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Abstract

A series of simplified approaches are evaluated for #ffsctiveness to estimate the seismic vulnerability of
historic masonry towers. First, collapse loads are evaluaiesixteen“idealized” benchmark cases with
different slenderness and shear aiath analytical and computational approaches are, usadely the
analytical procedure proposed by the Italian Guidelines dBulieHeritage and pushover analyses conducted
using the commercial codes UDEC and 3Mitie sixteen towers are representative cases which can be
encountered in practice. Tihegeometryis idealized into parallelepiped blocks with hollow squaressro
sections, thus favoring the utilization of 2D approaches, lésleb drastically reduce the effort required for
repeated computations. In addition, a Monte Carlo MC upper bamitdahalysis strategy is proposed, in
order to have an insight into the possible failure mechanisr the different cases investigated. Deliberately
is avoided the introduction of any form of irregularity ahdy are supposed isolated from the neighboring
buildings, to obtain results exclusively dependent from geometrigrésatAmong all the possible collapse
mechanisms, five of them are selected according to the plibpabioccurrence based on past earthquake
experiences. Five million cloud points of collapse accetmratiare obtained by carrying the height,
slenderness and shear area of the idealized towers. The appreaghfast and allows identifying different
regions where single mechanisms are active. The results dmameahrepeating MC simulations with a
triangular FE upper bound limit analysis discretization of itealized towers. A series of equations are
provided in order to assist engineers and practitioners to dabtaigliminary estimation of their expected
collapse acceleration. For validation purposes, the resuéisettpreviously with refined full 3D FE models
of 25 towers located in the Northern Italy are reportedisfaatory agreement between the predictions
provided by simplified methods and sophisticated analyses aia@dbt
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1 Introduction

The preservation of the architectural heritage is a thgkeat societal importance for developed
countries in Europe and technically a very challenging agpe@ally in seismic areas. Masonry
towers in form of medieval defense structures as wellcak @nd bell towers in churches are quite
diffused all over Europe and are an important part ohtsrical and architectural heritage to be
preserved. Recent seismic events have highlighted tha&namasonry towers are particularly
susceptible to damage and prone to pastigédtal collapses under earthquake excitations. The safety
assessment of such unique masterpieces against horipauisld therefore paramount and this paper
deals with such particular topic. Old masonry towers usudbwspeculiar morphologic and
typological characteristics which are at the basdl ¢ha difficulties encountered in the recent past
to find a standardized methodology to predict their behaviorrumateontal loads and hence give a
reliable safety assessment.

In ancient times, towers were exclusively conceived to leetablithstand vertical loads. Recently,
however, national and international standards (e.g. NTC Zhig&lare N617 2009; DPCM 2011;
EC8 2005) have imposed the evaluation of the structuranpeathce in presence of horizontal loads,
which simulate earthquake excitations, encouraging the usepbisticated non-linear methods of
analysis. According to the previous remarks, it is prettgrdleat the most accurate approach to deal
with the analysis of masonry towers under horizontabd$oshould require specific ad hoc FE
approaches (Curti el al. 2006; Carpinteri et al. 2006; Rizh é098; Bernardeschi et al. 2004; Pena
et al. 2010; Bayraktar et al 2010; Milani et al 2012a; Milani.€2@12b; Casolo et al. 2013; Acito et
al. 2014; Valente & Milani 2016a, 2016b, 2017; Milani et al. 2017) rolento deal with the
complexity of the problem through a suitable level of aacyr

However, in engineering practice, the utilization of fiaear methods and full 3D Finite Element
models is not so common, because commercial codesagithnced material models should be
adopted by users that are supposed to have a strong mathkaraticaechanical background and
deep knowledge on sophisticated non-linear analyses conduchelEgit

To cope with this key issue, the Italian code for thé beritage (DPCM 2011) allows evaluating
the seismic vulnerability of masonry towers by means aihale cantilever beam approach, where
only flexural failure is taken into consideration. Suchceaure is very straightforward and can be
tackled even by unexperienced practitioners without thd agasing any advanced computational
methods of analysis such as FE codes. The drawback iseef@eédy the impossibility to account
for a combined shear and flexural failure of the towers, wimigractice is common in case of low
slenderness.

In order to put at disposal to practitioners some formidagreliminarily estimate the seismic
vulnerability of an existing tower (without the need to perfamyg calculation), in the present paper
we analyze series of “idealized” benchmark cases using different simplified approaches, namely the
procedure proposed by the Italian code and pushover conductesvavilommercial codes (UDEC
and 3Muri). The geometry is intentionally idealized into flepiped blocks with hollow square
cross-section, favoring the utilization of 2D approaches,order to drastically reduce the
computational effort required in carrying out medium slstematic computations and avoiding
the introduction of any kind of irregularity, such as pneseof a bell cell, openings, internal vaults
etc Also, the variation of thickness along the height, whi&h very common feature for slender
towers, falls within the wide case @jeometric irregularitiesand is preliminary disregarded in this
study to limit the high number of possibilities that canemcountered in reality. Intentionally with
the aim of furnishing results exclusively related to their @gometric features, towers are also
assumed isolated from the neighboring structuddmssiously, such hypothesis represents a strong
limitation, because towers are often connected to adjaterctures (the church, in the case of bell
towers; the city walls or other buildings in aggregatehéndase of civic towers), and will be removed
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in a dedicated research, where both irregularities redaiction with neighboring buildings will be
dealt with parametricallywithin the present simplified framework, 16 different catieat can be
encountered in practice are critically discussed, chantiree key parameters that proved to be
important for the vulnerability determination, namely Ihejglenderness and transversal shear area.

The simplifications introduced in the modelling phase allowfést sensitivity analygs in the
inelastic range and an estimation of the vulnerabittyhat range of slenderness that is useful for
practical purposes. Simplified formulas fairly representirggobtained seismic vulnerability are also
reported and put at disposal to any practitioner interested alimjmary estimation of the behavior
of the towers before doing any calculation.

Then, a Monte CarloMC) upper bound limit analysis strategy is proposed, in ordeave An
insight into the possible failure mechanisms activehan different cases. Among all the possible
collapse mechanisms, five (the most meaningful) aexte in light of the experience of collapses
deriving from post-earthquake surveys. These are: (agaksplitting into two parts, jlbbase rocking,
(c) overturning with diagonal cracks (Heyman 1995; Como 20185 ¢mbination of splitting and
diagonal overturning; and Yéase sliding. In the framework of the upper bound theorehmaf
analysis, the real mechanism is the one associatedetaninimum multiplier and, being the
possibilities reduced to only 5 options, large scale MC simouls.can be performed changing height,
slenderness and shear area of the idealized towers. Henodlion cloud points of collapse
accelerations are obtained, allowing the identificationclefrly defined regions where single
mechanisms are active, as a function of slenderrgdssar area and height. The results are
substantially confirmed repeating MC simulations with antinidar FE upper bound limit analysis
discretization of the idealized towers, which roughly provideg samilar outcomes. For validation
purposes, the results obtained previously by one of thersuffialente & Milani 2016a, 2016b, 2017)
by means of refined full 3D Abaqus discretization of 25 tovecated in the Northern Italy are
finally reported. Good agreement between the predictionsda by the simplified methods here
proposed and previously presented reference data is obtained.

2 Thesengitivity analysis conducted

The sensitivity analysis conducted in the present papgmed at covering the majority of the
real cases that can be encountered in practice. & metethe investigation of the structural behavior
of 16 “ideal” masonry towers, with different geometric features, such as a variety of heights,
thicknesses and transversal cross sections, asatiedtii Figure [1. Intentionally, the ideal towers do
not exhibit any form of irregularity, such as changethwkness of the perimeter walls, presence of
perforations of any kind (doors, windows, bell cells, etod) iaternal walls, stairs or vaults. The aim
is indeed to simplify the approach to a great extent, deroto provide results in terms of seismic
vulnerability that are dependent on only two geometric paemebamely slenderness and cross
shear area.



Table 1: Initial survey conducted in different Italian e to investigate the typical geometrical features nhifissed

in the national territory

REGION | B1®m) | B2®(m) H (m) t (cm) A A
Base edge Base edge Height thickness Sler_wder ness She_zar area
length length min-max min-max
Abruzzo 4-10 4-10 20-50 130-150 2-6 0.4-0.90
Campania 6-13 5-13 30-75 60-100 2.5-8 0.35-0.80
Emilia- 2-12 2-12 16-87 45-160 3-85 | 0.28-0.85
Romagna
Marche 2.50-9 2.50-8 16-45 60-120 1.5-8 0.25-0.82
Molise 5-6.50 5-7 20-35 100-200 2-6 0.30-0.90
Toscana 5-10 6-10 27-55 130-260 2-9 0.35-0.85
Veneto 4-15 4-14 20-58 80-200 3-7 0.28-0.85
(1) In the present computations it is assumed B1=B2=B

A preliminary work recently carried out at the University acdies Federico Il and partially
presented in Formisano et al. (2017), deals with the gelorsetrvey of several existing towers7n
Italian regions. Among other information, the survepoms as final result the typical ranges of
variability of the height, base width and wall thickneggxasting towers that can be found in Italy
A concise synopsis is provided[in Table 1. Ideal towers aedlyn this paper turn out to exhibit

slenderness 4 and normalized shear ared, (defined respectively asi =H/B and
,5% :[B2 —(B—Zt)Z} /B? as depicted 1n Figurel 2, where also minimum and maximums/alue

and /X found during the survey are represented with green ciralem Figure 2, the ideal towers

seem to fit well the general geometric characterigtidbe real towers surveyed, meaning that they
can be used to have a rough prediction of real cases uedemics loads. Each ideal tower is

represented with its own symbol, differing in shape artakcso towers having sma&s are depicted

with cold colors (i.e. blue and cyan), whereas those M@e&s with cool colors (i.e. yellow and

red). Different values fot s are represented with different symbols, namely squaissyles, circles
and diamonds. Each tower belonging to the same serestédiewith A, B, C and D) is characterized

by the sameA, .



A series B series

t=1m
B=10m
lim t=1m
B=10m @
—t =7.5m
t=1m 'jgm
+ = 1
B=10m JE=rcmy
+ t=1m ——
t=1m _ L
= Hrsm ||
{B=10m =im mi
THrsm T B 1]
H:C;(;m H:;O‘m H:;’m H:EE m H=26 m H:ggm H:ZIm H:;gm
AL A2 A3 A4 B1 B2 B3 B4
t=17m |
Hoom
t=1.7m t=1.6m
++ —+
B=10 =
m B7.5m
t=16m T
t=1.7m —+
B=7.5m
++ 4ESLSmy
B=10m
+ t=1.6m T
ti.: m Tehrsm
. B=10m 4+
t t t=1.6m
T ++.
B=7.5m
H=30m H=40m H=50 m H=60m H=26m H=33m H=41m H=49 m
Cl c2 C3 ca D1 D2 D3 D4

Figure 1 Geometric properties of the “ideal” case studies analyzed in the present paper. Each tower is labele
with a different symbol. Warm colors indicate large edleinashear cross areas (>0.5), whereas cold colc
indicate small equivalent cross areas.
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Figure 2: Relation between normalized shear crossasgtalenderness for the
different “ideal” towers analyzed for comparison purposes (green circles
represent maximum and minimum values in differentdiatiegions, according ti
a survey made by the authors).

3 Methodology of evaluation of collapse accelerations and seismic vulner ability

In order to obtain the seismic vulnerability of the towree different approaches were utilized
These are: 1) the simplified approach according to Iltal@e (also known as Equivalent Static
Analysis, ESA); 2 a push over analysis carried out using the UDEC softwaesl lias the distinct
element method; and 3) a pushover analysis using the 3bftiiase based on the finite element
method.

3.1 Italian code specifics, Equivalent Static Analyses (ESAS)

According to the Italian Guidelines for the built heritagguivalent static analyses (ESAs) should
be carried out to estimate the seismic vulnerability ohaanry tower. They are conducted according
to § 5.4.4 of the Guidelines (DPCM 2(1]1)0, subdividing the tower ickblavith horizontal cross
sections and adopting a distribution of horizontal dsron the blocks proportional to the product
Wiz, being W the weight associated to the i-th block antthe vertical position of its center of mass
When evaluating the resultant horizontal force s B.85 $(T1) W/(qg), reference is made to an
elastic response spectrumr8duced by the behavior factor q equals to 3.6 suggested byave a
Guidelines in the case of geometry and mass regularitygaloe height. The spectral ordinate
corresponding to the fundamental periodid referred to a given spectrum, which can be either
obtained from the Italian code (NTC 20@8)from EC8 (2005).

The fundamental periodican be evaluated rigorously in this case using the wellvkrresults
on vibration of Euler-Bernoulli beams, or either usingsF& through empirical procedures
(Fabbrocino 2016) for real cases. In particular, the #aqy assuming a cantilever beam hypothesis
is given by the following simple formula:

f a, E (1)
' ox L2 HA
Where » is the density of the structure, is the Young modulusy and 1 the cross secti@harea
and inertia moment accordingly the height and; is a constant and is equal to 3.5156.
According to the Italian Guidelines, it is necessargdmpare the acting bending moments on
different transversal sections, within the applicatiminequivalent static loads and under the
hypotheses of class use and soil done, with the repstes.
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For towers with rectangular section, FEM may be avoded simplified formulas could be
adopted according to Italian Guidelines specifics (NTC 2008). tthdehypothesis that the normal
pre-compression does not exceedsfyA, the ultimate bending moment of a masonry rectangular
sections is:

MUZGOA b o,A (2)
2 0.85af,

Where a is the transversal edge length of the sectiothe longitudinal length edge\ the
section areag,-w /A the average pre-compressiom:(tower weight above the section considered)

and t, the design compressive strength. In what follows, obvioushassameb = a= Band
A=B2-(B-2t)°

External moments, within a cantilever beam hypothesibdigided into n elements), may be
evaluated at the generic section j as:

M, =F, sz

i

AL
z =1 ——-1

W

27 (3)

2. ZW
th = Fh

ZZW

With F, _0.858d('E)W/g (sq spectrumy, first period of the structureg gravity acceleration).

In order to evaluate the seismic vulnerability of the tower Italian code suggests the evaluation
of the so-called acceleration facteyy,. The acceleration factor is the ratio between gedk

accelerations corresponding to the capacity and the exipeetsand:

fa,SLV = oy (4)

Ay siv

where ag,,, is the soil acceleration leading to the SLV ultimattes(SLV is an acronym that in
the Italian Code indicates the ultimate limit statelifef safeguard) and, g, is the acceleration

corresponding to the reference return period. The aatelerfactor is a purely mechanical parameter,
which may be useful for an evaluation of the weakné#seostructure in terms of strength.

The evaluation of the acceleration of the responsetspe corresponding to the instant where
SLV limit state is reached on the i-th section canlitained taking into account the reduction induced
by the confidence factor as follows:

agMR; Y AW,
Se siv,i(T) = n = n ] ( S )

O-SBNFC[Z ZWM -7 ) W

k=i k=i

where ¢ is the behavior factor, g the gravity acceleratip,; is the resistant bending moment

on the i-th section,xzand W are the height and the weight in correspondence df-thesection,
respectively, W the total weightcFEhe confidence factor (here assumed equal to 1.3 height
of the i-th section with respect to the base and mtimeber of cross sections.



3.2 UDEC mode

The distinct element method is an explicit method basetinite difference principles, derived
from Cundall’s original work (Cundall 1971). It is presented in the two dimensional code UDEC
(Universal Distinct Element Code) and the three dimensaode 3DEC, developed for commercial
use by Itasca Ltd for either the static or dynamic amalyFASCA 2004). UDEC was developed
initially to model sliding rock masses in which failure oxalong the joints (Cundal971). This
has similarities with the behaviour of low bond strengtBonay which often encountered in masonry
towers (Sarhosis et al. 2016a). Typical examples of mastrmuctures that have been modelled using
the discrete element method and UDEC software includ®emasarches (Sarhosis et al 2014
Forgacs et al. 2017); wall panels (Sarhosis et al. 2015; Saifdheng 2014; Bui et al. 2017); and
ancient colonnades (Sarhosis et al. 20Habatsu et al. 2017).

In UDEC, a masonry wall or a masonry structure carepeesented as an assemblage of rigid or
deformable distinct blocks which may take any arbitrary gegmiigid blocks do not change their
geometry as a result of any applied loading and are maietywken the behaviour of the system is
dominated by the mortar joints. Deformable blocks are natBr discretised into finite difference
triangular zones and each element responds accordingdeaiiped linear or non-linear stress-strain
law. Mortar joints are represented as zero thicknassfaces between the blocks. The soft contact
approach is used, so a finite normal stiffness is takeapresent the measurable stiffness that exists
at a contact or joint. A joint is represented numdices a contact surface formed between two block
edges. The representation of the interface betweensieti&s on sets of point contacts (Sarhosis et
al. 2016a). For each pair of blocks that touch (or are sedaogta small gap), data elements are
created to represent point contacts. Adjacent block$azanh along a common edge segment or at
discrete points where a corner meets an edge or arcathrer.

A point contact hypothesis is used, [see Figlire 3, i.e. viheriateraction force at each contact is
a function of solely the relative displacement betwaecks at that location. When two blocks come
into contact, a force develops between them which cegsbéved into normal and shear components.

Old position

./ ¢ is the friction angle

New position

c is the cohesion

5 AR 8 K,
: # B P
F, B ] L 7
Au, 3 s Lot o
g Yo At o ey LA
F Normal interaction Shear interaction

Figure 3. Forces between blocks (left) and Representatijpints (center and right) within DEM (blocks are in
contact, separation is shown for clarity)

The simplest model of mechanical interaction is tomsstinat the blocks are connected by normal
and shear elastic springis, Figule 3 (center and rig&t)interaction forces are proportional to the
relative displacement between the two blocks. This fdisglacement law at the contacts is
expressed in incremental form as:

AR, = K Au,
_ (6)
AFg = KAug
where aF, and arF, are the normal and shear force incremenis,and au, are the normal and
shear displacement incremenks, and k. are the contact normal and shear stiffnesses.
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Contacts between two block eddes (Figure 4-a) can be rafgddsy two corner-edge contacts.
The contact length, |, allows contact stresses to loeleé¢d as (assuming a unit thickness):

on=F,/1
. (7)
og=F¢/l
and stress increments to be expressed in terms of théjostwianormal (k,) and shear k)
stiffnesses (stress/length) as:

Ao, =k Au
N n ] kn n ( 3 )
os=KAUg

When blocks are discretized into a fine internal meslo(detble blocks), grid-points may be placed
along the original edges (Figurg 4-b). These grid-pointtrea¢ed as new corners, since the edge is
now able to deform into a polygonal line. The same expresai@wused, with contact lengths defined
as shown ifi Figure]4-b, and where the length associatedewaith grid-point is equal to half the
distance between the two closest grid-points locateddo ®de of the edge it contacts.

The overlaps displayed in these figures represent ontyathematically convenient way of
measuring relative normal displacements. In finitenelet models, joints are similarly assigned a
zero thickness, with overlapping indicating compressive jeirgsses and separation indicating
tension. If normal joint stiffness is increased, capslcan be made as small as desired.

\
\

s
s
z

T T ook

I 12 I3 la

(a) Edge-edge contact (b) Contact lengths for fully-deformable blocks

Figure 4. Contact between blocks.

A force-displacement law is used to find contact forcesnfknown displacements. Incremental
normal and shear displacements are calculated forpaznt contact.

The basic joint model is the Coulomb slip, |see Figuieapable of capturing several of the features
that are representative of the physical responsemtjorhe necessary parameters to be defined are
the normal and shear stiffnessas &ndk,), the friction angle ¥) the cohesion (c) and the tensile
strength &).

For the joints simulating the characteristics of omag, a Coulomb slip model (linear elastic with
damage and residual strength) is sufficient in the mgjofithe cases, see Figurk 5.
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Figure 5: Interfaces between two blocks constitutive laws{aband shear)

To perform pushover analysessacalled “slow” dynamic approach is adopted, meaning that a
distribution of horizontal forces is applied with a {@&signed velocity and then the code finds the
solution of the structural problem with an explicit apptoaeith possible non-linear behaviof the
interfaces. This means that several dynamic analysesbayserformed at different levels of the
horizontal load applied to properly recover the entirdalpushover curve. Obviously, before the
application of any horizontal load, gravity loads are &pplias it occurs in common non-linear
dynamic simulations.

Towers under consideration are discretized in UDEC @ssii| Figure 1Such discretization has
the following characteristics:

1) It is two-dimensional, consistently with UDEC limitationsjt takes into account the actual
geometry assuming for the flanges (lateral walls) a thekmegual to B and for the core a
thickness equal to 2t.

2) By means of the discretization adopted, the code cavider failure modes under a pure
flexural behavior, pure shear, vertical cracks or a coatlun of the previous typical failure
modes observed in practice.

3) It should be pointed out that the bottom row of element#éDEC has been assigned as fixed
in the horizontal and vertical direction, with potentahsequences on the effective length of
the towers in UDEC model. It is worth noting however thdiign a no-tension material model
is assumed and a failure due to the formation of a flexural bingiee first horizontal interface
from the ground, it is possible to find analytically thelajpde load. If a reverse triangular
distribution of horizontal actions is applied and 10 raslements are used (the most
unfavorable mesh used here), it is easy to demonstraté¢hatid between the collapse load
of the tower with interfaces at the base or shiftecheredge between first and second row of
elements is 1.5/1.588, with a percentage error introduced equ8lréd Sfully acceptable for
practical purposes. In case of different failure modes,oasitbxperienced that the error
introduced is even lower. For this reason, it was madehihieecto disregard this issue in the
computations.

It is worth mentioning that mechanical properties to assieomeghe masonry material in UDEC
should be the same used when dealing with Italian Guideline®dhetbg Table]2. There are quite
precise indications provided by the Italian Code NTC2008 (200Bapter 8, and subsequent
Explicative Notes in this regarbh the paper, values adopted for cohesion and masa@styceinoduli
refer to a masonry typology constituted by clay brickpfaximate dimensions 210 x 52 x 100 #hm
with very poor mechanical properties of the joint andegreégular courses. A low confidence factor
Fc = 1.35 should be also assum8dch kind of masonry is typical for towers located in Nathern
Italy, but calculations can be repeated also assumifeyetit mechanical characteristics according
to the Italian Code. In the impossibility in UDEC to psedy assign all the inelastic parameters
provided by the Italian code, for interfaces a pure Mobti@mb behavior is assumed, with friction
angle 30°, higher than that suggested by the Italian todempensate cohesion and tensile strength
totally vanishing.
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A typical series of pushover curves obtained with UDE@gisicted ifi Figure]6 (only D typology
is shown for the sake of conciseness), whergas in Figand Figure |8 the failure mechanisms found
at the end of the simulations for all the 16 towerslapcted. As can be appreciated, there are several
different mechanisms active, depending on the geomethgedbtver investigated, and ranging from
a pure rocking at the base (e.g. A1, A3) to a verticaksgjitnto two parts (e.g. B3).

2.5 T

=
wn

Load [1G kN]

05 [/

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Displacement (m)

Figure 6: Typical pushover curves obtained with the softis¥EC (D typology).

Figure 7: Failure mechanisms found with UDEC, towerB.A-
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Figure 8 Failure mechanisms found with UDEC, tower®C-

Table 2: Mechanical properties adopted for masonry andsviafilt

. . fm 4 E G wW
Masonry with clay bricks -
and poor mortar MPa MPa MPa MPa | kN/m

2.4 0.06 1500 500 18

3.3 3Muri macro model

The four types (A, B, C and D) of towers under investigatiave also been modelled by means
of the 3Muri macro-elements analysis software (Galasab 2002 Lagomarsino et al. 2013; Stadata
2016). Four masonry macro-elements have been assemhiegdedlier with effective joints at their
intersection in order to create the box structure ofdters, which have been covered with a plane
bi-directional rigid floor at the top (Figuré 9-a). Thenef, towers are susceptible to undergo in-plane
mechanisms only under the formation of shear and aessam-bending failures, whereas local out-
of-plane collapses have not been taken into account.

The same mechanical properties assumed for the prewiousddels have been adopted in 3Muri,
sed Table P. A cracked condition has been assumed for Y¥ouh§hear moduli of the masonry,
which however does not affect the calculation of theapskk acceleration. Linear dynamic (to
estimate the first vibration mode) and non-linear statialyses have been performed on the towers
considered.

It is worth noting that, in practice, the evaluatiorited ultimate load can be also carried out with
manual calculations on the two shear walls loaded imeplllowing Italian code formulas.

Recalling the general Italian code NTC 2008, resisting sWieand bending moment for a

masonry wall should be evaluated as followisassumes for existing buildings the following value
(for diagonal cracks or Turnsek and Cacovic formula):

V=L 2Xod %0
b \/ 1.5 (9)
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where:

-L=B-t andt are the panel width and thickness respectively;

-b IS a coefficient depending on the panel slendernesst Fe-1.5 it should be , but it is worth
noting that the coefficient b is applicable in the cafsa perforated wall modelled by the equivalent
frame approach; in the case of a tower, each panel egpsethe web of the hollow section, where
shear stresses are almost constant. Thereforas lors&d.

- 704 IS Masonry reference shear strength, obtained frerawérage masonry shear strengthy
means of the relation, =,/ F., with F. already defined;

- o, IS the average vertical compressive stress, definegl-as/Lt, wheren is the normal action
on the panel at the iteration considered.

On the other handy; is evaluated for new structures as follows (base slidiagrsh

V=L, (10)

Where:

- L' is the width of the compressed zone,;

- f4 =(7o+0.40,) /F. IS the design masonry shear strength. Herés the average compressive
stress action om' (i.e. o,=N/L't). The numerical coefficient 0.4 in the formula pldie role of
friction, being the value of,, clearly obtained by means of the Mohr-Coulomb formula.

In the majority of the cases, §g4 )| furnishes values of;, greater than Eff.5 )| and this is the
reason why here is used.

Finally, ultimate bending moment for rocking failure ¢enevaluated as follows:

M, =(to, /2)1- o, /0.85f,) (11)

Where f, = f,,/F,, With f,, masonry average compressive strength=(./0.7, f, characteristic

value). It is interesting to notice that is conceptually identical to and this is not
surprising because the theoretical base is the same.

- No damage

|: Plastic (compression —
bending moment)

. Failure (compression-
bending moment)

-a -b
Figure 9: Seismic pushover analysis in direction x withdsedal
eccentricity: the 3Muri model (a) and (-b) collapse meisman
experienced for all towers.

The collapse mechanisms found with the pushover analgsesicted with 3Muri shoad always
rocking failure[(Figure B-b). It is interesting to notice thdien a seismic accidental eccentricity is
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considered, in all cases towers with the lowest slendefAdés81, C1 and D1) exhibit the strongest
coupling between translational displacement and torsi@ioat whereas all the remaining towers
have a less pronounced torsion. However, it is worth gdhat in the evaluation of the collapse
acceleration to compare with other approaches, accideatantric is not taken into account, in order
not to introduce possible causes of deviation from the ¢éxpeesults, being such parameter not
considered in other approaches. It is also correct togdisteccidental eccentricity, not only because
UDEC 2D model and the simplified formulation do not considebutt because in this kind of
structures the accidental loads are negligible, in cospamwvith permanent onels all investigated
cases, towers show compression-bending plastic behawdocdlapses only, without exhibiting
shear failures. This is confirmed by the manual applicatidormulal( 11 ) on the two walls parallel
to the application of the seismic load. Since[Efl ) is theoretically identical to G2 )} but the
former is applied only on two walls with thicknesshd not on a hollow section, it is expected that
3Muri furnishes a much smaller collapse acceleration,oafrmed by the results shown in the
following Section.

4 Straightforward interpolation formulas
Results obtained with the three models proposed iinsteif normalized collapse acceleration are

depicted froT Fii ure i]o ko Figure]12. In particdlar, Figure 10géfeltalian Guideline§, Figure 11
to UDEC angl Figure 12 to 3Muri. In the horizontal axis, slendsrigerepresented.

A fitting exponential function is also reported with t@responding equation, in order to give
the possibility to any practitioner interested to entsr the diagrams and predict an acceleration at
collapse on a real tower without the need to perform anyuatation. As a matter of fact, only the
value of slenderness is needed.

From an overall analysis of the obtained resultsfdat@wing considerations are worth noting:

1) Italian Guidelines and 3Muri outputs are almost completelgpendent from the normalized
cross shear area, as shown by Figufe 1D and Fighire 12, whesgrhh@s almost superimpose
with the corresponding red ones. Such results are gitieus, because the observed failure
mechanisms in 3Muri are flexural and the Italian Guidelapsiori exclude shear failures. In
addition, as far as the Italian Guidelines are concethedgvaluation of the resistant bending
moment by means of formy{ ) is little influenced by walls thickness, and this explaires
small differences observed between series D (large ahem) and A (small shear ayea

2) UDEC results are quite sensible to shear ared (see Hidjirespecially and as expected for
low slenderness, i.e. where a shear failure is morky likéhen slenderness increases, the two
fitting curves (one for large shear areas the othestoall shear areas) tend obviously to
coincide, a clear indication that failure is purely flexura

3) Fitting function provided by 3Muri stands on the safe sizeause the load carrying capacity
(as already discussed) is evaluated only consideringwbeshear walls parallel to the
horizontal action, whereas the actual hollow cross@esthould be considered to properly
account for the box behavior favored by transversal walke most realistic prediction is
provided by UDEC analyses, which are also sensitive to tieeatit shear areas of the towers,
thus providing, albeit approximate, an implicit indicationtloa failure mode.
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5 Limit analysis with pre-assigned failure mechanisms

Sampling a limited number of pre-assigned failure mechanismigcdd from past earthquake
experiences, it is possible to apply repebtétake principle of virtual powers (in the framework of the
upper bound theorem of limit analysis) and estimate veigktyua possible collapse acceleratign a
normalized against the gravity acceleration g (it candsflyeshown that gg corresponds to the
collapse load) exhibited by a certain ideal tower, univoaigiyned by the knowledge of its height
H, base B and wall thicknesst;.

In this framework, large scale Monte Carlo MC simulagican be repeated on suttieal’ towers
(i.e. with square cross section and constant thickiassraction of the effort needed in standard FE
computations.

For the sake of simplicity, we limited the study to few @b collapse mechanisms, assuming that
the ideal tower can fail according to the five differeritesnes depicted fin Figure]13. The choice is
of course arbitrary but is based on the phenomenologicaleness that they are the most probable,
at least in practice.

Mechanism #1 is typically observed for many existing mastowers and is constituted by the
vertical splitting into two portions and the rocking of Isygortions near the base. It is worth

mentioning here that vertical ultimate sheap (i.e. shear stress along a vertical crack) should be
higher than the horizontal ormo (because of the interlocking effect, at least for ragoiasonry

textures). However, to distinguish betweap and 7no would require the introduction of a further

geometric parameter influencing load carrying capacitieseglyamasonry texture. As a matter of
fact, different textures (considering also quasi periadid random patterns) result into completely
different orthotropic parameters for the masonry behatidailure, as shown for instance in Milani
et al. (2006a). The present paper is however devoted exclusivitg analysis of the behavior of
towers as a consequence of their geometric features. isubletieve that, due to the variety and
complexity of the patterns that can be encountered intipgasuch analysis deserves dedicated
research that is postponed in a specialized research
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Mechanism #2 is a monolithic rocking of the tower with cylicalrhinge at the base; such mechanism
is the closest to Italian Code one.

Mechanisms #3 exhibits an inclined crack pattern departing therbdse, with consequent rocking
of the upper part around the cylindrical hinge located on thei@ssed toe. It has been demonstrated
by Heyman (1995) that such mechanism activates in casarofdetowers with full cross section
and under the hypothesis of no tension material for nmgso

Mechanism #4 is a combination of Heyman’s rocking and vertical splitting. It is worth noting that the
sliding of the left block guarantees plastic admissibitity interfaces under the failure criterion
adopted in the analyses.

Finally, Mechanism #5 is a sliding of the upper part on a haatamterface located near the base.

It is worth noting that all mechanisms are admissible faokmematic limit analysis standpoint. As
a matter of fact, assuming for masonry the multi-serfsotropic failure criterion shown[in Figdre
[14]a, the jumps of displacements sketchfd in Figuterh®ut to obey the plastic flow admissibility.

It is interesting to notice that, for the sake of simpljove assumed a decoupled behavior between
tangential and normal stresses. A more rigorous appweaald require the adoption of a Mohr-
Coulomb failure criterion, which however is charactetibg a slight complication in the definition
of the jump of velocities on interfaces, since irs hiter case a tangential velocity on an interface i
always associated to a normal component.

Such failure surface, which is obviously simplified, is consisteith the manual mechanisms of
Figure 13 in terms of respect of the plasticity assediflow rule. In Mechanism #1, for instance, in
case of adoption of classic limit analysis with a M@wulomb failure criterion, there would be axial
separation between the right and left parts along th&cakcrack, which is not present with the
simplified approach proposed. The aim is to simplify computatito a great extent, in order to
provide closed form formulas to give to practitioners and ¢thatbe used in common electronic
spreadsheets. This, however, does not mean that thel typinessive frictional behavior of masonry
is lost, because the effect of the normal stregsuagential strength is taken into account increasing
the ultimate shear strength according to the classiorMoulomb law. The typical increase of shear
strength due to gravity loads (and friction angle) isnakdeed into account in Mechanism #5 when
computing internal dissipation for horizontal cracks eatgd to sliding, s¢e Figure]13.Vertical stress
acting on cracks is assumed equal to self-weight overtiss area, again a simplification commonly
accepted in the specialized literature. On the other hartthrawgxperienced that the error committed
in the evaluation of the collapse load for Mechanisinis lower than 1%, when as reference is
assumed the rigorous associated plasticity approach. Simitaomes are obtained for the other
mechanisms.

Large scale Monte Carlo simulations (5%1 samples) are performed changing in a wide range

tower height H, slendernest and normalized shear aréa. It is worth noting that the knowledge
of H, 4 and ¢ allows immediately evaluating the base width B and watkttésses;tas follows:
B=AH

t; = B(l_\/g) (12)

In order to cover a wide range of possibilities that caerm®untered in practical design, we adopted
the following ranges for the geometric variability of tharameters: H between 5 and 80 .n,
between 1.5 and 15 and between 0.1 and 0.9.
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Figure 13: Different mechanisms considered in the kinematipliied limit analysis approach propose
Mechanism #1, rocking with vertical splitting. Mechanism #2, mdmolrocking. Mechanims #3,
Heyman’s diagonal cracking and rocking. Mechanism #4, mixed Heyman’s mechanism with vertical
splitting. Mechanism #5, base shear sliding.
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e Mechanism #1

Mechanism 1 is a combination of rocking around the baseweitiical splitting into two parts. It is
worth mentioning that such mechanism is frequently obsedueittg post-earthquake surveys on
collapsed towers.

According to the sketch showr[in Figurd 13, the collapse piigltiassociated to such mechanism is
the following

2
Wy B;tl +Wpg, [E—t—l]+WBz (E—h] We %+ 7oBHt, + ftatlB_2t1+ fttz(%_tlj + fit Z(EZH lj[Ez—t 1j+ fat #

4 2 4 2 2 (13)
Zp(Wa +Wg, + Vg, + VI )
Where, exception made for symbols already introducedjiffegent quantities (see also Figurg 13
can be evaluated as follows:
= Wa=taHyy , Wy =t,BHyy , We, =t,BHy, andw; =taHy, are the different weight of the blocks
(»w 1s masonry specific weight);
- a Is tower width along the transversal direction and hep kgqual tos andt, is the
thickness of the walls along the longitudinal direction;
-z, is the vertical position of the horizontal load degeamt on the load multiplier, which in

this case it is kept equal tQ = % in agreement with classic limit analysis computationsnev

M=

if Italian Code utilizes a reverse triangular distribatof seismic loads, i.e, =% . However,

it is worth mentioning that no theoretical difficultiagse if a triangular distribution assumed

instead of the classic constant one.
e Mechanism #2
According again t§_Figure 13, Mechanism #2 is a simple rgckimund the base, which is the
mechanism closest to the Italian code. Some differemeehowever noticeable, as for instance the
different evaluation of the ultimate bending momenttifa Italian code, which involves a cantilever
beam approach, a limited compressive strength and a sed¥aluation for hollow sections. These
results in a different evaluation of the collapseederation, as will be shown later on. The collapse
multiplier associated to Mechanism #2 is the following:

t B t t B t
WA(B—éj+W52+WC —;+ ftatZ(B—;J+ fi2t,(B— 2tl)—2+ ftatz—; (14)

zZa(Wa + W5 + W )

Wherew; =wg; +Ws,, zA=% and all the other symbols have been already introduced.

/12:

e Mechanism #3

With reference tb Figure 13 , Mechanism #3 inspired by thetsefound by HeymaRef in case of
leaning towers. The analogy between leaning towers and segaditriakes sense because it can be
easily shown, indeed, that the aitverticality angle has the same effect of the appticaof a
horizontal load. Assuming masonry unable to withstandleessiesses, Heyman shown that a limit
out-of-verticality exists that makes the tower collapse under grdwitds for the formation of a
mechanism constituted by a diagonal crack departing frerhdbke and ending on the opposite side,
having a non-linear shape. Heyman discussed his resuéidifirectangular cross section. It can be
easily shown that the linearization of the crack cuorening the mechanism is affected by an error
of about 3% on the collapse load, therefore fully acddgtiar practical purposes. The procedure of
linearization can be repeated for a hollow thin walled cseston. It can be proved that the angle
in[Figure 13 assumes the following valuesi - 0.578 Band tane = 0.201 & for full and hollow thin
walled sections, respectively. In the Monte Carlo satiohs treated hereafter we use a linear
interpolation between the two values in order to takesqmiately into account the real thickness of
the walls.
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Under such hypotheses, the collapse multiplier is theviailg:
A= WarXar +War X +WerXgr +WpiXg: +WorXcr+WeXcit Pi
WiarZar +Wat Zay + VWaR R + VWt ¢ + Wer 2R+ Wt &t
Where the symbols have the following meaning:

(15)

H B .
- Wpg=at(H- Btana)yy ZAR:Btam+E—Etamz )%R=B——;,

- Wy =%at12tanayM Zy = Btam——;tl tamr g = B—?Z%tl;

1 B .
- WBR:(B—Ztl)ZtZ[H—(B—tl)tam];/M ZBR:H—E[H—(B—tl)tamJ XeR =" ;

1 2 1 .
- WBt=E(B—2t1)2tz[(B—21)tamJyM thztltamz+§[(B— 2) tan} th:tl+§(B— ),

1 4.
- Weg=(H-ttana)tayy zg=4 tam+5[ H-t, tam | XCR=—; ;

t .
3’

2 2 2 2 2
SRR C CO R IR ER R
2 cosx cosr cos 2 caes cas,
e Mechanism #4
Mechanism #4], Figure 13s a combination between Heyman’s failure mechanism and vertical
splitting in the middle section. It is sometimes otsedrin real cases and also is provided by UDEC
code, compare for instar|ce Figuie 7|and Figlire 8
Assuming such composite mechanism, the collapse load caalbated using the following formula:
o= WarXar +We1rXg1R + We2rXB2R T WE2X B2t t WeRK cRYW K it P |
WarZar +Wa1rZB1R + We2RZB2R T WB2tZB 2t + WeRZoRT WetZet
Where the symbols have the following meaning:

1 2
- WCt=Et12tana7M th=§t1tam Xot =

(16)

B 1 B Bt .
- Wp=|H-—tanx |a =—| H-— tamx ==
AR [ 2 ]tﬂ/M R 2( > j MRS,

B B i, B 1B ).
- W, =| ——t, |2t,| H——tana Z =—| H-— tanx X =—| ——1t ,
B1R [2 lj 2( 2 ]7M BR 2( > ] BR 2(2 l)
B B B 1 B 1(B
- W52R=(E—t1j2tz[H —Etanaij ZBzR=—2 tarn+—2(H——2 tamj X82R=t1+—2(—2—tlj
1B B 2B 1B .
- Wex :EEtana(—z—tlj Aym Zpa =33 ta xg 3 =t1+—i—2—tlj,

- Wer=(H-ytana)tayy zg= tltam+é( H-t tam) Xcpr=-,

2
1, 2 tg .
- We: = —t{ tana, =—1 tanx ==,
ct=3h M Zct 31 Xct 3
1 t, )\ A B 2 B B
- P,z—af 1 +2t2t 2 u + fttz H - —tana +TO atl+ 2tz __tl — tamx -
2 cos co® cos 2 2 2

e Mechanism #5

The last Mechanism #5, Figure]13, is a pure shear sliding lbasiee which is expected to be possible

for small slenderness and low friction angles.

The associated collapse multiplier is the following:
r[2ay + 24 (B-2Y) |

Ac = 17
5 W, +Wpg +We (17)
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Wy +We +We
aB-(a-2%)( B-2t)
surface adopted in the computations,[see Figufe 14, almwanfindependent deformation of the
interface under shear and normal actions. This imphias lllocks are not subjected to a spurious
displacement due to the fulfilment of plastic admissibiitythe interfaces, but at the same time the
Mohr-Coulomb behavior (i.e. increase of the tensitergjth with pre-compression, ruled by the
friction angle) is preserved.

In the framework of the upper bound theorem of limit anajyBie failure mechanism active is
associated to the minimum of the collapse loads evaldeien Eq[( 13)|td( 17 ), which represents
the @/g ratio that the tower can carry in an incipient stéitilure.

Where we assume that -, + tan® . It is worth noting that the simplified failure

6 Limit analysis with an upper bound triangular FE approach

MC simulations can be also performed witl2@ FE kinematic limit analysis software, as that
proposed by one of the authors in Milani et al. (2006b

Such FE limit analysis approach is based on the upper boaandeth of limit analysis and uses
triangular elements with linear interpolation of theoeity fields and interfacds, Figure]b4where
velocity jumps can occur. Classically, to find the apfie load of a structure with a finite element
discretization, in the framework of the upper bound thepadinear programming problem is written
where the objective function to minimize (under equalit¢ ax@quality constraints) is represented
by the total internal power dissipated.

Equality constraints collect compatibility, plastic flamcontinuum and on interfaces and boundary
conditions.

For the sake of clarification, hereafter we discudwief some of the most important features on the
constraints to be imposed, referring the reader to Milarli @061 for further details. As a matter
of fact, one important equality set of constraints toviosed at the interface between two adjoining
elements(m)— (n), involves nodal velocities of the elements and jumpsetifcity on the common
interface. In particular, it can be easily shown tHtdrdrivial algebra, the tangential and normal
jumps on interfaces depend linearly on the Cartesian nettalities of elementém)—(n), resulting
into four linear equalities per interface, that ia general form are written as

ASUE™ + ASIUE + ASIAU = 0, whereAu is a 4x1 vector collecting velocity jumps of the interface

nodes (one tangential and one normal per naaf€) andu®™ are the6xl vectors collecting the
velocities of the elementgn) and (n) respectively, A and AS? are 4x9 matrices depending only
on nodal coordinates of elemem) and(n), respectively, andh® is a 4x4 geometric matrix of

the interface.

Another important set of equality constraints represgtitie plastic flow in continuum (obeying an
associated flow rule) must be written for each triangelleament. In particular, three equations must
be written as follows:

e _|ou, ouy du, du }_ . 0S°

£ = x| =1 18
Pl ox oy ox oy ox° (18)

Whereé,E)I is the plastic strain rate vector of elemént A% > 0 is the plastic multiplierS© indicates

a generic (non) linear failure surface for continuum &fd= [ox o, T]T is the plane-stress vector
in continuum @, : normal x -axis stressg : normal y -axis stressy : tangential stress).

There is the possibility to solve the limit analysis problesing consolidated linear programming
routines, after a suitable linearization with planes of the failure surface in the form

S®=AME® <p™, where A" is a nx3 matrix (each row corresponds to coefficients of one
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linearization plane) ant™ is the mx1 vector of linearization planes right hand sides. Withigh
assumption, and remembering that the velocity interpolatiside one triangular element is linear,

three linear equality constraints per element can beewes AZu® +(A™ ) 45 =0 whereu® is

the vector of element velocitiea® is the mx1 vector of plastic multiplier rates of the elementeo
for each plane of the failure surface), aidd} is a 3x6 matrix of coefficients depending on the
coordinates of the element nodes.

It is worth also noting that, analogously to continuumalar set of equality constraints must be
imposed for interfaces in order to cope with the plastiw ttondition on interfaces.

Boundary conditions translate into mathematics with @rtbquality constraints, whereas the
admissibility of the plastic flow requires that plastaltiplier rates (of interfaces and continuum) are
non-negative, being strictly positive only those actiwe,associated to a plasticization of the node.
After some elementary assemblage operations, a slimgdée programming problem is obtained (the
reader is again referred to Milani et al. (200®&ly a comprehensive discussion on the topic) where
the objective function is represented by the total islggawer dissipated minus the power expended
by the loads independent from the load multiplier:

min (6] 4%+ (o o) 555 o

A®IU =b*d (19)

such tha ;'féssz 0

33555

where:
- b"_andb",, are the assembled right-hand sides of the inequalitiésh determine the linearised
failure surface of the material of the continuum andefitterfaces, respectively;

- Py is the vector of nodal loads independent from the foaltiplier;

N
. T T . T

- U —|:UT (&) (2™} (27 } is the vector of global variables, which collects tketar of

assembled nodal velocities ), the vector of assembled element plastic multiplies#.2>), the

vector of assembled velocity jumps on interfacasi®(®), and the vector of assembled interface

plastic multiplier ratesx>*°);

- A* is the overall constraints matrix and collects véjobbundary conditions, relations between
velocity jumps on interfaces and elements velocitasstraints for plastic flow in velocity
discontinuities and constraints for plastic flow antnuum.

It is worth noting tha( n )T 22> and (b"1 )T 2°* in the objective function represents the total power

ass, l,ass
dissipated by the continuum and by the interfaces, ragphct
Within a computations scheme wh&€ simulations must be performed, we assume the parametric
mesh shown ifi_Figure 14-b, which is sufficiently flexible aitow to speed up limit analysis
computations, without the need to utilize a new mesh faltowing simulation.
A total of 100000 FE simulations have been performed, which tawk than 5 days of processing
time on a commo®C with 8Gb RAM. Whilst limit analysis with pre-assigned @@ mechanisms
allow for larger simulations (hereafter a 5%16loud of points is utilized) with a minimal
computational effort (less than 2 minutes), FE limit asialgan be regarded as a further validation
of the approach proposed, because at least theoretigatlycadure based on pre-assigned failure
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mechanisms could in principle overestimate collapsgsloaith an incorrect evaluation of the active
failure mechanism.

7 Results of MC simulations

Monte Carlo simulations are conducted on a populatidixd0® ideal towers utilizing the approach
based on the five pre-assigned failure mechanisms.

Three sets of simulations are repeated, changing Igligiet mechanical properties of the interfaces
according to the sensitivity scheme summariz¢d in Tgble 3.

From a detailed analysis|of Tablp 3, it can be obsenatddfse 1 is characterized by a fairly good
cohesion for the interfaces, an almost vanishing tessi#ngth (which well approximates the no-
tension material hypothesis done by both the IltaliaaeCand Heyman 1995) and a reasonable friction
angle, very near to that assumed by Italian Code NTC 208 € is characterized by vanishing
cohesion and tensile strength and small friction andles Jituation, as it will be discussed later on,
favors a sliding failure mechanism, at least for smatdérness values. It is also worth noting that
Case 1 and Case 2 are two cases where tensile strendpd cansidered reasonably. However, Case
1 has a quite high cohesion, whereas in Case 2 cohesiowar, more near to a NTM hypothesis
with frictional behavior. Case 3 is characterized by \gyod cohesion, small but non-zero tensile
strength and reasonable friction angle.

Table 3: Mechanical properties adopted for interfaces féerdiit cases in MC simulations.

70 [MPa] fe [MPa] ® [Deg]
Case 1l 0.10 0.17g 26
Case 2 0.05 0.579 15
Case 3 0.2 0.257 26

Results obtained with MC simulations for Case 1 hoav ir| Figure 1b. In subfigures fror to—
¢, the normalized collapse accelerations so obtaimeddg/ 9= min{ﬂi /15}, is plotted for

each sampled tower against slendertiess (Figyre 15-a), togletr HdFigure 15-b) and normalized
shear areq (Figure [L5-c).

Each sample is represented by a thick dot, with a coloesimondent to the failure mechanism active,
so that color yellow is used for Mechanism #1, blue #2, purplgrégn #4 and red #4.

As can be observed, MC results cumulate on well-defareds of influence with different colors,
which clearly indicate that different failure mechanisere active for well-defined ranges of
slenderness.

An interesting remark is that blue-failure mechanism (#&¢tie only for large values of slenderness,
meaning that the approach suggested by the Italian code méait esgiie strong limitations outside
this range, because based on the activation of a faiecbanism which is improbable in reality. The
determination of the active failure mechanism, indeed, appeaticularly important in light of a
possible strengthening intervention aimed at a vulnerabddyction.

The most probable failure mechanisms (observed in therityagd the cases) are eithef'Heyman-
type” collapse (with the formation ofininclined yield line) or a vertical splitting into two panis.
Such outcome appears fully in agreement with post-earthquakeys. Green failure mechanism,
i.e. a combination of the previously mentioned two mechanide®rly constitutes the smooth
passage between vertical splitting and inclined rocking, inrélag@n with smaller slenderness,
probably because of the pure shear failure of the upper eibpof the tower.

Monolithic rocking at the base is possible (blue failonechanism) but unlikely and occurs only for
very large values of slenderness, which are also unconmpragtice.
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Results obtained for Case 2 are synoptically depic{€ure 18. In this particular situation, we are
in presence of all the five failure mechanisms, with ansfrreduction of the area where the inclined
rocking (#3) is active, in favor of monolithic rocking (#2)so, vertical splitting seems to become
more probable, clearly providing normalized collapse acatters lower than those obtained with
Mechanism #2. Whilst in this case monolithic rocking appearsemrobable, the corresponding
collapse acceleration is however always larger thanpiteevided by Mechanism #1, so not on the
safe size. It is also interesting to point out thatréatively small friction angle allows in this case a
sliding failure (red Mechanism #5) which obviously occurs for teveshibiting small slenderness.

It is interesting to notice that in the same figure ksxabtained with both the procedure proposed by
the Italian code and UDEC are also represented. Thick [aoke refers to the interpolation
exponential formula found in the previous section assuntigh code data, whereas dashed curves
refer to UDEC results. Such curves are multiplied roughly by Bé8ause the distribution of
horizontal loads adopted in MC limit analysis is constaereas for both UDEC and Italian code
is reverse linear. It is also worth noting that Case the most adequate to compare with, because
mechanical properties of the interfaces approximate ansan material.

As can be observed, Italian code data (but UDEC as wibléimajority of the cases) generally stand
within the scatter area provided by MC simulations, but ageen it is stressed how the active failure
mechanism involves in the majority of the cases vdribaar cracks. UDEC trend is generally
characterized by low collapse accelerations for largedstmess, with a deviation from MC scatter
data. Italian code results seem to be less sensitilenidesness, but the trend is conceptually similar.
This feature can be justified by the role played by tlsiaption done in MC simulations of an
infinite compressive strength, which can lead to an otierason of the corresponding resisting
bending moment on interfaces, see[E2))

Finally, in[Figure 17, the same results are replicatedClase 3, which seems to represent an
intermediate situation between the previous two, whewe d6 the five possible mechanisms are
active. Again, green mechanism liaises with #1 and #3 anépbmsars pretty obvious being #2 a
combination of them.

Blue mechanism, i.e. #2 (the one with the highest sinylarith the Italian code) seems to increase
its probability of occurrence, as shown by the extendidimeoblue scatter areAt least qualitatively
this last case seems the nearest to Italian code predictiith a range of slenderness where rocking
failure is possible much larger.

Again, the guantitative differences between Italian cpdliction and present approach can be
justified into the different formulas utilized to evaleahe ultimate bending moment (an approximate
approach is adopted by the Italian code) and the adoptitimeipresent investigation of non-null
values for both tensile and tangential strength.

Data scatter seems larger in the last two cases, probatéyise of the possibility to activate more
failure mechanisms (like the vertical splitting) that grete sensible to a variation in the tower
geometry and mechanical properties of the interfaces.

For Case 1, also FE upper bound limit analysis computagienperformed on a sample of 200000
replicates, assuming for the interfaces the same dadititerion adopted [n_Figure J-Results are
summarized if Figure 18 in terms qfgaversus slenderness. A comparison with Italian code data
and UDEC is also reported, in this case without multiplyitiotng curves by 4/3 because in the FE
limit analysis computations a reverse triangular distigioubf horizontal loads is applied. The
deviation on the collapse load at large values of sleedsrcan be again justified by the assumption
of good mechanical properties for the interfaces witmfamite compressive strength.

As can be noted from the results, there is generabagnat between MC FE limit analysis results
and previously discussed approaches in terms of collapstest®n, but again the variety of the
failure mechanisms numerical found is much wider. Forstiee of completeness,[in Figure 18-b
three different mechanisms (roughly corresponding to mameghanisms 2, 3 and 4 evaluated
previously) obtained with FE limit analysis at three slendss values are represented. The limit
analysis with FE exhibits a smooth transition between éiffemechanism and this feature is in
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common with UDEC, which to some extent is able to fairgtese such variability, s¢e Figurg 7 and
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8 Comparison with real case-studies

One of the authors of this paper performed in the recehdgéesent FE vulnerability analyses
on 25 existing masonry towers located in the Nortltaig (Valente & Milani 2016a, 2016b, 2017).
Partial results of the analysis are available in Valé&niilani (20169 where the reader is referred
for a full insight of the geometry and the numericahtegies adopted to evaluate the seismic
vulnerability and hence the acceleration factors. lefptine analyses where carried out using refined
3D FE discretizations within the commercial code ABAQ(ZB06), assuming for masonry a
sophisticated Concrete Damage Plasticity (CDP) model anakp®nf) non-linear static and dynamic
simulations. By means of such approach, it was possiblealaate the acceleration factor of each
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tower and therefore such data can represent a valuadglene¢ to eventually benchmark the results
obtained with the simplified approaches here adoptdd. Inéityg(Figure 20 ang Figure 21 the
acceleration factors found with Italian code approach, OREEd 3Muri respectively are depicted
against tower slenderness. The spectral ordinate corresgandihe fundamental period & here
referredto a seismic zone iy EC8 with soil D. Italian code is not utilized in thase because the
spectrum is given there only knowing the latitude and tadgi of tower location instead giving
distinct seismic zones.

For the sake of comparison, the acceleration factdirseecaforementioned 25 real towers are also
represented using green diamands
As can be noted, the vulnerability of the real 25 towsegenerally well predicted by the fitting curves
provided by all models. Italian Guidelines curve slightly oviareges the acceleration factor, clearly
because it does not take into account the presence ofiariégs.
However, once again and for the reasons previously discusisedvariability of the failure
mechanisms is totally lost in both Italian code and 3Mwhgreas only UDEC seems able to
reproduce-despite roughly- vertical splitting and rocking at the bag§€igure 22 the results in terms
of damage patterns (red: full damage, blue: no damage) obtaifBIAQUS for 6 of the 25 real
towers studied are depicted with the aim of having an insigbtthe different failure mechanisms
active. As can be observed, towers are ordered fromfthe iae right at increasing slenderness. In
general, the transition is consistent with MC resalsained with pre-assigned mechanisme (se
[Figure 18), so that a small slenderness favors a sliditigediase and then, smoothly all the other
mechanisms become active, ending with the verticaltisglithat is observed for moderate/high
slenderness values.
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Figure 22: Damage patterns (red: full damage, blue: noginabtained in Abaqus for 6 real size and configura
towers in order of increasing slenderness.

9 Conclusions

We have presented several different simplified approaohesighly predict, without needing any
calculation, an estimation of collapse acceleratma associated active failure mechanism of
masonry towers subjected to seismic excitation. The appeeagsed rely into (1& simplified
approach by Italian Code, (2) UDEC, (3) 3Muri and (4) an uppend limit analysis performed
either with pre-assigned failure mechanisms or FEs.pFbeedure is applied on idealized towers,
geometrically regular (without openings, bell cells and irtewaults) exhibiting variable height,
cross shear area and slenderness. By means of theadippliof models (1) - (3) on 16 idealized
towers we presented simplified fitting formulas to predict, euthany computation, the collapse
acceleration and acceleration factor of any existing tasea function of slenderneddodel (4)
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allowed performing large scale Monte Carlo simulationeyaig how different failure mechanisms
can take place in dependence of the geometrical feaifities structures.

The results have been also benchmarked using previouslynf@@seulnerability studies
conducted on 25 real case-studies, showing a satisfacpegraent.

The comparative study however puts in evidence how It&lete, which bases on the assumption
of failure for the formation of a flexural hinge (in tluase at the base thanks to the regularity of the
examples treated) provides collapse accelerations dignerathe safe side, but with a possibly
wrong failure mechanism. This limitation appears particulaniyortant in light of a strengthening
intervention, where the knowledge of the crack patterraisdatory. UDEC on the contrary, despite
roughly, seems to provide more accurate mechanisms to ddounggactical purposes.

Finally, in UDEC an important question arises on the @hoicthe optimal mesh. In order to be
effective, indeed, UDEC (like any other DEM code availabléhe market) would require that the
edges of the blocks preferentially coincide with the aathack patterns. In the simulations performed
in the present paper, it has been shown that the aailueef mechanism involves only vertical and
horizontal yield lines, therefore a rectangular diszagion is perfectly adequate. When Mechanisms
#3 and #4 are active, i.e. when failure involves some incliredd §nes, a regular pattern of blocks
still adapts reasonably well, because the inelastic defarm&gzag around the real inclined crack.
If the refinement is relatively high (even medium nessproved to be effective), the approximation
turns into a slight overestimation of the load cangyicapacity, which can be considered fully
acceptable for practical purposes.
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