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Abstract 
 
In the last 10 years, neuromorphic computing has emerged as a novel approach to tackle the 
challenges of the end of Moore’s law. In this frame, memristive devices are very promising due to 
their unique properties, such as high compactness, high switching speed, low power consumption, 
and tunable resistance. In particular, memristive devices can be used as suitable synaptic 
connections that can replicate the local plasticity rules in biological networks, thus making the 
memristor an essential element to develop cognitive systems with the same capabilities as the 
human brain.  
In this chapter, we present an overview of the current status on the synaptic circuits based on 
memristive devices. We review various implementations, including single-memristor synapse 
adopting resistive switching memory (RRAM) and phase change memory (PCM), hybrid structures 
combining complementary metal-oxide semiconductor (CMOS) transistors and memristive devices, 
and materials-based approaches aiming at reproducing biological learning rules by the physical 
properties of the device. Learning rules such as the spike-timing dependent plasticity (STDP), the 
spike-rate dependent plasticity (SRDP) and the short-term plasticity (STP) are described. We finally 
present few examples of learning circuits combining synaptic networks, thus supporting the 
promising prospect of memristive circuits capable of bio-realistic brain-inspired cognitive 
computing.   
 
 
1. Introduction 
 
Since the seminal works of Rosenblatt [1] and Minsky [2], the neural network has been recognized 
as the most powerful circuit to describe the human brain and achieve a certain level of ‘intelligence’ 
in hardware. Among the neural networks, the deep neural network (DNN) has been shown to 
achieve a high accuracy in learning objects, images and speech [3,4]. DNN requires however 
supervised learning with an extensive dataset, to train the system by iterative schemes such as the 
backpropagation and other gradient descent techniques. Such a learning scheme can be seen as a 
mere mathematical method to improve the fitting of existing data by iteratively updating the 
synaptic weights, which lacks any specific similarity with the human brain. On the other hand, the 
spiking neural network (SNN) aims at reproducing the cognitive processes in the human brain, 
which largely rely on the exchange of spikes among neurons to process information [5]. This is the 
so-called ‘neuromorphic approach’, where the circuit design aims at replicating the exact 
architecture, the information coding, and the learning methodology of the human brain. In 
neuromorphic SNNs, spikes also control learning via Hebbian rules such as the spike-timing 
dependence plasticity (STDP) and the spike-rate dependent plasticity (SRDP). 
To implement DNNs and SNNs in hardware circuits and systems, the CMOS technology has been 
traditionally adopted in both digital and analogue (or mixed) circuits [6,7]. CMOS circuits combine 
a large flexibility of design, a good scaling and the possibility to operate transistors in the 
subthreshold regime, which is useful to minimize the power consumption and achieve a high energy 
efficiency, as in the human brain. On the other hand, CMOS circuits generally lack a synaptic 
device technology capable of storing a synaptic weight in a nonvolatile stability and analogue 
accuracy. Emerging nonvolatile memories, such as the resistance switching memory (RRAM) [8] 



and the phase change memory (PCM) [9], instead, naturally provide the synaptic element which is 
needed for DNN and SNN. These types of memories are relatively small and scalable, since they 
have a 2-terminal resistive structure, where the resistance can be suitably changed by the 
application of electrical pulses. Thanks to the material storage concept in RRAM and PCM, the 
memory device can be miniaturized to the range of about 10 nm [10]. RRAM and PCM also display 
analogue switching, where the resistance can be increased or decreased gradually by the application 
of suitable voltage pulses [11]. Emerging memories can be easily implemented in CMOS circuits, 
thanks to the back-end-of-line (BEOL) integration [12]. Finally, RRAM and PCM has been shown 
to enable fast and energy-efficient in-memory computing [13], thanks to the implementation of 
physical matrix-vector multiplication (MVM) within a crosspoint array accelerating data processing 
[14-16] and the non-iterative solution of linear algebra problems [17]. Given these multiple 
advantages from the physical, architectural and scaling perspectives, the nonvolatile resistive 
memories have been recognized as a promising technology to implement synaptic elements within 
high density neuromorphic systems [18]. 
 
This chapter presents the hardware implementation of synapses with bio-realistic plasticity, relying 
on RRAM and PCM. First, the plasticity rules for biological synapses, such as STDP and SRDP, 
are reviewed with reference to in vivo and in vitro experiments. Implementing such bio-inspired 
plasticity rules in hardware is essential for designing SNNs which emulate some of the cognitive 
functions of the human brain, such as unsupervised learning, pattern recognition, association, 
attention, and planning. Synaptic implementations are then discussed by describing RRAM 
synapses, PCM synapses, and various hybrid implementations combining one or more transistors 
with resistive devices to enable higher functionality and flexibility of the synaptic circuit. Non-
overlap synapses, differential synapses, 3D synapses, and 3-terminal synaptic transistor concepts 
are also presented to provide a comprehensive overview of various architectural approaches to 
STDP synapses. Triplet and SRDP learning synapses are also introduced with their applications in 
learning and filtering of spiking information. Finally, the chapter will provide an overview of full-
hardware implementations of SNN for learning of patterns, thus further supporting the relevance of 
biological learning rules for enabling brain-inspired functions in silico. 
 
 
 

 
Figure 1. Experimentally observed pair based STDP characteristics. Reprinted by [19]. 
 
 
 



2. Biological synaptic plasticity rules  
 
The computational elements of nervous systems, neurons and synapses, continuously adapt their 
properties for the purposes of homeostasis, short-term adaptation and long-term changes for learning 
and memory formation. This adaptation takes place by modifying the properties and number of ion-
channels on their cell membrane. These modifications result in changes of ion-channel efficacy and 
temporal dynamics of ion exchange. For the case of synapses these modifications are usually 
abstracted to the idea of a change in a synaptic weight, which can be expressed as a function of the 
spike timing or spiking rate of the pre- and post- synaptic neurons. A body of literature work uses this 
organizational perspective to derive “learning rules” which govern the synaptic weight modification 
on the basis of data derived from biological experiments. Well-known learning algorithms are the 
STDP rule, which induces changes triggered by pairs of pre- and post- synaptic spikes, and the SRDP, 
where synaptic potentiation and depression are controlled by high and low presynaptic spike rates, 
respectively. The changes can be persistent for long-term plasticity or non-persistent for short-term 
plasticity (STP). The following sections summarize the most common models of plasticity. 
 
 
2.1  Long-term STDP and SRDP  
 
Changes in the synaptic weight are believed to encode the memory behavior and serve as the principal 
mechanism for learning in nervous systems. The most known STDP rule is a long-term plasticity 
induced by pairs of presynaptic and postsynaptic spikes, which was first experimentally observed in 
1998 [19]. The changes in synaptic weight depend on the difference in spike timing between a pre- 
and a post-synaptic neuron and is persistent. The direction of the weight change depends on the 
polarity of this timing difference. The synaptic weight between two neurons increases for the case of 
the pre-synaptic neuron firing before the post-synaptic neuron, leading to the so-called long-term 
potentiation (LTP). On the other hand, the synaptic weight between two neurons decreases for the 
case of the pre-synaptic neuron firing after the post-synaptic neuron, leading to the so-called long-
term depression (LTD) (Fig. 1). The weight change is higher when the spike-time interval is short 
and it tends to zero for increasing spiking interval, which is consistent with the Hebb’s postulate [20]. 
The dependence between the spike time interval and the weight change can be modelled as a 
piecewise function of two exponentials. Other shapes for the STDP characteristic have been observed, 
such as a symmetric dependence or anti-Hebbian plasticity where the time dependence is reversed 
compared to the classical time dependence [21-24]. In all these cases, the change in the synaptic 
weight depends on the relative timing of the pre- and post-synaptic spikes, which is the core principle 
of the pair-based STDP rule. However, pair-based STDP fails to replicate the results of richer 
experimentally observed biological features. In particular, it has been demonstrated that a triplet rule 
(i.e., a rule that considers sets of three spikes, two pre and one post or two post and one pre) is more 
biologically realistic [25]. 
SRDP is another paradigm for implementing the Hebbian synaptic plasticity. The SRDP induction 
protocol is predominantly based on the neuronal firing rate to vary the sign and magnitude of synaptic 
plasticity [26-28]. As observed in the hippocampus/neocortex, the post-synaptic terminations 
underwent LTP when the pre-synaptic neuron fired with a high frequency (20–100 Hz), while LTD 
was observed instead for low-frequency spiking (1-5 Hz). A simple and effective learning rule to 
implement SRDP, often called the Fusi rule, relies on the post-synaptic firing rate instead [26]. After 
a pre-synaptic pulse, the synapse can be depressed or potentiated depending on whether the post-
synaptic membrane potential is low or high gated by an additional variable called the calcium 
variable, which is determined by the neurons firing rate. Synapse potentiation is inhibited when the 
calcium variable is above a certain threshold, while synapse depression is inhibited for the calcium 
variable being below another threshold. 
 



2.2  Short-term plasticity 
 
Long term STDP and SRDP induce persistent synaptic weight changes. On the other hand, short term 
non-persistent synaptic weight changes can also take place after the synapse has propagated a spike. 
Following a pre-synaptic spike, the weight of the synapse can either transiently decrease (depression) 
or increase (facilitation), followed by a decay in time of the synaptic weight toward its baseline level. 
As is the case for long-term plasticity, short-term plasticity has been observed in biological 
experiments [29-31]. Short-term plasticity may result in either a depression when each presynaptic 
spike induces a decrease of the synaptic weight (Fig. 2a), or a facilitation when each presynaptic spike 
induces an increase of the synaptic weight (Fig. 2b). As changes induced by short-term plasticity only 
take effect during a short period and rapidly fade with time, it is not sufficient to cause a stable 
learning. However, it has interesting properties that contribute to the efficiency of the neural network. 
One notion is that the short-term change behaves as a temporal filter of spiking trains. For instance, 
a synapse exhibiting short-term depression acts as a low-pass filter since high frequency pre-synaptic 
activity is attenuated in the synapse before it can excite the post-synaptic neuron. The contrary is true 
for short-term facilitation whereby only a high rate of pre-synaptic activity is sufficient to achieve a 
synapse strong enough to significantly excite a post-synaptic cell. 
 
 

 
Figure 2. Experimentally observed short term plasticity. (a) Example of short- term depression. (b) Example 
of short-term facilitation. Bottom traces show the presynaptic spikes, top traces show the postsynaptic 
potential. Adapted from [29]. 
 
 

 
Figure 3. Temporal frequency sensitivity tuning curve of the mean response of Lobula Plate, a neuron 
dedicated to the processing of optic flow, in drosophila resting and flying states. Adapted from [32]. 
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2.3  State-dependent synaptic modulation 
 
Further synaptic temporary modulation can be induced by signals from neuromodulatory neurons 
dependent on the state of the animal [32]. An example can be found in the elementary motion 
detection system of drosophila where the neuromodulator octopamine tunes neuronal properties in 
the visual system as a function of whether the insect is resting or flying. This allows the insect to 
adapt its sensitivity to different velocities of stimulus as well as reduce power consumption while in 
a resting state. In Fig. 3 the response of Lobula Plate tangential cells, well-characterized neurons 
dedicated to the processing of optical flow, is reported for Drosophila stimulated with a moving 
grating when it is in resting and flying states. The area under the curve for the insect in its resting 
state is greatly reduced relative to that of its flying state which is thought to be an evolutionary 
adaptation to optimize the energy consumption. 
 
3. Memristive implementations 
 
To develop bio-inspired neuromorphic hardware, the implementation of the biological synaptic 
plasticity rules, such as STDP and SRDP, is essential. In fact, a key enabling feature of 
neuromorphic circuits is their ability for learning and adaptation, which requires synaptic plasticity 
as in the human brain. As a result, there has been a significant effort in the exploration of novel 
devices that could replicate bio-inspired learning rules with simple algorithms, low energy 
consumption, and high density of synaptic connections. To this purpose, memristive devices appear 
as a promising technology to emulate the synaptic behavior in artificial neural networks. In 
particular, strong interest was gained by a class of memristors including RRAM and PCM, also 
called first-order memristors [33], depicted in the sketch of Fig. 4a. In this type of devices, STDP 
can be achieved solely by the application of overlapping spikes at device terminals as schematically 
depicted in Fig. 4b [34]. In addition to first-order memristors, another class of memristors, called 
second-order memristors (Fig. 4c), has been recently proposed [33], evidencing that resistive 
switching phenomena can be induced by non-overlapping spikes applied across memristor device 
with variable positive/negative relative delay Δt (Fig. 4d). The non-overlap resistance switching can 
be explained by the occurrence of short-term conductance changes controlled by second-order 
internal variables such as the internal temperature [34]. This feature is extremely important to 
implement at device level significant processes such as the Ca2+ short-term dynamics [31], thus 
enabling the gradual weight update shown by biological STDP [19] and SRDP [27,28] with higher 
detail than the synaptic implementations with first-order memristors. Taking inspiration from these 
schemes, several hardware implementations of nanoscale synapses based on memristive materials 
capable of replicating synaptic plasticity have been developed and the most significant prototypes 
are discussed in the following. 



 
Figure 4. Comparison between (a) a first-order memristor where (b) only overlap of spikes applied at terminals 
can induce a conductance modification and (c) a second-order memristor where (d) conductance can be 
changed depending on the sign and magnitude of relative timing of applied spikes thanks to second-order 
variables (e.g. temperature) displaying a short-term dynamics. Reprinted with permission from [34]. Copyright 
(2015) American Chemical Society 
 
 

Figure 5. (a) Sketch of a synapse connection between a PRE and a POST neuron implemented by a memristor 
element. (b) Current response of Ag-Si RRAM device as a function of number of applied pulses for both 
potentiation (current increase) and depression (current decrease). (c) STDP implementation for Ag-Si 
memristor at experimental and simulation level by application of PRE/POST spikes with variable time delay. 
Adapted with permission from [36]. Copyright 2010 American Chemical Society 
 
 
3.1  RRAM synapses 
 
In last decade, RRAM technology has been intensively investigated to design memristive synapses 
capable of STDP for bio-realistic neuromorphic systems [34-42]. RRAM combines in fact low-
voltage operation, large window, analogue-type multilevel operation, good cycling endurance and 
strong reliability [8].  
Figure 5a illustrates the ideal concept of the RRAM-based synapse, where a memory element 
within a high-density crosspoint array can serve as synaptic connection between artificial neurons, 
similar to the biological synapse in the brain [36]. Interestingly, both the biological synapse and the 
memristive RRAM rely on the ionic diffusion for the plasticity mechanism [42]. One of the earliest 
implementations of RRAM-based synapses addressed a programmable metallization cell with an 
Ag-a/Si active layer where two regions with high and low Ag ion concentration, respectively, are 
formed by suitably setting the gradient of the Ag/Si mixture ratio [36]. Unlike memristors such as 
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HfOx or TiOx-based RRAM, which sometimes exhibits abrupt resistive transitions due to the 
formation and rupture of a conductive filament, the resistance of this device can be tuned with 
analogue precision by controlling the motion of Ag ions between Ag-rich and Ag-poor regions by 
application of an external voltage. To test the synaptic behavior of this device, a DC 
characterization study consisting of the application of two consecutive series of 100 300-µs-long 
pulses of amplitude 3.2 V and -2.8 V, respectively, was performed. As a result, Fig. 5b shows the 
incremental increase of the current during a first series of positive voltage pulses and the 
incremental decrease of current during the following series of negative voltage pulses, thus 
supporting the memristor capability of analogue potentiation/depression at positive/negative bias. 
Figure 5b also shows another feature of potentiation and depression processes for this type of 
synaptic device consisting of an increasing extent of weight variation in response to voltage pulses 
with longer width. Based on the characterization study at device level, STDP measurements were 
carried out. To capture STDP characteristics by Ag-Si RRAM device, a CMOS circuit was realized 
with two integrate-and-fire neurons connected through a RRAM memristor capable of mapping the 
relative time delay between occurrence times of PRE and POST spikes (Δt = tPRE-tPOST) into the 
width of a pulse to be applied to synaptic device via a time-division multiplexing (TDM) scheme 
with globally synchronized time frames. According to this scheme, if the PRE spike anticipates the 
POST spike, a potentiation pulse with exponentially decreasing pulsewidth at increasing Δt is 
applied to the synapse. Otherwise, if the PRE spike follows the POST spike, a depression negative 
pulse with an exponentially decreasing pulsewidth at increasing |Δt| is applied to the device. Figure 
5c shows the resulting STDP characteristics obtained by measuring the percentage of synaptic 
weight update as a function of Δt which evidences an exponential decay of potentiation and 
depression in agreement with in vivo experimental data. 
 
 

 
Figure 6. (a) Current -Voltage (I-V) characteristics of the HfOx/AlOx RRAM device with compliance current 
IC = 100 µA and Vstop = -3.3 V. (b) I-V characteristics for increasing IC, which results in multiple LRS, and 
increasing Vstop, which leads to multiple HRS. (c) Resistance response for HfOx/AlOx RRAM device 
evidencing a gradual resistance decrease/increase for positive/negative pulses of increasing amplitude and 
fixed 50 ns duration. Adapted from [37]. 
 
 
Although the results in Fig. 5 demonstrated the possibility to achieve STDP in silico for the first 
time, the TDM approach might require some additional circuit complexity. To reduce the 
complexity of the STDP scheme, a direct overlap scheme was adopted in a one-resistor (1R) 
structure of a bipolar RRAM device based on TiN/HfOx/AlOx/Pt stack [37]. Figure 6a shows the I-
V characteristics of the RRAM device with a relatively abrupt set transition and a more gradual 
reset transition whereas Fig. 6b shows the I-V curves obtained by a continuous increase of the 
compliance current IC from 1 to 200 µA, which allows to set the device at increasingly high 
conductance. Also, the application of a reset sweep with incremental maximum voltage |Vstop| from 
-1.3 V to -3.3 V allows to reset the device at increasing resistance. Therefore, the controllable 
set/reset operations support the multiple resistance states of the RRAM [43-46], enabling analogue 
synaptic potentiation/depression via continuous set/reset processes. Figure 6c further highlights the 
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multilevel operation capability of the RRAM, showing the measured resistance of synaptic RRAM 
in response to the application of individual 50-ns-long positive/negative pulses with increasing 
amplitudes. Starting from an intermediate initial state between 200 kΩ and 300 kΩ, the device 
resistance can be gradually increased up for pulse amplitudes varying from -2.4 V to -2.8 V, or the 
resistance can be gradually decreased for pulse amplitudes varying from 1.6 V to 2 V. The figure 
thus supports the ability to modulate the synaptic weight by applying short pulses of variable 
amplitude. The multilevel operation controlled by pulse amplitude was thus used as a basis to 
demonstrate STDP learning rule at device level. To achieve this objective, PRE and POST spikes 
were properly designed via a sequence of single pulses in consecutive timeslots, namely a negative 
pulse of period 1 µs followed by 5 positive pulses with identical period and decreasing amplitudes, 
such that only their overlap can effectively induce a synaptic weight modulation.  
 
 

 
Figure 7. (a) Programming scheme based on overlap of PRE and POST spikes to capture synaptic 
potentiation and depression according to STDP rule. (b) Calculated relative change in conductance as a 
function of relative time delay between PRE and POST spikes suggesting the capability of HfOx/AlOx 
RRAM device of mimicking biological STDP rule. Adapted from [37]. 
 
 
Figure 7a shows the waveforms of two spikes that were devised such that if the relative timing 
between PRE and POST spikes, which is defined as Δt = tpost - tpre in this report, is positive, a single 
positive voltage pulse capable of triggering the set process is applied across the device causing 
potentiation whereas if Δt is negative, a single negative voltage pulse capable of triggering the reset 
process is applied across the device causing depression. As a result of the application of this overlap 
approach, an analogue STDP behavior approaching the biological one was captured in simulation. 
The resulting STDP characteristic is shown in Fig. 7b, which supports the HfOx/AlOx RRAM and 
the overlap scheme as a promising approach for hardware neuromorphic systems able to learn. The 
engineering of pulse shape/width of PRE and POST spikes applied to memristor terminals plays a 
crucial role to achieve the memristor conductance modulation, hence synaptic weight update. This 
is because conductance changes at a given time in memristors used in such synaptic structures, that 
are first-order memristors [33], is solely governed by the voltage/current input applied to the device 
and conductance state at that time. However, there is another class of memristors, referred to as 
second-order memristors [33] where the conductance is also controlled by one or more second-
order state variables, which provide an additional degree of freedom to achieve the implementation 
of synaptic mechanisms increasingly similar to bio-realistic processes.  
In this regard, Kim et al presented in [34] a second-order Ta2O5-x-based memristor device capable 
of replicating STDP rule with non-overlapping spikes exploiting the short-term dynamics of internal 
temperature, which thus serves as 2nd order state variable making weight modulation timing 
dependent. To capture STDP, memristor device was subjected to the application of non-overlapping 
PRE and POST spikes at two terminals (Fig. 8a) which, as evidenced in Fig. 8b, consist of two 
consecutive pulses with different amplitude and duration. In detail, PRE spike includes the 
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sequence of a 20-ns-long programming pulse of amplitude 1.6 V followed, after a time interval of 1 
µs, by a longer pulse of amplitude of 0.7 V and width 1 µs for heat generation, whereas the POST 
spike coincides with PRE spike except for the amplitude of first pulse which is 1.1 V. The 
application of PRE and POST spike at top electrode (TE) and bottom electrode (BE), respectively, 
causes an overall voltage across device given by Vpre-Vpost which changes as shown in Fig. 8c 
depending on whether PRE spike precedes the POST spike (left) or PRE spike follows POST spike 
(right). In the first case, which is featured by a positive time delay Δt between two spikes, the 
application of first spike (PRE spike) induces a temperature increase that affects the following spike 
(POST spike). Upon arrival of second spike, the heat generated by second spike is added to the 
decreasing heating previously activated by the first spike causing a memristor conductance increase, 
due to the short negative set pulse within POST spike, higher than conductance decrease induced by 
the positive reset pulse within PRE spike. This thus results in an overall conductance increase, 
hence the potentiation of memristive synapse.  On the contrary, for negative Δt, an identical 
mechanism based on short-term dynamics of internal temperature leads memristor device to 
undergo a conductance decrease activated by second spike (PRE spike) higher than the conductance 
increase due to the first spike (POST spike), which results in an overall conductance decrease 
within memristor or synaptic depression. Importantly, note that in both cases the shorter/longer is 
Δt, the more/less pronounced is the impact of Joule heating summation effect on memristor 
conductance upon occurrence of the second spike, which thus results in an increasing/decreasing 
update of synaptic weight. As shown in Fig. 8d, this internal mechanism based on heat summation 
enables a second-order memristor to achieve at device level a very faithful replication of STDP 
characteristics observed in biological experiments where relative change in conductance is a 
function of both Δt sign and magnitude [19].  
 
 

  
Figure 8. Sketch of memristive device whose terminals are applied two non-overlapping voltage pulses. (b) 
The application of PRE and POST spikes which consist of sequence of two positive pulses with different 
amplitude and width, at TE and BE, respectively, results in (c) a voltage across memristive element VPRE-
VPOST evidencing two consecutive spikes with no overlaps able to induce a conductance change depending 
on the order of presentation (sign of Δt) and short-term dynamics of internal temperature after pulse 
application (magnitude of Δt). (d) Experimental STDP characteristics achieved in a second-order Ta2O5-x-
based memristor compared with a characteristics calculated by a numerical model. Adapted with permission 
from [34]. Copyright 2015 American Chemical Society 

 
 
3.2  PCM synapses 
 
In addition to RRAM technology, other novel non-volatile memory devices have been investigated 
as potential candidates to build electronic synapses. Among various types of memristors, PCM 
devices have received a strong interest mainly for their high resistance controllability via the 
gradual crystallization dynamics of chalcogenide-based active layer and the large resistance 
window (~103) which is ideal for efficient multilevel operation [47].  



Similar to the approach described in [37] for RRAM synapses, a scheme based on the overlap 
between a PRE and POST pulsed voltage signals at device terminals was designed in [48] to 
demonstrate STDP in single element PCM-based synapses. As shown in Fig. 9a, POST signal 
consists of 8-ms-long negative pulse whereas PRE signal includes two sequences of 6 consecutive 
pulses of high and low positive voltages, respectively, separated by a zero period of 8 ms. In the 
first series, the pulses were designed with width of 50 ns, period of 10 ms and linearly increasing 
amplitudes to achieve synaptic depression. On the other hand, the following series includes pulses 
which were designed with width of 1 µs, period of 10 ms and linearly decreasing amplitudes to 
achieve synaptic potentiation. To validate such an overlap scheme, relative time delays Δt of 
opposite signs between PRE and POST signals were applied by keeping PRE spike and shifting the 
POST spike. Whereas Fig. 9a depicts the case for Δt = 0, Fig. 9b shows the overlapping spikes for a 
positive delay (Δt = 20 ms) evidencing that the net voltage across synaptic device given by Vpre-
Vpost crosses the minimum voltage threshold, thus leading to the increase of synaptic weight. 
Otherwise, if relative delay is negative (Δt = -40 ms), the voltage subtraction across PCM results in 
a single pulse of amplitude higher than the minimum voltage threshold, thus activating depression 
process (Fig. 9c). Based on these particular cases, the application of variable delay values ranging 
from -40 ms to 40 ms allowed Kuzum et al to achieve STDP capability at device level. This is 
confirmed by STDP measurements shown in Fig. 9d where the resulting STDP curve exhibits a nice 
agreement with biological data presented in [19]. This approach also offers great flexibility enabling 
to tune time constant of measured STDP characteristics by changing amplitude and separation of 
pulses within PRE spike. Specifically, gradually decreasing the spacing between consecutive pulses 
such that the highest pulses within each PRE sequence are the closest ones allows to reduce the time 
constants of STDP exponential curves, which are significant biological parameters marking 
synapses in the brain. The application of this scheme thus leads to the implementation of measured 
STDP characteristics for variable time constants |τ| between 10 ms - 30 ms shown in Fig. 9e, which 
supports the capability of PCM synapses of emulating various types of synapses with different 
biological functions. Finally, as shown Fig. 9f, the modulation of the order of pulses for potentiation 
and depression within PRE spike was also tested enabling to demonstrate two asymmetric and two 
symmetric different STDP kernel, thus paving the way to the possibility to build neuromorphic 
systems based on nanoscale memristive synapses increasingly approaching to the complex 
operation of human brain. 
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Figure 9. (a) Programming scheme based on overlap between pulses within PRE and POST spikes that is 
adopted to implement STDP in PCM synaptic device. (b) If relative delay is positive (Δt = 20 ms), spike 
overlap results in a voltage drop VPRE-VPOST across PCM cell where a single 1-µs-long pulse can cross set 
threshold, thus inducing potentiation. (c) Conversely, if relative delay is negative (Δt = -40 ms), spike 
overlap results in a voltage drop VPRE-VPOST across PCM cell where a single 50-ns-long pulse can overcome 
reset threshold, thus leading to synaptic depression. (d) STDP characteristics achieved by application of 
programming scheme on PCM cell against experimental data collected by Bi and Poo in [19]. (e) Measured 
STDP curves for variable time constants τ obtained tuning pulse amplitude/width within programming 
scheme. (f) Various asymmetric and symmetric STDP characteristics that can be implemented at device level 
changing the order of pulse sequences. Adapted with permission from [48]. Copyright 2012 American 
Chemical Society 
 
 

 
Figure 10. (a) Sketch of a 1T1R cell based on Ti/HfOx/TiN RRAM device. (b) I-V characteristics of 1T1R 
RRAM structure. (c) Fundamental block using 1T1R cell as synaptic element connecting PRE neuron with 
POST neuron. (d) Programming strategy used to capture potentiation in 1T1R synapse: as Δt is positive, only 
positive pulse within POST spike applied to TE can overlap with PRE spike applied to the gate, thus 
activating a set transition, hence a weight change from HRS to LRS. Adapted from [55]. 

 
 
4. Hybrid CMOS/memristive synapses 
 
4.1 1T1R synapses 
 
Although single-element memristive synapses offer the prospect to build extremely dense 
neuromorphic circuits, their use in crossbar arrays however can lead to significant concerns such as 
leakage currents due to sneak paths and high-power consumption caused by the lack of current 
limiters. To bypass these issues while keeping relatively high integration density, a technological 
solution extensively adopted in recent years has been the use of a field effect transistor (FET) in 
series to the memristor device, which led to the development of hybrid CMOS/memristive synaptic 
structures such as the one-transistor/one-resistor (1T1R) [49-55]. 
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Figure 10 shows a 1T1R structure based on serial connection of a FET to a Ti/HfOx/TiN RRAM 
cell (a) and its I-V characteristic (b), which clearly evidences the current limitation to IC = 50 µA 
during set transition achieved by FET. To operate such structure as an electronic synapse, the circuit 
scheme of Fig. 10c can be adopted [55]. According to this implementation, the PRE drives the gate 
terminal of FET, thus enabling synapse activation only as PRE spike occurs, whereas the POST 
controls the TE voltage VTE which is generally set at low constant voltage to allow for 
communication between PRE and POST via the synapse. In this phase, the application of a PRE 
spike at FET gate when TE is biased at communication voltage induces a current proportional to the 
synaptic conductance across device being collected along with all the currents triggered by other 
activated PREs at the input of POST. Then, the sum of these currents is integrated by POST causing 
an increase of its internal potential until it exceeds a threshold eventually leading to the emission of 
a fire spike by POST which is delivered at TE to update the synaptic weight according to STDP 
rule. If the relative delay Δt between the PRE spike, which was designed as a 10-ms-long pulse of 
amplitude 2.1 V followed by a zero period of 10 ms, and the POST spike, which was designed as a 
1-ms-long positive pulse followed by 1-ms-long negative pulse after a zero period of 10 ms, is 
positive, only the short positive pulse of amplitude VTE+ > Vset within POST spike overlaps with 
PRE spike, thus inducing a set transition in RRAM cell resulting in the potentiation of synaptic 
weight (Fig. 10d). Conversely, if Δt is negative, only short negative pulse of amplitude VTE- < Vreset 
in the POST spike takes place at TE during PRE spike, thus causing a reset transition in RRAM cell 
leading to depression of synaptic weight.  
 
 

 
Figure 11. (a) Measured STDP characteristics achieved in LRS 1T1R RRAM device for variable initial state 
from HRS to LRS. (b) Color plot of experimental STDP implemented in 1T1R RRAM cell. Adapted from 
[55]. 

 
 
This synaptic operation scheme was validated by the measurements shown in Fig. 11a evidencing 
relative change of conductance in a single 1T1R synapse as a function of Δt for variable initial state 
from the full LRS (R0 = 25 kΩ) and full HRS (R0 = 500 kΩ). These characteristics first show that 
the more resistive is the initial state, the higher is the weight change via potentiation event, and the 
less resistive is the initial state, the higher is the weight change via depression event. Also, note that 
although the measured STDP characteristics show the synaptic potentiation/depression for 
positive/negative delays as expected by STDP biological protocol, their behavior is however 
uniform within overlap window of |Δt|<10 ms for any initialization because of binary nature of 
RRAM device which makes that the positive pulse at TE leads always device in full LRS set by IC 
via VG whereas negative pulse leads always device in full HRS, irrespective of Δt. This is also 
confirmed by color plot of measured STDP characteristics shown in Fig. 11b where the maximum 
potentiation for positive Δt is achieved starting from HRS whereas the maximum depression for 
negative Δt is obtained as the initial state is programmed in LRS. In addition to 1T1R RRAM 
synapses, 1T1R synaptic structures including PCM cell as memristive element have also been 
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investigated [49, 51, 54]. In this frame, Bichler et al devised the so-called 2-PCM synapse shown in 
Fig. 12a which is capable of implementing potentiation and depression by two 1T1R PCM 
structures referred to as LTP cell and LTD cell, respectively, using in both cases chalcogenide 
crystallization process [51]. In this way, a significant power saving due to the non-use of reset 
pulses at high current (hundreds of µA) for depression phase can be achieved. Also, since the 
progressive crystallization of chalcogenide active layer is carried out by application of sequences of 
voltage pulses with the same amplitude, pulse generation is easier than scheme adopted in [48]. In 
terms of functionality, this synaptic structure was used to capture a simplified STDP characteristics 
shown in Fig. 12b, according to which synaptic potentiation can occur only for a specific range of 
positive time delays between PRE and POST spikes of length TLTP. In particular, to demonstrate 
this weight update rule, the pulse scheme for write operations schematically described in Fig. 12c 
was designed. Based on this scheme, as the total current integrated by an output neuron hits the 
threshold, the output neuron emits a POST spike being sent to all the input neurons by triggering 
write mode. During this phase, if an input neuron applies a single positive pulse called LTP pulse of 
amplitude VWR at source of FET within 1T1R PCM structures means that the relative delay between 
PRE and POST falls in TLTP, otherwise no signal is applied. In addition to this, the output neuron 
delivers at the same time voltage pulses of amplitude -VWR and 2VWR at BEs of LTP PCM cells and 
LTD PCM cells, respectively, knowing that VWR < Vset < 2 VWR. As a result, the conductance of 
LTP cells between firing input and output neurons increases since the total voltage across these 
devices is 2VWR > Vset, while the conductance of corresponding LTD cells remains unchanged 
because the total voltage across them is VWR < Vset. Therefore, this involves that such 2-PCM 
synapses undergo synaptic potentiation in that the effective synaptic weight GLTP-GLTD increases. 
On the other hand, for synapses with no signal at source of FET, namely in all the cases with time 
delays outside LTP window, VWR in absolute value drops on LTP cell and 2VWR on LTD cell, 
which leads to conductance increase for LTD cell with unchanged conductance of LTP cell and 
consequently to the depression of those 2-PCM synapses. The application of this plasticity scheme 
however requires the execution of an additional refresh operation whenever the conductance of one 
of 2 cells within 2-PCM synapses saturates to the full LRS, which consists of a re-initialization in 
HRS of both devices followed by application of a series of set pulses to the LTP cell to restore the 
effective synaptic weight. 
 
 
 

 
Figure 12. (a) Schematic representation of 2-PCM synapse whose weight is given by conductance difference 
between LTP device and LTD device. (b) STDP learning rule captured by 2-PCM synapse against biological 
STDP. (c) Programming algorithm used to implement potentiation and depression in 2-PCM synapses 
according to simplified STDP rule shown in (b). Adapted from [51]. 
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4.2  2T1R synapses 
 
Although very compact 1T1R synapses have been demonstrated to be capable of achieving 
neuromorphic applications such as visual pattern recognition via simplified STDP learning rules 
[49-55], more complex architectures are needed to gain higher flexibility and more detail in the 
emulation of biological processes. To this end, hybrid CMOS/memristive synaptic structure called 
two-transistor/one-resistor (2T1R) has recently been proposed using both RRAM device [56] and 
PCM device [57]. 
Figure 13a shows a 2T1R synapse with a TiN/HfOx/TiN RRAM device which is serially connected 
to 2 transistors arranged with a parallel configuration [56]. To operate as electronic synapse, the 
communication gate (CG) of left transistor and RRAM TE are controlled by PRE, while the gate 
terminal of the right transistor, called fire gate (FG), and the RRAM BE are driven by POST 
integrate-and-fire circuit, which integrates all the synaptic currents activated by PREs via a brief 
pulse applied to CG during communication phase as long as a threshold is crossed, thus marking the 
generation of a fire spike. After the communication phase, which is performed by left path, this 
synaptic structure implements the plasticity phase, namely the weight update process, which is 
instead implemented separately exploiting the right path. Specifically, potentiation is achieved if the 
PRE voltage spike applied to the TE, which consists of the sequence of a negative 150-ms-long 
exponential pulse and very short (1 ms) positive pulse (top), anticipates (Δt > 0) the truncated 
positive exponential POST pulse applied to FG (center), in that their superposition results in very 
sharp current increase (bottom) inducing set transition of RRAM device (Fig. 13b). Conversely, as 
described by Fig. 13c, if POST spike precedes the PRE spike (Δt < 0), their overlap causes a reset 
transition within RRAM device leading to depression of 2T1R synapse. Applying the PRE and 
POST spikes at the 2T1R synapse with continuous change of Δt from -100 ms to 100 ms, its ability 
to capture bio-realistic analog behavior of potentiation and depression according to STDP was 
experimentally validated as evidenced by measured characteristics shown in Figs. 13d and Fig. 13e, 
respectively. In particular, note that a weak synaptic depression can also be obtained for very large 
positive Δt as a result of competition between the two synaptic processes. Importantly, this structure 
also offers an additional degree of freedom compared to 1T1R configuration namely the 
opportunity to change both potentiation characteristics (Fig. 13f) and depression characteristics (not 
shown) by proper tuning of time constant τ of FG voltage spike, which can serve as useful tool to 
replicate further biological phenomena. 
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Figure 13. (a) Schematic representation of 2T1R RRAM synapse in PRE-synapse-POST circuit. Overlap 
between TE voltage and FG voltage triggering (b) set transition for RRAM device, hence potentiation for 
2T1R synapse, in case of positive Δt and (c) reset transition for RRAM device, hence depression for 2T1R 
synapse, in case of negative Δt. STDP characteristics achieved by 2T1R RRAM structure for (d) potentiation 
and (e) depression, which can also occur for high positive Δt. (f) STDP characteristics under potentiation 
mode for variable time constant τ of FG pulse. Adapted from [56], which is distributed under CCBY. 

 
Figure 14a shows an alternative 2T1R synapse using a PCM cell as memristive element [57]. Here, 
PCM cell is connected to the intermediate node between 2 transistors, called LIF transistor (top) and 
STDP transistor (bottom), respectively. This structure is connected to the PRE by the gate terminals 
of the LIF and STDP transistors, and to the POST by the LIF drain and the BE of the PCM device. 
Similar to the RRAM 2T1R synapse [56], two distinct paths were designed to achieve 
communication (LIF) and plasticity (STDP) operation modes, respectively. During LIF phase, 
which is explained in Fig. 14b, upon PRE spike, the LIF WL pulse generator included in the PRE 
circuit enables LIF transistor with STDP transistor turned off leading to the discharge of the 
capacitor of leaky-integrate-and-fire POST circuit as long as the voltage across the capacitor Vcap 
decreases below Vth. At that point, POST fires, activating after a time delay tdelay the STDP BL 
pulse generator which delivers a short positive pulse at the to BE of PCM cell. After LIF mode, the 
PRE circuit disables LIF transistor and activates the STDP transistor via a slowly-varying voltage 
signal emitted by STDP WL pulse generator, thus leading 2T1R synapse in STDP mode (Fig. 14c). 
In STDP mode, 2T1R synapse can update its weight according to STDP rule plasticity through the 
overlap of STDP BL pulse and STDP WL pulse. As shown in Fig. 14d, depression (ΔR > 0) can be 
achieved for tPRE > tPOST, namely as STDP BL pulse overlaps with increasing part of STDP WL 
signal since it induces high current programming PCM cell in HRS. Otherwise, potentiation (ΔR < 
0) can be achieved for tPRE < tPOST, since in this case the overlap of STDP BL pulse and decreasing 
part of STDP WL signal results in a lower current leading PCM in LRS. Most importantly, this 
2T1R synaptic implementation allows to capture the gradual nature of potentiation and depression 
dynamics via the properly designed STDP WL signal. This is confirmed by measured relative 
weight change as a function of Δt shown in Fig. 14e, which supports 2T1R synapse as valuable 
electronic synapse for neuromorphic applications. 
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Figure 14. (a) Scheme of 2T1R PCM synapse where a transistor is used for leaky-integrate and fire phase 
(LIF TR) whereas the other one for weight update phase (STDP TR). (b) Schematic representation of 2T1R 
synapse operation during (b) LIF mode and (c) STDP mode. (d) Programming strategy used in 2T1R PCM 
synapse circuit to achieve potentiation and depression depending on timing of overlapping STDP BL pulse 
and STDP WL pulse. (e) Measured STDP characteristics demonstrated via 2T1R PCM synapse. Adapted 
from [57]. 

 
 
4.3 Differential synapses 
 
As already discussed in Sections 4.1 and 4.2, the use of memristive devices such as RRAM and 
PCM devices in hybrid synaptic architectures involves a certain overhead in terms of complexity of 
structure and algorithm to capture biological behavior. First, these circuits need for the use of long 
overlapping spikes at PRE and POST terminals to trigger weight updates via atom configuration 
modifications, which results in significant reduction of data throughput in large-scale neuromorphic 
networks. Also, write operation of memristive devices governed by spike-based algorithms can 
require high programming currents, which has detrimental impact on power consumption and 
circuit size [58]. To tackle these severe issues featuring the majority of recently developed hybrid 
CMOS/memristive synapses, a novel memristive-based synaptic circuit was proposed in [58]. Such 
a synapse circuit exhibits a differential architecture based on 20 transistors and 2 HfO2-based 
memristors, called Dpos and Dneg, respectively, being designed to store the synaptic weight in the 
conductance difference of two memristive devices. The operation scheme of this differential 
memristive synapse is divided into read and write mode phases. During read phase, synaptic weight 
at a given time can be tested measuring the currents flowing through memristive devices, and 
consequently the output currents, switching on only selectors controlled by read voltage VREAD 
while all the other transistors are turned off. Since one of the crucial goals for this novel circuit is to 
significantly reduce power consumption, all the switches in on-state were designed to work in sub-
threshold regime. As a result, Nair et al demonstrate that, under certain bias conditions of 
transistors, the output currents measured during read phase, called Ipos and Ineg, are scaled versions 
of currents flowing through Dpos and Dneg, respectively. This positively affects not only power 
dissipation, but also on the area consumption in that a lower current entering POST allows to build 
POST circuits based on smaller capacitors and ultra-low power circuit elements. In addition, the 
reduced impact of memristor variability and the possibility to activate both excitatory and inhibitory 
currents represent additional advantages reachable through this differential synaptic structure based 
on no overlapping spikes at terminals. After read mode, write mode is sequentially turned on. This 
means that read signal is disabled (VREAD = 0) whereas write voltages VSET and VRESET are 
alternatively enabled according to whether the synaptic weight should be increased (potentiation) or 
decreased (depression), respectively. In case of high VSET, Dpos undergoes a set transition and, 
simultaneously, Dneg undergoes a reset transition, thus leading to the increase of synaptic weight. 
Conversely, as VRESET is high, Dpos is reset while Dneg is set, thus inducing a decrease of synaptic 
weight. To validate on-line learning ability of differential memristive synapses, learning simulations 
at network level have been implemented achieving significant performance in single pattern binary 
classification and multi-pattern classification. 



 
 
Figure 15. (a) Schematic representation of 3D 1T-nR synapse and (b) probabilistic STDP learning rule 
implemented at synaptic level. (c) Sketch of 4-layered 3D TiN/Ti/HfOx/TiN VRRAM synapse. 
Experimental and calculated behavior of set probability as a function of amplitude of applied pulse for 
increasing pulse width evidencing that the longer is the pulse, the lower can be the pulse amplitude to 
achieve set with high probability. (a) and (b) adapted from [60]. (c) and (d) adapted from [61]. 

4.4  1TnR synapses 
 
Achieving complex cognitive functionalities performed by human brain is extremely challenging 
due to many reasons such as very low-power operation and unrivaled parallelism resulting from 
huge synaptic density. To emulate this latter feature in hardware, 2D crossbar arrays using very 
compact electronic synapses based on single-element or hybrid architectures have been extensively 
proposed without reaching, however, that of the human brain up to now. One of crucial reasons 
enabling the brain to host a huge number of synapses (~ 1015) within an area lower than that of a 
shoebox [59], is the tridimensional architecture of the brain. Therefore, some novel hardware 
implementations of memristive synapses equipped with 3D architecture have been developed 
[40,60,61]. 
Figure 15a shows the vertical RRAM (VRRAM) structure presented in [60]. It consists of a stacked 
VRRAM, which includes a TiN/SiO2 double layer with a TiN liner operating as BE surrounded by 
cylindrical-shaped HfO2 switching layer and Ti-based TE, serially connected to a FET serving as 
selector and current limiter during set operation. This architecture allows to build a 1T-nR structure 
which, thanks to the multiple binary RRAM devices connected in parallel configuration, exhibits a 
conductance changing with gradual dynamics. In particular, it evidenced a strong potential as 
electronic synapse in auditory pattern extraction applications enabling to implement a simplified 
stochastic STDP-based learning rule similar to that proposed in [50], which is shown in Fig. 15b, 
via intrinsic variability of set and reset processes in RRAM elements. Another hardware 
implementation of 3D hybrid CMOS/memristive synapse was proposed in [61]. Its architecture, 
which is shown in Fig. 15c, evidences a four-layer 3D VRRAM, which includes a TiN/Ti layer as 
common TE, a HfOx film as switching layer and 4 TiN layer as BEs, integrated with a p-channel 
FinFET operating as 3D selector. To implement synapses capable of stochastic learning, the 
intrinsic switching variability within RRAM was exploited. Specifically, as shown in Fig. 15d, set 
probability was characterized in experiments and simulation evidencing that the proper design of 
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applied pulses in terms of duration and amplitude can play a key role to optimize learning 
performance depending on the type of neuromorphic application. 
 
 

 
Figure 16. (a) Sketch of a nickelate SmNiO3-based synaptic transistor capable of resistive switching from 
metal to insulator state and vice versa by electrochemical reactions (Ni reduction/oxidation) induced by 
application of positive/negative voltage pulses gating ionic liquid. (b) Calculated conductance response of 
three-terminal synapse as a result of application of an increasing number of negative pulses (potentiation) 
and positive pulses (depression). (c) Calculated symmetric and asymmetric STDP characteristics achieved 
implementing a PRE-POST delay-voltage conversion by a multiplexer. Adapted from [62]. 

 
 
5.    Synaptic transistors (3-terminal synapses) 
 
An important limitation for 2-terminal memristive synapses is that their operation relies on 
separation between communication and learning phases. However, it could be solved by adoption of 
new attractive transistor-based electronic synapses referred to as three-terminal synapses [62-64].  
In [62], a three-terminal transistor device with a SmNiO3 (SNO)-based channel (Fig. 16a) has been 
investigated in simulation demonstrating to be able to emulate STDP rule. The operation of this 
correlated nickelate synaptic transistor is based on resistive switching mechanism due to modulation 
of SNO perovskite stoichiometry which is achieved via application of gate pulses to ionic liquid 
(IL). As positive voltage pulses are provided to IL, the electric field drives the oxygen outside SNO 
layer inducing the generation of oxygen vacancies within SNO channel, which are responsible for 
electrochemical reduction of Ni3+ to Ni2+. As a result, a resistance increase within device is 
obtained. On the contrary, under negative gate pulses, a field-driven motion of oxygen ions toward 
SNO is triggered, thus leading to the annihilation of oxygen vacancies with consequent oxidation of 
Ni2+ in Ni3+ that results in a resistance decrease. Based on this operation, synaptic potentiation and 
depression transitions were tested in simulation evidencing, as shown in Fig. 16b, that a linear 
increase of relative change in sheet conductance up to a factor 10 is achieved as a sequence of gate 
pulses of amplitude -2.5 V and width 10 ms with 1-s-long interval is applied to device, whereas a 
linear decrease of sheet conductance change up to initial state is achieved as gate voltage pulses 
with opposite (positive) polarity are provided. This result is very interesting since it highlights the 
strong linearity of both transitions for synaptic weight update, thus making this three-terminal SnO 
synaptic transistor more suitable than other widely reported memristor devices such as PCMO-
based RRAM [65], TiOx/TiO2 RRAM [66], Ag:a-Si RRAM [36] and AlOx/HfO2 RRAM [67] for 
neuromorphic applications, i.e. speech recognition and image classification, implemented by deep 
neural networks using supervised learning schemes as backpropagation algorithm. Importantly, Fig. 
16c shows the ability of this synaptic transistor to capture a very bio-realistic replication of both 
asymmetric and symmetric STDP characteristics, which were achieved connecting drain and source 
terminals to a multiplexer capable of converting the relative delay tD between POST and PRE 
spikes applied to drain and source (tD = tPOST-tPRE) into a 10-s-long voltage pulse of proportional 
amplitude for gating operation. 
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Figure 17. Schematic representation of the pair-based (left) and of the triplet based STDP rules (right). 
Synaptic weight change (depression event) is evidenced. Adapted from [68]. 

 
 
6. Triplet-based synapses 
 
Pair-based synaptic modulation has been a staple in the implementation of neuromorphic computing 
systems capable of learning. This is owed to the algorithm’s simplicity in comprehension and 
realization. However, beyond experiments where synaptic efficacy is measured after pairs of pre- and 
post-synaptic spikes, as a function of their relative timing, the plasticity rule fails to replicate the 
results of more complicated experiments. In particular the relationship between the frequency of spike 
pairing, where synaptic efficacies change more for higher pairing frequency, and for sequences of 
three (triplets) or four (quadruplets) spikes. This is believed to result from an asymmetry in the 
impacts of the spike timings of the pre- and post-synaptic cells in favour of the post-synaptic one. In 
order to break this symmetry, extensions of the pair-based algorithms have been proposed and are 
often termed triplet (or quadruplet) rules harking back to the experiments which motivated their 
development [25]. Typical pair-based STDP rules make use of one local variable each at the pre- and 
post-synapse which exponentially decay in time with the weight change being a function of the two 
states: ‘o’ represents the exponentially decaying post-synaptic variable, while ‘r’ denotes the pre-
synaptic variable in Fig. 17. The values of these local variables can be thought of as being ‘stamped’ 
in time giving the famous form of the synaptic weight change expression (Δw), as a function of the 
spike times: 
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where, A is amplitude of the maximum synaptic efficacy change, tpre is the timestamp of the last pre-
synaptic spike, tpost is the timestamp of the last post-synaptic spike, τ is time constant of the decay 
from maximum synaptic change to zero change, w is the synaptic efficacy. As an extension triplet-
based rules make use of an extra exponentially decaying variable per pre- and post-synapse and 
explicitly use their value in time to update the synaptic weight. These synaptic variables are stepped 
by a constant value when their respective neuron fires taking. This can be written as follows: 
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In the formulation for the triplet rule, each presynaptic spike tpre induces an increase of two pre-
synaptic variables, r1 and r2, and each postsynaptic spike tpost induces an increase of other two post-
synaptic variables, o1 and o2. All these variables, o1, o2, r1 and r2 follows Eq. (2) where the time 
constant for each variable is independent as in Fig. 17. Using these four synaptic time dependent 
variables, Eq. (3) describes the triplet rule synaptic updates where the ratios between the time 
constants of o2/1 and r1/2 introduce the asymmetry in favor of the post-synapse. 
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where o1 and o2 are the post-synaptic variables which vary in time as described in Eq. (2), r1 and r2 
are the pre-synaptic variables which vary in time as described in Eq. (2), A2 is the maximum 
amplitude of change resulting from pairing of two spikes as in standard STDP, A3 is the maximum 
amplitude of change resulting from pairing of three spikes extending the original STDP update to 
triplet STDP. Note that for the case of setting the constants A3 to zero equation (3) assumes an 
alternate form of Eq. (2) where the local variables are explicitly written instead of the spike time. It 
is therefore important to realize that triplet STDP is not a novel rule but a higher order extension of 
pair-based STDP – analogous to using a higher order function to better fit data. Like higher order 
fitting, value should only come from developing an understanding of how to correspond these pre- 
and post-synaptic variables to real chemical variables inside the cells like somatic calcium 
concentration or that of synaptic glutamate. This work has motivated the development of synapses 
capable of implementing triplet learning algorithms for neuromorphic computing systems [68]. The 
work is based on the assumption that a resistive memory follows a behavioral model: the resistance 
of the device decreases exponentially if the applied voltage to the two terminal of the device (Δv) is 
higher than a given threshold (vth), while it increases exponentially if the applied voltage is lower 
than -vth, as described by Eq. (4) 
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where f(Δv) is a function which returns a change in the current passing through the resistive memory 
given an applied voltage Δv, I0 and v0 are two fitting parameters. Since the synaptic variables are 
exponential functions of time, a parallel exists with the exponential dependence on applied voltage 
of the resistance. It is then possible to use two resistive memories per triplet rule synapse whose 
superposition encodes the total synaptic weight (Fig. 18). One memory codes for the base-pair change 
as in standard STDP and the other for the extra change that results from the triplet rule. It is possible 
to simplify the triplet algorithm by removing the higher order change during presynaptic events, at 
the expense of slightly less biological correspondence, as in the spike-time dependent form written in 
Eq. (5). 
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where A is the amplitude of maximum synaptic efficacy change, tpre is the timestamp of the last pre-
synaptic spike, tpost is the timestamp of the last post-synaptic spike, τ is the time constant of the decay 
from maximum synaptic change to zero change, w is the synaptic efficacy, tpost(n) is the most recent 



post-synaptic spike time, tpost(n-1) is the second most recent post-synaptic spike time. With suitably 
generated voltages, which are a function of spike events, their combination over the terminals of the 
simple circuit of Fig. 18 can result in changes to the two devices such that their superimposed weight 
changes in the manner of a triplet rule. 
 
 

 
Figure 18. Two resistive memories synapse proposed in [68] to implement the triplet rule. The circuit is 
composed of two resistive memories and a multiplier/rectifier circuit shown as a crossed square. Adapted 
from [68]. 

 
 
7. SRDP synapses 
 
7.1 1R synapses 
 
In the human brain, crucial cognitive functionalities such as memory and learning are governed by 
complex synaptic mechanisms that are not yet fully understood. Some experimental studies such as 
the ones reported in [27,28] have revealed that, in addition to the timing of spikes underlying the 
well-known STDP learning rule, repetition rate of spikes also plays a key role in such processes. For 
this reason, the bio-realistic SRDP phenomenon taking into account the effect of spike rate on 
synaptic plasticity has attracted much attention to achieve a more faithful reproduction of synaptic 
behavior in hardware. Because of limitations due to the abrupt nature of resistive switching process 
in RRAM materials as [69], the implementation of SRDP at device level has required the exploration 
of alternative devices/structures such as single-element Ag2S inorganic synapses [70], one-selector/1-
resistor (1S1R) structures equipped with SiOxNy:Ag diffusive memristors [42] and second-order 
memristors as in [34]. 



 
Figure 19. (a) SRDP implementation in a second-order Ta2O5-x-based memristor by application of series of 
set/heating pulses for variable time interval Δt. (b) Measured SRDP characteristics as a function of number 
of applied spikes with decreasing Δt from 10 µs to 100 ns. Adapted with permission from [34]. Copyright 
2015 American Chemical Society 

 
In [34], rate-based potentiation process was experimentally studied applying to the TE of Ta2O5-x 
RRAM device with grounded BE a sequence of PRE spikes, which consist of a negative 20-ns-long 
set pulse of amplitude -1.1 V followed by a 1-µs-long pulse of amplitude -0.7 V for heat generation, 
separated by time Δt as shown in Fig. 19a. In this manner, the shorter/longer is Δt, the stronger/weaker 
is the temporal heat accumulation effect on memristor conductance change already discussed in 
Section 3.1, which results in an increasing/decreasing synaptic potentiation. This is supported by 
SRDP characteristics for synaptic potentiation shown in Fig. 19b which evidence both an increase in 
conductance change for increasing number of applied spikes and a higher final weight for increasing 
stimulation frequency. Similar results were also obtained in rate-based synaptic depression 
experiments evidencing a stronger/weaker conductance decrease for high/low frequency stimulation 
of second-order memristor by programming pulses within PRE spikes with positive voltage polarity 
to reach reset transition (positive or negative polarity of heating pulses is unimportant). Therefore, 
these experimental results corroborate the ability of second-order memristors to implement another 
long-term plasticity bio-realistic rule as SRDP. Although the key role played by long-term plasticity 
in fundamental brain functionalities such as memory and learning has been supported by several 
biological experiments, the number of processes controlling real synaptic behavior is much wider and 
not yet totally understood.  Among these additional effects, STP is one the most important since it 
enables to explain a crucial process at synaptic level as Ca2+ ion dynamics [31]. Motivated by 
experimental observations [29-31], significant solutions aiming at capturing STP by various 
memristive devices have been proposed in recent years [42, 70-72]. An interesting approach is the 
one presented by Werner et al in [71] where STP was implemented using non-volatile RRAM devices. 
To achieve STP, 10 Ti/HfO2 RRAM cells were used in parallel to realize a single synapse and the 
programming scheme described in Fig. 20a was implemented. According to this scheme, every PRE 
spike applied to all RRAM TEs causes abrupt reset transitions within resistive synapse (weight 
decrease) which are followed by weak set transitions at each period ΔT with no input, thus gradually 
restoring the initial synaptic state. 

(a)

(b)



 
 
Figure 20. (a) Programming strategy used to achieve short-term plasticity (STP) in stochastic synapse based 
on 10 RRAM devices in parallel according to which each incoming PRE spike leads to abrupt depression and 
probabilistic set events can occur at each time slot ΔT with no external input, thus enabling to recover initial 
high conductance state. (b) STP implementation at experimental and simulation level based on pulse scheme 
shown in (a). Adapted from [71]. 

 
 
Based on this strategy, Fig. 20b shows the experimental and calculated evolution of synaptic weight 
y(t) as a function of time evidencing short-term changes which can be tuned controlling set/reset 
probabilities (pset = 0.05 and preset = 0.5 in this case). Other significant approaches, however, 
enabled to achieve STP simply exploiting physical mechanisms underlying memristor operation, 
thus avoiding complex synaptic structures and programming schemes. In this context, particular 
focus should be attributed to Ag2S-based inorganic synapses presented in [70] where STP is 
captured by spontaneous rupture of the metallic filament induced by low frequency spiking 
stimulation, and to diffusive SiOxNy:Ag memristor [42] which is capable of implementing short-
term PPD and PPF, similarly to [72], thanks to diffusive dynamics of Ag ions in response to low 
frequency spike trains. 
 
 
 
7.2  4T1R synapses 
 
Because of the abrupt nature of resistive switching mechanism in many RRAM materials, most of 
RRAM devices do not enable to reproduce SRDP protocol unless complex synaptic structures and 
programming schemes are implemented. In this frame, a synapse circuit based on a hybrid 
CMOS/RRAM structure capable of SRDP functionality was presented in [73]. As shown in Fig. 
21a, PRE and POST blocks are connected by a synaptic hybrid structure which is called 4-
transistors/one-resistor (4T1R) synapse since it comprises one HfOx RRAM device and two parallel 
branches each of which including a pair of FETs, M1/M2 for left branch and M3/M4 for right branch, 
in serial configuration. PRE block includes two spike generators emitting Poisson distributed 
asynchronous PRE spikes, which are applied to the gate of M1 and, after being shifted by a delay 
ΔtD, to the gate of M2, and PRE noise spikes driving the gate of M3. In addition to PRE block, 

(a)

(b)



POST block consists of an integrate-and-fire stage followed by a multiplexer (MUX) and an 
inverter. When external stimulation rate (fPRE) is higher ΔtD-1, the probability that M1 and M2 are 
simultaneously enabled by PRE spikes and their delayed copies is high, thus leading a current to 
flow across left branch. This current is integrated by POST and induces the emission of a fire pulse 
which is backward applied to the TE inducing a set transition, hence synaptic potentiation, as a 
result of a PRE-PRE-POST modified triplet-based weight scheme [25]. Also, note that the fire 
pulse, after being inverted by the inverter gate, is applied to the gate of M4 disabling the right 
branch during potentiation mode. This means that the M1/M2 branch is the branch designed to 
capture synaptic potentiation. Instead, as fPRE is much lower than ΔtD-1, there is no chance that spike 
coincidences at inputs of potentiation branch occur. Therefore, a second branch based on M3/M4 
pair was necessarily added in parallel to capture weight decrease at low fPRE. To this aim, PRE 
block drives M3 via PRE noise spikes at frequency f3 < fPRE while POST, in addition to fire pulses, 
also emits random noise spikes at frequency f4 < fPRE activating M4 and TE. As these 3 random 
pulses overlap, the M3/M4 branch is enabled and a stochastic reset transition is triggered in RRAM 
device leading to a weight decrease, given the negative polarity of voltage pulse at TE. As a result, 
4T1R synapse operation allows for SRDP algorithm by a selective synaptic potentiation for high-
frequency spiking stimulation and a stochastic synaptic depression for low-frequency spiking 
stimulation using biologically inspired stochastic noise spikes emitted by PRE and POST [74]. The 
ability of 4T1R synapse circuit to implement high-frequency potentiation and low-frequency 
depression was validated in experiments separately studying potentiation and depression operation 
modes via 2T1R integrated structures.  
 
 

 
Figure 21. Schematic representation of hybrid 4T1R RRAM synapse capable of replicating SRDP bio-
realistic rule. Experimental demonstration of (b) synaptic potentiation for fPRE> Δt-1 and (c) synaptic 
depression for f3 > f4 in case of fPRE << Δt-1. Adapted from [73]. 

 
 
As shown in Fig. 21b, given a delay ΔtD = 10 ms, resistance change from HRS to LRS in RRAM 
device, hence potentiation, can be achieved only for fPRE >= 100 Hz, that is ΔtD-1, thus supporting 
high frequency potentiation. On the other hand, a resistance transition from LRS to HRS in RRAM 
device can be triggered by PRE and POST noise spikes provided that f3 > f4, as supported by Fig. 
21c where f4 was set to 10 Hz. This result also confirms the feasibility of stochastic depression, and 
consequently SRDP, in 4T1R RRAM synapses. 
 

(a) (b) (c)



 
Figure 22. (a) Scheme a 1S1R structure obtained combining a non-volatile RRAM device with a volatile 
RRAM select device and (b) its I-V characteristics. (c) Current response of 1S1R structure evidencing SRDP 
capability via paired-pulse facilitation (PPF) for high-frequency spiking stimulation and paired-pulse 
depression (PPD) for low-frequency spiking stimulation. Adapted from [72]. 

 
 
7.3  1S1R synapses 
 
In parallel to hybrid CMOS/RRAM structures capable of mimicking synaptic behavior using non-
volatile resistive switching phenomenon in various RRAM devices such as 1T1R cell (Section 4.1) 
and 2T1R cell (Section 4.2), other attractive hybrid structures based on memristor devices were also 
intensively explored to further approach a more detailed replication of biological dynamics. Among 
them, strong interest was gained by 1S1R structure using RRAM devices based on material stacks 
such as SiOxNy:Ag [42], Ag/SiOx [75] and Cu/SiOx [75] showing volatile resistive switching as a 
result of spontaneous retraction of metallic filaments within a short retention time in the range from 
few µs to few ms. In [72], volatile switching of Ag/SiOx RRAM within 1S1R structure was 
investigated by extensive simulations to reproduce SRDP at synaptic device level.  
Figure 22 show the scheme of a 1S1R cell based on a non-volatile RRAM device serially connected 
with a volatile RRAM selector (a), and its corresponding I-V characteristics calculated by combined 
use of two physics-based analytical models for non-volatile RRAM [76] and volatile RRAM [72] 
(b). Figure 22c shows the current for a 1S1R device in response to different spiking stimulation 
regimes. In particular, it should be noted that the application of a spike train at high frequency (fspike 
= 2 kHz) leads to a gradual current (conductance) increase thanks to the gradual growth of filament 
induced by spikes, which results in the so-called paired-pulse facilitation (PPF). On the contrary, 
under a low frequency spiking stimulation (fspike = 250 Hz), conductance gradually decreases 
because the filament dissolution dominates on its growth, leading to another regime known as 
paired-pulse depression (PPD). The implementation of these two processes thus suggests the ability 
of volatile RRAM devices in 1S1R cell to capture biologically inspired SRDP algorithm with the 
added value, compared to the 4T1R RRAM synaptic structure proposed in [73], to gain a significant 
area saving making it very promising for building of dense crosspoint synaptic networks capable of 
brain-inspired cognitive functionalities.  
 
 
8. Self-learning networks with memristive synapses 
 
In recent years, we have seen a boost in the performance and applications of machine learning (ML), 
driven by several factors: (i) the availability of large data sets for training and models; (ii) the 
increased computational power of modern computers (GPUs are an excellent match for ML thanks 
to the high degree of parallelization). Among the many fields of ML, Deep Learning (DL) is the most 

(a) (b) (c)



popular. Deep neural networks fall into three classes of architectures: fully connected neural networks 
(FCNN), convolutional neural networks (CNN) and recurrent neural networks (RNN).  
 
 

 
Figure 23. Example of two-layer Fully Connected Neural Network (FCNN). 

 
 
As shown in Fig. 23, a FCNN is composed of fully-connected layers, each of which contain a 
collection of processing units (neurons) and weights (synapses). The neurons of a given layer are 
connected to every neuron of the previous layer by a large number of synapses. Raw data (e.g. video, 
audio, biological data…) initialize the values of the first layer (the input layer). The output layer 
corresponds to the inference classes (each output neuron is associated to a class of objects, e.g. dog, 
cat, car…). The number of weights and operations is directly proportional to the dimensions of the 
layers. On the other hand, CNN is composed of one or more convolutional layers, pooling or sub-
sampling layers, and fully connected output layers (Fig. 24). In a convolutional layer a small set of 
synapses (constituting a kernel) allows subsequent network layers to extract spatially localized 
features before the information is subsampled and pooled and often used to drive further 
convolutional layers. The output of the convolutional layers (feature maps) contain information about 
the locations where features extracted by learned kernels are present in the input. The fully connected 
layer (classification module) is applied to complete the classification. Inference in CNN is identical 
to that of FCNN. The input data initializes the processing units of the first layer and the algorithm 
moves forward layer by layer. The activity of the processing units in the output layer correspond to 
the inferred classes as for the FCNN. CNN can achieve superb classification accuracy for image 
processing at much lower weight count than FCNN. Unlike FCNNs and CNNs, RNNs have loops 
enabling information to persist since the input at each step is composed of the data at that step in 
conjunction with the network output obtained at the previous step (Fig. 25). They are the natural 
architecture to use for sequential or temporal data. In the last few years there have been incredible 
success applying RNN to a variety of problems such as speech recognition, language modeling, 
translation. In particular, the well-known long-short-term memory (LSTM) RNN has recently found 
extensive application in text and speech recognition tasks. The pattern detection and classification in 
neural networks are the result of a training phase, by the repeated presentation of a training set and 
application of the learning rule, networks can learn to produce the correct responses to a set of inputs. 
In the last decades, new class of learning frameworks (such as supervised, unsupervised, 
reinforcement), with almost no resemblance to biological systems, have been developed in order to 
implement them in neural networks. After the training phase, the neural network infers things about 
new data (inference operation). During the inference operation, neural networks carry out enormous 
calculations of multiply accumulate (MAC) operation between weights and input data, and thus it 
needs high-performance hardware such as graphics processing unit (GPU). RRAM arrays are ideal 
to implement the MAC operation: the multiply operation is performed at every cross-point by Ohm’s 
law, with current summation along rows or columns. Moreover, since are fabricated in the BEOL are 
increasingly attractive for high density, as they inherently lead to a benefit with respect to equivalent 



SRAM macros. In addition, there is interest to use RRAM in more biologically inspired architectures 
and learning rules as presented in Section 3. 
 
 

 
Figure 24. Schematic of Convolutional Neural Network (CNN) used for handwritten digits recognition 
(MNIST database). 

 

 
 
Figure 25.  Sketch of a multilayer Recurrent Neural Network (RNN).  

 
Hardware implementations of the inference operation in neuromorphic hardware have been presented 
in the literature [77-83]. A RRAM perceptron classifier implemented entirely in integrated hardware 
is presented in [81]. Multivalued resistance levels are stored in the RRAM cells. The test chip, 2M 
synapses integrated into 130nm CMOS, results in 90.8% MNIST recognition rate (ex-situ training). 
A small-scale perceptron classifier based on RRAM crossbar array board integrated with discrete 
CMOS components is presented in [82]. The network was trained both in-situ and ex-situ to perform 
classification of 4x4 pixel images. 
 
Brain-inspired learning in spiking neural networks with RRAM synapses has been widely explored 
in recent years [84-96]. A perceptron-like neuromorphic hardware capable of STDP was presented in 
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[90]. This hardware network consists of a fully connected perceptron neural network (16 PREs and 2 
POSTs) where all the PREs were connected with each POST by individual 1T1R RRAM synapses 
identical to the ones described in Section 4.1. Inhibitory synapses between the two POST neurons 
enable implementation of the well-known winner-take-all scheme [97] according to which the POSTs 
are not allowed to fire together in order to maximize storage capability of multiple visual patterns. 
The system was implemented on a PCB connecting an Arduino Due µC and synaptic elements with 
1T1R integrated structure. The learning of two patterns has been experimentally demonstrated: two 
patterns and random noise were stochastically submitted to the 1st layer of the network. Noise 
submission induces depression within background synapses, thus allowing to ‘forget’ the previously 
learnt pattern when a new one is submitted. Noise is shown to decrease learning time and reduce the 
probability of ‘false firing’. However, excessive noise results in unstable learning increasing the 
probability of ‘false firing’ [91,92].  
 
In addition to hardware demonstration of ability to learn static visual patterns via STDP, the 1T1R 
RRAM synapses adopted in [90,91] were also used to connect 16 PREs with a single POST in a 
perceptron network in order to implement learning of spatiotemporal sequences [94]. To this end, 
PREs were subjected to the presentation of spatiotemporal patterns consisting of sequences of 4 
spikes which were labeled as true/false patterns according to a teacher signal. Fig. 26a shows 
experimental demonstration of learning of spatiotemporal patterns in the same perceptron network 
with 1T1R RRAM synapses evidencing (top) the supervision signal and Vint measured in response to 
the sequence submission during training, (center) true fire, false fire and false silence spikes generated 
during the experiment, and (bottom) the color plot of potentiation/depression behavior of all the 
synaptic weights at increasing training cycle which suggests that 1-4-9-16 sequence was chosen as 
true spatiotemporal pattern. Fig. 26b shows some experimental results for recognition phase 
following training phase. Fig. 26b (top) shows that submission of true pattern allows Vint to cross 
voltage threshold, thus supporting the network ability to capture the true sequence learnt during 
training. In addition to this, as shown in Fig. 26b (bottom), the network is able to recognize false 
patterns submitted at input layer, as for instance 16-7-4-1 sequence, since Vint cannot hit the voltage 
threshold in these cases. 
 
The role of synaptic variability (due to the intrinsic cell to cell and cycle to cycle variability) during 
unsupervised learning by STDP is investigated in [96] by means of system level simulations 
calibrated on the characterization of a 4kbit RRAM array. A fully connected feed-forward neural 
network topology with leaky integrate and fire neurons and RRAM-based synapses is adopted. A 
detection task in dynamic input data is investigated. The network is composed of one-layer fully 
connected network topology. The input layer is an image sensor composed of 128x128 spiking pixels, 
fully connected to an input layer of 60 neurons. The results are based on system level simulations, 
calibrated on the experimental data (measurements have been performed on a 4 kbit 1T1R array). The 
results demonstrate that, similarly to biology, SNNs are not only robust to variability but a certain 
amount of it can improve the network performance. More precisely the performance of the proposed 
application for real measured RRAM conductance distributions and an artificial device with zero 
variability are studied. For a given memory window at three standard deviations (3σ) in the 
cumulative conductance distribution (ratio between the high and the low conductance values at 3σ) 
of 2.25 the detection score is 0.63 for the artificial synapse with no variability and 0.952 for the real 
RRAM. Another way to improve the network performance is to increase the memory window. The 
increase of both conductance variability and memory window allows for an increase of the ratio 
between the conductance values of potentiated and depressed synapses, thus improving the learning 
accuracy.  



 
 
Figure 26. (a) Experimental training of spatiotemporal patterns captured by a perceptron network with 16 
RRAM synapses. (top) Sequence of teaching spikes used as labels for true pattern and measured evolution of 
Vint during training phase. (center) True fire, false fire and false silence spikes occurring during training and 
(bottom) evolution of measured conductance for each synapse during training which evidences potentiation of 
weights associated to true pattern 1-4-9-16. (b) Experimental results for recognition phase evidencing that 
crossing of voltage threshold by Vint marks if (top) true sequence is effectively recognized or (bottom) if 
submitted sequence is a false pattern. Adapted from [94].  
 
 
9. Conclusions 
 
This chapter reviews the implementation of synaptic elements within neuromorphic hardware by 
using memory and memristive devices. RRAM and PCM synapses show analogue switching, 
scalable size, low voltage/power, thus offering a promising technology for both spiking and non-
spiking neural networks for cognitive computing. To emulate the learning processes in the human 
brain, bio-inspired STDP and SRDP processes can be realized by using either overlap or non-
overlap algorithms. The physics of RRAM devices can be used to naturally implement STDP and 
SRDP, e.g., by thermal effects or ionic diffusion at the nanoscale. By combining neuron and 
synapse elements within a neuromorphic circuit, learning and recognition functions can be 
achieved, thus allowing to benchmark CMOS and memristive technologies for cognitive 
computing.  
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