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Abstract

We introduce a new perspective to improve the reliability of a network, which aims at �nding

cost-e�ective portfolios of Prognostics and Health Management (PHM) systems to be installed

throughout the network. To do this, we estimate the reliability of the single network element

equipped with a PHM system, whose prognostic performance is measured in terms of the α−λ
performance, false positive and false negative metrics. Then, we apply genetic algorithms for

�nding the portfolios of PHM systems to be installed on the network elements, which are

optimal with respect to cost and a global reliability e�ciency index of the network. The

workbench case study of the IEEE 14 bus network is considered as application.

Keywords: Maintenance, PHM, Portfolio Decision Analysis, Power Transmission System, Relia-

bility Allocation

Symbols & Acronyms

α Parameter related to the performance metrics

α+
λ (1 + α)RUL∗λ
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α−λ (1− α)RUL∗λ

β Percentile related to the maintenance criterion

∆t Time interval between two successive Remaining Useful Life (RUL) predictions

γi,j Path between nodes i and j, i.e., a sequence of nodes (i1, i2, ..., ik), k > 1 such that

(ij, ij+1) ∈ E, 1 ≤ j < k , i1 = i, ik = j

λ Equivalent time indicator, such that tλ = Tpr + λ(Tf − Tpr); λ ∈ [0, 1]

z Vector encoding the decision variables

A Set of alternative actions

bxc Integer part of x; that is, n ≤ x < n+ 1, x ∈ R, n ∈ N

G(a, b) Gamma distribution with shape parameter a and inverse scale parameter b; the proba-

bility density function (pdf) is fX (x) = baxa−1e−bx

Γ(a)
; Γ(a) =

∫∞
0
xa−1e−xdx

Ω Number of available alternative PHM systems

Υλ Point summarizing the uncertainty in Rλ (e.g., mean, median, 10th percentile, etc.)

B Available budget

DTD Detection Time Delay, Tpr − Td

E Set of network edges

E ′ Set of indexes univocally associated to the edges in E

Er[G] Global reliability e�ciency of network G

fDTD probability density function (pdf) of DTD

fTd(t) pdf of time Td

fTf (t) pdf of failure time Tf

fTφ Probability Density Function (pdf) of Tφ

FN False Negatives

FP False Positives

G(V,E) Graph with nodes V and edges E

h h ·∆t is the time required to safely remove the component from operation
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L Quality level of the PHM systems

N Number of maximum RUL predictions before failure

NV Cardinality of V , i.e. number of nodes

Pα
λ α-λ performance

Piαλ Binary indicator of PHM prediction accuracy

qm,n(T ) Reliability at time horizon T of the edge connecting nodes m and n

Rλ Uncertain predicted RUL at time λ

RCC
i Reliability closeness centrality of node i

rdi,j Most reliable path between nodes i and j

RUL∗λ Actual RUL at the equivalent time λ

T Time horizon

Td Time instant at which the system reaches the detection threshold

Tφ Tf − Tpr

Tpr Time of the �rst RUL prediction

um,n(T ) Unreliability at time horizon T of the edge connecting nodes m and n

V Set of network nodes

DM Decision Maker

GA Genetic Algorithm

1 Introduction

In the last decades, the frequency of blackouts in electric power transmission grids has not de-

creased, in spite of the enhancements of the reliability standards and the signi�cant technological

advances in the �eld. This situation, partly due to the increase in the sizes of the grids and the

growth of their interconnections and interdependences over large transnational regions [1], justi�es

the search by the electrical network operators of failure protection solutions that preserve the grid

operation competitiveness in the deregulated market of electricity production and transmission.
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For this, various approaches have been proposed, which mainly focus on the identi�cation of ef-

fective modi�cations and/or expansions of the existing networks and less straining modes of their

operation. To cite a few of these approaches, Cadini et al. ([2]) frame the addition of new links

throughout the network as a Multi-Objective Optimization (MOO) problem, the objectives being

the maximization of a proper network reliability metric and the minimization of the cost. Still in

the MOO setting, Zio & Golea ([3]) address the issue of identifying the groups of elements whose re-

liability improvements yield the largest increment in the reliability of a large network, at minimum

cost. In [4], Choi et al. focus on technical solutions for the minimization of the network expansion

cost, while guaranteeing the ful�llment of a constraint on the minimum network reliability. Roos

([5]) considers two indicators, i.e., the average annual cost due to unplanned interruptions incurred

by the customers of the system and the maximum annual capital, to compare a set of alternatives

(e.g., technical improvements of speci�c parts of the network) with respect to their e�ect on the

network reliability growth; among the best alternatives, the author selects the most pro�table

ones. Lågland ([6]) evaluates the impact of di�erent fault restricting methods (i.e., extended use of

feeder automation and a wider utilization of speci�c features of di�erent feeder types) on reliability

and costs of a power transmission system. Fang et al. ([7]) consider the problem of allocation of

generation to distributors by rewiring links under the objectives of maximizing network resilience

to cascading failure and minimizing investment costs. In [8], Sansavini et al. develop a framework

to minimize the cascade e�ect due to the removal of an element of the network.

Nowadays, the optimal management of grids can bene�t from the application of Prognostics and

Health Management (PHM) methods to detect, diagnose, and predict failures of components and

systems (see [10; 11; 12; 13; 14] for overviews). Although it seems intuitive that PHM can con-

tribute to the improvement of the network reliability, nonetheless to the authors' best knowledge

only a few works investigate how and to which extent. According to [9], this lack of research can

be justi�ed by the fact that when dealing with complex systems, it is very challenging to allocate

reliability and PHM to each and every component: the e�ort required to solve this allocation

problem with just a limited amount of resources may be laborious, time-consuming, and may end

up with no-feasible-solution results.

Approaches to tackle the PHM allocation issue are proposed in [9; 15; 16], where a link between the

PHM capabilities of a system and its resilience is established; this is de�ned as a failure probability

combining the system inherent reliability and restoration capability of recovering from disruptive

events. The main limitations of these works lie in that:

� the PHM performance is summarized by static metrics not related to PHM algorithm perfor-

mance metrics [2; 3]), whereby the decisions about when to remove the system from operation

are not dependent on time.
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� Component reliability and PHM capabilities are considered independent on each other, the

PHM capability intervening only if the component is failed. Indeed, PHM systems start

working when the components start operating. This is a fundamental concern, as the knowl-

edge of the Remaining Useful Life (RUL) can be exploited to operate the component at

di�erent loads, thus changing its reliability.

Moreover, the framework proposed in [15; 16] is not simply applicable to the complexity of an

electrical network, whose reliability behaviour cannot be captured by the traditional reliability

schemes of series and parallel systems.

This work proposes a new perspective for tackling the issue of the allocation of PHM capabilities

on a complex network to improve its reliability, given a limited budget. To develop this novel

PHM-based approach to network reliability, we have to consider that:

� The gain in the reliability of the network elements achieved through PHM depends on the

performances in failure detection, diagnostics and prognostics ([17], [18], [19]). To establish a

link between the metrics measuring these performances and the component reliability, we use

the analytic model proposed in [20], which relies on time-variant PHM performance metrics.

This allows overcoming the limitations of [9; 15; 16]. Then, we rely on the metrics proposed

in [2; 3] to propagate the e�ect of the reliability gain brought by PHM at the network element

level onto the increase in reliability at the overall network level.

� The PHM performance values are strongly related to the investment cost: PHM systems

with better performances are usually more expensive, but also yield larger improvements in

component reliability. We rely on the Portfolio Decision Analysis (PDA, [12], [21], [22]) to

tackle the decision problem of selecting for every network element a PHM system among a

set of a few alternatives of di�erent performance levels and costs. PDA has proven in numer-

ous applications to e�ectively support decision-makers when they are faced with alternative

courses of action (i.e., the installation of a PHM system on the network elements) that, if

selected, consume resources (i.e., the available budget) and lead to consequences with regard

to proper case-dependent criteria (i.e., network reliability) ([21]). Obviously, the actions are

interdependent, if only because they compete for the same resources.

To sum up, the main contribution of this paper lies in the new perspective proposed to approach

the problem of improving the reliability and, thus, the safety of a critical infrastructure. This allows

�nding cost-e�ective solutions of allocation of PHM capabilities on the network nodes. To do this,

we formalize the optimization problem within the PDA framework and use several algorithms and

models available in literature. The novel PHM-based approach to network reliability is illustrated

by way of the workbench case study of the transmission network system IEEE 14 BUS [23]. To
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highlight the advantages of the proposed PDA approach, the results obtained are compared to those

of some intuitive approaches of literature [24], [25], [26], which, however, are shown to not guarantee

�nding of the optimal solutions. In this respect, an additional major di�erence between our work

and that proposed in [9] lies in that we consider the portfolio perspective to address the allocation

issue, which directly allocates the PHM capabilities onto the network elements to optimize the

global reliability e�ciency of the network. On the contrary, in [9] the critical components of the

series-parallel systems are �rst identi�ed through a sensitivity analysis procedure, which, however,

may not be applicable to network systems; then, the resilience of the components is increased to

reach the target global resilience level. This importance-driven approach for budget allocation has

proven to lead to sub-optimal results ([27]).

The remainder of the paper is as follows: Section 2 summarizes the reliability model of a PHM-

equipped component proposed in [20]; Section 3 describes the metrics used to quantify the impact

of PHM on the overall network reliability; Section 4 shows the PDA setting; Section 5 describes the

case study network and the decision alternatives; Section 6 shows the results of the PDA approach

and compares them with those of some intuitive approaches; Section 7 concludes the work.

2 Reliability model of a PHM-equipped component

In this Section, we summarize the model proposed in [20] to estimate the reliability of a degrading

element (component or system) of the network, when it is equipped with PHM capabilities.

We assume that the network elements are a�ected by a single stochastic degradation process and

that the variable representative of the degradation state, which is monitored every ∆t units of

time, can achieve two thresholds:

� The detection threshold, which mainly depends on the characteristics of the instrumentation

used to measure the degradation variable (i.e., for values below this threshold it is not

possible to detect the degradation state); it is reached at time Td, although this achievement

is detected DTD time later, due to the uncertainty in the measurement system.

� The failure threshold, above which the component function is lost; it is reached Tφ time after

Td, at time Tf = Td + Tφ.

In this setting, the PHM system starts to predict at time Tpr = (bTd+DTD
∆t

c+ 1)∆t the component

or system RUL in the form of a Probability Density Function (pdf) fRλ , where λ ∈ [0, 1]: tλ =

Tpr +λ(Tf −Tpr) is an equivalent time indicator that re-scales and evens the component lives onto

the [0, 1] interval, whereas b◦c indicates the integer part of its argument.

With respect to the maintenance decision strategy, we assume that the PHM-equipped network
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element is stopped when the (100−β)th percentile, Υλ (e.g., Υλ = 100−90 = 10th), of the currently

predicted RUL pdf is smaller than h · ∆t: the larger the value of β, the smaller the value of the

predicted RUL percentile, the more risk-averse the decision. Similarly, the larger the value of h,

the more cautious the decision maker.

To estimate the unreliability over time of the PHM-equipped network element, the model proposed

in [20] relies on the following time-variant prognostic metrics of literature ([17], [18], [19]), which

are always indicated with subscript λ to highlight the dependence of their values on time:

� Pα
λ is the probability that fRλ overlaps the error band [α−λ , α

+
λ ] with a probability mass

larger than β, being α−λ = (1− α)RUL∗λ, α
+
λ = (1 + α)RUL∗λ and RUL∗λ the actual RUL at

equivalent time λ. Consider the binary indicator variable Πα
λ :

Πα
λ =

1, if fRλ |
α+
λ

α−λ
≥ β

0, else
(1)

Then, Pα
λ = E[Πα

λ ]. In words, Pα
λ is the probability that the prognostic algorithm correctly

estimates the RUL. Notice that the value of β in the de�nition of Pα
λ must be the same as

the percentile related to the maintenance decision: as reported in Appendix B, this allows

linking the Pα
λ metric to the reliability of the PHM-equipped component under the selected

maintenance criteria.

� FPλ is the probability that the prognostic algorithm makes large RUL under-estimation

errors (i.e., Υλ < (1−α)RUL∗λ), conditional on the event that the RUL prediction is outside

the error band [(1− α)RUL∗λ, (1 + α)RUL∗λ].

� FNλ is the probability that the prognostic algorithm makes large RUL over-estimation errors

(i.e., Υλ > (1 + α)RUL∗λ), conditional on the event that the RUL prediction is outside the

error band [(1− α)RUL∗λ, (1 + α)RUL∗λ].

Based on these considerations and assumptions, we have developed in [20] the reliability model

of a PHM-equipped component with estimated values pαλ , fnλ, fpλ of metrics Pα
λ , FNλ, FPλ, re-

spectively. Namely, the PHM-equipped component is framed as a three-state system, the possible

states being: Working, Failed and Removed (Figure 1); then, the component unreliability u(t)

represents the probability of having a transition from Working to Failed before time t:

u(t) = P(Tf ≤ t ∩ system not removed before t ;θ) =

P(Tf ≤ t | system not removed before t ;θ)× P(system not removed before t ;θ)

where θ indicates the parameters determining the performance of the PHM system, which the

unreliability depends on.
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Accordingly, in [20] we have derived u(t) from the probabilistic transport kernel K(t, Failed;θ),

which is de�ned as the probability that the component makes the next transition between t and

t + dt toward state Failed ([28], Figure 1), provided that the component is set at t = 0 in state

Working (see Appendix B):

u(t) =

∫ t

0

K(τ, Failed;θ)dτ (2)

Notice that this de�nition of unreliability contains some abuse of notation as limt→∞ u(t) =

P(system not removed before t ;θ) ≤ 1, whereas, to be rigorous, the unreliability represents the

Cumulative Distribution Function (CDF) of the failure time and, thus, tends to one as t increases

([29]).

Notice also that we call reliability the complement to 1 of u(t), which represents the probability

of being either in state Working or Removed : in both cases, the occurrence of failure has been

avoided.

Finally, we have shown in [20] that the reliability value is more sensitive to the values of the PHM

performances at larger values of λ rather than at λ close to 0. Intuitively, when the component

is far from its end of life, the worst decision the PHM system can lead to is the removal of the

component from operation. This decision negatively impacts on the component availability, but

not on its reliability. On the contrary, when the component approaches its failure time, the deci-

sions based on wrong RUL estimations can lead the component to failure. For this, we can use the

value of the stop probability L = Pα
λ + (1 − Pα

λ ) × (1 − FNλ) in the time region in proximity of

failure (i.e., λ ≥ 0.75) as an indicator of the quality level of the PHM system. The value λ = 0.75

is arbitrarily chosen, as the quality level is introduced only for reducing the number of decision

variables to simplify the allocation problem to be tackled. In a real industrial case, other values

of λ in the interval [0.5, 0.9] can be used to de�ne the quality level of the PHM system, based on

a proper adjustment that responds to the speci�c characteristics of the application.
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Working

Failed

K(t, Failed)

Removed

K(t,
Re
mo
ved

)

Figure 1: Three-state system

3 Network Reliability Metrics

In this Section, we brie�y introduce the network reliability metrics presented in [2] and [3], which

will be used to measure the e�ect on the overall network reliability of the improvements in the

reliability of the network elements, due to the PHM system. Notice that relying on these metrics

is not mandatory for the application of the proposed PHM-based approach: any metric linking the

network failure behavior to the reliability of its constituent parts can be considered.

A topological representation of a generic network can be obtained in terms of the undirected

graph G(V,E) [30], where V = {1, 2, ..., NV } is the set of nodes, whereas E is the set of |E|
edges connecting the nodes. To simplify the notation, we also consider the set of indexes E ′ =

{1, . . . , |E|}, univocally associated to the arcs of E. To establish this relationship, we can, for

example, use the relation order "≺", which is de�ned as: (i1, j1) ≺ (i2, j2) ⇐⇒ i1 < i2 ∨ (i1 =

i2 ∧ j1 < j2).

A sequence of nodes (i1, i2, ..., ik), k > 1 such that (ij, ij+1) ∈ E, 1 ≤ j ≤ k − 1 forms a path

between i1 and ik. The set of all paths connecting i to j is Γi,j.

Without loss of generality, we focus on the reliability of the network connections only (i.e., we

disregards the network nodes). Let um,n(t) be the unreliability of the edge (m,n) ∈ E between the

pair of nodes m and n at time t and qm,n(t) = 1 − um,n(t) its the reliability (i.e. the probability

of being in state Working or Removed). Then, the reciprocal of the reliability of the most reliable
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path between nodes i and j can be computed ∀i, j ∈ V as [31]:

rdi,j(t) = min
γi,j∈Γi,j

1∏
(m,n)∈γi,j

(1− um,n(t))
= min

γi,j∈Γi,j

1∏
(m,n)∈γi,j

qm,n(t)
(3)

where the minimization is done with respect to all paths γi,j ∈ Γi,j linking nodes i and j, whereas

the product extends to all the edges of each of these paths. Note that 1 ≤ rdi,j(t) ≤ ∞, where

the lower bound corresponds to the existence of a perfectly reliable path connecting i and j (i.e.,

um,n(t) = 0, ∀(m,n) ∈ γi,j), whereas ∞ corresponds to the edges i and j being disconnected

(Γi,j = ∅, i.e., it is impossibile to reach node i from node j through the edges belonging to E).

If we take the logarithm in Equation 3, then the minimization problem reduces to a classic shortest

path problem ([32], [33], [34]) in a graph, with weights given by − log(1− um,n(t)). This allows to

exploit well-known algorithms to solve the optimization problem in Equation 3, (e.g., [35]).

Notice also that if edge (m,n) ∈ E is equipped with a PHM system, then we can use the model

developed in [20] to estimate its unreliability um,n(t) at time t (or, equivalently, its reliability

qm,n(t) = 1− um,n(t)) and, thus, we can estimate rdij ∀i, j ∈ V .
On this basis, we consider two network reliability metrics, which allow to encode the e�ect of PHM

on the overall network reliability:

1. The global reliability e�ciency Er[G](t) ([2], [3]) of the network G at time t is de�ned as:

Er[G](t) =
1

NV (NV − 1)

∑
i,j=1:NV ;i 6=j

εri,j(t) =
2

NV (NV − 1)

∑
i=1:NV ;j>i

εri,j(t) (4)

where εri,j(t) = 1
rdi,j(t)

= 1
rdj,i(t)

= εrj,i(t) is the most reliable path between i and j and the

same as the most reliable path between j and i.

2. The reliability closeness centrality of node i at time t, RCC
i (t) measures the extent to which

a node is near to all other nodes along the most reliable paths:

RCC
i (t) =

NV − 1∑
j∈V :j 6=i

rdi,j(t)
(5)

RCC
i assumes values in the interval [0, 1].
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4 PDA setting for optimal allocation of PHM capabilities on

the network elements

The �nal objective of our methodology is the identi�cation of the optimal portfolios (i.e., sets) of

actions (i.e., the installation of PHM systems at the network edges E) that maximize the reliability

metric Er[G](t) of a given network G(V,E), provided that these actions are not over-budget.

To formalize this PDA problem, we consider the set of alternative actions A = {L1, L2, . . . , LΩ}
available at every edge e = 1, ..., |E|, representing the PHM systems of di�erent quality levels.

Certainly, the PHM system cost depends on its quality level L; however, to the authors' best

knowledge there is yet no robust way to relate the values of the performance metrics of the PHM

system to its development cost. In this respect, a �rst interesting attempt to build such cost model

is proposed in [15; 16]. However, this model is not applicable to our setting. Generally speaking,

the development of a cost model for PHM is a very challenging task, but out of the scope of this

work. Thus, here we apply the SWING ([36]) trade-o� weighting approach to give rough cost

estimations. Namely, we assume that each action a ∈ A entails a cost Ca ∈ [10, 100] in arbitrary

units, such that La1 > La2 =⇒ Ca1 > Ca2 . Then, the best action is assigned cost 100, whereas

the worst is assigned cost 10. The cost of the remaining alternatives are roughly estimated by ap-

prising their proximity to these two extreme situations (see [36], [37] and [38] for further details).

Notice that the life cycle cost of the PHM system is a fundamental driver for selecting its perfor-

mance: underestimation of RUL entails unnecessary maintenance costs and the early stoppage of

the engineered system. On the contrary, overestimation of RUL can yield to system failure and

its associated corrective maintenance cost. The life cycle costs can be much higher than the PHM

investment costs, and they heavily depend on the PHM capabilities. Nonetheless, in this work we

are concerned with reliability, rather than availability: our goal is to optimize the performance of

the network in terms of avoided failures, rather than in terms of increment of the expected portion

of time in which the system is working, which the life cycle costs heavily depend on. Further re-

search work dealing with availability optimization will inevitably consider also maintenance costs.

The decision on the action to be applied at the e − th edge, e = 1, . . . , |E| is indicated by the

binary decision variable zea, which is set to 1 if action a ∈ A is taken and to 0, otherwise. This

way, a portfolio of actions A ⊆ Xe∈E′A is uniquely de�ned by the binary vectors ze = [zea], ∀a ∈ A,
where Xe∈E′ indicates the Cartesian product of the |E| sets A. Obviously, vector ze = [0, ..., 0]

corresponds to the decision of not taking actions at the e− th edge, e = 1, ..., |E|.
We also de�ne the binary vector z as the concatenation of vectors ze, ∀e ∈ E ′, whose k − th

element reads:

zk = z
e=b k

Ω
c+1

1+(k−1) mod Ω, k = 1, . . . , |E| × Ω. (6)
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This way, the relation between z and the portfolio A is bijective.

The optimization problem at time t can be formulated as:

max
z
Er[G](t) (7)

subject to the constraints ∑
a∈A,e∈E′

zeaCa ≤ B (8)

∑
a∈A

zea ≤ 1 ∀e ∈ E ′ (9)

zea ∈ {0, 1} ∀e ∈ E ′,∀a ∈ A (10)

Equation 8 formalizes that the portfolio cost must be smaller than the available budget B, whereas

Equations 9-10 state that at most one action can be pursued at each edge, e = 1, . . . , |E|.
Notice that the optimization problem we are dealing with requires to compute Er[G](t) for every

feasible portfolio (i.e., every portfolio respectful of the constraints), which, in its turn, requires to

solve the minimization problem in Equation 3 for all the NV (NV −1)
2

pairs of nodes (see Equation 4).

From these considerations, it clearly emerges that on one side, the computational burden to address

the optimization problem rapidly increases as the number of edges and number of actions at each

edge increase. On the other side, the objective function in Equation 7 is strongly non-linear; this

prevents us from using the integer linear programming algorithms developed by Liesiö et al., within

the Robust Portfolio Modeling framework to �nd the exact solution to the optimization problem

([39], [40]).

To solve the optimization problem, then, we use the Genetic Algorithms (GA, e.g., [41]), which

are stochastic search meta-heuristics, belonging to the larger class of the evolutionary algorithms:

they mimic the process of natural evolution, such as inheritance, mutation, selection and crossover,

to extract the �ttest individuals with respect to the objective function.

5 Case Study

The optimization framework illustrated above is applied to the transmission network system IEEE

14 BUS [23], which has been taken as reference case study in several works of the literature (e.g.,

[42], [43]).

The IEEE 14 BUS system is a portion of the American Electric Power System consisting of 14 bus

locations connected by 20 lines and transformers (Figure 2). The transmission lines operate at two

di�erent voltage levels, 132 kV and 230 kV, with three 230/132 kV tie stations (Buses 4, 5 and 7)
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and two generating units (Buses 1 and 2). The network is also provided with voltage corrective

devices (i.e., synchronous condensers) in correspondence of Buses 3, 6 and 8.

According to [2] and [3], every network edge is supposed to have a failure behavior obeying

an exponential distribution, whereby the unreliability of edge (m,n) ∈ E at time horizon T is

um,n(T ) ∼ E(λm,n) = 1 − e−λm,nT . Notice that the equivalent time λ is di�erent from the edges

failure rate, λm,n (i.e., with subscript), although we indicate them with the same letter; we do this

because of the common use of this letter in the respective �elds.

The failure rate values of the IEEE 14 BUS network are reported in Figure 3, which shows the

graph model of the IEEE 14 BUS network. These values, which are derived from [30], mainly

depend on the type of line (transmission or transformer) and its voltage value. Yet, in Figure 3 we

can also note that the failure rates of the edges located in the central part of the network are 50

times smaller than those of the edges in the left part of the network and 100 times smaller than

those of the edges in the right part.

Notice that although the reliability of the edges is assumed to obey the exponential distribution,

this choice is not mandatory for the applicability of the proposed framework, whereby any probabil-

ity distribution can be used. In particular, components of power transmission networks reliability

are a�ected both by ageing failures and shock failures, and the reliability model should encode

both these two competing mechanisms [44]. This extension will be considered in future research

work.

In Figure 3, every node is assigned a triplet of numbers: the �rst represents the node identi�cation

number i = 1, . . . , 14, whereas the second and the third numbers represent the ranking positions

of the node with respect to the RCC(T ) values at T = 1 and T = 10, respectively, sorted in

descending order (i.e., rank 1 corresponds to the largest RCC(T ) value and rank 14 to the smallest

one).

The ranking of the nodes is not very sensitive to the time horizon duration, as only two nodes

(i.e., 2 and 8) experience signi�cant changes in the ranking positions. However, just these changes,

which need a numerical analysis for their justi�cation, tell us that di�erent horizons entail di�erent

decision problems. For this, we show the results of the optimization for T = 1 and T = 10, which

correspond to short-term and long-term decision-making problems, respectively.

To estimate through Equation 2 the reliability improvement brought by the PHM capability, we

consider the following numerical setting. With respect to maintenance policy data, we set h = 3,

α = 0.1, ∆t = 0.05 and β = 90.

With respect to the PHM metrics, we assume that DTD follows a log-normal distribution with

mean 0.1 and standard deviation 0.0001. FPλ is a step-wise function such that FPλ = 0.1, λ ∈
[0, 0.75) and FPλ = 0.2, λ ∈ [0.75, 1], FNλ = 1 − FPλ and Pα

λ is a step-wise increasing function

over the λ−intervals [0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1].
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Notice that these values are illustrative; for a real application, a procedure for their estimation

must be implemented, which has been proposed in [20].

Notice also that FPλ and FNλ can strongly depend on λ. Nonetheless, since we want to solve

the allocation problem with a limited number of decision variables, we consider the performance

metric values only in the last region of Figure 16. These are set so that we have three PHM systems

with sensibly di�erent performance levels L. This allows clearly assessing the impact of PHM on

the global network reliability. Further research work dealing with real network systems and PHM

prognostic algorithms will consider the complete behavior of the prognostics performance metrics.

The sensitivity of the network edge reliability to the values of FPλ and FNλ is analyzed in Ap-

pendix C.

Figure 2: IEEE 14 network physical lines
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Figure 3: IEEE 14 network graph representation. The 5 most important nodes with respect to

both time horizons (i.e., 4, 5, 6, 7, 9) are indicated with marker 4, whereas the 3 least important

(1, 3, 12) with marker �.

The selected performance values entail that the PHM quality level indicator L assumes three

possible values L1 = 0.28, L2 = 0.6 and L3 = 0.8, which is summarized in Table 1 and corresponds

to development costs C1 = 10, C2 = 70 and C3 = 100 in arbitrary units, respectively. Notice

that this quality level indicator L can be the result of many other di�erent combinations of metric

values .

Finally, to apply Equation 2 we need to know the distributions of Td and Tφ, provided that Tf

obeys the exponential law with rate λm,n ([2], [3]). To this aim, we can assume that Td and Tφ

obey gamma distributions to exploit the well-known properties ([45]):

� Given Td ∼ G(αG1 , λm,n) and Tφ ∼ G(αG2 , λm,n), then Tf = Td + Tφ ∼ G(αG1 + αG2 , λm,n)

� Tf ∼ G(1, λm,n) is equivalent to Tf ∼ E(λm,n).
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λ interval

a
L1 L2 L3

[0.0.25) 0.28 0.28 0.28

[0.25, 0.5) 0.28 0.39 0.46

[0.5, 0.75) 0.28 0.5 0.62

[0.75, 1] 0.28 0.6 0.8

Table 1: Performance level indicator L in di�erent λ−intervals

On this basis, we can express the mean time to reach the detection threshold E[Td] =
αG1

λm,n
as a

portion χ of the the mean time to reach the second threshold E[Tφ] =
αG2

λm,n
, i.e., E[Td] = χE[Tφ],

and impose αG1 + αG2 = 1, to get Tf ∼ G(1, λm,n). For example, we set χ = 1
3
, which entails that

αG1

λm,n
= 1

3

αG2

λm,n
and 1

3
αG2 + αG2 = 1; then, αG1 = 1

4
and αG2 = 3

4
.

6 Results and discussion

6.1 Optimization results

To evaluate the impact of the budget on the optimal action portfolio, we solve the optimization

issue for di�erent budget levels: for this, B is taken in [20, 600] (i.e., from 2 times the minimum

cost of a PHM system, up to 6 times its maximum cost) at discrete values equally spaced by 20,

in arbitrary units.

The GA settings are summarized in Table 2. The population size value trades o� the need of having

genetic diversity among the population chromosomes, against the need of avoiding excessive pop-

ulation size, which entails computational burdens. Similar reasoning guided us towards the choice

of the crossover probability and the selection rule. The number of maximum generations has been

conservatively set to 1000, based on the observation that the population contains many similar

chromosomes after 150−200 iterations of the algorithm, in correspondence of a constant maximum

value of the reliability index. Finally, the penalty value on constraint violation has been set equal to

the maximum cost of a PHM system (i.e., 100), which prevents from achieving unfeasible solutions.
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Population Size 200

Max Stall Generations 50

Max Generations 1000

Selection Fit-Fit

Replacement Children-Parents

Crossover probability 0.8

Constraint Penalty 100

Table 2: GA parameters settings

To speed up the computation, before launching the GA we have estimated through Equation 2 the

edge reliability values at T = 1 and T = 10 of all the possible combinations of the three failure rate

values (i.e., λm,n = 0.0105, 0.5429, 1.0858) and the Ω = 3 actions A = {L1, L2, L3}. The results,

obtained by applying the Monte Carlo procedure described in [20] are summarized in Tables 3 and

4.

From the analysis of these Tables, we can notice that at least one third of the edges, whichever

their failure rate values, are expected to be Working or Removed at T = 1, whereas almost all the

edges are expected to be Failed at T = 10 if no action a ∈ A is pursued.

Due to the small values of the failure rates of the edges in the central part of the network, these

have very large reliability values (i.e., qm,n ≥ 0.98 at T = 1 and qm,n ≥ 0.9 at T = 10) even when

no action is taken.

The bene�t of PHM is more appreciable on edges with large failure rates. In fact, from both

Tables 3 and 4 we can see that the reliability of the components with failure rate λ = 0.0105 does

not increase more than 10% even if the best PHM system is installed (�rst rows in Tables 3-4),

whereas in case of λ = 1.0858, a = L3 yields an increment in reliability of more than 100% with

respect to a = ∅ (Tables 3-4, third row).

Finally, for every failure rate value, the largest reliability improvement is gained switching from

a = ∅ to a = L1, whereas the bene�t of a = L3 is more appreciable when T = 10: the edges

equipped with the best PHM system have the smallest drop in reliability, switching from T = 1 to

T = 10.
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λm,n

a
∅ L1 L2 L3

0.0105 0.9896 0.9940 0.9958 0.9961

0.5429 0.5811 0.7495 0.8085 0.8267

1.0858 0.3376 0.5883 0.6726 0.6974

Table 3: Reliability values qm,n of the edges corresponding to a ∈ A, T = 1

λm,n

a
∅ L1 L2 L3

0.0105 0.9003 0.9555 0.9824 0.9900

0.5429 0.0044 0.4924 0.7145 0.7748

1.0858 0.0000 0.4363 0.6137 0.6636

Table 4: Reliability values qm,n of the edges corresponding to a ∈ A, T = 10

As usual in PDA ([39; 40]), we evaluate the behavior of Er[G](T = 1, 10) versus di�erent budget

levels B (Figure 4). Both curves have an elbow point (at B = 120 and at B = 100 for T = 1

and T = 10, respectively), where there is an abrupt change in the slope of the curve causing the

reliability e�ciency metric to grow more slowly: any increase in B after the elbow does not provide

improvements as valuable as before the elbow point. Then, the elbow points represent the best

investment in case the budget is limited although with no speci�c indication about its maximum

and there is no constraint on Er[G](T = 1, 10) [39], [40].

The curve corresponding to T = 1 is always above that corresponding to T = 10, even if their

gap decreases as the budget increases: as mentioned above, the larger the budget, the larger the

number of actions a = L3 taken on the edges, which reduce the di�erence between the reliability

values of the network elements at T = 1 and T = 10 (Tables 3-4, last column).

Notice that the Er[G] values are not monotonously increasing with the increasing budget levels

(e.g., at B = 350 for T = 10 years). This is due to GA, which is not always capable of �nding the

global optimum: especially for large budgets, there are many portfolios with very similar reliability

e�ciency values, which lead the GA to be trapped in local maxima.
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Figure 4: Er[G] vs budget level

Figures 5a and 5b show the number of actions a ∈ A on the network vs budget level. From these

Figures, we can notice that the best solutions favor the investment in large numbers of cheap

actions rather than in small numbers of expensive actions. Yet, in correspondence to larger budget

levels, the number of actions a = L3 at T = 10 is larger than that at T = 1. This is due to the

more appreciable reliability improvement brought by a = L3 at larger time horizons (see Tables 3

and 4).
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(b) T = 10

Figure 5: Number of actions a vs budget level for di�erent time horizons

Figures 6-10 show in details the optimal portfolios found by GA at the di�erent budget levels.
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For both time horizons T = 1, T = 10, edge (4, 5) is the �rst edge where actions are taken and

it is also the edge where action a = L3 is taken for the �rst time. This is due to the fact that

edge (4, 5) is the only edge with the largest failure rate λ4,5 = 1.0858 connecting two of the most

reliability-central nodes. The other edge selected at B = 20 is (3, 4) when T = 1 and (9, 10) when

T = 10. This di�erence con�rms that the optimal solutions generally depend on the time horizon

we are referring to.

At T = 1, the edges with failure rate 0.0105 are hardly ever chosen as optimal locations for actions,

whereas at T = 10 there is a larger presence of these edges in the optimal action portfolios. This

is also due to the fact that at T = 10 the di�erences among the values of intrinsic reliability and

PHM reliability are larger than those at T = 1, which makes convenient investing in higher PHM

quality levels.

The behavior at T = 10 is characterized by many more �uctuations of portfolios, due to the

similarity of the portfolios selected in the �nal population of the GA.

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

Figure 6: Action a vs budget for edges 1-4
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20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

Figure 7: Action a vs budget for edges 5-8

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

Figure 8: Action a vs budget for edges 9-12
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20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

Figure 9: Action a vs budget for edges 13-16

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580

Figure 10: Action a vs budget for edges 17-20

Figure 11 shows an example of optimal portfolios for four di�erent budget levels B = 100, 260, 420,

580, at T = 1. The values on the edges in Figure 11 indicate their reliability values multiplied
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by 1000, whereas the triplet of values on the nodes indicate their identi�cation number, their

RCC(T = 1) rank in the initial con�guration and their rank in the optimal action portfolio

con�guration. From the analysis of the Figure, we can see that actions are rarely taken on the

edges of the central part of the network.

With respect to the ranking of the RCC values, although this is impacted from the actions taken

on the nodes (the ranks of some nodes change in the optimal con�guration), however the rank

di�erences are not very large and actions are taken in a sort of balanced allocation between the

right and the left part of the network.

Figure 11: Network graphs corresponding to the optimal solutions at budget levels

100, 260, 420, 580, T = 1. Edges where a = ∅ are indicated by continuous lines, those with a = L1

by dashed lines, a = L2 by dashed-dotted lines and a = L3 by dotted lines.

The same reasoning applies to Figure 12, which represents the same information as in Figure 11,

but referred to T = 10. However, in this case, we can notice that actions a = L1 are taken also on

the edges of the central part of the network, because there is a more appreciable increase in the

reliability when switching from the situation of a = ∅ to a = L1 at T = 10 (Tables 3 and 4).

We can see also a general increase in the number of actions a = L2.
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Figure 12: Network graphs corresponding to the optimal solutions at budget levels

100, 260, 420, 580, T = 10. Edges where a = ∅ are indicated by continuos lines, those with a = L1

by dashed lines, a = L2 by dashed-dotted lines and a = L3 by dotted lines.

6.2 Comparison between portfolio optimization and intuitive approaches

To highlight the relevance of the proposed optimization approach, we consider some alternative

intuitive approaches for decisions making to compare their results. For simplicity, we consider

that only the cheapest action a = L1 is available; this is due to the fact that the elbow point of

the decision task is located at B = 100/120, whereby choosing the best portfolio of solutions is

particularly important when the budget is very limited. For this, we assume that B ranges in

[20, 100] with discrete values equally spaced by 20.

The alternative intuitive methods are:

1. "Most central �rst". This approach consists in an iterative procedure such that the most

important node (i.e., with largestRCC
i (t)) with at least one connected edge not equipped with

PHM is identi�ed and actions are applied to reduce its failure probability. Then, RCC
i (t) are

calculated again to determine the most important node in the improved system, whereafter

further actions are pursued to increase the network reliability Er[G](t). This procedure is

repeated until the budget is depleted. This approach is derived from [25], with the di�erence

that in our framework the centrality measure indicates the most reliable component instead
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of the least reliable one. Notice that, if there is more than one edge insisting on the most

important node, then we randomly select one out of them to apply a ∈ A.

2. "Least central �rst". In this case, we apply the same iterative procedure as before but

working �rst on the least central node. Namely, RCC
i is computed ∀i ∈ V and the nodes are

sorted in descending order based on this value. Using this ranking, the �rst node i′ is chosen

such that at least one edge surrounding it is not equipped with PHM. Then, actions are

taken on the least reliable edge among those insisting on i′. If there are multiple edges with

same failure rate value, we randomly choose one among them. The procedure is repeated as

long as the budget is �nished.

3. "Failure rate". If we sort the reliability values of the edges in E in the setQ = {q1, q2, . . . , qQ},
with |Q| = Q ≤ |E|, 0 ≤ qi ≤ 1 ∀i ≤ Q, qi < qi+1, the �rst edge is chosen randomly among

those with reliability q1. Then the procedure is repeated as long as the edges with reliability

q1 are all equipped with PHM. Then, the edges with reliability q2 are considered and the

same approach as before is followed. The procedure is iterated as long as the budget of the

portfolio optimization is �nished.

4. "Hybrid" From the analysis of the optimization results (Section 6), which show that the

edges with failure rate 0.0105 are hardly ever chosen as an optimal location to set PHM, we

propose a slightly di�erent version of the approaches above. The rule is simple: follow the

steps of approach "Most central �rst" but do not take actions on edges whose failure rate is

0.0105. This approach is an hybrid solution between "Failure rate" and "Most central �rst".

We present the results of the comparison between PDA and the intuitive approaches for time

horizons T = 1, 2, 5, 10. Notice that, in principle, the value of Er[G](t) obtained by following the

intuitive approaches is stochastic, because all these methods require a random selection among

edges. For this reason, for each of these approaches and for every di�erent budget level, we run

H = 10000 Monte Carlo simulations to compute the expected value of Er[G](t).

Figure 13 shows E[Er[G](t)] versus budget B and time horizon T . From the analysis of this Figure,

we can notice that the results obtained from the Portfolio Optimization are always above those

of the other approaches, especially for larger time horizons. The worst approach is "Least central

�rst"; this suggests that the edges around nodes which are not reliability-central are not e�ective,

no matter how poor their reliability charateristics are.

The approach "Most central �rst" tends to install PHM systems on the edges insisting on the

nodes with the highest RCC values, thus causing the level of these nodes to increase more and

more. In turn, PHM system is always installed on the nodes in the middle of the network, which

have the higher degree, and, thus, PHM is selected also on nodes with failure rate 0.0105, which
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is not an e�ective action. This drawback is circumvented by the "Hybrid" approach, which turns

out to be the best one (i.e., closest to PDA).
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Figure 13: Comparison of PDA with intuitive approaches

In details, Figure 14, highlights the di�erences between the "Most central �rst" and "Hybrid"

approaches. The �rst number on each edge indicates the probability that PHM is set on that node

under "Most central �rst" approach, wheras the second indicates the probability that PHM is set

on that node under "Hybrid" approach. Notice that for budget B ≤ 40 the results are the same;

little discrepancies are mainly due to Monte Carlo simulation. On the contrary, when the available

budget increases, then the "Most central �rst" method tends to allocate actions on the edges of the

central part of the network. For example, "Hybrid" approach never takes actions on edge (4, 9),

which connects two among the most important nodes. On the contrary, the "Most central �rst"

approach tends to select this edge just because it insists on the central node i = 4.
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Figure 14: Comparison between "Most central �rst" and "Hybrid"

7 Conclusion

In this work we have proposed a novel framework to quantify the increase in reliability of a

power transmission network when its elements are provided with PHM capabilities. The method

relies on the one hand on an analytic, time-variant model, which conservatively evaluates the

increase in reliability achievable when a network element is equipped with a PHM system of

known performance metrics. On the other hand, it relies on a global reliability index of the network

(i.e., the global reliability e�ciency) which establishes a link between the reliability improvement

at the network elements with the global reliability behavior. On this basis, we have exploited

methods of Portfolio Decision Analysis (PDA) to �nd the portfolios of PHM systems to be installed

on a network which maximize the network global reliability e�ciency under the given budget

constraints. To highlight the worth of addressing the PHM-based network reliability optimization

within PDA, we have compared the optimal solutions with those of alternative intuitive approaches.

This comparison has shown that the PDA is the only way to guarantee an optimal investment.

Finally, this contribution paves the way to many research issues, which include:

� considering additional optimization criteria such as di�erent network reliability or resilience

metrics.
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� Using the availability model of PHM-equipped components developed in [20] to consider the

transitions back to the working state and evaluating as outage/unavailability the time spent

out of that state.

� Developing a framework to link the PHM performance metrics to the PHM development

cost.

� Developing an exact algorithm for the solution of the proposed PDA model and/or the

generalization of the PDA model (e.g. by means of enhancements Robust Portfolio Modeling

(RPM), so as to take into account the uncertainty in PHM metrics values and cost).

� Considering a larger network and handling the related computational issues.
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Appendix A Complete framework

The complete procedure for the optimal allocation of PHM capabilities on a power transmission

network is summarized in the following steps:

1. Estimation of the edges reliability when they are equipped with the di�erent available PHM

systems:

2. Optimization of Er[G] under the constraint of the limited budget using GA

The �rst step is performed by means of the following algorithm.

Data: Network edges failure rates, PHM system levels

for each edge (m,n) ∈ E do

for each PHM system with performance level Li, i ∈ {1, . . . ,Ω} do
Compute and store the reliability value qim,n of edge (m,n) with intrinsic reliability um,n

when equipped with PHM level Li using the model developed in [20]

end

end

To perform the second step, during GA iterations, Er[G] must be computed provided the particular

allocation of PHM systems. The complete framework is also summarized in Figure 15.
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Figure 15: Summary of the proposed framework

Appendix B Reliability model

In this Section, we summarize the model proposed in [20] to estimate the reliability of a degrading

element (component or system) of the network .

Based on the considerations and assumptions reported in Section 2, we can build the reliability

model of a PHM-equipped component with estimated values pαλ , fnλ, fpλ of metrics Pα
λ , FNλ, FPλ,

respectively. To do this, we divide the time horizon into three regions (Figure 16):

33



1. The region in proximity of failure, i.e., Region 1, which is de�ned by the time indexes

k ≥ N − h (i.e., equivalent time λ = k
N
≥ N−h

N
), such that (1 + α)RUL∗λ ≤ h∆t, where

RUL∗λ = (N −h)∆t. This is the same as k ≥ h∗, where h∗ = bN − h
1+α
c. Geometrically, this

region corresponds to time values on the right of the intersection between the error upper

bound line (1 + α)RUL∗λ and the horizontal line positioned at RUL = h∆t (Figure 16). In

this region, we can note that the alarm is required to be missing for N − h∗ consecutive

times to have a failure. In this region, an alarm is missed only if the RUL over-estimation

lies above the line (1 +α)RUL∗λ, which happens with probability (1−Pα
λ )FNλ. In this case,

the predicted β percentile can be either above or below h∆t. As the available information

is not enough to infer it and the stop is bene�cial for the reliability of the component, we

conservatively assume that in this case the component is not removed from operation.

2. The safe region, i.e., Region 2, which is indicated by time instants k < k∗, where k∗ geometri-

cally corresponds to the prediction most proximal to the intersection between the prediction

error lower bound line (1− α)RUL∗λ and the horizontal line at RUL = h∆t (Figure 16). In

this region, an over-estimation of RUL∗λ leads to not stop the system before failure. This does

not entail any risk of missing stops. On the contrary, an under-estimation of the RUL could

lead to a component stop. In the risk-averse setting we are dealing with, the anticipated

maintenance is bene�cial for system reliability, as it avoids component failure. However, due

to the lack of information and data, we cannot estimate the stop probability in this region

based only on metric values. For this, we conservatively assume that in this left-most region

the PHM system never stops the component: in this way we overcome our lack of knowledge

assuming the worst possible case for the safety of the system (i.e., no stop).

3. The in-between region, i.e., Region 3, identi�ed by k∗ ≤ k < h∗. We have to give account

to the fact that some extreme cases may occur, where even if Πα
λ = 1, the 1− β probability

mass and, thus, the (1 − β)th percentile, is positioned above h∆t. For example, Figure

16 shows the situation where tλ1 = (N − h)∆t and all the β mass is concentrated between

RUL∗λ = h∆t and α+
λ . In this case, PHM will not advice to stop the component at tλ1 . Thus,

we conservatively assume that in this region the component does not undergo a maintenance

action as long as Πα
λ = 1.

On the contrary, when Πα
λ = 0, which occurs with probability (1 − Pα

λ ), the following two

possible situations can occur:

� The (1 − β)th percentile, Υλ, is smaller than (1 − α)RUL∗λ. In this situation, which

occurs with probability (1−Pα
λ )FPλ, even if we conservatively assume that the (1−β)th

percentile takes the largest possible value (i.e., Υλ = (1− α)RUL∗λ), the component is

stopped as this time is smaller than h∆t.
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� With probability (1 − Pα
λ )FNλ, Υλ will be above (1 + α)RUL∗λ. In this situation, we

will not stop the component.

To sum up, a conservative estimation of the stop probability in this time window is (1 −
Pα
λ )FPλ ([20]).

R
U

L

time

R
U

L

time

Figure 16: Regions partitioning the time horizon and examples of possible RUL predictions

The PHM-equipped component must be framed as a three-state system, the possible states being:

Working, Failed and Removed (Figure 1); then, the component unreliability u(t) represents the

probability of having a transition from Working to Failed before time t, that is:

u(t) = P(Tf ≤ t ∩ system not removed before t ;θ) =

P(Tf ≤ t | system not removed before t ;θ)× P(system not removed before t ;θ)

where θ indicates the parameters determining the performance of the PHM system, which the

unreliability depends on.
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Accordingly, we derive u(t) from the probabilistic transport kernel K(t, Failed|t′, s′;θ), which is

de�ned as the probability that the component makes the next transition between t and t + dt

towards state Failed [28], provided that the previous transition has occurred at time t′ and that

the system had entered in state s′. However, in our case we assume that the component always

starts at t = 0 in state Working. For this, we indicate the kernel as K(t, Failed;θ), without the

conditioning event.

To calculate K(t, Failed;θ), we �rst calculate the failure transportation kernel given a realization

δ from fDTD:

K(t, Failed|δ;θ) =

∫ t

t−δ
fTd(τ)fTφ(t− τ)dτ

+

∫ t−δ

0

fTd(τ)fTφ(t− τ)
h∗−1∏
k=k∗

[1− (1− pαk
N

)fp k
N

]
N−1∏
k=h∗

[(1− pαk
N

)fn k
N

]dτ (11)

In words, given the detection delay δ, a failure occurs when one out of the following mutually

exclusive and exhaustive conditions is satis�ed, which are represented by the �rst and the second

addend, respectively:

1. The component fails before PHM detects the initial failure state; this may happen in case

the component fails abruptly and, thus, PHM is not capable of detecting this behavior.

2. PHM always fails to trigger an alarm until system failure; this happens after Tpr + k∗∆t

(i.e., the �rst prediction instant where a stopping decision should be made), with probability

1− (1− pαk
N

)fp k
N
; then, from Tpr + h∗∆t on, with probability (1− pαk

N

)fn k
N
.

To remove the dependence from δ, we integrate Equation 11 over the distribution of DTD:

K(t, Failed;θ) =

∫ ∞
0

K(t, Failed|δ;θ)fDTD(δ)dδ (12)

Generally speaking, the integral of K(t, Failed) over the time interval [t1, t2] gives the probability

of failure in that time span [28]. Then, Equation 12 allows estimating the component unreliability

as Equation 2.

Appendix C Sensitivity analysis of reliability model

In this Section, we report the results of the sensitivity analysis aimed at investigating the impact

of the metric values FPλ and FNλ on the reliability of the PHM-equipped components. We do

36



not report the results of the sensitivity analysis with respect to Pα
λ as these are reported already

in the case study: the three di�erent performance levels L1, L2, L3 exclusively depend on the Pα
λ

value of the three di�erent PHM systems under consideration.

In the next Tables, we report the results of the sensitivity analysis of the edge unreliability value

at times T = 1, 10 with respect to constant values of FPλ = FP and FNλ = FN . Namely, we

consider the following three pairs of values: FP = 0.1, FN = 0.9, FP = 0.2, FN = 0.8 and

FP = 0.3, FN = 0.7.

From the analysis of Tables 5-10, it emerges that when the value of Pα
λ is large (i.e., at performance

value L3) the unreliability of the network elements is not very sensitive to FP . On the contrary,

at smaller values of Pα
λ (i.e., at performance value L1), the unreliability of the network elements

is more sensitive to FP .

λm,n

a
∅ L1 L2 L3

0.0105 0.9896 0.9951 0.9962 0.9965

0.5429 0.5811 0.7904 0.8312 0.8433

1.0858 0.3376 0.6513 0.7086 0.7261

Table 5: Reliability values qm,n of the edges corresponding to a ∈ A, T = 1, FN = 0.7, FP = 0.3

λm,n

a
∅ L1 L2 L3

0.0105 0.9896 0.9940 0.9957 0.9961

0.5429 0.5811 0.7496 0.8090 0.8265

1.0858 0.3376 0.5882 0.6726 0.6972

Table 6: Reliability values qm,n of the edges corresponding to a ∈ A, T = 1, FN = 0.8, FP = 0.2

λm,n

a
∅ L1 L2 L3

0.0105 0.9896 0.9928 0.9950 0.9956

0.5429 0.5811 0.6957 0.7815 0.8045

1.0858 0.3376 0.5075 0.6275 0.6614

Table 7: Reliability values qm,n of the edges corresponding to a ∈ A, T = 1, FN = 0.9, FP = 0.1
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λm,n

a
∅ L1 L2 L3

0.0105 0.9003 0.9678 0.9862 0.9915

0.5429 0.0044 0.6097 0.7575 0.8008

1.0858 0.0000 0.5429 0.6616 0.6968

Table 8: Reliability values qm,n of the edges corresponding to a ∈ A, T = 10, FN = 0.7, FP = 0.3

λm,n

a
∅ L1 L2 L3

0.0105 0.9003 0.9552 0.9825 0.9898

0.5429 0.0044 0.4911 0.7148 0.7750

1.0858 0.0000 0.4360 0.6146 0.6639

Table 9: Reliability values qm,n of the edges corresponding to a ∈ A, T = 10, FN = 0.8, FP = 0.2

λm,n

a
∅ L1 L2 L3

0.0105 0.9003 0.9387 0.9782 0.9880

0.5429 0.0044 0.3421 0.6611 0.7423

1.0858 0.0000 0.2997 0.5531 0.6211

Table 10: Reliability values qm,n of the edges corresponding to a ∈ A, T = 10, FN = 0.9, FP = 0.1

Notice that the in Tables above we indicate the three available PHM systems as {L1, L2, L3}. This
is somewhat an abuse of notation: the systems have the same Pα

λ curves of the PHM systems

considered in Section 5, but with values of FPλ and FNλ di�erent from those presented in Section

5. The values of all the other parameters are set as in Section 5.

38

View publication statsView publication stats

https://www.researchgate.net/publication/324875473

	Introduction
	Reliability model of a PHM-equipped component
	Network Reliability Metrics
	PDA setting for optimal allocation of PHM capabilities on the network elements
	Case Study
	Results and discussion
	Optimization results
	Comparison between portfolio optimization and intuitive approaches

	Conclusion
	Appendices
	Appendix Complete framework
	Appendix Reliability model
	Appendix Sensitivity analysis of reliability model



