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Abstract—This work investigates novel approaches for de-
signing the linear filter and the threshold of the memory-less
detector in the receiver of a diffusion based molecular commu-
nication system. We focus on the case where the transmitted
symbols propagate through a Poisson channel with memory that
introduces inter-symbol interference. Inspired by the theory of
filtering under Poisson regime and considering all the possible
mean values of the interference, we propose two new design
methods for computing the coefficients of the filter. While in the
development of the theory under Poisson regime the interference
is not considered in the design of the filter, in our proposal we
take it into account in the time-variation of the mean value.
Since the proposed approach gives better performance for low
transmission rate, another design based on linear programming is
proposed for the high-rate case. For the design of the detector’s
threshold we use an averaging method over the output of the
receiving filter. The performance of the two proposed designs,
in terms of bit error rate, is compared to that achieved by an
approach which is based on the maximization of the signal-to-
interference plus noise ratio (SINR). We show that our design
achieves almost the same performance of the maximum SINR
one with the advantage of lower computational cost to obtain
receiver coefficient s and threshold.

I. INTRODUCTION

MOLECULAR communication (MC) is an emerging
paradigm where molecules act as the carrier of in-

formation between transmitting and receiving nanomachines.
Potential applications of this multidisciplinary field are mainly
in the health sector, e.g. smart drug delivery [1], health
monitoring [2], etc [3]. MC can be abstracted as consisting of
three main components i.e. transmitter, channel, and receiver.

A primary challenge in MC is to reach a reliable trans-
mission, especially in presence of different impairments such
as channel interference. A typical procedure is to categorize
channels as a combination of three main characteristics, free
diffusion [4], [5], advection [6], [7] and reactions [8], [9].
This paper uses a model which includes all the aforemen-
tioned characteristics. With reference to the diffusive nature of
channel, the motion of information particles is stochastic. The
random behavior of the molecules, in terms of their counting at
the receiver, can be modeled as Bernoulli random process [10].
Moreover, existing molecules in the environment and inter-
symbol interference (ISI), due to the delayed arrival of pre-
viously released molecules, introduces further randomness in

the received signal. Since the receiver counts the number of
molecules at specific time instants, without considering where
these molecules are coming from, it is required to extract
the correct sequence of transmitted symbol. Therefore, the
received signal is characterized by random distortions whose
effect can be minimized by introducing an appropriate filtering
process followed by decision on the transmitted symbols.
When the number of released molecules is large and the
mean of the Bernoulli random variable is small, the statistical
characterization of the received signal is given as a Poisson
random variable with time varying parameterization [11].

To deal with statics of the received signal, a filter design
specifically intended for Poisson channel with memory is
required. To this aim, in [12] two methods are proposed as
“weighted sum detector”, where the digital filter is defined by a
moving average or has coefficients that coincide with the sam-
pling at the symbol interval of the channel impulse response
(CIR). Authors in [13] defined the signal-to-interference plus
noise ratio (SINR) and proposed a filter design to maximize it.
Another contribution was an analytical approach to compute
the threshold used by the detector to take the decision about
the most likely transmitted symbol. The proposed approach
outperforms the one in [12]. However, since its design is
computationally demanding, the potential application in real-
time implementation is limited from a practical point of view.
In this paper, we provide two different filter and threshold
designs that allow us to achieve almost the same performance
as that maximum SINR approach with lower number of
operations to find parameters. The first design takes inspiration
from the theory of filtering under Poisson regime that was
developed in [14]. The second one consists in the formulation
of the filtering design as a linear programming problem. Also,
we consider the design of the threshold used by the memory-
less detector to detect the transmitted symbol.

Rest of the paper is organized as follows. Section II de-
scribes the system model. In Sec. III we propose methods to
compute linear filter coefficients. Section IV provides a new
algorithm to design threshold for Poisson channel with mem-
ory. Section V compares the performance of filters together
with threshold. Finally, Sec. VI presents conclusion.



II. SYSTEM MODEL

This paper considers a diffusion based MC system em-
ploying on-off keying (OOK) modulation at the transmitter.
In OOK, a given amount of molecules N tx is released to
transmit symbol s[k] = 1, which is associated to bit 1, while
no molecules are released at the corresponding time instant
for s[k] = 0, which denotes bit 0. Symbols are assumed to
be equi-probable. With reference to the diffusive channel,
the effect of released molecules goes to zero asymptotically
after infinite time (from a practical point of view it can be
considered of finite duration). As suggested in [13] to quantify
and simplify the modeling, a finite arbitrary length L of the
channel, measured in symbol intervals, is considered, which
means the channel inherits the property of having memory.
Finally, a passive receiver is assumed, which is able to count
the number of molecules that are passing through without
having any interaction [15]. The receiver counts the molecules
from the beginning of the kth symbol interval and lasts for its
entire duration.

A perfect synchronization is assumed between the trans-
mitter and the receiver, meaning that the receiver is aware of
symbol timing. The received signal is uniformly sampled M
times in every symbol interval T sym. The sampling interval
is T c =T sym/M . The presence or absence of a molecule
at receiver can be described by a Bernoulli random variable
(RV) [5]. When the number of released molecules is large
and the mean of the Bernoulli RV is small a quite accurate
approximation is given by a Poisson distribution P (λ) with
mean λ [11]. However, in T sym the mean varies with time.
Consequently, by fixing the observation window to the kth
symbol interval, the number of observed molecules at the mth
sample, with m= 1, . . . ,M , can be written as:

r[k,m] ∼ P

(
λ[k,m]

)
, (1)

where

λ[k,m] =

L∑
l=1

c̄(l)s [m] · s[k − l + 1] + c̄ext, (2)

is the time-varying mean and

c̄(l)s [m]= c̄s[t+(l−1)T sym] ·rect[
t− T sym

2

T sym
] ·δ[t−mT c] (3)

gives the mth sample of the expected number of signaling
molecules within lth symbol interval, with δ[·] being the
Kronecker delta function. Note that, to have a more realistic
performance, the expected number of external interference
caused by existing molecules in the medium at the receiver
has been included in (2) by means of the term c̄ext. As in [13]
we set c̄ext = 2,i.e. there are two external molecules from
environment inside the receiver area at each sampling time
on average. The term

c̄s(t) = NtxV rx

(4πDt)3/2
exp

(
−Kc̄et−

(d−v||t)2+(v⊥t)
2

4Dt

)
, (4)

TABLE I: System Parameters and Values
Variable Definition Value

V rx Receiver volume 4
3
π503 [nm3]

d Distance between receiver and transmitter 500 [nm]
D Diffusion coefficient for the signaling molecule 2× 10−10 [m2 · s−1]
c̄e Enzyme concentration 105 [molecule · µm3]
K Rate of molecule degradation reaction 2× 10−19 [s−1]

(v||, v⊥) Components of flow velocity (10−3, 0.5× 10−3) [m · s−1]

Fig. 1: Block diagram of receiver.

whose sampling appears in (3), corresponds to the expected
number of observed molecules at receiver as a consequence of
transmitting symbol 1 regardless of memory and interference.
It is obtained by considering a three dimensional unbounded
environment with uniform flow and presence of uniformly
scattered enzyme molecules with degradation effect. The pa-
rameters appearing in (4) are defined in Table I, together with
the numerical values that were used in the simulations. It
is worth noting that (2) and (4) include the effects of other
phenomena such as degradation, advection, and interference
among symbols transmitted in different symbol intervals.

By reforming the expected number of observed molecules
(2), the expression can be rewritten as the sum of two terms:

λ[k,m] = c̄(1)s [m]s[k] + c̄int[k,m], (5)

where the first term on the right-hand side accounts for the
effect of expected transmitted symbol corresponding to current
symbol interval while the second one gives the expected
interference as c̄int, which depends on the previous L − 1
transmitted symbols and c̄ext. It is given by

c̄int[k,m] =

L∑
l=2

c̄(l)s [m] · s[k − l + 1] + c̄ext. (6)

Last equation allows for designing a filter that enhances
the effect of desired signal and, simultaneously, reduces the
contribution coming from interference, as described in III-A.

III. LINEAR FILTER DESIGN

This section consists of three parts. First we briefly review
the filter design proposed in [13]. Then, inspired by the work
Bar-David in [14], we introduce a filter design algorithm that
requires lower number of operations to find the coefficients.
Finally, we formulate the problem of designing the linear filter
into a simple linear programming approach. All the methods
focus on the design of a linear filter that is applied to the
M samples of filter input taken in each symbol interval.
By introducing the M ×1 vector of real filter coefficients
f = [f[1], f[2], . . . , f[M ]]

ᵀ, being ᵀ the transpose operation, the
output of the filter for kth symbol interval is:

y[k] = fᵀr[k], (7)

where the M ×1 vector r[k] = [r[k, 1], r[k, 2], . . . , r[k,M ]]
ᵀ

contains the M samples of the received signal in the kth



Fig. 2: Possible expected number of observed molecules in a
symbol interval at sampling instants m = 1, . . . , 6 for memory
L = 3 and number of released molecules N tx = 104.

symbol interval. The structure of the receiver is shown in
Fig. 1. In order to detect the transmitted symbol, a memory-
less receiver is considered where the filter output is compared
with a threshold γ as will be explained in Sec. IV.

A. Review of Maximum SINR Filter Design [13]

The linear filter design proposed by [13] consists of the
maximization of SINR that, for a generic f and under the
equi-probable assumption of OOK symbols, is defined as

SINR =
0.5fᵀc̄sc̄

ᵀ
s f

fᵀ
(
0.5 diag{c̄s}+ C̄int

)
f
, (8)

where diag(·) is a diagonal matrix whose entries are taken
from elements of vector c̄s = [c

(1)
s [1], c

(1)
s [2], . . . , c

(1)
s [M ]] and

C̄int is the covariance matrix of interference whose entries are
computed as explained in the following. Let si ∈{0, 1}i be a
possible realization of a sequence of symbols over i symbol
intervals. For this specific sequence we denote the interference
given in (6) as c̄int[m|sL-1]. The entries of matrix C̄int are
computed from the following average

C̄int(m,m
′) =

1

2L−1
×

∑
∀sL-1

c̄int[m|sL-1]c̄int[m
′|sL-1]

− 1
2L−1

∑
∀sL-1

c̄int[m|sL-1]
∑
∀sL-1

c̄int[m
′|sL-1], if m 6= m′∑

∀sL-1
c̄2int[m|sL-1] + c̄int[m|sL-1]

− 1
2L−1

(∑
∀sL-1

c̄int[m|sL-1]
)2
, otherwise.

(9)

The optimal filter fSINRmax , in the sense of SINR maximiza-
tion, has the following closed form expression

fSINRmax =
(
0.5 diag{c̄s}+ C̄int

)−1
c̄s. (10)

B. Proposed Filter Designs under Poisson Regime

A key difficulty of the system under consideration is the
memory that causes severe ISI due to delayed arrivals of
molecules. The effect of ISI in a symbol interval can be clearly
seen by considering the 2L different combinations that give
the mean number of observed molecules in (2). An example
of the possible values assumed by the mean in the kth symbol
interval is shown in Fig. 2 for L= 3 with the parameters given
in Table I. Therefore, we propose to reform the problem in the
context of Poisson regime communication considering that in

each sampling instant the mean can assume 2L possible values.
Finally, we have a Poisson channel with time varying mean, we
can employ equation (21) in [14] which designed for Poisson
channel without ISI. To counter with ISI effect in channel we
propose the design of two different linear filters and name
them as “average” case filter, favg and “worst” case filter, fw.

1) “Average” Case Filter Design: The mth coefficient of
the receiving filter for this case is given by:

favg[m] = log

(
λ(avg,1)[m]

λ(avg,0)[m]

)
, m = 1, . . . ,M, (11)

where λ(avg,1)[m] and λ(avg,0)[m] are sampled average of
expected number of observed molecules over all permutations
of sequences that represent symbols one and zero at current
symbol interval that are given respectively by

λ(avg,0)[m] =
1

2(L−1)

∑
∀sL-1

c̄int(m|sL-1), (12)

λ(avg,1)[m] = λ(avg,0)[m] + c(1)s (m). (13)

2) “Worst” Case Filter Design: By looking back at Fig. 2
it can be noticed that there are two sequences, [0, 0, 1] as
lowest one and [1, 1, 0] as highest zero, that might be the most
difficult case of detection, because they are closest realizations
coming from different symbols. Generally we name these two
sequences as “worst” one and “worst” zero i.e.:

λ(w,1)[m] = λ[m| 0, . . . , 0︸ ︷︷ ︸
previous L-1 symbols

, 1︸︷︷︸
current time symbol

] (14)

λ(w,1)[m] = c̄(1)s [m] + c̄ext, (15)

λ(w,0)[m] = λ[m| 1, . . . , 1︸ ︷︷ ︸
previous L-1 symbols

, 0︸︷︷︸
current time symbol

], (16)

λ(w,0)[m] =

L∑
l=2

c̄(l)s [m] + c̄ext. (17)

Separating λ(w,1) and λ(w,0) leads to separation of the other
2L−1 realizations having one and zero in current symbol
interval, thus another possible design is

fw[m] = log

(
λ(w,1)[m]

λ(w,0)[m]

)
, m = 1, . . . ,M. (18)

C. Proposed Filter Design under Linear Programming

Given the linearity of the filter, it is also possible to re-
frame its design into the framework of a linear programming
(LP) problem subject to simple constraints. We propose a
design where the objective is to maximize the distinguisha-
bility between 0 and 1 at the output of the filter. This
is obtained by considering the distance between the two
closest outputs according to the particular combination of
transmitted symbols. Let us define the mean value vectors
λ(w,1) =

[
λ(w,1)[1], λ(w,1)[2], . . . , λ(w,1)[M ]

]ᵀ
and λ(w,0) =[

λ(w,0)[1], λ(w,0)[2], . . . , λ(w,0)[M ]
]ᵀ

for the worst case of 1
and 0, respectively. This objective is equivalent to that required
by maximizing the opening of the eye diagram in digital



transmission systems to increase immunity to the noise [16].
The objective function that maximizes the distance between
two filtered mean vectors is specified as:

fLP = max
f

{
fᵀλ(w,1) − fᵀλ(w,0)

}
. (19)

subject to the two following constraints:
• Constraint 1: We impose that the range of variation of

the filter’s output produced by all mean vectors having
1 as current symbol is bounded within a certain value ε.
The constraint is mathematically written as:

|fᵀ(λ(w,1) − c̄ext)| ≤ ε (20)

The same constraint holds for all the mean vectors having
0 as current symbol, however we have not included the
proof due to limited space.

• Constraint 2: In order to prevent that the filtered mean
value is mapped into negative domain, we can force
the filtered lowest realization to be greater than zero by
imposing:

fᵀc̄ext = c̄ext
M∑
m=1

f[m] ≥ 0, (21)

where c̄ext = c̄ext · 1M,1, being 1M,1 an all 1’s M × 1
vector.

IV. DETECTION

With reference to Fig. 1, it can be seen that after the
filtering operation a detection decision is required to recover
the transmitted symbol. This is done by comparing the filter
output with a properly designed threshold γ by using:

ŝ[k] =

{
1, if y[k]≥γ,
0, otherwise.

(22)

In the following subsections, we first review the design of
the threshold γ proposed by [13], which assumes that the
filter output y[k] is Gaussian distributed. Then, we propose
a simple design of γ, which is based on the mean value of all
realizations of the expected outputs.

A. Gaussian approximation

In order to derive an analytical expression for the thresh-
old, in [13] the Gaussian approximation is introduced for
y[k] ∼ N (µi, σ

2
i ), where µ0(s) = fᵀc̄i(s), µ1(s) = fᵀ(c̄s +

c̄i(s)),σ2
0(s) = fᵀdiag{c̄i(s)}f , σ2

1(s) = fᵀdiag{c̄s + c̄i(s)}f ,
and c̄i(s) = [c̄i[1|s], . . . , c̄i[M |s]. This allows to write the
probability of error as:

Pe[k] = 1
2L−1

∑
∀sL-1

[
1−Q(γ−µ1(sL-1)

σ1(sL-1)
) +Q(γ−µ0(sL-1)

σ0(sL-1)
)
]
. (23)

The value of γ is then numerically derived to minimize (23).
This approach to find γ has a main disadvantage of requiring
the computation of µi(s) over all the realizations of s that
together with the computation of (23) and the numeric search
of γ, makes it quite complex to compute. In next sub-section
we propose a less computational demanding approach for the
design of γ.

Fig. 3: All possible Expected y

B. Mean Detection

Figure 3 shows the possible outputs after filtering of the
mean values given by (7). It can be observed that are two
groups of expected realizations, i.e. dashed and solid, that
can be separated by a horizontal line corresponding to the
mean value of y[k] conditioned on current symbol 0 and 1,
respectively. A reliable threshold that separates filter output
representing ones and zeros is given as:

γ =
1

2
fᵀ
(
λ(w,0) + λ(w,1)

)
. (24)

Its derivation has not been reported here due to lack of space.
Therefore in order to compute the threshold, we only need to
compute “worst” one and “worst” zero vectors.

V. SIMULATION RESULTS

The model was simulated according to the parameters in
Table I. Symbol interval is computed as a multiple of peak
time of c̄s meaning, T sym = ζ arg maxt {c̄s(t)}. ζ is a free
parameter that denotes the rate of transmission, i.e. the higher
is ζ, the lower is the transmission rate, and we named it
“Symbol Interval Factor” (SIF).

We assumed L= 3 and M = 6. Simulation results were
obtained by averaging over transmission of 2 · 106 symbols.
The performance was compared with that of [13], which is
illustrated in Sec. III-A. Note that, in all the numerical results
we considered both thresholds.

Figures 4 and 5 show the BER as a function of the number
of released molecules for ζ = {1.5, 3}. From both the two
figures we observe that by increasing the number of released
molecules the BER decreases. From Fig. 4 it can be perceived
that the performance of the LP filter and that of the Maximum
SINR filter are close to each other, despite the computational
cost of the latter is higher. Moreover, “Worst” and “Average”
case filters show a poor performance. Additionally, it can be
observed that the low computational cost threshold design
proposed as mean detection closely matches with the algorithm
proposed by [13] for the maximum SINR filter, whereas
with regards to other filters it has similar performance. From
Fig. 5 we observe that when ζ = 3, i.e. lower rate of symbol
transmission and apparently lower interference pertaining to
previous transmitted symbols, “Average” and “Worst” filter
design methods have lower BER compared to the other two



Fig. 4: BER vs. N tx, ξ = 1.5 Fig. 5: BER vs. N tx, ξ = 3 Fig. 6: BER vs. ξ, N tx = 104

approaches. Again, the BER curves of mean detection thresh-
old behaves almost the same as the other threshold method.
Finally, in Fig. 6 we set the number of released molecules
to N tx = 104, and studied the BER according to the variation
of SIF. For low ζ, the LP filter has better performance as
compared to the other two variants of the other design but
it is not as good as maximum SINR filter. When ζ increases
the BER of “Average” and “Worst” case filters drop to the
maximum SINR one. Specifically, for ζ = 3 a small difference
is visible between the BER curves of mean detection and
Gaussian approximation detection for all but LP filter. The
difference in detection arises because we did not consider the
information about covariance of the random process in the
design of the threshold to obtain lower computational cost.

VI. CONCLUSION

This paper focuses on the design of the filter and detector
parts in a receiver for a molecular communication (MC)
system. Specifically, we delved into fresh methods to design
filters and detection algorithm that take into account the
computational cost with the aim of making possible the use
in a scenario with real-time processing. The MC channel we
considered has an unbounded environment with 3-D geometry
including the effect of advection and molecule degradation,
which results into a Poisson channel with memory.

Regarding the filter design, we took inspiration from the
theory of Poisson filter. This shows a remarkable performance,
despite its simplicity to compute the filter coefficients and
threshold, in the scenario where the transmission rate is low.
On the other hand, for high transmission rate its performance
worsens. Therefore, we designed a method to transform our
study case into a linear programming problem, which showed
quite reasonable BER compared to other methods. With re-
gards to the detection part we proposed a threshold equal to
the average of filter output assuming the equal probability over
all possible permutations of transmitted symbol sequences.
We showed that the mean detection algorithm has almost
the same performance as the one proposed by [13] with
significantly lower computational cost. It is worth mentioning
that the simple operations to compute the filter coefficients and
threshold brings the opportunity to use these novel approaches
in case of online computation for time varying channels.
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