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ABSTRACT

The genesis of the ion axial velocity distribution function (VDF) is analyzed for collisionless Hall thruster discharges. An analytical form for
the VDF is obtained from the Vlasov equation, by applying the Tonks–Langmuir theory in the thruster channel, under the simplifying
assumptions of monoenergetic creation of ions and steady state. The equivalent set of 1D unsteady anisotropic moment equations is derived
from the Vlasov equation, and simple phenomenological closures are formulated, assuming a polynomial shape for the ion VDF. The
analytical results and the anisotropic moment equations are compared to collisionless particle-in-cell simulations, employing either a zero
heat flux (Euler-like equations) or the polynomial-VDF closure for the heat flux. The analytical ion VDF and its moments are then compared
to experimental measurements.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006258

I. INTRODUCTION

Hall thruster devices, also known as stationary plasma thrusters,1

are a class of electric space propulsion devices, with very high effi-
ciency and specific impulse, compared to chemical thrusters.2 A
stream of neutral gas is injected from a perforated anode (see Fig. 1)
and is ionized through collisions with free electrons emitted by an
externally mounted hollow cathode. The presence of an external radial
magnetic field strongly limits the mobility of electrons from the
cathode to the anode, creating a region of high axial electric field, near
the exit plane of the thruster. This crossed configuration for the electric
and magnetic fields forces electrons to drift along the azimuthal direc-
tion. The bulk of ion production, located inside the channel, is gener-
ated by the impact of hot electrons (at a temperature of some eV and
comparable kinetic energy in the azimuthal direction) with the cold

and slow neutrals. Ions, which are substantially unmagnetized due to
their large mass, are then accelerated by the axial electric field up to
velocities of the order of 15–20 km/s.3

From their earliest developments in the 1960s, Hall thrusters
have now reached a mature stage and are currently used aboard many
satellites.2 However, their numerical modeling has proved to be chal-
lenging due to the need of considering a number of phenomena,
including plasma waves and instabilities, plasma–surface interaction,
and chemical and kinetic non-equilibrium.4 The lack of numerical
simulation tools able to be used at the same time accurately and effi-
ciently proves to be an issue for what concerns the development pro-
cess. This problem especially concerns the scaling of these devices,
which is tackled by long and costly experiments or using simplified
correlations,5 but also regards lifetime predictions due to wall erosion.6
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A. Kinetic non-equilibrium

The low number of gas-phase collisions and the presence of a
strong electromagnetic field enhance kinetic non-equilibrium in Hall
thrusters.7 The resulting non-Maxwellian velocity distribution functions
(VDFs) determine the transport properties of the plasma and are likely
to influence the appearance and saturation mechanisms of plasma insta-
bilities,8 observed both experimentally9,10 and numerically.11

For ions, in particular, the importance of elastic collisions can be
shown to be small if compared to the accelerating electric field, as can
be seen by the analysis of the non-dimensional numbers characterizing
the problem. Once an ion is generated inside the channel by an elec-
tron–neutral ionizing collision, it is accelerated toward the exit, with
little further interaction with neutrals and electrons. The ion velocity
distribution function has been discussed thoroughly in the literature,
both from the experimental and numerical perspectives,12,13 and its
highly non-Maxwellian shape confirms the secondary role of collisions
for this species. It has often been observed14,15 that the ion axial VDFs
are composed of a dominant peak, followed by a plateau at the lower
velocities, or a slowly decaying tail, as shown in the Particle-In-Cell
(PIC) computation of Fig. 2.

Low collisionality results in a lack of thermalization mechanisms.
While the axial momentum and energy increase under the effect of the
electric acceleration, no relaxation can occur with the radial and azi-
muthal components. This generates a strong anisotropy in the temper-
ature and pressure fields. Other interactions and phase-space mixing
mechanisms can arise due to plasma waves developing in the
thruster,16,17 but they will be neglected in the current work. Transport
quantities, such as the heat flux, are also heavily affected by non-
equilibrium.

Given the degree of kinetic non-equilibrium, a proper frame-
work for describing Hall thruster discharges is the Vlasov

equation,18 as opposed to reduced order moment descriptions
obtained by integrating microscopic properties in the velocity
space. However, the high dimensionality of the Vlasov formulation
(three spatial plus three velocity dimensions), together with the
time step constraints imposed by plasma oscillations makes kinetic
simulations very expensive. Currently, two-dimensional PIC simu-
lations take a few days to a few months on cluster architectures,
and the only option for moving to 3D simulation still consists of
using scalings of geometrical or physical constants,19 but does not
guarantee a complete similitude of the problem. This computa-
tional complexity plays in favor of simplified fluid descriptions,
based for example on the solution of lower order moments of
Vlasov’s equation.20 Such systems suffer, however, from the lack of
a proper closure for the transport quantities, such as the heat flux,
and the degree of non-equilibrium that can be obtained (and thus
the accuracy of the method) is only as good as the closure itself.

The commonly employed cold-ion approximation21 consists of
neglecting the ion pressure and solving only the mass and momentum
conservation equations. This approach allows capturing reasonably
well the ion density and velocity fields. However, it does not provide
any information on the ion temperature, which is suggested to be
linked to the appearance of azimuthal instabilities.22 The situation is
improved by introducing an energy equation, and the resulting system
is often closed by assuming a zero heat flux,20 leading to Euler-like
equations. This improves the prediction of the velocity field by adding
a pressure gradient term in the momentum equation, but still the pre-
diction of higher order moments is not necessarily accurate. Classical
fluid dynamic approaches toward a moderate non-equilibrium
description, such as the Navier–Stokes–Fourier (NSF) equations, lose
their validity in the Hall thruster regimes, as far as ions are concerned.
Indeed, the low collisionality and the presence of a strong electric
acceleration make perturbative solution methods such as the
Chapman–Enskog method (on which the NSF equations are based)
theoretically invalid, as the distribution function cannot be assumed to
be a small perturbation of a local Maxwellian.23

FIG. 2. Ions axial distribution function fxðx; vxÞ from a PIC simulation of a Hall
thruster discharge (conditions from test case A, in Appendix A). The anode is
located at x ¼ 0 m, and the cathode is out of the shown domain, at x ¼ 0:025m.
Position x¼ 0.0075 m marks the thruster exit plane.

FIG. 1. Schematic view of a Hall thruster, with axial electric field E(x) and ionization
profile S(x). The radial magnetic field B is mostly concentrated at the channel exit
plane.
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B. Aim and structure of this work

This work only considers collisionless ions moving in the axial
direction.

• First, we analyze in detail the axial ion distribution function and
provide a simplified analytical formulation, valid in steady and
quasi-steady state conditions;

• then, an unsteady non-equilibrium fluid formulation is derived
for ions and its solution is compared to more comprehensive
kinetic formulations.

The first point is addressed as follows. Section II aims at analyz-
ing how the ion velocity distribution function arises from the interplay
between the electric field and the ionization profile along the channel.
A simple analytical solution is derived in Sec. IIA, following the
treatment for the ion VDF in collisionless plasma sheaths.24–26 A
number of assumptions are introduced at this stage, to obtain a simple
analytical expression. Moments of the analytical VDF are obtained
in Sec. IIB.

Then, in Sec. III, attention is moved toward developing a fluid-
like model for the said problem. In Sec. IIIA, an anisotropic fluid
model is formulated starting from the Vlasov equation. A number of
assumptions introduced in Sec. IIA are relaxed, and the resulting sys-
tem of equations can describe the axial dynamics of ions in both the
steady and unsteady regimes. A closure for the resulting system of
equations is discussed in Sec. III B, where a phenomenological form of
the heat flux is introduced, which mimics the observed features of the
analyzed distribution functions by use of low-order polynomials.

Finally, the analytical solution and the system of fluid equations
are tested on four test cases, in Sec. IV. In the first three test cases, we
compare our results to 2D collisionless PIC simulations, for conditions
typical of Hall thrusters (discussed in Appendix A). This allows for a
detailed comparison of the distribution function and its first four
moments. In the last test case, we compare our results to experimental
measurements, with the aim of providing a partial validation of our
analytical model.

As mentioned, the present work assumes that ions are collision-
less. This limits its validity to the region of strong electric field inside
the thruster, and at most in the very first part of the plume expansion.
The effect of collisions is briefly discussed in Sec. IV. All throughout
the work, we only consider singly charged ion species (although a gen-
eralization is trivial), treating the electric field and ionization profiles
as imposed quantities. The models developed can be directly applied
to fully self-consistent multi-fluid simulations, where the electric field
and ionization rate are obtained from the simulation at each integra-
tion step.

II. GENESIS OF THE ION VDF

To describe the shape of the axial ion distribution function, we
consider steady state conditions. We assume that ions are produced
only by electron–neutral collisions, during which the heavy species
velocity can be approximated to be unchanged. Ions are thus created
at the local velocity distribution of neutrals, which, in this section, is
assumed to be a monoenergetic beam at velocity vn. Additionally, vn
will be considered uniform along the channel. The effect of this
assumption may be argued to quickly become small, if compared to
the electrostatic acceleration along the channel. The same stands for
the effect of a more reasonable model for ion injection (such as a

drifted Maxwellian centered on the neutral velocity vn, in place of the
current monoenergetic model, see Appendix B). These assumptions
will be relaxed in the fluid formulation of Sec. IIIA.

Ion creation and acceleration mechanisms are conveniently ana-
lyzed in the phase space. For the sake of the present discussion, let us
consider as an example the case of Fig. 3, where we show typical values
for Hall thrusters. In this example, the thruster exit plane is located at
x¼ 0.04 m and we assume an injection velocity on the order of
vn ¼ 300m=s. The electric field and ionization axial profiles of this
example were adapted from Boeuf and Garrigues,27 with maximum
electric field E around 20 kV/m and maximum ionization rate S of
2:5� 1023 ions/s/m3.

We start by considering the simple case of a positive electric field
all throughout the domain (no region of velocity inversion for ions).
Ions originate at position vn along the velocity axis, and their genera-
tion along the thruster channel typically starts before the location of
the maximum electric field. Referring to the case of Fig. 3, the first ions
are created after position x � 0:01 m. We mark this as the beginning
of Region (a). In this first part, the electric field is often quite low. As a
result, the ion concentration builds up in a tiny volume of phase space
and trajectories are almost superimposed. Ions slowly drift toward the
exit mainly due to their (low) initial velocity�vn, and gradually accel-
erate. Indeed, the phase-space trajectory is initially almost vertical and
very little acceleration occurs until the electric field begins to be signifi-
cant. The ions produced in this region will have the highest velocity at
the exit of the thruster, as they can exploit the full length of the acceler-
ation region, and will constitute the high velocity peak in the VDF.

As the electric field increases in Region (b), trajectories become
steeper. The ionization source term is significant in this region or even
peaking. This region exhibits a continuous strong production of ions,
whose velocity at the exit will be lower or at most equal to that of ions
originating in Region (a), due to the shorter acceleration region

FIG. 3. Phase-space trajectory of ions (bottom-right), obtained by direct integration
of the motion inside the electric field, and identification of sub-regions, together with
ionization source term S(x) and electric field E(x) profiles (left), and resulting distri-
bution functions at selected locations (top), arbitrary scaled. Inset: zoom on the ion
trajectories inside region (a). Thruster exit plane is at x ¼ 0:04m.
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available. The ions generated in this region will form the body of the
final VDF (as observed, for example, by Mazouffre and Bourgeois28).
At this location, the VDF looks like the distribution b1, in Fig. 3(top).
The body, initially resembling a plateau, gradually transforms into a
long-decaying tail as the ionization profile decreases (b2).

Moving toward the thruster exit plane, the ionization profile
becomes negligible. We denote this as the beginning of Region (c).
Ions are still accelerated by a considerable electric field, but there is no
more production at the velocity v¼ vn, which results in a mere transla-
tion (with some deformation as well) of the distribution function
toward higher velocities. This region may include the last part of the
acceleration region and/or the first part of the plume.

Finally, we denote the bulk of the thruster plume as Region (d).
As both the electric field and the ionization source have become negli-
gible, the effect of collisions gradually becomes the leading term in the
ion dynamics. We will not study the effect of collisions, thus limiting
the validity of the model to Regions (a)–(c).

A. Analytical ion VDF

Under the simplifying hypotheses aforementioned, it is possible
to obtain an analytical solution for the ion axial distribution function.
The derivation follows the classical results for plasma sheaths.24–26 We
start from the Vlasov equation for ions, neglecting the magnetic field,
with electric field EðxÞ and ionization source term in phase-space
Sðx; vÞ, with x and v the space and velocity coordinates,

@f
@t
þ v � @f

@x
þ qE

m
� @f
@v
¼ Sðx; vÞ; (1)

where q and m are the ion charge and mass, respectively. In this sec-
tion, we consider the steady state case only, imposing @t f � 0. In the
most general case of a multi-species description of a gas/plasma, the
ionization source term S is an integral operator, accounting for the
reaction cross sections and the distribution functions of reactants and
products.29 Since in the present case we are considering ions only, the
term S simplifies considerably. Assuming that ions are created as a
monoenergetic beam with velocity v ¼ ðvn; 0; 0Þ, the ionization
source term becomes: Sðx;vÞ ¼ SðxÞ dðvx � vnÞ dðvyÞ dðvzÞ, where
S(x) is expressed in ½s�1 m�3� and is imposed along the axis in this
work. Additionally, in the case of a purely axial electric field and
neglecting its variations along the azimuthal and radial directions y
and z, we have E ¼ EðxÞ x̂ . Under such assumptions, the solution of
Eq. (1) is purely one-dimensional, and we can drop all dependence on
the y and z variables.

The presence of azimuthal instabilities for the electric field would
break the present assumptions. However, such a limitation is less
severe than it may seem, as it still allows retrieving reliable results,
in terms of azimuthal averages. This will be confirmed by results in
Sec. IV. The assumption of radial symmetry is also questionable in real
Hall thrusters due to the presence of walls. Such an assumption limits
the validity of our model to the region of the channel centerline.

In the absence of collisions and relaxation mechanisms and
under the said symmetry assumptions, the three components of parti-
cle motion are decoupled. In order to restrict our attention to the axial
motion of particles (vx), we integrate the Vlasov equation over the vy
and vz velocity components, obtaining an equation for the marginal

distribution function fx, in one space and one velocity dimensions
(1D1V),

vx
@fx
@x
þ qE

m
@fx
@vx
¼ SðxÞ dðvx � vnÞ; (2)

where fx is defined as

fxðvxÞ ¼
ð ðþ1
�1

f ðx;vÞ dvy dvz; (3)

where we omitted the dependence of fx on the x spatial coordinate for
lighter notation. From a given profile of the electric field and produc-
tion term S(x), the solution is easily found by following characteristic
lines, corresponding to particle trajectories in the 1D1V phase space.
In the collisionless case, ions generated at the position x0 fall freely
along the electric potential /ðxÞ, such that their velocity at position x
will be

vxðx0; xÞ ¼
2q
m

/ðx0Þ � /ðxÞð Þ þ v2n

� �1
2

: (4)

For each location x along the thruster, this equation maps the ions
with axial velocity vx to the location x0 where they were generated. As
it appears from Fig. 3, the particles generated between x0 and x0 þ dx
will have at position x a velocity between vxðx0; xÞ and vx x0; xð Þ þ dv,
and the following balance of fluxes holds:25

vxfxðvxÞ dvx ¼ �Sðx0Þ dx0; (5)

where the minus sign accounts for the inverse relation between a
growing x0 and its corresponding final velocity. As the velocity vx of a
free-falling ion is known as a function of x0, one computes

dvx
dx0
¼ d

dx0

2q
m

/ðx0Þ � /ðxÞð Þ þ v2n

� �1
2

¼ � q
m

Eðx0Þ
vxðx0; xÞ

; (6)

and inserting it into the Eq. (5), one gets the simple analytical expres-
sion for the distribution function

fxðvxðx0ÞÞ ¼ �
Sðx0Þ
vx

dx0
dvx
¼ m

q
Sðx0Þ
Eðx0Þ

: (7)

In the steady case, it is thus possible to know exactly the ion VDF if S
and E are known, for example, at a given step of a numerical simula-
tion, or from measurements inside the thruster.

Practically speaking, first of all the desired location x is chosen, at
which the VDF is to be plotted. Then a vector of values for x0 is
created (where x0 < x for positive electric fields), which are used to
sample the values of Sðx0Þ and Eðx0Þ. Finally, the values of vx, which
correspond to locations x0, are obtained from Eq. (4).

If the electric field is positive all along the channel, x0 simply
coincides with the beginning of the domain. In case the electric
field changes direction along the channel, the choice of x0 requires
some more discussion. A point of electric field inversion indeed
exists inside Hall thruster channels and is located near the anode.
Considering the phase-space trajectories of Fig. 4, obtained from a
changing-sign electric field, one can see that for a given position x,
the particles that reach this location and thus contribute to the dis-
tribution function are only those generated between x0 and x.
Particles generated for ~x < x0 backflow toward the left and do not
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contribute to the VDF at position x. The most intuitive possibility
consists of inferring x0 graphically, from the trajectory plot. In the
case of a zero injection velocity, x0 simply coincides with the nodal
point of the electric field (Fig. 4, top). For a general injection veloc-
ity vn > 0, some additional ions created in the region of slightly
negative electric field can escape the electric field barrier (Fig. 4,
bottom). The value for x0 is to be chosen upstream of the nodal
point for the electric field, considering that the ion birth kinetic
energy can overcome an additional potential difference. In this
way, all the ions contributing to the VDF are accounted for.

From a practical perspective, the prediction of the acceleration
region could be in most cases performed effectively by neglecting the
effect of vn and directly taking x0 at the point where E¼ 0.

As an example, Fig. 5 compares the analytical velocity distribu-
tion function to the numerical particle-in-cell VDF that was already
shown in Fig. 2 (test case A, also see Appendix A). As expected, we
observe a distribution that gradually evolves into a beam-like distribu-
tion as ions are accelerated along the channel and reach the plume,
with a long low-energy tail. The error present at locations of low
kinetic energy (around x¼ 5mm) comes from assuming a monoener-
getic ion birth. However, as soon as the acceleration starts, the

importance of injection details quickly vanishes, and the numerical
VDF is reproduced with fidelity.

B. Moments of the analytical VDF

Thermodynamic quantities can be readily obtained from a distri-
bution function, by computation of its moments in velocity space.23

We shall recall here the kinetic definition of some low order moments.
The number density n for instance is a zeroth order moment, coming
from the direct integration of the distribution function. Considering
then quantities specific of the axial direction x, that is the focus of this
work, the average velocity ux in the x direction is obtained from the
momentum nux , obtained from the first order moment of the VDF.
We denote by Px the first component of the pressure tensor Pij,
describing the flux of momentum due to the thermal motion of
particles. This is closely linked to ex, the thermal energy per unit
mass associated with the axial motion of particles. Finally, we
define the heat flux Qx as (half of) the first component of the heat flux
tensor Qijk,

nðxÞ ¼
ðþ1
�1

f ðvÞ d3v; (8a)

nðxÞ uxðxÞ ¼
ðþ1
�1

vxf ðvÞ d3v; (8b)

PxðxÞ ¼
ðþ1
�1

mðvx � uxÞ2f ðvÞ d3v; (8c)

nðxÞ exðxÞ ¼
ðþ1
�1

1
2
ðvx � uxÞ2f ðvÞ d3v; (8d)

QxðxÞ ¼
ðþ1
�1

m
2
ðvx � uxÞ3f ðvÞ d3v: (8e)

These moments can be evaluated for the analytical solution
obtained in Sec. IIA (superscript “a”), considering the definition of
the marginal distribution fxðvxÞ, in Eq. (3), and employing the fluxes
balance in Eq. (5). The analytical moments are here given as integral
expressions along the x axis and can be readily evaluated numerically
from the values of S(x) and the potential /ðxÞ. The number density
reads

naðxÞ ¼
ðx
x0

Sðx0Þ
vðx0; xÞ

dx0; (9)

where function vðx0; xÞ is defined in Eq. (4). The average axial velocity
uaxðxÞ is obtained from

FIG. 4. Typical phase space trajectories around a point of electric field inversion.
Top: zero injection velocity vn¼ 0; bottom: vn¼ 300 m/s. Parameter x0 is identified
by the first particle trajectory reaching the considered location (red line for
x> 0.0045 m).

FIG. 5. Analytical (––––) and numerical (– – –, particle-in-cell) velocity distribution function, at various locations along the Hall thruster discharge. The conditions are those of
test case A.
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uaxðxÞ ¼
1
na

ðx
x0

Sðx0Þ dx0: (10)

The pressure term Pa
xðxÞ can be computed once the average velocity

uax is known,

Pa
xðxÞ ¼

ðx
x0

m
Sðx0Þ

vðx0; xÞ
vðx0; xÞ � uaxðxÞ
� �2 dx0; (11)

and the heat flux termQa
xðxÞ reads

Qa
xðxÞ ¼

ðx
x0

m
2

Sðx0Þ
vðx0; xÞ

vðx0; xÞ � uaxðxÞ
� �3

dx0: (12)

It should be recalled here that these “analytical” moments suffer
from the very same assumptions of the analytical distribution function,
namely, (i) ions are injected as a monoenergetic beam, neglecting the
birth temperature, (ii) are collisionless, and (iii) are in steady state. The
choice for the lower integration extreme x0 is detailed in Sec. IIA.

III. ANISOTROPIC FLUID FORMULATION

For multi-dimensional cases, a full kinetic description of Hall
thruster geometries requires very high computational efforts. On the
other hand, reduced order descriptions such as fluid models can be
much lighter and thus allow for agile evaluations of the thruster per-
formance, and for iterative design procedures. However, the accuracy
of classical fluid formulations (such as the Euler or the
Navier–Stokes–Fourier equations) strongly depends on the closure
employed, and their validity for highly non-equilibrium cases is thus
questionable.

A sound fluid description for ions in Hall thrusters should
account for the non-equilibrium in the distribution function, in partic-
ular, in terms of anisotropy of energies, resulting from the low number
of collisions and strong acceleration in the axial direction. A proper
treatment for the heat flux also needs to be developed, providing a rea-
sonable closure for the system of equations.

In this section, we first formulate governing equations for the
anisotropic case, describing the mass, the axial momentum, and the
energy associated with the axial motion of ions. Then, we close these
equations by formulating a phenomenological heat flux closure based
on a prescribed polynomial form for the VDF.

A. Anisotropic fluid equations

Fluid-like equations for ions in the axial direction x are obtained
as moments of the Vlasov equation, Eq. (1) (see, for example, Ferziger
and Kaper23 and Benilov30). We avoid the commonly employed “cold
ion approximation,”21 as it may include significant errors in the
momentum. The amount of error can be estimated by comparing the
contributions of qu2x and Px obtained from the analytical solution
(reaching errors of 15%–20% for the test cases of Sec. IV). Instead, we
solve an equation for the ion energy.

As ions are weakly collisional, we choose a fully anisotropic
description. Equations are written for the axial component of the
momentum and for the energy associated with the axial velocity of
particles alone. The quantities for the other two directions evolve sepa-
rately and can thus develop different values for the pressure and tem-
perature. In the absence of collisions or electromagnetic coupling
terms, no relaxation term appears.

Integrating the Vlasov equation weighted by the microscopic
property w, we obtain the generalized moment equation,23

@n�w
@t
þ @

@x
� nvw
� �

¼ nqE
m
� @w
@v
þ dw

dt

����
c

; (13)

with the definitions for the operator � and for the chemical production
source

� � 1
n

ð1
�1
� f d3v; (14a)

dw
dt

����
c

� 1
n

ð1
�1

wSðx; vÞ d3v: (14b)

In the present derivations, we perform the same spatial symmetry
assumptions of Sec. IIA: space derivatives along y and z are dropped.
The former condition leads to a formulation to be interpreted as an
average along the azimuthal direction, and the latter limits the validity
of the model to the region of the channel centerline. The mass,
x-momentum, and axial energy equations are obtained choosing,
respectively, w equal to the mass of ions, the x-component of the
momentum mvx , and the axial energy mv2x=2. The first component of
the pressure tensor Px is used in place of the average axial energy
mnex . The two are linked by their kinetic definition: Px � 2mnex , as
can be seen from Eqs. (8c) and (8d), such that the total axial energy
becomes qEx ¼ ðqu2x þ PxÞ=2. Notice that this form for the energy
coincides with the classical gasdynamic definition
“qu2=2þ P=ðc� 1Þ,” where the adiabatic constant c is taken equal to
3, describing a monatomic gas with a single translational degree of
freedom, as in the current case. The equations take the form

@U
@t
þ @F
@x
¼ G; (15)

where the vector of variables in conservative form U and their fluxes
vector F read

U ¼

q

qux
1
2

qu2x þ Px
� �

0
BBB@

1
CCCA ; F ¼

qux
qu2x þ Px

1
2
qu3x þ

3
2
uxPx þ Qx

0
BBB@

1
CCCA; (16)

and with the RHS source terms,

G ¼
mS

nqE þ Rr
x

nqEux þ Cr
x

0
B@

1
CA; (17)

where q ¼ mn is the mass density and S ¼ SðxÞ is the imposed ioniza-
tion term. It is worthwhile to stress that while these equations describe
only the axial motion of particles, they could be easily coupled to equa-
tions for the radial and azimuthal components.

The relation between temperature and pressure can be easily written
by considering the axial thermal energy per unit mass ex ¼ kBTx=2m
and from definition in Eq. (8c), we retrieve: Px ¼ nkBTx , where Tx is the
axial temperature.

Terms Rr
x and Cr

x represent sources for the momentum and
energy equations due to the production of ions at a given initial
momentum and energy, respectively. For ions produced from a
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Maxwellian population of neutrals at temperature Tn and centered
around an axial velocity vn, these terms read

Rr
x ¼ Smvn and Cr

x ¼ S
mnv2n
2
þ kBTn

2

	 

: (18)

The term kBTn=2 arises from considering motion along one axis only
(and would be 3=2 kBT in a fully isotropic formulation, including the
azimuthal and radial particle energy, in equilibrium at temperature T).
The terms vn and Tn are to be imposed in the present equations and
can be a function of the position along the channel. Note that this gives
additional flexibility with respect to the previous analytical solution,
where we had assumed vn uniform in space and Tn¼ 0 (Sec. IIA).

The equations formulated require a closure, obtained by express-
ing the heat flux term Qx as a function of the available moments q, ux,
and Px. The simplest closure consists of choosing, arbitrarily enough,
that Qx¼ 0. This results in the Euler equations, which are theoretically
valid in the infinitely collisional regime, where distribution functions
are Maxwellian, but lose their theoretical validity for collisionless and
accelerated ions.

This adiabatic closure proves to be reasonably accurate as far as
the description of the first two moments is concerned, but as antici-
pated its accuracy is low in terms of reproducing second- and higher-
order moments. On the other hand, the Fourier closure, commonly
employed in fluid dynamics, lacks physical justification in a fully colli-
sionless context, where, additionally, the flux of energy is purely gov-
erned by the combination of an electric field and ionization profile.

A simple attempt to overcome these limitations and develop a
closure aiming at reproducing the basic kinetic features observed is
provided in Sec. IIIB.

B. Closures through polynomial VDFs

In this section, we derive a phenomenological closure for the heat
flux, inspired by the observed ions VDF. Roughly speaking, the colli-
sionless ion axial VDF consists of a peak accelerated by the electric

field, followed by one long plateau or tail. As a third order moment,
the heat flux Qx is driven by the asymmetry of such distribution. As an
attempt to mimic this behavior and therefore to reproduce a reason-
able heat flux, we assume that the distribution function in the accelera-
tion channel can be represented by a simple polynomial of order n, in
the form

fx vxð Þ � f pð Þ vxð Þ ¼
a vx � VAÞp for vx 2 ½VA;VB�
�
0 otherwise;

(
(19)

where we omitted the dependence of fx on the space location for sim-
plicity. Considering the cases p ¼ f1; 2; 3g, we approximate the dis-
tribution function by a triangle, a parabola, or a cubic function, with
support ½VA; VB�. This distribution is shown in Fig. 6 for the case of
p¼ 1, with the definition of the auxiliary parameter L ¼ jVB � VAj,
width of the distribution. The other distributions can be seen in Fig. 7.

Note that through the use of the marginal distribution fxðvxÞ, no
assumption is being made on the shape of the distribution along the vy
and vz axes, which can be chosen arbitrarily and does not influence the
derivation of purely axial quantities.

The three free parameters of these polynomial distributions, a,
VA, and VB, can be linked to the density, velocity, and temperature of
such distributions. This ultimately allows writing the heat flux QðnÞx of
this distribution as a function of the lower moments, thus providing a
closure. Among the three, the cubic closure showed to provide the best
results; therefore, calculations will be here provided for the case p¼ 3.
Derivations for the cases p¼ 1, 2 are analogous and results are
reported in Table I. The closure values for a generic order p are
reported in Appendix C.

First, the number density reads

n ¼
ðþ1
�1

f d3v ¼
ðVB

VA

aðvx � VAÞ3 dvx ¼
aL4

4
: (20)

FIG. 6. Triangular distribution function (p¼ 1) for the heat flux closure.

FIG. 7. Comparison of PIC and polynomial VDFs with same density, average velocity, and temperature, for three selected locations of test case A. PIC VDF (– –), triangular
(– - – -), parabolic (- - -), and cubic function (–––––) approximations.

TABLE I. VDF parameters for polynomial closures for triangle (p¼ 1), parabola
(p¼ 2), and cubic function (p¼ 3).

Triangle Parabola Cubic function

L 18kBTx=mð Þ1=2 80kBTx=3mð Þ1=2 75kBTx=2mð Þ1=2
a 2n=L2 3n=L3 4n=L4

VA u� 2=3L u� 3=4L u� 4=5L
VB uþ 1=3L uþ 1=4L uþ 1=5L
Qx �mnL3=270 �mnL3=320 �2mnL3=875
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Similarly, the average velocity is found from its kinetic definition

nux ¼
ðþ1
�1

vf d3v ¼
ðVB

VA

vx aðvx � VAÞ3 dvx: (21)

The integration is easily performed by the change of variables
n ¼ v� VA, carrying the integration from 0 to L. By exploiting Eq.
(20) and the definition of L, we find a relation for VA and VB,

VA ¼ ux � 4L=5;

VB ¼ ux þ L=5:

(
(22)

Then, an expression for the distribution width L can be obtained
from the temperature definition,

qex ¼
Px
2
¼ nkBTx

2
�
ð1
�1

m
2

vx � uxÞ2f d3v
�

¼
ðVB

VA

ma
2

vx � uxÞ2 vx � VAÞ3 dvx;
��

(23)

which, with the same change of variables, results in the relation

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
75kBTx

2m

r
: (24)

This completely defines the shape of the polynomial distribution,
given the first three moments. A comparison of some PIC distribu-
tions and the polynomial VDFs is shown in Fig. 7 for three selected
locations of test case A (see Appendix A). For the three locations
shown, the density, velocity, and temperature are obtained from the
PIC simulation and used to compute the polynomial VDF parameters.
The matching is shown to be rather approximated; however, the heat
flux is well reproduced. Indeed, reproducing exactly the VDF is often
unnecessary in view of obtaining a reasonable value for its lower
moments, as many details of the VDF are lost in the integration pro-
cess for computing the moments.

The heat flux is finally obtained with the same procedure, from
the kinetic definition,

Qx ¼
ðVB

VA

ma
2
ðvx � uxÞ3 ðvx � VAÞ3 dvx; (25)

resulting in a closed form for the heat flux

Qx ¼ �
2mn
875

75 kBTx

2m

	 
3=2

: (26)

Note that since the heat flux is a central moment, the average
velocity ux does not appear in its formulation, but only has the effect
of centering the distribution function.

Without needing to solve the full set of fluid equations, we can
obtain a preliminary assessment for the validity of the closures by con-
sidering the density, velocity, and temperature fields from the PIC sim-
ulations: using these fields to compute the parameters in Table I, we
can compare the obtained approximated heat fluxes to the self-
consistent heat flux from PIC simulation. This is done in Fig. 8 for the
PIC simulation of test case A (Appendix A). The actual accuracy of
the closure strongly depends on the test case, but shows in all cases at
least a good qualitative agreement, with the parabolic and cubic

approximations dominating over the triangular one. Indeed, the trian-
gular distribution is a crude approximation of the actual VDF and
misses both the shape of the low-velocity tail and the location of the
high velocity peak (see Fig. 7, Center and Right). The parabolic and
cubic functions are slightly better in this regard. A good matching is
shown in the acceleration region, especially if compared to the Qx¼ 0
Euler closure. An additional correction to the heat flux will be intro-
duced in Sec. III C.

C. Correction for negative and low velocities

As mentioned earlier, real thruster geometries are characterized
by a point of velocity inversion for ions, close to the anode. In this
region, the electric field becomes negative and attracts the ions, such
that the polynomial distributions of Fig. 6 should be reversed, heading
toward negative velocities. This reflects into a change in the heat flux
closure, which should be modified by introducing a signðuxÞ function.
This, however, introduces a new issue, namely, the heat flux would dis-
continuously jump from a positive to a negative value across the posi-
tion of ux¼ 0.

Moreover, when the average velocity is close to zero (say, roughly
lower than the thermal speed), the assumption of a polynomial distri-
bution function becomes very questionable. In that region, the distri-
bution is indeed closer to the ions birth Maxwellian, since the electric
field did not accelerate and deform the VDF yet, and the heat flux is
thus zero. For these two reasons, we introduce an arbitrary limiting on
the heat flux in such regions. By considering the distance between the
high velocity extreme VB and the average velocity ux, we define the
quantity D ¼ jVB � uxj (resulting in D ¼ L=3; L=4; or L=5 for the
triangular, parabolic, and cubic VDFs, respectively, where VB is
assumed to be the highest velocity extreme of the distribution, either
positive or negative). We decide to limit the heat flux in the region
where ux < 2D, meaning that the limiting shall apply whenever the
average velocity is lower than a percentage of the thermal velocity. The

FIG. 8. Application of triangular heat flux to the lower moments of the PIC simula-
tion of test case A. PIC simulation ( ); non-limited triangular ( ), parabolic
( ), and cubic ( ) VDF heat fluxes Qx. Cubic closure with erfðÞ limiting
(Q	x , ) superimposes on the non-limited one in the acceleration region.
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most obvious choice consists of a linear limiting, defining the linearly
corrected heat fluxQlin

x ,

Qlin
x ¼

sign uxð Þ
juxj
2D

Qx if juxj < 2D

sign uxð ÞQx otherwise:

8<
: (27)

However, a non-smooth limiting could introduce some addi-
tional numerical difficulties and non-physical behavior in the numeri-
cal prediction of the pressure and temperature fields especially.
Therefore, we suggest the use of a smooth sigmoid function, such as
the error function erfðvÞ. Using v ¼ ux=D, the erfðÞ limiting returns
the value of Qx for ux � 2D (see Fig. 9),

Q	x ¼ erf ux=Dð ÞQx: (28)

This form will be referred to as “corrected heat flux” and is the
form that we recommend for usage. Note that it is not necessary to
explicitly correct by the sign of ux, being automatically included in
erfðÞ. The simple cubic and this corrected cubic VDF heat flux are
shown in Fig. 8. The corrected closure superimposes on the non-
corrected version in the acceleration region, but provides an improved
agreement in region where ux � 0. A magnification of Fig. 8 around
the region of positive heat flux is provided in Fig. 10, where the effect
of the correction can be appreciated.

IV. RESULTS

We compare the previous developments against four test cases.
The first three cases are comparisons of the analytical distribution

function (Sec. IVA) and the numerical solution of anisotropic fluid
equations (Sec. IVB) against collisionless PIC simulations. The PIC sim-
ulations are 2D, performed in the axial-azimuthal plane, and describe
reasonably well the main features of Hall thruster flows. Details are
given in Appendix A. Anisotropic equations are closed with the phe-
nomenological cubic-VDF approximation, with erfðÞ correction.

The fourth test case (Sec. IVD) shows a comparison of the ana-
lytical results to experimental measurements.28 We analyze the distri-
bution function, the average velocity, and the velocity dispersion, and
use this as a tentative verification and comparison for the analytical
solution.

A. Analytical solution vs PIC: Test cases A, B, and C

The analytical solution of Eq. (7) is compared with the PIC test
cases in Fig. 11, in terms of first four moments [Eqs. (9)–(12)]. The
analytical solution is obtained starting the integration from the posi-
tion x0 taken where the electric field is zero (starting point indicated as
“asterisk” in Fig. 11). It is possible to perform the integration in both
forward and backward directions, to obtain the solution in the whole
domain. However, this was not done, since we chose to avoid a non-
physical region of PIC simulations, where the ionization profile is arti-
ficially imposed to zero, near the anode (see Appendix A). The ion
birth velocity was taken to be vn ¼ 0m=s.

The analytical and PIC distribution functions are shown in Fig. 5
for test case A and provide very similar agreement for test cases B and C.

The analytical moments show a very good match for all the test
cases. A tiny error can be appreciated near position x0, which is likely
due to the hypothesis of monoenergetic (rather than Maxwellian)
injection of ions. This leads to some error in the predicted distribution
function, as can be seen in Fig. 5.

B. Anisotropic equations vs PIC: Test cases A, B, and C

The anisotropic fluid equations [Eqs. (15)–(17)] were solved for
the PIC test cases, imposing the averaged electric field and the ioniza-
tion profile. A numerical solution was obtained using a one-
dimensional finite volume scheme,31 with second order spatial accu-
racy [linear one-sided reconstruction of primitive variables at the
interfaces, with the symmetric van Albada slope limiter32 and
Harten–Lax–van Leer’s (HLL) numerical fluxes]. The problem is
solved by marching in time until convergence, with a linearized point-
implicit backward Euler scheme.33 Analogous results were obtained
from explicit computations. A grid composed of 200 cells showed to
be fine enough to provide spatial convergence, with the employed sec-
ond order scheme. Spatial convergence was assessed by performing
grid-sensitivity analysis. The injection velocity and temperature of ions
were chosen uniform in space, equal to vn ¼ 0m=s and Tn ¼ 0:5 eV,
following the PIC injection conditions. The computational domain is
shown in Fig. 16. For test cases A and B, the domain was cropped, as
to avoid some unphysical behavior of the PIC electric field (see
Appendix A for more details).

Results are shown in Fig. 12, showing the effect of a simple zero
heat flux closure, against the phenomenological p¼ 3 (cubic corrected
heat flux) closure developed in this work. Whereas the zero heat flux

FIG. 9. Linear (- - -) and erfðÞ(––) corrections to the polynomial heat flux.

FIG. 10. Magnification of Fig. 8 on the positive heat flux region. PIC simulation
( ; non-limited triangular ( ), parabolic ( ), and cubic ( ) VDF
heat fluxes Qx. Cubic closure with erfðÞ limiting (Q	x , ).
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closure (anisotropic Euler-like equations) allows retrieving the density
and velocity fields, its accuracy decreases as soon as second order
moments such as the pressure are sought. The p¼ 3 heat flux closure,
on the other hand, allows for a strong improvement, despite its appar-
ent simplicity. The cases of p¼ 1 and p¼ 2 have a somewhat poorer
performance.

Some error can be appreciated in the number density for test case
B, around location x � 0:004 m, which is most likely due to the artifi-
cially cropped domain and would disappear in a full simulation.

C. Notes regarding collisions and plasma oscillations

The effect of ion–neutral collisions neglected in this work can be
assumed to become of some importance mainly out of the thruster:
electric field and ionization profile quickly go to zero and collisions are
the only effect remaining.

Due to charge exchange (CEX) and momentum exchange
(MEX) collisions with neutrals, the ion VDF develops two low velocity
structures.34 Inside the channel and in the near plume, their effect may
be neglected at first. However, progressing along the plume, it quickly
becomes important, especially for central moments of second order
and higher. While adding some small low velocity contribution to the
VDF does not change the density and changes only slightly the average
velocity, the effect becomes much larger for the pressure and heat flux,
since the distance between the new contribution and the bulk of the
distribution is weighted by a factor ðv� uxÞp, with p, respectively,
equal to 2 or 3 for pressure and heat flux.

While we will not consider this in the present contribution, the
current description could be extended to include collisions by

accounting for multiple families of ions: one population describing the
main beam, one for the CEX, and one for the MEX ions. For each pop-
ulation, the set of mass, momentum, and energy equations shown here
could be solved, coupled by the production term.

The current formulation may also break-down in the presence of
strong plasma oscillations and ion trapping, whose effect can become
important in some circumstances. This may be the reason for the tiny
raise in pressure around location x¼ 0.0125 m for test case C, becom-
ing a quite visible deviation in terms of heat flux (see Fig. 11).

D. Experimental measurements: Test case D

The aim of this test case is to compare the analytical distribution
function with all its simplifications (collisionless, monoenergetic ion
birth, and steady state) to experimental measurements. We simulate
the conditions of the experiments of Mazouffre and Bourgeois.28 The
ionization profile for the considered configuration is taken from
Garrigues et al.14 This experiment was selected as it provides both the
electric field (despite having some acceptable noise) and the ionization
profile, needed to compute the present solution, together with two dis-
tribution functions for comparison.

We consider the “current break mode” of the experimental
results. As no specific detail is given on the velocity of neutral species,
we assume an average velocity vn ¼ 600m=s. This velocity is inferred
from the experimental VDF, as it determines the lower velocity tail of
the ions VDF (Fig. 13, top). Alternatively, it could be estimated from
the mass injection rate, the neutral temperature, and the geometrical
characteristics of the thruster.

FIG. 11. First moments of the ions distribution function for the PIC test cases. Analytical solution (——); PIC simulation ( ); symbol asterisk denotes the starting point for
the integration, taken where E¼ 0.
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Choosing the starting axial position x0 for computing the analyti-
cal solution is not straightforward. The uncertainty on the ion injec-
tion velocity adds to the one on the electric field, arising from the
measurements noise, as well as from the theoretical method used to
reconstruct it.35 This influences phase-space trajectories and the out-
come of the analytical solution. We arbitrarily start from
x ¼ 0:015mm, which is reasonably close to the position where the
electric field becomes positive.

When comparing analytical solution and experimental VDFs, one
should consider some additional factors. First, the temperature of
neutrals was supposed to be zero, assuming that ions are injected as a
monoenergetic beam. The effect of this assumption can be appreciated
in the lower velocity tail of the analytical VDF, which creates a sudden
jump. Considering the realistic thermal velocity of 310 m/s for the
experiments (suggested by the authors28), one can explain how the
sharp jump would result in the experimental smoother low velocity tail
(where velocity dispersion is indeed on the order of 300 m/s). Also the
sharp high velocity part of the analytical distribution should be
expected to smear out in real conditions, partly for the effect of the col-
lisions and partly for the Maxwellian injection process itself. However,
collisions can be shown to have little importance with respect to the
accelerating field (and thus generating a deviation which is small with
respect to the average velocity), as can be stated from an analysis of
characteristic collision times and electrical acceleration,14 and injection
would smear the peak only by some 300 m/s, as mentioned. Instead,
one should consider that the experimental result shows the presence of
a breathing mode instability, which following the authors results in a
15% oscillation of the average velocity (indicatively shown in Fig. 13 by
vertical bars). This suggests that in the unsteady case, the high velocity
sharp jump of the analytical VDF would oscillate as well, creating a
much smoother result. While probably too small to have a strong effect
on non-central moments, we should remark that both collisions and
the dispersion due to a Maxwellian injection could have an appreciable
effect on central moments, especially on higher order ones.

The authors provide measurements for the average velocity and
the velocity dispersion,28 defined by Gawron et al.36 In Fig. 14, we
compare these values with our analytical results. It should be noted
that it is quite simple to retrieve a reasonable value for the velocity,

FIG. 12. Solution of anisotropic fluid equations for the PIC test cases. PIC simulation ( ); anisotropic fluid equations with zero heat flux (- - -); and cubic-VDF heat flux (——).

FIG. 13. Test case D—axial VDF. Analytical (–––) vs experimental ( ), graphi-
cally imported from Mazouffre and Bourgeois.28 Top: 2mm inside the thruster, from the
exit plane; bottom: 8mm after the exit (in the plume). Vertical lines: 15% oscillation.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 073506 (2020); doi: 10.1063/5.0006258 27, 073506-11

Published under license by AIP Publishing

https://scitation.org/journal/php


while central moments such as the velocity dispersion are much more
sensitive, and the electric field oscillations in the considered experi-
ment likely play a large role. Still, the analytical prediction appears
reasonable.

Finally, despite the matching of the analytical distribution func-
tion and its moments not being perfect, one should consider that the
analytical VDF has the strong advantage of being non-Maxwellian,
thus providing a non-zero prediction for the heat flux (and the other
higher odd moments). It is possible to reconstruct the heat flux from
the two experimental VDFs of Fig. 13 at two positions along the chan-
nel. However, a reliable comparison would need more information on
the experimental error and would also benefit from more distribution
functions to be available at various axial positions.

V. CONCLUSIONS

In this work, we focused on the description of the axial behavior
of positive ions in Hall thruster discharges, assumed to be fully colli-
sionless. Neutrals and electrons have not been included in the descrip-
tion, as well as the ion azimuthal and radial behavior. This limits the
validity of the discussed model to the region near the channel center-
line and makes the model predictive in an azimuthally averaged sense.

Since ions can be considered to be low-collisional, the results from
this work can be readily supplemented by equations describing the
remaining species and the two directions excluded from the analysis.

First, the axial behavior of ions has been discussed from the stand-
point of kinetic theory. The formation of the axial ion velocity distribu-
tion function (VDF) was described by analyzing the ionization profile
and axial electric field. Ions that are created inside the channel, where
the electric field is low, accumulate in phase-space and constitute the
characteristic peak in the ion axial velocity distribution function. Ions
that are created later on, where the electric field is larger in magnitude,
compose the body, or heavy tail of the ions VDF. Most of the velocity
dispersion is created in the region where the electric field and ionization
profile overlap, as remarked by Mazouffre and Bourgeois.28

A simple analytical VDF was obtained by establishing a balance
of fluxes in phase-space, following the formulation for plasma sheaths.
The analytical result assumes steady state and monoenergetic creation
of ions. Despite these assumptions, the analytical result proved able to
match closely collisionless particle-in-cell simulations in terms of dis-
tribution function and its moments, even in the presence of oscilla-
tions most likely related to electron drift instabilities. The analytical
model proposed in this work could be employed to post-process
experimental results or as an accurate modeling tool for describing
ions in one-dimensional and steady state simulations. The solution

could be also applied in quasi-steady state conditions, in the case
where the electric field and ionization profiles vary slowly with respect
to the residence time of ions inside the channel. This may be the case
for certain low-frequency oscillations.

Moments from the analytical solution were obtained as integral
expressions of the electric field and ionization profile over the domain.
A comparison with collisionless particle-in-cell simulations showed an
almost exact matching.

With the aim of providing an accurate and cost-effective descrip-
tion that is able to reproduce the axial kinetic behavior of ions, an aniso-
tropic fluid formulation was derived by integration of the one-velocity
Vlasov equation. Such model needs a closure and even though a simple
adiabatic closure (Qx¼ 0, corresponding to anisotropic Euler equations)
proved able to retrieve the correct lower order moments (density and
velocity profiles), it exhibited a significant error in the prediction of the
pressure and temperature, which are second order central moments.

Therefore, we developed a phenomenological closure based on the
approximation of the distribution function by either a triangular, para-
bolic, or cubic function. This assumption leads to an analytical closure,
giving the heat flux in function of its lower order moments: density and
temperature. The heat flux obtained with a cubic approximation of the
VDF was able to bring a significant improvement over the simple adia-
batic closure, reproducing well the particle-in-cell heat flux and pressure
profiles.

The system of ion anisotropic equations developed in this work
can be readily inserted into a larger framework, where equations for
neutrals and electrons are solved at the same time, and are coupled to
the ions equations through the electric field and ionization profile.20,37

Moreover, the present fluid framework could be extended to multiple
space dimensions. This would consist of adding additional momentum
and temperature equations for each considered dimension. A closure
for the newly introduced pressure tensor and heat flux components
would also need to be carefully chosen. As a very first approximation,
one could for example assume a Maxwellian distribution function in
the azimuthal and radial directions, therefore obtaining a simplified
pressure tensor and zero heat flux in such directions, while still includ-
ing the currently proposed form for its axial component.

The proposed anisotropic fluid model goes in the direction of
providing fluid descriptions with enhanced accuracy over classical
Euler or Navier-Stokes-Fourier formulations. Once properly extended
to higher dimensions, the proposed model could be employed in accu-
rate fully fluid simulations. Despite being still simplified in a number
of aspects and needing further development also in terms of chemical
source terms, such simulations could eventually provide for certain
non-equilibrium situations analogous accuracy to the more compli-
cated kinetic-fluid hybrid models.

Finally, we should remark that the assumption of fully collision-
less ions is reasonably valid inside the thruster and in the near plume,
where electrostatic acceleration dominates the ions dynamics, but pro-
gressively loses accuracy along the plume, where in the absence of
strong electric fields, collisions are the only effect left.
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APPENDIX A: PIC TEST CASES A, B, AND C

As a mean to assess the quality of our results, we have per-
formed three Particle-In-Cell Monte Carlo-Collisions (PIC-MCC)
simulations, with the code LPPic that was already verified via the
1D Helium benchmark of Turner et al.38 and extensively used to
simulate the radial-azimuthal plane of a Hall Thruster.17,39 The
code was adapted to simulate the axial-azimuthal plane and we pre-
sent here three cases with a simulation model similar to the one
used in the 2D benchmark of Charoy et al.40

In this case, an axial electric field is created by a potential dif-
ference imposed between an anode at 200 V and a cathode at 0 V
(see Fig. 15). The azimuthal direction is considered as periodic
with a fixed length of 1.28 cm while 2.5 cm are simulated in
the axial direction. To comply with PIC stability constraints, we
used a time step of Dt ¼ 5� 10�12 s and a cell size of Dx
¼ 5� 10�5 m. As this case is collisionless, an ionization profile is
imposed, leading to the injection of ion/electron pairs along the
channel with a given initialization temperature of Ti¼ 0.5 eV and
Te¼ 10 eV. Electrons are injected at the cathode line to sustain the
discharge. The imposed magnetic field reaches its maximum at
position x¼ 0.0075 m, which we assume to represent the exit
plane of the thruster. The reader can refer to the aforementioned
paper for more details.

Test case A is exactly identical to the case of Charoy et al.40

with an imposed ion current density of 400A=m2. Test case B is
done with a lower ion current density of 200A=m2, which leads to
a lower ionization profile. Test case C is similar to test case A, but
the ionization profile has been shifted toward the anode, in order to
artificially generate a longer acceleration region.

The simulations performed show azimuthally traveling waves,
characteristic of the electron drift instability. The PIC fields shown
in this work were obtained by averaging along the azimuthal direc-
tion, at different axial locations. To reduce the statistical noise
and to filter oscillations arising from azimuthal instabilities, a time
average is performed on 40 samples, spaced in time by 5000 time
steps as to provide statistical independence and to sample
adequately during the oscillation period. An analysis of different

time-averaging settings showed no sensible variation of the average
fields, except from statistical noise.

The resulting axial electric field profile is shown in Fig. 16 for
the three test cases, together with the imposed ionization profiles.
These fields are the required inputs for the analytical solution and
the 1D anisotropic fluid equations.

While the hypothesis of imposing an ionization profile is a
good way of getting reasonable steady results, the cosine shape
employed may generate some oscillations or non-physical behaviors
in the PIC simulations, especially near the anode, where the amount
of ions is low. In some simulations, this can be appreciated as tiny
oscillations of the averaged electric field (test cases A and B at posi-
tion x � 0:0025 m), which quite likely do not have a physical ori-
gin. Therefore, for the analytical and anisotropic fluid simulations
of test cases A and B, we focus on a restricted region of the original
PIC simulations, shown in Fig. 16.

This does not constitute a limitation for the current work,
where we apply these fields directly into the anisotropic equations:
this unphysical behavior would be relaxed once the equations devel-
oped are inserted into a fully coupled multi-fluid formulation,
where the ionization profile is not artificially imposed and the
Poisson equation is solved self-consistently.

Also, in the fluid simulations, we simulate only up to the axial
position x¼ 0.015 m. Fluid simulations are not conducted further
in order to stay far from the cathode region of the PIC simulation,
positioned at x¼ 0.025 m. Indeed, for these 2D simulations, the
cathode is modeled in such a way that an artificial sheath is created,
which does not represent properly the potential distribution gener-
ated by a cathode in a real 3D scenario. Limiting the fluid simula-
tion domain to x¼ 0.015 m is enough to capture the electrostatic
acceleration and the ions production, in which we are interested in
the present work.

APPENDIX B: MAXWELLIAN ION INJECTION

An accurate prediction of the ion VDF in the low velocity
region requires accounting for the birth distribution function of

FIG. 15. Computational domain for PIC simulations of test cases A, B, and C.
Dashed line marks the position of maximum magnetic field B.

FIG. 16. Profiles of ionization and electric fields for the PIC test cases A, B, and C.
Hatched regions show domain excluded from the fluid computations. The dashed
line is the location of maximum magnetic field in PIC simulations (thruster exit
plane).
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ions. Considering the axial position (i) in Fig. 17, denoted by xi, and
considering a positive electric field for simplicity, the VDF appears
constituted by three contributions. (1) ions created with positive
velocity at positions before xi, contribute to the (red) right side of
the ions VDF; (2) ions created with negative velocity and after the
position xi backstream toward xi and contribute to the (blue) nega-
tive velocity side of the VDF; finally (3), the same ions are slowed
down by the electric field until they gain positive velocity and ulti-
mately contribute to the positive side of the ions VDF. These contri-
butions are to be included if the detailed effects of a Maxwellian
injection are sought. However, assuming a monoenergetic injection
is probably enough from the point of view of the acceleration
region.

APPENDIX C: CLOSURE FOR ORDER P
POLYNOMIALS

This appendix reports the heat flux closure for polynomial dis-
tribution functions of order p (not necessarily integer). From the
density n, one obtains the relation

a ¼ n
pþ 1
Lpþ1

: (C1)

The velocity extremes are obtained from the momentum as

VA ¼ u� pþ 1
pþ 2

L;

VB ¼ uþ 1
pþ 2

L:

8>>><
>>>:

(C2)

The “width” L of the polynomial distribution is obtained as

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT
m

pþ 1
pþ 3

� pþ 1
pþ 2

	 
2
" #�1vuut : (C3)

The heat flux closure results in

Qx ¼
mn
2

L3
pþ 1
pþ 4

� 3
ðpþ 1Þ2

ðpþ 2Þðpþ 3Þ þ 2
pþ 1
pþ 2

	 
3
" #

: (C4)

A regularization for negative velocities and a limiting around
zero velocity should then be applied as detailed in the text.
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The data that support the findings of this study are available
within the article.
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