N

∑
j=1

1
Ej(t0)

(
1− e

− t−t0
τj

)
(10)

where Ej(t0) are aging material parameters function of time t0 being identified from the fitting of the
given function J(t, t0) at any given fixed t0. A simple and convenient choice for the other material
parameters τj, called the retardation times, is to assume them constant. However, they must be chosen
suitably with a not too large spacing in the log scale in order to approximate adequately the J(t, t0)

function in all time duration of interest during a the structural analysis. The function J(t, t0) is the
design compliance function being defined by some formula arising from the adopted code or standard.
The term for instantaneous deformation 1/E0(t0) can be considered included as the first term of the
summation with a retardation time extremely small (τ0 ∼ 0).

Substituting the approximation of the compliance function as in Equation (10) into the expressions
in Equation (9) one gets

Ê(t∗) =
∆t∫ ti+∆t

ti

[
1

E0(τ)
+ ∑N

j=1
1

Ej(τ)

(
1− e

− ti+∆t−t0
τj

)]
dτ

=

1

1
E0(t∗)

+ ∑N
j=1

1
Ej(t∗)

[
1−

(
1− e

− ∆t
τj

)
τj
∆t

] (11)

σ̂(ti) = Ê(t∗)
∫ ti

0
[J(ti + ∆t, τ)− J(ti, τ)] σ̇dτ = E

N

∑
j=1

(
1− e

− ∆t
τj

) ∫ ti

0

1
Ej(τ)

e
− ti−τ

τj σ̇dτ (12)
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That can be rewritten as

σ̂(ti) = Ê(t∗)
N

∑
j=1

(
1− e

− ∆t
τj

)
ε∗j (ti) with ε∗j (ti) =

∫ ti

0

1
Ej(τ)

e
− ti−τ

τj σ̇dτ (13)

where the integrals have been calculated using the mid point rule with t∗ = 0.5(ti + ti+1) and
ε∗j (ti) can be considered as internal variables that must be stored for the integration points of each
finite element. Those internal variables can be updated according the following recurrence formula
(obtained by calculating σ̂(ti+i) assuming a linear stress variation in the time step and constant time
step increments ∆t)

ε∗j (ti+1) = e
− ∆t

τj ε∗j (ti) +
1

Ej(t∗)

(
1− e

− ∆t
τj

)
τj

∆t
∆σ (14)

It must be noted that the number of the internal variables for the rate-type formulation
(Equations (8), (11), (13), and (14)) is now fixed and limited to N, in contrast to the integral formulation
(Equations (8) and (9)) that requires the storage of the entire load history for each material point,
which increases drastically with the final time of the analysis (for long-term behavior is typically
many decades).

2.3. Aging Kelvin Chain

It is worth showing that the quasi-elastic constitutive law in Equations (8), (11), and (13) that has
been just derived is fully equivalent to the solution of a rheological model consisting of a aging Kelvin
chain with springs of stiffness Ej(t) in parallel with a dashpot with viscosities τjEj(t). To simplify the
mathematical derivation, let us admit that in each time interval ∆t = ti+1 − ti of the loading history
the spring stiffnesses is constant and equal to Ej(t∗) where ti < t∗ < ti+1. Under this assumption the
constitutive law of the aging Kelvin element in a time interval is given by the following first order
differential equation

τjEj(t∗)ε̇j + Ej(t∗)εj = σ (15)

An effective numerical integration of Equation (15) can be done by virtue of the so-called
exponential algorithm, which makes possible the use of increasing time steps with the same accuracy
and numerical stability [1]. The exponential algorithm assumes that the stress varies linearly in the
time interval ∆t = ti+1 − ti so that the differential equation in (15) can be integrated exactly. The linear
stress variation can be assumed as

σ(t) = σi + (t− ti)
∆σ

∆t
(16)

where ∆σ is the stress increment over the time step ∆t. With this stress variation the general solution
of the differential equation in (15) can written as

ε(t) = A + B(t− ti) + C
(

1− e−
t−t0

τ

)
(17)

The integration constants A and B of the particular integral can be obtained from the substitution
of Equation (17) into (15) while C is calculated from the initial condition in each time step, ε = ε(ti).
This yields the strain, ε(ti+1), at the end the time step (t = ti+1 = ti + ∆t) as

εj(ti+1) = εj(ti)e
− ∆t

τj +
σ(ti)

Ej(t∗)

(
1− e

− ∆t
τj

)
+

∆σ

Ej(t∗)

(
1−

τj

∆t
+

τj

∆t
e
− ∆t

τj

)
(18)

So the strain increment is

∆εj = εj(ti+1)− εj(ti) =

(
σ(ti)

Ej(t∗)
− εj(ti)

)(
1− e

− ∆t
τj

)
+

∆σ

Ej(t∗)

[
1−

(
1− e

− ∆t
τj

)
τj

∆t

]
(19)
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Considering now a rheological model chain of N Kelvin elements in series with a spring with
stiffness E0(t∗), the total strain increment is given by

∆ε = ∆ε0 +
N

∑
j=1

∆εj (20)

Substituting in this expression ∆εj from Equation (19) and ∆ε0 = ∆σ/E0 one gets the stress
increment in the time step from ti to ti + ∆t as

∆σ = E∗∆ε− σ∗(ti) (21)

where

E∗ =

{
1

E0(t∗)
+

N

∑
j=1

1
Ej(t∗)

[
1−

(
1− e

− ∆t
τj

)
τj

∆t

]}−1

and σ∗(ti) = E∗
N

∑
j=1

(
1− e

− ∆t
τj

)
ε∗j (ti) (22)

in which ε∗j (ti) are the internal variables that can be updated according the recurrence formula in
Equation (14).

Since E∗ = Ê and σ∗ = σ̂ the two approaches are fully equivalent. This means that the
approximation of an aging compliance function through a Dirichlet (or Prony) series transforms
the classical Volterra integral equation of creep (Equation (2)) into a rate-type formulation governed by
an aging Kelvin chain with spring moduli Ej(t∗) and viscosities τjEj(t∗) obtained directly from the
coefficient of the Dirichlet series approximation of the compliance function. At this point, to generalized
the application of the rate-type approach, there is the need for a robust and reliable procedure capable
of determining the coefficients of the Dirichlet series that approximate a given compliance function.

As pointed out in [23] the retardation times must be chosen “a priori” because their calculation
from experimental data can give an ill-conditioned equation system. A suitable choice is

τn = τ110n−1 with n = 1, 2, 3...N (23)

which means that the retardation times are equally spaced in a logarithmic scale and this gives smooth
enough creep curves. Each of these times is representative of one order of magnitude, covering the
interval from τn/

√
10 to τn

√
10. For a general analysis, 10 Kelvin units, i.e., N = 10, are enough to

consider a wide spectrum time, i.e., from 10−4 days to 10+5 days.

2.4. Non-Aging Kelvin Chain

For non-aging material the expressions previously derived are simplified, since the equivalence
is imposed with a non-aging Kelvin element (with spring stiffnesses constant). Moreover,
the approximation of a non-aging compliance function, J(t − t0), through a Dirichlet (or Prony)
series, is obtained using constant moduli Ej as

J(t, t0) =
1

E0
+

N

∑
j=1

1
Ej

(
1− e

− t−t0
τj

)
(24)

The values of the coefficients Ej can be determined by the best fitting a given non-aging
compliance function J(t− t0) either using a minimization algorithm (Least Squares or Levenberg–
Marquardt algorithm) or passing through the continuous retardation spectrum [24], which is a more
general approach that is summarized in the following.

As shown in Equation (24), a Kelvin chain model with N units gives a non-aging creep compliance
function C(t− t0) which can be approximated by a Dirichlet series as [22]
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C(t− t0) =
N

∑
n=1

An

(
1− e−(t−t0)/τn

)
(25)

where An = 1/En, t = age of concrete, and t0 = age of concrete at the moment of loading. To deal
with a general procedure and to avoid some weak points of other approach [22,25], the continuous
Kelvin chain model with infinite units (continuous spectrum), in which the retardation times are
infinitely close, is used [24]. Passing through the continuous spectrum, the discrete spectrum can
be obtained by discretizing the continuous one. The creep compliance function C(t − t0) may be
approximated in a continuous form as

C(ξ) ≈
∫ ∞

0
A(τ)

(
1− e−ξ/τ

)
d(lnτ) (26)

where ξ = t− t0 and A(τ) is the continuous retardation spectrum, which has the same meaning in
the logarithmic time scale as An in the real time scale. Following the method developed by [26] and
setting τ = 1/χ we have

C(ξ) =
∫ ∞

0
A(χ−1)

(
1− e−ξχ

)
χ−1dχ (27)

and
C(ξ) =

∫ ∞

0
A(χ−1)χ−1dχ−

∫ ∞

0
A(χ−1)e−ξχχ−1dχ (28)

The previous Equation (28) can be rewritten as

C(ξ) = f (0)− f (ξ) with f (ξ) =
∫ ∞

0
A(χ−1)e−ξχχ−1dχ (29)

where f (ξ) if the Laplace transform of the function A(χ−1)χ−1 and f (0) is a constant. Using the
inversion formula of Widder [27] the function A(χ−1)χ−1 can be obtained asymptotically as

lim
k→∞

[
(−1)k

k!

(
k
χ

)k+1
f (k)

(
k
χ

)]
= A(χ−1)χ−1 (30)

where f (k) is the kth derivative of the function f . Remembering that f (ξ) = f (0)− C(ξ) and χ = 1/τ,
we obtain the continuous retardation spectrum

A(τ) = − lim
k→∞

(−kτ)k

(k− 1)!
C(k) (kτ) (31)

The approximate spectrum of order k is obtained by assuming a finite value of k in Equation (31).
For practical purpose an approximate spectrum of third order (k = 3) may be used with enough
accuracy [24,28], i.e.,

A(τ) = − (−3τ)3

2
∂3C (ξ)

∂ξ3

∣∣∣∣
ξ=3τ

(32)

Decomposing the integral by a finite sum over finite time intervals given by Equation (23),
the Equation (26) can be rewritten in the time of interest, i.e., 0 < t < τN

√
10, as

C(ξ) = A0 +
N

∑
n=1

∫ τn
√

10

τn/
√

10
A(τ)

(
1− e−ξ/τ

)
d(lnτ) (33)

The integrals can be evaluated using the n-point Gaussian quadrature rule. Using the one-point
quadrature rule in the intervals ∆ (lnτn), which with Equation (23) are given by ln10∆ (logτn) =

ln10log10 = ln10, the Equation (26) can be written as
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C(ξ) = A0 +
N

∑
n=1

A(τn)
(

1− e−ξ/τn
)

ln10 (34)

and with the coefficients of the Dirichlet series given by

A0 =
∫ τ1/

√
10

0
A(τ)d(lnτ) and A(τn) = −

(−3τn)
3

2
∂3C (ξ)

∂ξ3

∣∣∣∣
ξ=3τn

(35)

Comparing Equation (34) with Equation (24) we observe that the constant term A0 must be added
to 1/E0 and that 1/En = A(τn)ln10.

However, as shown by Jirásek and Havlásek [28] the accuracy of the Dirichlet series which
approximates a compliance function expressed by Equations (34) and (35) is not always good and it can
often be substantially increased by appropriate modifications of the discrete retardation times adopted
in the Dirichlet series. Jirásek and Havlásek [28] demonstrated that in many cases the accuracy of the
Dirichlet series approximation cannot be increased by increasing the derivative order in Equation (32),
but rather by the adjustment of the discrete retardation times, applied after the evaluation of the
compliance coefficients. With this adjustment the Dirichlet series approximation is expressed as

J(t, t0) =
1

E0
+

N

∑
j=1

1
Ej

(
1− e

− t−t0
ψjτj

)
(36)

The expressions of such adjustments, ψj, are presented in the next section for each creep function
considered in this study.

The presented approach for non-aging compliance function can be extended for aging creep
function of the different codes and standards as it is presented in the next section.

2.5. Numerical Algorithm

As already reported in the literature [17,22,29,30], the finite element analysis of long term behavior
with creep is much more efficient if a rate-type approach is used instead of an integral-type form.
A Kelvin chain, as well as a Maxwell chain, arrangements of springs and dashpots can described
the most general creep behavior [29,30]. Since the material constitutive law of concrete is typically
based on the assumption of the strain additivity, a Kelvin chain is more convenient [16,31] than
the Maxwell chain. Following the original idea of Bažant [32], the structural creep problem can be
reduced to a sequence of elastic finite element analyses using an elastic stress–strain relation with
inelastic strain, i.e, step-by-step linear elastic analysis for each time step. This means that in each
time step the rheologic model can be considered non-aging and, consequently, its spring moduli and
viscosity are constant and updated only at the beginning of the time step.

As shown in the previous section, the incremental quasi-elastic stress–strain relation suitable for a
general finite element program can be written as (Equation (8) or Equation (21))

∆σ = E∗
(

∆ε− ε∗(ti)− ∆ε0
)

with ε∗(ti) =
σ∗(ti)

E∗
(37)

where E∗ and σ∗(ti) have been derived in the previous section (see Equations (11) and (13) or
Equation (22)) and ∆ε0 is the inelastic strain increment in each time step, such as the shrinkage
strain or thermal strain [16]. This incremental stress–strain relation represent the quasi-elastic response
of a non-aging kelvin chain that approximates a non-aging creep function J(t, t0) = C(t− t0).

The formula of the compliance functions generally adopted in standards or codes can be put in
the form

J(t, t0) = d0(t0) + C∗(t, t0) = d0(t0) + c0C1(t0)C(t− t0) (38)
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where d0(t0) indicates the instantaneous elastic strain caused by a unit applied stress at the time t0 and
c0C1(t0)C(t− t0) represents the creep deformation, which is expressed as the product of a constant c0,
an aging term, C1(t0), and a non-aging term, C(t− t0). The compliance function in Equation (38) can
be approximated by the following Dirichlet series

J(t, t0) = d0(t0) + c0

N

∑
j=1

C1(t0)

Ej

(
1− e

− t−t0
τj

)
(39)

where the coefficients Ej are identified from the Dirichelt approximation of C(t − t0) using the
expression in Equation (35). In this case, the general incremental quasi-elastic stress–strain relation is
still given by Equation (37) with the following expression for E∗ and σ∗(ti)

(E∗)−1 = d0(t) + c0C1(t)
N

∑
j=1

1
Ej

[
1−

(
1− e

− ∆t
τj

)
τj

∆t

]
(40)

ε∗(ti) =
σ∗(ti)

E∗
=

N

∑
j=1

(
1− e

− ∆t
τj

)
ε∗j (ti) with

ε∗j (ti) = e
− ∆t

τj ε∗j (ti−1) + c0C1(t)
1
Ej

(
1− e

− ∆t
τj

)
τj

∆t
∆σ

(41)

where t can be taken as the time at the middle of the time step, ti + ∆ti/2. When a specific creep
formulation is considered, from the expression of C(t− t0) the coefficients Ej must be calculated first
and then, using the specified expressions for d0, C1, and c0, one can calculate the value of E∗ and σ∗(ti)

to be utilized in the constitutive law of Equation (37). The formulation proposed for the rate-type creep
analysis is based on the continuous retardation spectrum of the adopted constitutive relation for the
compliance function. This spectrum is derived below for the most significant creep models.

3. Spectra Determination for Various Models

3.1. EuroCode 2 Model

The EuroCode 2 (EC2) expresses the creep behavior through the creep coefficient, φ(t, t0), so that
the compliance function may be expressed as

J(t, t0) =
1

E(t0)
+

φ(t, t0)

Eci
(42)

where E(t0) is the modulus of elasticity at loading age t0. Comparing the compliance function in
Equation (38) to the expression in Equation (42), we have

d0 =
1

E(t0)
and C∗(t, t0) =

φ(t, t0)

Eci
(43)

Considering the EuroCode 2 formulation reported in Appendix A, the previous expressions in
Equation (43) can be rewritten as

d0 =
1

βcc(t0)0.3Eci
, c0 =

φRH β( fcm)

Eci
, C1(t0) = β(t0), and C(t− t0) = βc(t− t0) (44)

The approximate continuum retardation spectrum of third order (k = 3 in Equation (31)) is given by

A(τ) = − (−3τ)3

2

0.001βH

(
3τ

3τ+βH

)0.3 [
1800(3τ)2 + 1260βH(3τ) + 357β2

H
]

(3τ)3 (3τ + βH)
3 (45)
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with A0 = 3.96 × 10−8 ' 0 for βH = 600. The optimum adjustment factors, ψj, in Equation (36) for
the best approximation of the EC2 creep function are given by

ψj = 1 + 0.22e

(
−4τj
900

)2

(46)

The quality of the approximation of the EC2 compliance function by Dirichlet series is shown in
Figure 1a for different t0 and with βH = 600, with negligible relative errors (≤ 1%, Figure 1b).
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Figure 1. Approximation of the compliance functions for different t0 (2, 7, 28, and 90 days) for the EC2
code (a) and the absolute value of the error between the exact and the approximated formula (b).

The inelastic strain incremental for the EuroCode 2 model due to shrinkage in each time step is
given by

∆ε0 = εcd(ti+1) + εca(ti+1)− εcd(ti)− εca(ti) (47)

where the expression of εcd (drying shrinkage) and εca (autogenous shrinkage) are reported in
Equations (A16) and (A18), respectively.

3.2. ACI Model

According to the ACI-209R-92 code provisions, the compliance function is expressed as

J(t, t0) =
1

E(t0)
(1 + φ(t, t0)) (48)

where E(t0) is the modulus of elasticity at loading age t0 and the creep coefficient φ(t, t0) is given in
Equation (A25). Comparing the compliance functions in Equation (38) to the one in Equation (48),
we have

d0 =
1

E(t0)
and C∗(t, t0) =

φ(t, t0)

E(t0)
(49)

Recalling the ACI-209R-82 formulation, reported in Appendix B, the previous expressions in
Equation (49) can be written as
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d0 =
1

0.043
√

ρ3 fcm28

(
t0

a+bt0

) , c0 = φuγc,hγc,vsγc,sγc,ψγsh,α,

C1(t0) =
γc,t0

0.043
√

ρ3 fcm28

(
t0

a+bt0

) , and C(t− t0) = φ(t− t0)
(50)

The approximate continuum retardation spectrum of third order (k = 3 in Equation (31)) is
given by

A(τ) = − (−3τ)3

2
×

(3τ)ψ−3ψd
[
2(3τ)2ψ − 3ψd2 + 2d2 + (3τ)2ψψ2 + 4(3τ)ψd + ψ2d2 + 3(3τ)2ψψ− 4(3τ)ψψ2d

]
[d + (3τ)ψ]

4 (51)

with A0 = 1.28 × 10−9 ' 0 for ψ = 0.6 and d = 10. The optimum adjustment factors, ψj,
in Equation (36) for the best approximation of the ACI creep function are given by

ψj = 1 + 0.225e

(
−4τj
500

)2

(52)

The approximations of the ACI compliance function by Dirichlet series for different t0 are
compared with the exact function in Figure 2a with ψ = 0.6 and d = 10. The maximum relative
error, which is plotted in Figure 2b, is less than 1% providing a very good approximation of the ACI
creep function.
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Figure 2. Approximation of the compliance functions for different t0 (2, 7, 28, and 90 days) for the ACI
code (a) and the absolute value of the error between the exact and the approximated formula (b).

The inelastic strain incremental for the ACI model due to shrinkage in each time step is given by

∆ε0 = εsh(ti+1, tc)− εsh(ti, tc) (53)

where the formula of εsh(ti+1, tc) can be found in Equation (A20).
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3.3. B3 Model (RILEM)

According to the B3 model developed by Bažant and coworkers at Northwestern University [33]
and recommended by RILEM, the compliance function (Equation (A34) of Appendix C) is expressed as

J(t, t0) = q1 + C0(t, t0) + Cd(t, t′, t0) (54)

Comparing the compliance functions in Equation (38) to the previous one in Equation (54), one gets

d0 = q1 and C∗(t, t0) = Cd(t, t′, t0) (55)

Since the term C0(t, t0) needs a specific different calculation respect to the previous formulations,
it does not appear in Equation (55). Recalling the B3 formulation, reported in Appendix C, the previous
expressions in Equations (55) and (54) can be written as

C0(t, t0) = q2Q(t, t0) + q3ln
[
1 + (t− t0)

0.1
]
+ q4ln

t
t0

(56)

Cd(t, t′, t0) = q5[e8(1−(1−h)S(t)) − e8(1−(1−h)S(t′0))]1/2 (57)

The function C0(t, t0) describes basic creep by a log-power law with aging incorporated through
the solidification theory [22,34] with an additional logarithmic term that reflects viscous flow. This term
can be described by a dashpot with age-dependent viscosity and can be treated directly in the rate form,
without the need to construct a Dirichlet series approximating its compliance function. Therefore, to describe
the basic creep of B3 model, only the spectrum of the log-power Φ(t− t0) = ln(1 + (t− t0)

0.1) is needed.
Its third order approximation (k = 3 in Equation (31)) with the continuous retardation spectrum
(Equation (32)) is given by

A(τ) = − (−3τ)3

2
200(3τ)0.2 + 369(3τ)0.1 + 171

(3τ)2.9[(3τ)0.1 + 1][1000(3τ)0.2 + 2000(3τ)0.1 + 1000]
(58)

with A0 = 0.29209 (from Equation (35)) for τ1 = 10−4days. The quality of the approximation of the B3
compliance function by Dirichlet series with the coefficient obtained from Equation (58) is shown in
Figure 3a for different t0 and with q3 = 1.5 ∗ 10−5. The approximated curves exhibit a maximum error,
plotted in Figure 3b, below 1% with the adjustment factors ψj = 1.2 for j = 1, 2, 3...9 and ψ10 = 0.
For the numerical calculation of the basic creep function of the B3 model, C0(t, t0) in Equation (56),
reference must be made to the solidification theory [22,34] for which the visco-elastic strain rate is
given by

ε̇(t) =

(
q2

√
1
t
+ q3

)
γ̇(t) with γ(t) =

∫ t

0
Φ(t− τ)dσ(τ) (59)

Substituting in the second expression of Equation (59) the Dirichlet approximation of the
compliance function, Φ, expressed through the coefficient A(τ) given by Equation (58) we have

γ(t) = A0σ(t) +
N

∑
n=1

γn(t) with γn(t) = A(τn)
∫ t

0

(
1− e−

t−τ
τn

)
σ̇dτ (60)

where the γn are now the internal variables that can be calculated with the following recursive formula,
obtained by evaluating ∆γn = γn(ti+1) − γn(ti) with the second expression in Equation (60) and
assuming a linear variation of the stress increment in the time step from ti to ti+1 = ti + ∆t

γn(ti+1) = γn(ti)e
− t−τ

τn + A(τn)σ(ti)
(

1− e−
∆t
τn

)
+ A(τn)∆σ

[
1−

(
1− e−

∆t
τn

) ∆t
τn

]
(61)
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Rewriting the first expression of Equation (59) in discrete form, ∆ε = (q2
√

1/t + q3)∆γ,
and substituting the ∆γ obtained from Equations (61) and (60), one gets the contribution of the
basic creep, ∆σ = E∗b (∆ε− ε∗b ), which must be added to the stress–strain relations in Section 2.5, in the
following form

E∗b (ti+1)
−1 =

(
q2

√
1
t
+ q3

){
A0 +

N

∑
n=1

A(τn)

[
1−

(
1− e−

∆t
τn

) ∆t
τn

]}
(62)

ε∗b (ti+1) =

(
q2

√
1
t
+ q3

){
N

∑
n=1

(
1− e−

∆t
τn

)
[A(τn)σ(ti)− γn(ti)]

}
+ q4

∆t σ(ti)

t
(63)

where t = ti + ∆ti/2, γn(ti) are the internal variable obtained from Equation (61), and the last term
represents an additional logarithmic term that reflects the purely viscous flow. Those two terms in
Equations (62) and (63) must be added to the expression in Equations (40) and (41), respectively.
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Figure 3. Approximation of the B3 model compliance functions for different t0 (2, 7, 28, and 90 days):
Basic creep function (a) and absolute value of the approximating error (b); drying creep function (c)
and absolute value of the approximating error (d).
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In addition to the basic creep, in the model B3 there is a separate drying creep term Cd(t, t′, t0)

(see Equation (A37)), which is capable of reproducing the Pickett effect. Like the shrinkage, the drying
creep term is bounded and depends on the humidity and the cross section thickness. Without losing
generality we assume t′ = t0 (otherwise a constant term should be added to the compliance function)
and comparing the compliance function in Equation (38) to the expression of B3 drying creep
compliance we have

d0 = q1, c0 = q5, C1(t0) = 1, and C(t− t0) = e8(1−(1−h)S(t)) (64)

The approximate third order continuum retardation spectrum of this drying creep function can
be expressed as

Ad(τ) = −
(−3τ)3

2
x2(x2

1 − 1)(h− 1)
τsh
√

x2 − b

(
3

2τ2
sh (x)5/2 +

6x2(x2
1 − 1)(h− 1)

(3τ)2(x2 − b)
+

3x1 − 12(x2
1 − 1)(h− 1)

(3τ)2 +

32(x2
1 − 1)2(h− 1)2 + (x2

1 − 1) + 2x2
1 − 24x1(x2

1 − 1)(h− 1)
(3τ)τsh

√
x

+

12x1x2(x2
1 − 1)(h− 1)− 48x2(x2

1 − 1)2(h− 1)2

(3τ)τsh
√

x(x2 − b)
+

24x2
2(x2

1 − 1)2(h− 1)2

(3τ)τsh
√

x(x2 − b)2 ) (65)

where x = (3τ)/τsh, x1 = tanh(
√

x), x2 = exp(−8x1(h− 1)− 8), b = exp(−8), and A0 = 0.00027
(from Equation (35) with τ1 = 10−4days, τsh = 3600, and h = 0.6). The reliability of the approximation
of the B3 drying compliance function by Dirichlet series with the coefficient obtained from Equation (65)
is shown in Figure 3c for different t0 and with q5 = 10−4, τsh = 3600, and h = 0.6. The approximated
curves in the figure exhibit a maximum error below 2% as showed in Figure 3d. To have that lever
of error (certainly admissible for practical applications) the terms of the Dirichlet series are increased
up to 13, with a denser set of retardation times with retardation time interval of 100.75. The Dirichlet
approximation of the B3 drying creep function reads

Cd(t, t′, t0) = A0 +
N1

∑
n=1

Ad(τn)
(

1− e−(t−t0)/(τnψn)
)

ln(100.75) (66)

where N1 = 13, τn = τn−1100.75 with τ1 = 10−4 days, Ad(τn) from Equation (65), and with t′ = t0,
i.e., drying and loading act simultaneously at time t0, and ψn = 1.3.

The hygral strain incremental for B3 model in each time step is given by

∆ε0 = εsh(ti+1, tc)− εsh(ti, tc) (67)

where the equations for εsh(ti+1, tc) can be found in Equations (A28)–(A31).

4. Numerical Validation of the Finite Element Model

In this section two numerical applications of the proposed approach are presented. The previously
illustrated constitutive relations have been implemented in three-dimensional finite element program,
because only this approach can easily analyze cases with complicated loading history, with different
distribution in the structure of the material properties, with different construction phases,
with cross-section in which the inhomogeneous effects of the diffusion processes are not negligible,
with changes of the structural configuration, and with the shear-lag effect. This effect is characterized
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by out-of-plane warping of cross-sections where there is high shear force and by a nonlinear
stress distribution, that are neglected by the classical beam-type analysis. The reason for taking
it into account is that the shear lag due to the self weight is stronger than the one generated by
the prestress and since the total deflection is a small difference of the downward deflection due to
self-weight and the the upward deflection due to prestress, a small error in only one contribution
produces a larger error in the total deflection. The finite element program employed for all the numerical
simulations presented in this work is a Fortran code written by the first author in which the implicit
time (real time) integration is performed using the Newton–Raphson method with a constant global
stiffness matrix obtained with the value of the Young modulus at 28 days.

All the calculations and the numerical simulations are done assuming concrete in the uncracked stage,
which can be justified by the limited tensile stresses in concrete. However, the proposed formulation
can be easily extended to include non-linear behavior and cracking, for instance see [13,16,30,35] for
mesoscale formulation. Moreover, the relaxation of the steel prestress bars or strands is not considered
in the analyses which follow.

4.1. Numerical Simulation of a Prestressed Beam with I-Shaped Solid Cross-Section

The first example concerns a simply supported prestressed concrete beam with a constant
I-shaped cross-section and with a single equivalent prestressing strand with steel diameter of 36 mm.
The cross-section geometry of the considered beam is showed in Figure 4a, the boundary and loading
conditions in Figure 4b. In order to validate the numerical formulation of the rate type creep model
and its implementation into a three-dimensional finite element code, the mid-span deflection in time
obtained from the finite element analysis is compared with its analytical calculation resulting from the
Effective Modulus Method (EMM) [36] applied to the type of load history considered (see Figure 4c).
Using the EMM the mid-span deflection can be calculated with the Principle of Virtual Work as

f (t, t0) =
∫ l

0
M′(x)

M(x)
Em(t, t0)I(x, t, t0)

dx +
∫ l

0
V′(x)

V(x)κ(x, t, t0)

Gm(t, t0)A(x, t, t0)
dx (68)

where Ee f (t, t0) = 1/J(t, t0) is the effective modulus calculated from the creep function J(t, t0),
Ge f (t, t0) = Ee f (t, t0)/2(1 + ν) is the effective shear modulus, I(x, t, t0) is the cross-section moment
of inertia, A(x, t, t0) is the cross-section area, and κ(x, t, t0) is the shear factor [37]. The geometric
properties depend on time through the homogenization coefficient n = Es/Ee f (t, t0). Assuming a
constant cross-section and substituting the bending moment and the shear corresponding to the
external uniform distributed load of 30 kN/m applied at time t0 (sketched in Figure 4c) the mid-span
deflection, fq(t, t0), is given by

fq(t, t0) =
5

384
q(t) l4

Ee f (t, t0) I(t, t0)
+ κ(t, t0)

1
8

q(t) l2

Ge f (t, t0) A(t, t0)
(69)

The prestressing tendon is modeled using beam finite elements connected rigidly to the nodes
of the three-dimensional mesh (no slip). No regular reinforcing steel bars are considered in
this application. The prestress force, Np, is applied in the tendon by assigning an initial equivalent
thermal deformation which generates a stress which accounts for the initial elastic loss. The initial
prestress force is of 1297 kN that is equal to prestressing force of Np = 1250 kN after the initial
elastic loss. Substituting the bending moment (Mp = Npe with e = the eccentricity of the tendon) the
mid-span deflection, fp(t, t0), is given by

fp(t, t0) =
1
8

Np e(t, t0) l2

Ee f (t, t0) I(t, t0)
(70)
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It has been considered no relaxation of the steel and no shrinkage of concrete in this first example.
The creep model adopted is the EC2 creep model assuming h = 0.5, h0 = 20.445 m2/5.397 m
= 164.9 mm, fck = 55 MPa, fcm = 63 MPa, t0 = 14 days. The comparison between the mid-span
deflection of the beam as calculated using the beam theory with the EMM (Equations (69) and (70))
and the deflection obtained with the 3D finite element analysis with rate type formulation is presented
in Figure 5 for different loading conditions showing a coincidence of the calculated deflections with
the two methods. The excellent agreement is also conformed by the evolution of the normal stresses
and by the force in the steel tendon, as shown in the following.
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Figure 4. Simply supported prestressed concrete beam: (a) Cross-section geometry in millimeters;
(b) boundary conditions and loading; (c) load history; (d,e) finite element mesh.

Classical beam theory with AAEM

3D finite element solution

10 100 1000 10000
Time [days]

-30

-15

0

15

30

D
is

p
la

c
e
m

e
n
t
[m

m
]

prestress action only from time t
0

uniformly distributed load of 30 kN/m from time t
0

prestress action + uniformly distributed load from time t
0

Figure 5. Mid-span deflection of the beam in Figure 5 in logarithmic scale for different loading
conditions obtained by 3D finite element analysis (with the amplified deformation) and by the beam
theory with the effective modulus method.
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The normal stresses in the concrete cross-section can be calculated as

σc(t, t0, y) =
Np(t, t0)

A(t, t0)
+

M(t, t0)

I(t, t0)
y (71)

in which y is the distance from the centroid of the homogenized section and M is the bending moment.
In the following, tensile stresses are considered positive. The force in the prestress steel tendon is also
compared in Figure 6a with the analytical value that can be calculated using the age-adjusted effective
modulus approach, given by

∆Np = Es Ap

(
σc(t0)

Ec(t0)
ϕ(t, t0) +

∆σc

Eaae f (t, t0)

)
(72)

where Eaae f (t, t0) = Ec(t0)/(1 + χ(t, t0)ϕ(t, t0)) is the age-adjusted effective modulus with χ(t, t0) ' 0.8,
σc is the stress in concrete at the level of the tendon and ∆σc = σc(t)− σc(t0) is its variation in time,
calculated using Equation (71) with the appropriate y. Usually, in the design procedure and also in the
code recommendations, only the first term in Equation (72) is considered. In Figure 6a the variation
in time of the force in the steel tendon is shown and compared with the analytical solution obtained
from Equation (72) presenting a perfect agreement between them. Figure 6b–d display the evolution of
the normal stresses obtained with the analytical (Equation (71)) and the numerical solution, again the
results pretty much coincide.
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Figure 6. (a) Evolution of the force in the prestress steel tendon for different loading conditions;
(b–d) evolution of the normal stresses in the middle-span cross-section for the prestress action only,
external distributed load only, and their combination, respectively.
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In addition also the capability of the proposed approach for complex load histories is considered.
Complex load histories that are reported on the left of Figure 7 are adopted and the corresponding
numerical solution is compared with the exact integral formula

f exact
q (t, t0) =

5
384

q(t0) l4

Ee f (t, t0) I(t, t0)
+ κ(t, t0)

1
8

q(t0) l2

Ge f (t, t0) A(t, t0)
+

∫ t

t+0

5
384

J(t, ξ) l4

I(t, ξ)

∂q(ξ)
∂ξ

dξ + κ(t, t0)
∫ t

t+0

1
8

2J(t, ξ)(1 + ν) q(ξ) l2

A(t, ξ)

∂q(ξ)
∂ξ

dξ

(73)

In addition in Figure 7 is also reported the approximate solution give by the AAEM

f aaem
q (t, t0) =

5
384

q(t0) l4

Ee f (t, t0) I(t, t0)
+ κ(t, t0)

1
8

q(t0) l2

Ge f (t, t0) A(t, t0)
+

5
384

[q(t)− q(t0)] l4

Eaae f (t, t0) I(t, t0)
+ κ(t, t0)

1
8

[q(t)− q(t0)] l2

Gaae f (t, t0) A(t, t0)

(74)
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Figure 7. Simply supported prestress beam under different load histories (a,c,e), on the left, and, on the
right the corresponding deflections (b,d,f).
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4.2. Numerical Simulation of a Prestressed Box Girder

The second example deals with a cantilever prestressed concrete box girder with variable
cross-section and with two equivalent prestressing bars with steel diameter of 36 mm. In Figure 8a,b
are shown the cross-section geometries at the fixed and at the free end, respectively, of the considered
girder. The boundary and loading conditions are presented in Figure 8c. For this type of geometry,
the drying process, which drives shrinkage and drying creep, causes nonhomogeneity of shrinkage
and creep properties throughout the cross-section that are nonsymmetric with respect to neutral axis.
This phenomenon can not be captured by a 1D beam analysis and it has often been one major cause of
gross mispredictions of long-time deflections of structures [38,39]. Therefore, only using a 3D analysis
one can capture the different properties in the cross-section.

Moreover, for this application, the 3D finite element numerical solution of the rate type creep
model is compared with the analytical calculation using the beam theory (with the above-mentioned
limitations) and the Effective Modulus Method (EMM) using the load history plotted in Figure 8c).
Using the EMM the free end displacement can be easily calculated with the Principle of Virtual
Work as in Equation (68) where the effective modulus and effective shear modulus are calculated
as in previous example. The moment of inertia, I(x, t, t0), the area, A(x, t, t0), and the shear factor,
χ(x, t, t0), are calculated according to the current the cross-section, which varies from the cross-section
at the fixed end in Figure 8a to the cross-section at the free end. No relaxation of the steel and no
shrinkage of concrete is adopted for this second example. The creep model adopted is the EC2 creep
model assuming h = 0.6, fck = 55 MPa, fcm = 63 MPa, t0 = 14 days, and a cross-section value
of h0 which is assumed varying lineally from 218.6 mm at the fixed end to 155.56 mm at the free
end. The comparison between the displacements of the beam as calculated using the beam theory
with the EMM (Equations (69) and (70)) and the displacements obtained with the 3D finite element
analysis with rate type formulation is presented in Figure 9 for different loading conditions showing a
perfect coincidence of the calculated deflections with the two methods. The excellent agreement is also
confirmed by the evolution of the normal stresses and by the force in the steel tendon. The normal
stresses in the concrete cross-section can be calculated using the expression in Equation (71) with the
correction factors proposed by [40] as kα1 = 1 + 4 tan(α)2 and kα2 = 1− 4 tan(α)2 for the straight and
tapered side, respectively. In Figure 10a the time evolution of the axial force in the steel tendon is
shown and compared with the analytical solution obtained from Equation (72) presenting a very good
agreement between them. Figure 10b–d report the evolution of the normal stresses obtained with the
analytical (Equation (71) with the above correction factors) and the numerical solution which basically
correspond with each other.
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Figure 8. Cantilever prestressed concrete box girder with variable cross-section: (a) Cross-section
geometry at the fixed end; (b) cross-section geometry at the free end; (c) boundary conditions and
loading history; (d,e) finite element mesh. All the lengths are in millimeters.
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Figure 10. (a) Evolution of the force in the prestress steel tendon for different loading conditions; (b–d)
evolution of the normal stresses in the middle-span cross-section for the prestress action only, the point
load only, and the both of them, respectively.

5. Numerical Simulation of the Long-Term Behavior of a Bridge

The bridge is of the “balanced cantilever girder” type, built with segments cast from piers with
mobile equipment, and it is characterized by a central 155 m span (the longest span in Romania for
prestressed concrete box girder bridges), with two side symmetric spans of 77.5 m (see Figure 11).
The deck has a varying depth provided by a curved soffit of parabolic shape. The depth of cross
section varies from maximum value of 10 m at the pier axis, to a minimum value of 2.4 m, at mid
span and at the abutment supports. The upper slab is 14.75 m wide and transversally inclined of 2.5%
(see Figure 12).

Figure 11. Picture of the bridge during its construction.



Appl. Sci. 2020, 10, 4772 22 of 36

 

19.08.2012/Bridge-figure.docx.doc 

Lombardi- Reico 
Via Lentasio, 9 
I-20122 Milano 

Tel. +39(02) 583 03 324 
Fax + 39 (02) 583 03 190 

e-mail:info@lombardi-reico.it 
www.lombardi.ch 

 
BRIDGE N°20 OVER DANUBE-BLACK SEA CHANNEL 

MEDGIDIA-CONSTANTA MOTORWAY (ROMANIA) 
 

 

 
 

  
Figure 12. Project description: Upper view and longitudinal sections.

The layout of the post tensioned internal tendons (total length 10 km/single deck), follows the
upper and lower slabs (see Figure 12). The upper tendons counterbalance the action of the free
cantilever under gravity loads. The lower tendons are located along bottom slab and anchored to
reinforced concrete internal blisters. The layout is symmetric with respect to the midlength of the
central span both for the central and the side spans.

The bridge deck is supported by two piers and two abutments through two seismic bearings
at each support. The bearings are of the “friction pendulum” type, which develop friction forces
both in static conditions, due to static forces and small displacements, and dynamic condition
providing dissipation. Under seismic loads (moderate for that construction site) the whole concrete
structure develops only elastic behavior, because dissipation and lengthening of the natural period of
the structure are provided by the seismic bearings.

Piers 1 and 2 are characterized by same shape but different height, respectively, 17.4 m and
16.15 m. The pier has a hollow rectangular cross section with 8 m transverse and 6 m longitudinal
external dimensions and a massive head capital at the top. The piers base sections are connected to
a reinforced concrete massive rectangular footing erected on a ring of diaphragm walls capable of
transferring to a deep ground level the forces coming from the superstructure. Both abutments are
spill-through type. The beam seat is supported by a number of shear walls aligned with longitudinal
deck axis. Each shear wall is founded on deep diaphragm walls that transfer to the deep ground level
load due to superstructure and earth pressures.

The design of the viaduct was carried out taking into consideration many advanced issues,
including creep and shrinkage deformations and seismic behavior. A finite element numerical model
of the prestressed concrete deck, capable of simulating more than thirty construction phases was
implemented with specific software. The long-term behavior was studied accurately by means of an
experimental/numerical procedure which is presented in this paper. Because of piers low ductility
capacity, the the seismic protection was achieved by integral isolation through “friction pendulum”
devices that develop dissipation by friction mechanism. These type of seismic bearings show
many advantages in term of cost/performance in comparison with traditional high dissipation
rubber bearings, mainly if they sustain high level of axial loads (as it is in this case, 40,000 kN/each
pier bearing, 170 cm diameter). Dynamic tests of “friction pendulum” bearing devices have been
performed at SRMD lab, University of San Diego (USA) [41]. The detail project of foundation design
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was developed in collaboration with Technodata (Naples). Design assistance in the construction field,
was developed with constant support by Italrom (Bucharest, affiliate company of Lombardi–Reico).

The concrete used for the bridge construction has the following mix composition: Cement CEM III
A 42.5 N-LH; polycarboxylic superplasticiser; natural calcareous aggregates with maximum aggregate
size of 25 mm with a water/cement ratio of 0.37 and superplasticizer/cement ratio of 1% (by weight).

5.1. Structural Effects of Long-Term Deformations

The analysis of the structural behavior has been performed through a three-dimensional finite
program applied, because of symmetry, to only one half of the bridge. The box girder of this bridge is
considered a thick shell which is discretized by brick (8-node three-dimensional) finite elements and the
generated mesh is shown in Figure 13. The prestressing tendons (see Figure 13) are modeled through
beam elements connected rigidly to the nodes of the three-dimensional mesh (slip is allowed along
each tendons). Non-prestressed reinforcing steel bars are not considered in the present discretization.
The fineness of the mesh has been validated by checking that a finer mesh with the double of hexahedral
elements would yield only a negligible improvement of the computed elastic deflections.

156 m

10 m

14.75 m

Figure 13. Three-dimensional finite element mesh model of the bridge, the mesh of its different
segments, and the mesh of the steel cables.

The integration algorithm described in Section 2 reduces the creep problem to a series of elastic
structural analyses in each time step. A finite element code developed by the fist author was used to
carry out the step-by-step elastic analysis. The introduction of prestress in each tendon was done by
assigning the initial stress to the tendons through an equivalent thermal deformation. To reproduce
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the time sequence of segmental construction, the finite elements corresponding to different segments
were activated at the time of their casting, which also introduced a different age of concrete for
each segment. Each segment was activated taking into consideration the correction of level adopted
during the construction procedure as reported in Table 1. These corrections have been introduced
in the construction process for taking into account the cumulative deflection at the free end of the
cantilever element and for obtaining the demanded level of the road. In other words, those corrections
are introduced in order to compensate for the initial creep deflection at the free end of the cantilever
beam, due also to the weight of the construction apparatus (see the first picture in Figure 12).

Table 1. Level corrections of segments used in the bridge construction (positive sign means an
upward correction).

Segment Central Span [mm] Side Span [mm]

2 10.5 6.7
3 4.4 7.1
4 14.1 7.3
5 24.3 8.1
6 24.2 8.2
7 23.9 8.3
8 3.9 8.4
9 23.6 8.6

10 13.1 17.5
11 11.7 15.8
12 9.2 2.6
13 5.4 −2.7
14 −1.4 −11.7
15 −2.6 4.0
16 10.6 10.3

During the deck construction the different type of post-tension tendons/bars (see Figure 12)
were activated as described in the following. The free cantilever is built from the pier segment by
adding up to 15 side segments, each one stabilized by the activation of two upper tendons, for a total
of 32 upper cables. At the end of free cantilever construction, abutment segments and key center
segment are connected by lower cables and pre-stressed bars for a total of 88 post-tension tendons/bars.
Table 2 reports all the features of post-tension tendons and bars. The tendons of each segment were
prestressed 2 days after the segment casting. The friction caused by curvature was neglected while
the wobble friction was considered. The initial prestress diminishes also because of the relaxation
of steel. However, this effect is not considered in the 3D finite element analyses, although it can be
implemented in the numerical algorithm just imposing a reduction of the initial prestress in accordance
with some formula taken from a code (for instance the EuroCode2 formula). The creep phenomenon
is strongly influenced by the temperature value. In the numerical simulations however the effect of
the temperature increase due to solar heating of the top slab is neglected as well as any effect of the
environmental temperature variation on the concrete properties. Tensile cracking has not been taken
into account because no significant tensile stresses arise in the numerical simulations and, therefore,
the mechanical behavior can be assumed as linear elastic. The nonlinear effects for creep have not been
considered because the stress levels are always below 0.4 fcm.

In the numerical analysis the self-weight has been applied through a volume force (γ = 25 kN/m3).
During the construction phases the weight of the mobile launching wagon were considered by means
of a vertical force of 750 kN acting at the head of the overhang, and therefore, with a bending moment
dependent on the size of a segment. At the end of the construction, an additional permanent load due
to the pavement and superstructure equal to 35.8 kN/m is applied on the top surface of the upper slab.

The input parameters required for creep and shrinkage analysis depend upon the model adopted,
however, usually they are: The 28-day elastic modulus of concrete, Ec, or the required design strength
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fc28, from which Ec can be estimated; the starting age of drying, taken as t′ = 2 days, which corresponds
to the segmental erection cycle; the average environmental humidity h = 0.6; the effective thickness
of cross-sections, D = 2V/S (V/S is the volume/surface ratio) see Tables 3 and 4; some concrete
composition parameters (especially for model B3). The age at the start of drying is taken here as
2 days, which is the time of formwork removing in the segmental erection cycle of 7 days. For the
EC2 model the following values have been utilized: fcm = 62.90 MPa, fck = 54.90 MPa, and cement of
class N so α = 0, αds1 = 4, αds2 = 0.12 (see the Appendix A for all the details). For the ACI model the
28-day mean compressive strength of fcm28 = 62.90 MPa is adopted with the coefficients reported in the
Appendix B. For the B3 model using in Equation (A39) the 28-day mean cylinder compressive strength
of fcm28 = 62.90 MPa and the concrete composition we have q1 = 1.598 × 10−5, q2 = 9.248 × 10−5,
q3 = 5.026 × 10−7, q4 = 7.107 × 10−6, α1 = 1.1, α2 = 1.2, ks = 1.0, εs∞ = 6.87 × 10−4.

Table 2. Details of the post-tension tendons and bars.

Name Position
Tendons

Strand Type Number of Strands Area [mm2] NP0 [kN]

Cable 1 to 16 Upper Pier 0.6′′ normal 12 1668 2335
Lower cable Lower side and central span 0.6′′ compact 22 3630 5082
Upper cable Upper side span 0.6′′ normal 12 1668 2335

Bars
φ [mm] Area [mm2] NP0 [kN]

thread-bars Key segment 36 1017 722
thread-bars Abutment segments 36 1017 722

Table 3. Effective thickness, D = 2V/S, of the different elements in the cross sections.

Segment Upper Slab [mm] Lateral Slab [mm] Lower Slab [mm]

Diaphragm 2304.70 4502.73 2200.00
1 517.82 865.58 1237.01
2 306.77 880.87 1143.65
3 306.82 885,71 1042.86
4 306.85 891,24 948.36
5 304.73 897.59 860.17
6 305.42 907.09 768.49
7 303.34 720.68 675.22
8 303.34 727.78 599.76
9 303.34 758.49 532.44
10 303.33 784.54 467.16
11 303.34 814.14 411.95
12 303.34 846.21 366.76
13 303.33 878.55 331.61
14 303.33 927.53 306.51
15 303.34 934.43 291.44
16 303.34 956.69 286.42
B1 619.38 6869.47 700.00
B3 303.33 926.99 286.42

Table 4. Geometric characteristics of the bridge cross section and effective thickness, D = 2V/S.

Section Area [m2] Segment Length [m] Volume [m3] D [mm]

Diaphragm 70.667 0.5 35.333 2437.007
1 23.111 3.5 80.891 603.483
2 19.117 4 76.468 514.435
3 17.812 4 71.252 499.910
4 16.590 4 66.363 485.120
5 15.446 4.5 69.511 470.055
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Table 4. Cont.

Section Area [m2] Segment Length [m] Volume [m3] D [mm]

6 14.259 4.5 64.169 453.102
7 12.258 4.5 55.162 403.015
8 11.410 4.5 51.349 389.807
9 10.654 5 53.274 377.120
10 9.922 5 49.610 363.916
11 9.302 5 46.508 352.999
12 8.794 5 43.972 341.620
13 8.482 5 42.410 336.480
14 8.136 5 40.682 327.697
15 7.949 5 39.743 323.048
16 7.880 5 39.402 321.317
B1 9.417 2 36.352 370.549
B3 8.317 1 8.3175 334.471

5.2. Long-Term Variation of Stress and Deformation States

The results of the finite element analysis are presented in the Figures 14–16. For comparison,
the figures show the results obtained with different creep models, i.e., EuroCode2, ACI, and B3 model.
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Figure 14. Bridge deflection (positive if upward) in normal (a) and logarithmic (b) scale computed
with different creep models.

All these responses have been computed with the same finite element program and the same
step-by-step time integration algorithm as presented in Section 2. It must be remarked that the
relaxation of the steel tendons is not considered in the present analysis to emphasize only the
effect of creep and shrinkage on the long-term behavior of the bridge. Figure 14 presents the
mid-span deflection, both in linear and logarithmic time scales, in which the time is measured from
the end of construction stage. It must be remarked that the deflection is also evaluated with reference
to the configuration existing at the end of the construction stage, i.e., this deflection is not the absolute
value of the mid-span deflection. The bridge deflection is calculated as the difference between two
large numbers (both affected by some uncertainties): The downward deflection due to the dead
load and the upward deflection due to prestress. The numerical analysis takes into account the
effect of the differences in thickness of the slabs and webs on their drying rates through a different
effective thickness (D = 2V/S) in the cross section (see Table 3). If the shrinkage and the drying
creep compliance are considered to be uniform over the cross section the overall effective thickness,
D = 2V/S of the whole cross section as reported in Table 4, can be used. The use of non-uniform
creep and shrinkage properties throughout the cross section allows to simulate the initial upward
deflection due to differential shrinkage and differential drying creep, as shown by Figure 14 for all
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the creep models considered in the first years after the end of the bridge construction. The predicted
deflections at about 80 years (∼30,000 days after span closing) are quite different for shape and values
depending on the adopted model. The Model B3 predicts the greater value of the deflection, ≈40 mm,
while using the ACI model the deflection is of few millimeters upward and for the EC2 model it
reaches an asymptotic value of ≈20 mm. The ACI deflection curve presents a shape that is rather
different from those of the other models. It gives a deflection growth during the first years which is
not compensated at a later time by the creep deformation and, as a result, the deflection tends to a
small positive value. The EC2 deflection curve presents a smaller influence of the shrinkage effect
at the beginning and then predicts a deflection which tends to an asymptotic value. On the contrary
the B3 model deflection curve shows a large influence of the shrinkage for the first 6/7 years with an
upward deflection, but then presents an increasing downward deflection with a reduced rate and with
no tendency to an asymptotic value.
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Figure 15. Prestress loss in tendons at main (central) pier by EuroCode2 (a), ACI (b), and model B3
(c) in logarithmic scales.

Figure 15 presents the prestress loss in three different tendons at the main (central) pier predicted
by the various models in logarithmic time scales. The 100-year prestress force in the top tendon of
the last segment, termed “upper cable-16” in Figure 15, is 96% and 92% of the initial force (after the
instantaneous losses) when the ACI and EC2 models are used, respectively, but approximately it is 84%
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when the model B3 is used. Whereas the 100-year prestress force in the lower tendons located along
the bottom slab is 98%, 95%, and 87% of the initial value for the ACI, EC2, and B3 model, respectively.

Figure 16 shows the normal stresses at the upper and the lower part of different cross section
predicted by the various models at two different times: Just after the end of the construction and after
32,000 days (∼85 years). It can be seen clearly that the stresses reduce in time due to the viscosity of
the material and that the amount of the stress reduction is very similar to the deflection and prestress
losses provided by the different creep models.
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Figure 16. Normal stresses in cross sections between different segments, computed with different creep
model: EuroCode2 (a), ACI (b), and model B3 (c).
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6. Conclusions

The paper presents a general procedure for the modeling of typical creep compliance functions
indicated in codes and standards and for its implementation in a three-dimensional finite element code.
The procedure is based on the approximation of an aging compliance function through a Dirichlet
(or Prony) series, which transforms the classical Volterra integral equation of creep into a rate-type
formulation, governed by an aging Kelvin chain whose coefficients are obtained directly from the
coefficients of the Dirichlet series approximation of the compliance function. As shown in the
manuscript, the calculation of the coefficients can be done in two steps: (1) For the non-aging term of the
creep function the coefficients can be efficiently calculated on the basis of the continuous retardation
spectrum approach, obtained by the application of the Post–Widder formula for the inversion of
Laplace transform (using a third order approximation which reproduces with sufficient accuracy the
exact spectrum); (2) after this evaluation all the coefficients of the Dirichlet series must be adjusted
step by step in the time integration procedure to take into account the aging term of the creep function.
Therefore, according this procedure, the series coefficients have to be calculated at the beginning of
the numerical analysis for the determination of the non-aging term of the creep function and then
updated at each time increment by multiplying all of them for the same terms to take into account the
aging effect.

The particular creep compliance functions considered are those provided by the European
Euro-Code 2, the North-American ACI model, the basic creep compliance function and the drying
creep compliance function of the B3 model. The reliability of the proposed approach is demonstrated
by comparing the numerical solution with the analytical solution for two pre-stress concrete beams,
a simple supported beam and a cantilever beam. The 3D numerical model is then been applied to the
simulation of the long-term behavior of a real bridge under construction (which was the motivation of
this work) because only the three-dimensional analysis can capture the shear lag effects in slabs and
webs. Instead of the commonly used simplified beam-type analysis which in general underestimates
the deflections and prestress loss, the performed full three-dimensional analysis highlights the effects
of the different drying properties (different rates of shrinkage and drying creep) caused by the diverse
thicknesses of the upper, lower and lateral slabs in the cross section. In particular, a reliable behavior
of the real structure has been obtained with an upward deflection in the first years caused by the
differential shrinkage and differential drying creep for all the creep models considered. However,
after a few years, a downward deflection sets in, with rate and magnitude which depend on the type
of creep model considered.
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Appendix A. Eurocode 2

In Europe the code recommendation for the prediction of creep and shrinkage are provided by
the EuroCode2 [42]. The compressive strength of concrete at an age t depends on the type of cement,
temperature and curing conditions. For a mean temperature of 20 ◦C and curing in accordance with
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ISO 2736/2 [43], the relative compressive strength of concrete at various ages fcm(t) may be estimated
from the following equations

fcm(t) = βcc(t) fcm with βcc(t) = es
[
1−( 28

t )
1/2]

(A1)

where fcm(t) is the mean concrete compressive strength at an age of t (expressed in days), fcm is the
mean compressive strength after 28 days, βcc is a coefficient which depends on the age t of concrete,
s is a coefficient which depends on the type of cement (s = 0.20 for rapid hardening high strength
cements RS, 0.25 for normal and rapid hardening cements N and R, and 0.38 for slowly hardening
cements SL).

The modulus of elasticity of concrete at an age t 6= 28 days may be estimated from Equation (A2):

Ec(t) = βE(t)Eci with βE(t) = βcc(t)0.3 (A2)

where Ec(t) is the modulus of elasticity at an age of t days, Eci is the modulus of elasticity at an age of
28 days, βE(t) is a coefficient which depends on the age of concrete with t [days], βcc is a coefficient
according to Equation (A1).

The total strain at time t, εc(t), of a concrete member uniaxially loaded at time t0 with a constant
stress σc(t0) may be expressed as follows

εc(t) = εci(t0) + εcc(t) + εcs(t) + εcT(t) (A3)

where εci(t0) is the initial strain at loading, εcc(t) is the creep strain at time t > t0, εcs(t) is the total
shrinkage strain, εcT(t) is the thermal strain.

The prediction model for creep and shrinkage given below predicts the mean behavior of a
concrete cross-section. Unless special provisions are given the model is valid for ordinary structural
concrete (12 MPa < f ck ≤ 80 MPa) subjected to a compressive stress |σc| < 0.4 fcm(t0) at an age of
loading t0 and exposed to mean relative humidities in the range of 40 to 100% at mean temperatures
from 5 ◦C to 30 ◦C. It is accepted that the scope of the model also extends to concrete in tension,
though the relations given in the following are directed towards the prediction of creep of concrete
subjected to compressive stresses.

Within the range of service stresses |σc| < 0.4 fcm(t0), creep is assumed to be linearly related
to stress. For a constant stress applied at time t0 this leads to

εcc(t, t0) =
σc(t0)

Eci
φ(t, t0) (A4)

where φ(t, t0) is the creep coefficient and Eci is the modulus of elasticity at the age of 28 days. The stress
dependent strain εcσ(t, t0) may be expressed as

εcσ(t, t0) = σc(t0)

[
1

Ec(t0)
+

φ(t, t0)

Eci

]
= σc(t0)J(t, t0) (A5)

where J(t, t0) is the creep function or creep compliance and Ec(t0) is the modulus of elasticity at the
time of loading t0. The creep coefficient may be calculated from

φ(t, t0) = φ0βc(t− t0) (A6)

where φ0 is the notional creep coefficient, βc(t− t0) is the coefficient to describe the development of
creep with time after loading, t is the age of concrete (days) at the instant considered t0 is the age of
concrete at loading (days).
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The notional creep coefficient may be estimated from

φ0 = φRH β( fcm)β(t0) (A7)

with

φRH =


1 + 1−RH/RH0

0.1h1/3
0

for fcm ≤ 35 MPa,

1 +
[

1−RH/RH0
0.1h1/3

0
α1

]
α2 for fcm ≥ 35 MPa.

(A8)

β( fcm) =
16.8√

fcm
β(t0) =

1
0.1 + t0.2

0
(A9)

where fcm is the mean compressive strength of concrete at the age of 28 days (MPa), fcm0 = 10 MPa,
RH is the relative humidity of the ambient environment (%), RH0 = 100 (%), h = 2Ac/u is the
notational size of member (mm), where Ac is the cross-section and u is the perimeter of the member in
contact with the atmosphere h0 = 100 mm.

The development of creep with time is given by

βc(t− t0) =

[
(t− t0)

βH + (t− t0)

]0.3

(A10)

with

βH =

1.5
[
1 + (0.012RH)18

]
h0 + 250 ≤ 1500 for fcm ≤ 35 MPa,

1.5
[
1 + (0.012RH)18

]
h0 + 250α3 ≤ 1500α3 for fcm ≥ 35 MPa.

(A11)

The coefficients α1/2/3 are calculated as function of the strength as

α1 =

[
35
fcm

]0.7
α2 =

[
35
fcm

]0.2
α3 =

[
35
fcm

]0.5
(A12)

The effect of the type of cement on the creep coefficient of concrete may be taken into account by
modifying the age t0 at loading in accordance with Equation (A12)

t0 = t0,T

[
9

2 + t1.2
0,T

]α

≥ 0.5 days (A13)

where t0,T is the age of concrete at loading (days) adjusted according to Equation (A14), α is the power
which depends on the type of cement (α = -1 for cement Class S, α = 0 for cement Class N, α = 1 for
cement Class R).

The effect of elevated or reduced temperatures within the range 0–80 ◦C on the maturity of
concrete may be taken into account by adjusting the concrete age according to the following expression:

tT =
n

∑
i=1

e−(4000/[273+T(∆ti)]−13.65)∆ti (A14)

where tT is the temperature adjusted concrete age which replaces t in the corresponding equations,
T(∆ti) is the temperature in ◦C during the time period ∆ti, ∆ti is the number of days where a
temperature T prevails.

For stress levels in the range of 0.4 fcm(t0) < |σc| < 0.6 fcm(t0) the nonlinearity of creep may be
taken into account using Equations (A15)

φ0,k = φ0eασ(kσ−0.4) (A15)
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where φ0,k is the non-linear notional creep coefficient, which replaces φ0 in Equation (A6),
kσ = σc/ fcm(t0) which is the stress-strength ratio, ασ = 1.5.

The total shrinkage strain, εcs(t) = εcd(t) + εca(t), is composed of two components, the drying
shrinkage strain, εcd(t), and the autogenous shrinkage strain, εca(t). The development of the drying
shrinkage strain in time follows from

εcd(t) = βds(t, ts)khεcd,0 with βds(t, ts) =
t− ts

t− ts + 0.04
√

h3
and

εcd,0 = 0.85
[
(220 + 110αds1)exp

(
−αds2

fcm

fcm0

)]
10−6

{
−1.551

[
1−

(
RH

RH0

)3
]} (A16)

where kh is a coefficient depending on the notional size h [mm] as

kh =


1 for h0 = 100,

0.85 for h0 = 200,

0.75 for h0 = 300,

0.70 for h0 ≥ 500.

(A17)

t [days] is the age of the concrete at the moment considered; ts [days] is the age of the concrete at
the beginning of drying shrinkage or swelling (normally at the end of curing); fcm [MPa] is the mean
compressive strength; fcm0 = 10 MPa; αds1 is a coefficient which depends on the type of cement: =3 for
cement Class S, =4 for cement Class N, =6 for cement Class R; αds2 is a coefficient which depends on
the type of cement: =0, 13 for cement Class S, =0, 12 for cement Class N; =0, 11 for cement Class R.

The autogenous shrinkage strain, εca(t), follows from:

εca(t) = βas(t)εca(∞) with

βas(t) = 1− exp
(
−0.2t0.5

)
and εca(∞) = 2.5( fck − 10)10−6 (A18)

Appendix B. ACI Model

In 2008, the American Concrete Institute (ACI) recommended the procedure for the prediction of
creep and shrinkage in its code provisions. The most recent version, labeled as 209R-92, was published
in 1992 and reapproved in 2008 [44,45]. This procedure is applicable to normal weight and all the light
weight concretes (using both moist and steam curing and Types I and III cement) under the standard
conditions. Correction factors are applied for conditions which are other than standard. For this model

Ec(t) = 0.043

√
ρ3 fcm28

(
t

a + bt

)
(A19)

with ρ = 2500, a = 4, and b = 0.85. The ACI-209R-92 code recommends the following expressions
for shrinkage:

εsh(t, tc) =
(t− tc)α

f + (t− tc)α
εshu (A20)

where tc in days is starting time of drying, f = 26.0exp[1.42 × 10−2(V/S)], α = 1, and εshu =

780γsh × 10−6 with
γsh = γsh,tcγsh,RHγsh,vsγsh,sγsh,ψγsh,cγsh,α (A21)

where γsh represents the cumulative product of correction factors. In the present work only the
following factors are considered. The ambient relative humidity coefficient γsh,RH is
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γsh,RH =

{
1.4− 1.02h for 0.4 ≤ h ≤ 0.8,

3.0− 3.0h for 0.8 ≤ h ≤ 1.
(A22)

where the relative humidity h is in decimals. Coefficient γsh,vs allows for the size of the member in
terms of the volume-surface ratio as

γsh,vs = 1.2e[−0.00472(V/S)] (A23)

where V is the specimen volume in mm3 and S the specimen surface area in mm2. Whereas the other
coefficients are not considered (γsh,tc = γsh,s = γsh,ψ = γsh,c = γsh,α = 1).

The ACI-209R-92 code recommends the following expressions for creep compliance function:

J(t, t0) =
1 + φ(t, t0)

Ec(t0)
(A24)

φ(t, t0) =
(t− t0)

ψ

d + (t− t0)ψ φuγc,t0 γc,hγc,vsγc,sγc,ψγsh,α (A25)

where φu = 2.35, ψ = 0.6, d = 10, γt0 , γλ, and γh are correction factors for different loading ages t0,
ambient relative humidity h in decimals, slump of fresh concrete s (in mm), the ratio of fine aggregate
to total aggregate by weight ψ expressed as percentage, air content α in percent, and the member size
effects through the volume-surface ratio V/S, respectively.

γc,t0 = 1.25t−0.118
0 , γc,h = 1.27− 0.67h, γc,vs =

2
3

(
1 + 1.13e[−0.0213(V/S)]

)
,

γc,s = 0.82 + 0.00264s, γc,ψ = 0.88 + 0.0024ψ1, γsh,α = 0.46 + 0.09α
(A26)

where s is the slump of fresh concrete (mm), ψ1 is the ratio of fine aggregate to total aggregate by
weight expressed as percentage, α is the air content in percent. In the numerical analysis reported
in this work, the correction factors to allow for the composition of the concrete are not considered,
i.e., γc,s = 0.82, γc,ψ = 1, and γsh,α = 1.

Appendix C. Model B3

In 1995, RILEM TC-107-GCS recommended the B3 model which is based on the statistical analysis
of creep and shrinkage data in a computerized data bank involving about 15,000 data points and about
100 test series. The model is an improved version of the earlier models namely BP model and BP-KX
model [46,47]. The prediction of material parameters of B3 model is restricted to the Portland cement
concretes, having a 28-day mean cylinder compressive strength varying from 17 to 70 MPa, w/c ratio
0.30–0.85, a/c ratio 2.5–13.5 and cement content 160–720 kg/m3. For this model

Ec(t) = 4.734
√

fcm

√
t

4 + 0.85t
(A27)

The mean shrinkage strain in the cross section

εsh(t, tc) = −κhS(t)εsh∞ (A28)

εsh∞ = εs∞
Ec(607)

Ec(tc + τsh)
with εs∞ = α1α2(0.019w2.1 f−0.28

cm + 270) (A29)

S(t) = tanh

√
t− tc

τsh
(A30)
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τsh = kt(ksD)2 and kt = 0.085t−0.08
c f−0.25

cm (A31)

where D = 2v/s = effective cross-section thickness (v/s = volume to surface ratio of the
concrete member), α1 = 1 for type I cement, =0.85 for type II cement, =1.1 for type III cement, α2 = 0.75
for steam-curing, =1.2 for for sealed or normal curing in air with initial protection against drying,
=1.0 for for curing in water or at 100% relative humidity. kt is a factor given by

kt = 8.5t−0.08
c f−1/4

cm (A32)

and ks is the cross-section shape factor as

ks =



1.0 for an infinite slab,

1.15 for an infinite cylinder,

1.25 for an infinite square prism,

1.30 for a sphere,

1.55 for a cube.

(A33)

The average compliance function is expressed as

J(t, t0) = q1 + C0(t, t0) + Cd(t, t0, t1) (A34)

in which q1 = instantaneous strain due to unit stress, C0(t, t0) = compliance function for basic creep,
and Cd(t, t0, t1) = additional compliance function due to simultaneous drying.

C0(t, t0) = q2Q(t, t0) + q3ln[1 + (t− t0)
0.1] + q4ln

t
t0

(A35)

Q(t, t0) =

1 +
(
(0.086(t0)

2/9+1.21(t0)
4/9)

−1

(t0)−1/2ln[1+(t−t0)0.1]

)1.7(t0)
0.12+8

 −1
1.7(t0)

0.12+8

0.086(t0)2/9 + 1.21(t0)4/9 (A36)

Cd(t, t′, t0) = q5[e−8(1−(1−h)S(t)) − e−8(1−(1−h)S(t′0))]1/2 (A37)

where t′0 = max(t′, t0) if t ≥ t′0, otherwise Cd(t, t′, t0) = 0; t′0 is the time at which drying and loading
first act simultaneously.

The creep coefficient is calculated by the following expression:

φ(t, t0) = Ec(t0)J(t, t0)− 1 (A38)

The model parameters can be estimated from the concrete strength and composition according to
the following formulae

q1 =
0.6 × 10−6

4734
√

fcm
, q2 = 185.4c0.5 f−0.9

cm , q3 = 0.29(w/c)4q2

q4 = 20.3(a/c)−0.7, q5 = 7.57 × 105 f−1
cm |εsh∞|−0.6 (A39)
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