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Abstract—This paper investigates upper and lower bounds for
the constrained capacity of a diffusive molecular communication
(MC) system in the case where the information is associated with
the concentration of molecules released by the transmitter. The
evaluation of channel capacity for the diffusive channel is an
open problem in the context of MC. Here, two simple bounds
of the constrained capacity are derived for a given number
of input concentration levels. Numerical results are reported
for binary and quadruple concentration-shift keying considering
the Poisson and Gaussian distributions, which are two common
approximations used to describe the statistics of the received
signal. We show that for both the two statistical channel models
the resulting bounds are tight and, therefore, this means that,
at least for low modulation orders, it is not necessary to resort
to numerical techniques or complicated analytical expressions to
guess the capacity of the diffusive MC channel.

I. INTRODUCTION

In recent years researchers in the fields of biology and com-
munication have become increasingly interested in studying
molecular communication (MC) [1]. An important research
problem in this type of communication is that of finding an
optimal way to transfer information from a source (transmitter)
to a destination (receiver) cell. As a consequence, there has
been a growing interest in the calculation of channel capacity
and of information transfer rate in MC networks [2], [3].

In this work we focus on MC systems where molecules
released at the transmitting cell propagate to the receiving
cell via diffusion. A complete characterization of the diffusive
MC channel can be found in [4]. As far as the statistical
characterization is concerned, it is shown in [4] that both the
Poisson and the Gaussian distribution are suitable models to
analyze the performance of the MC channel. Both these two
channels have been very well studied and many tighter bounds,
analytical expressions or numerical methods can be found in
the literature to support the evaluation of channel capacity.

With focus on analytical derivations, the authors of [5]
provide a closed-form expression for the information capacity
of an MC system with a noisy channel. Similarly, in [6] the
authors analyze the capacity of the channel considering both
the diffusion-based channel and the ligand-based receiver. An-
other work in [7] presents the analysis of the channel capacity
in diffusive MC by considering intersymbol interference (ISI)
from all the previous time slots and the channel transmission

probability in each of them. The results in their work show that
the channel capacity can be maximized with an optimal lower
bit error probability by controlling the channel transmission
probability in each time slot. Similarly, in [8] an upper bound
on the capacity is calculated for a Poisson channel with a
maximum transmission constraint in the low signal-to-noise
ratio regime. In [9] a different approach is taken where the
authors use enzymatic reaction cycles to improve the upper
bound of mutual information for a diffusion-based commu-
nication system. Also, the capacity of these channels can be
evaluated numerically by using Blahut-Arimoto algorithm or
its variants [10].

In this paper we aim to address the evaluation of the
discrepancies in the channel capacity when the Poisson and the
Gaussian models are used for the statistical characterization
of the received signal. As a main contribution, we evaluate
upper and lower bounds for the constrained capacity of an MC
system with a single transmitting and a single receiving cell
for discrete-time memoryless Poisson and Gaussian channel
models. We show that for the two considered modulations
both the two bounds are quite tight, especially at high signal-
to-noise (SNR), and no significant differences are observed
between the two approximations. This means that both them
can be considered in the definition of the bounds with respect
to which to compare the constrained capacity evaluated by
means of closed form expressions or numerical techniques.

The remainder of this paper is organized as follows. First
in Sec. II, we explain the system model including trans-
mitter, channel, and receiver. Next in Sec. III we present
the assumptions for both the cases of Poisson and Gaussian
statistical description. In Sec. IV we derive the upper and the
lower bounds on the capacity and present the mathematical
expressions. Section V presents numerical results. Finally, in
Sec. VI we conclude the paper.

II. SYSTEM MODEL

The main contribution of this paper is to present a method
to define bounds against which to compare the results achieved
with in-silico simulations of engineered cell-to-cell communi-
cation system reactions. In this work the system is composed
of one transmitting cell and one receiving cell that exchange
information through molecules propagating in a diffusive



channel. We derive the upper and lower bounds on the channel
capacity for two different scenarios: (i) when the received
signal is modelled by means of a Poisson distribution and (ii)
when the noise that affects the received signal is assumed to be
Gaussian distributed. We note that the upper bound calculated
in this paper differs from the work in [8]. This is because in
our work instead of using the symmetrized Kullback-Leibler
divergence, we implement the definition of this divergence that
compares it to the relative entropy between two variables [11].
We present a comparison between the upper and lower bounds
of capacity for both these cases. We learn that the increase in
the concentration of the system input results in an exponential
increase of both the upper and the lower bounds. Furthermore,
we realize that the Gaussian noise leads to an overestimation
of the upper bound at lower values of the input concentration.

With reference to the considered scenario, we assume that
the distance between the centers of the transmitting and the re-
ceiving cells is d= 1µm. The transmission of molecules works
by inducing a molecule concentration gradient between trans-
mitter and receiver. We assume that the transmitter releases a
certain amount of specific signaling molecules in the diffusive
medium. As a result the molecules diffuse in the environment
from the transmitter towards the location of the receiver.
Although the receiving cell has specific receptors on its surface
to capture these particular signaling molecules, in our model
we consider a fully transparent receiver where the time-varying
concentration of the received molecules carries the message
to be decoded by the receiver. When the molecules diffuse
from one end to another they are affected by the noise in
the environment. This noise has a significant impact on the
communication performance of the system. In this work we
specifically aim to compute the upper and lower bounds of
the constrained capacity for the two above mentioned types of
approximations used to describe the statistics of the received
signal.

We assume an inter-cellular environment where the sig-
naling molecules propagate from the transmitter cell to the
receiver cell by following a random walk Brownian motion [9],
[12]. On reaching the receiver the number of molecules
inside the cell is counted (transparent assumption). A radius
rTX/RX = 0.15µm is considered for the spherical transmitting
and receiving cells. The respective volume can be calculated
by using the standard formula: VTX/RX = 4

3πr
3
TX/RX .

III. STATISTICAL APPROXIMATIONS

In this section we explain how we model the impulse
response and the channel noise for two different cases. The
observation of molecules at the receiver can be described
as a binomial distribution since they are either observed by
the receive or not [4]. We can approximate the binomial
distribution with Poisson and Gaussian distributions under
some specific circumstances as will be detailed in following
subsections. For both the cases the channel is assumed to be
discrete and memoryless. We assume that the input signal
is constant with time, as we generate random Poisson and
Gaussian samples for the received signal. In this paper we use

a BCSK or QCSK modulation to transmit the information on
the channel. CSK is the most simple modulation technique
where the amplitude of the signal is considered to be the
number of the received molecules in a time slot. We do not
consider ISI. Next the two assumptions are presented.

A. Poisson assumption

For this case we consider that the input concentration values
range from 104 nM to 3 × 105 nM with step size of 104 nM.
Note that for the purpose of explanation we consider QCSK
in this section. For each simulation, we take one value of
concentration and create the λ value of the four Poisson
distributions of the QCSK by multiplying it by 1, 2, 3, and 4.
Next for each result we generate the samples of the distribution
by using the built in Poisson probability density function
(PDF) that is available MATLAB. In this way, we can obtain
the samples for a Poisson distribution from the following
formula:

y = f(x|λ) =
λx

x!
exp (−λ), (1)

where λ that is the event rate of the distribution. For a
transparent receiver, the impulse response can be written as [4]

h(d, t) =
VRX

(4πDt)3/2
exp

(
− d2

4Dt

)
, (2)

where D is the diffusion coefficient, VRX is the volume of the
cell, and d is the distance between the center of the transmitter
and receiver cells as shown in Figure 1. For NTX molecules
emitted by the transmitter at time τ = 0 s, the expected number
of molecules observed at the receiving end at time t is given
by [4]

ȳ(d, t) = NTXh(d, t). (3)

The arrival of molecules in MC via diffusion is a counting
process, which exhibits a binomial distribution [13]. For large
number of trials and small mean of the binomial random
variable, a binomial distribution can be well approximated by
a Poisson distribution with the same mean ȳ(t):

y(d, t) ' P (NTXh(d, t)) , (4)

where P (λ) represents a Poisson distribution with parameter
λ. In case of QCSK, where four different concentrations
of molecules are released, i.e. NTX;1, NTX;2, NTX;3, and
NTX;4, are given by: xi(t) = NTX;ih(t)

These equations provide the expected values of the observed
molecules. We note that they do not depend on d since we
assume the transmitter and the receiver cells are at a fixed
distance. In this way, we have:

Ni = NTX;iVRX . (5)

Next, we consider the sampling at the maximum of the
impulse response

tmax =
d2

6D
, (6)



(a) (b)

Fig. 1: (a) Comparison between the Poisson (red) and the
Gaussian (light blue) distribution for a QCSK constellation and
an input concentration of 104 nM. (b) Comparison between the
Poisson (red) and the Gaussian (light blue) distribution for a
QCSK constellation and an input concentration of 3×105 nM.

where the maximum number of observed molecules is

xi = xi(tmax) = NTX;ih(tmax)

= NTX;i
VRX

d3

(
3

2πe

)3/2

=
Ni

d3

(
3

2πe

)3/2

. (7)

This result is obtained by substituting (6) in (3) and (5).
From [14] we can obtain the channel transition probability
as

PY |X(y|xi)=Pr[Y =y|X=xi]=e−xi
xyi
y!
, y∈Z+, xi≥0.

(8)
In general, assuming K equiprobable concentration levels at
the input, the distribution of the output is given by

PY (y) =
1

K

C∑
i=1

PY |X(y|xi). (9)

This means that for QCSK we have

PY(y)= (10)

=
1

4
PY |X(y|x1)+

1

4
PY |X(y|x2)+

1

4
PY |X(y|x3)+

1

4
PY |X(y|x4).

B. Gaussian assumption

In this subsection, we describe the generation of the random
Gaussian noise samples that give an approximation of the
random changes around the mean value of the Poisson dis-
tributed received signal. This allows us to compute the impact
of the Gaussian noise on the capacity of the system. We can
further compare this approximation with that of the Poisson
distribution for the received signal. We consider a Gaussian
distribution with both the mean and the variance equal to λ, i.e.
the parameter of the Poisson distribution defined in Sec. III-A.
The equation that characterizes the Gaussian distribution is
given by

y = f(x|µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (11)

where µ represents the mean value and σ the variance. As
we obtain the received signal with Gaussian noise added,
we proceed similarly to what done in Sec. III-A to calculate

the channel transition probability and the PDF of the output
using (8) and (9).

As shown in Figs. 1a and 1b, the Gaussian approximation
of noise is almost equivalent to the Poisson approximation
for high values of input concentration. On the other hand,
the figures also show that the curves of the Poisson and
the Gaussian approximations are not completely overlapping
for low values of input concentration. This suggests that the
capacity bounds calculation for Gaussian noise approximation
will be less accurate as compared to the case of Poisson
approximation for the received signal.

IV. CALCULATION OF THE BOUNDS ON THE CAPACITY

In this section we calculate the upper and the lower bound
on the capacity of an MC system for the two different
approximations described in Sec. II. In order to achieve this,
we need to derive the channel transition probability and the
PDF of the output signal.

A. The lower bound

The expression for the capacity of a discrete memoryless
channel with PY |X(y|x) over the finite input and output, i.e.
X and Y , respectively, is given by [15]

C = max
PX∈P(X )

I
(
PX ;PY |X

)
, (12)

where P(X ) denotes the set of all probability measures on
X . I

(
PX ;PY |X

)
represents the mutual information when the

input is distributed according to PX . The mutual information
is written as

I
(
PX ;PY |X

)
=
∑
x,y

PX (x)PY |X (y|x) log2

PY |X(y|x)

(PXPY |X)(y)
,

(13)
where (PXPY |X) represents the output distribution corre-
sponding to the input PX , i.e.,

(PXPY |X)(y) =
∑
x′

PX (x′)PY |X (y|x′) , y ∈ Y. (14)

Although the optimization over input distribution complicates
the exact computation of C, (12) leads to a very natural lower
bound on C, since any input distribution PX ∈ P(X ) leads
to the inequality

C ≥ I(PX ;PY |X). (15)

It is well known that for a continuous variable over a
channel, the mutual information can be expanded in terms of
differential entropy as

I(PX ;PY |X) = h(Y )− h(Y |X). (16)

Since the channel is discrete, the values h(Y ) and h(Y |X)
can be obtained by using:

h(Y ) = −
n∑

i=1

PY (yi) log2(PY (yi)) (17)



where PY (yi) is calculated by using (9), and

h(Y |X)=−
m∑
j=1

PX(xj)

n∑
i=1

PY |X(yi|xj)log2

(
PY |X(yi|xj)

)
. (18)

In (18), PX(xj) represents the probability of the input
distribution. Since all the possible input concentrations are
considered equiprobable, PX(xj) will be constant and it is cal-
culated by dividing (1) for the number of possible input con-
centrations. The channel transition probability PY |X(yi|xj) is
then obtained from (8).

B. The upper bound

In this subsection we calculate the upper bound of the capac-
ity. The mutual information of the system can be calculated as
a Kullback-Leibler divergence of the product of the marginal
distributions, PX(x) and PY (y), from the joint distribution of
the two random variables X and Y PXY (x, y) as [16]

I(X;Y ) = DKL (PXY (x, y)‖PX(x)PY (y)) . (19)

The Kullback-Leibler divergence has the same equation as
that of the relative entropy and is given as

DKL

(
PY |X(y|x)‖PY (y)

)
=
∑
y∈Y

PY |X (y|x) log2

PY |X (y|x)

PY (y)
.

(20)
This means that we can rewrite (19) as

I(X;Y ) =
∑
x∈X

Px(x)DKL

(
PY |X(y|x)‖PY (y)

)
. (21)

Therefore, a dual expression for the channel capacity similar
to [15] is given by

C = min
PY ∈P(Y)

max
x∈X

DKL

(
PY |X(y|x)‖PY (y)

)
. (22)

Every choice of a distribution PY (y) on the output Y leads to
an upper bound on channel capacity [15] as follows

C ≤ max
x∈X

DKL

(
PY |X(y|x)‖PY (y)

)
. (23)

To solve (23), we use the identity in [17]:∑
x∈X

PX(x)DKL

(
PY |X(y|x)‖PY (y)

)
=

I(PXY ;PY ) +DKL

(
(PXPY |X)(y)‖PY (y)

)
(24)

and since the relative entropy cannot be negative, we obtain
the following relation:

I(PX ;PY |X) ≤
∑
x∈X

PX(x)DKL

(
PY |X(y|x)‖PY (y)

)
,

(25)
where PY ∈ P(Y) in (25) implies (23).

V. NUMERICAL RESULTS

In this section we first present the parameters selected for
the numerical analysis and then we follow this up with a results
and discussion section.

A. Parameters

The parameters used to characterize the MC system model
are similar both for the case where we consider the Poisson
approximation and for that when we consider Gaussian dis-
tribution. As already said in Sec. II, the radius of both the
transmitter cell and the receiver cell is rTX/RX = 0.15µm.
This value of radius is typical for a prokaryotic cell. The
distance d between the center of the transmitter and the
receiver cell is equal to 1µm. The input information is encoded
in either two or four levels of concentration. To be specific we
use both BCSK and QCSK modulation in this paper. The input
concentration C spans on a range of 104 nM to 3×105 nM with
step size 104 nM. All of these values are equi-probable and
are modulated by the two or four levels of the concentration.
For the Poisson distribution presented in (4), we model the
λ parameter for each level corresponding to each possible
concentration value by using:

λij = j · xi(tmax) (26)

where the subscript j varies from 1 and 4 depending on the
level of the concentration that is being considered. The value
of xi(tmax) is calculated by using (7). The term Ni in (7) is
obtained by the multiplication of the volume of the receiver
cell VRX and Ci, i.e. the current value of concentration that
is input to the system. We evaluate the Poisson distribution
in all the integer values between 0 and [2 · (4xi(tmax))],
where 4 represents the number of levels in the constellation.
In this way, the channel transition probability PY |X(y|x) for
each possible input concentration i and for each level of the
constellation j is approximated by the Poisson distribution
P(λij). The PDF of the output is given by

PY (y) =
1

K

4∑
j=1

PY |X(y|x). (27)

Similarly, for the case when the noise is approximated by a
Gaussian distribution, all the values of the parameters are the
same as those described above. We approximate the channel
transition probability with a Gaussian distribution that has a
mean value µij equal to λij , so that it can be calculated by
using (26). Whereas the standard deviation σij is equal to
the square root of λij . For both these cases using the channel
transition probability and the pdf of the output we calculate the
upper and lower bounds of capacity by using the expressions
in Sec. 4. In the next subsection we present and discuss these
bound results for the channel capacity of the diffusive MC
channel.

B. Results

In this subsection we present the results for the upper and
lower bounds of the capacity for both Poisson and Gaussian
approximations. Figure 2 presents the upper and the lower
bound on the capacity for the Poisson distribution. In this
figure we consider both the BCSK and QCSK case. As shown
in the Fig. 2 both the upper and the lower bound tend to
increase as the input concentration increases. The gap between



Fig. 2: Upper and lower bound on the capacity for BCSK and
QCSK with Poisson channel model.

Fig. 3: Upper and lower bound on the capacity for BCSK and
QCSK with Gaussian channel model.

both the bounds becomes narrower as the input concentration
increases further. Next in Fig. 3 we present the upper and the
lower bounds of capacity when the noise is approximated as a
Gaussian distribution for both BCSK and QCSK case. Similar
to the results shown in Fig. 2, both the upper and the lower
bounds increase non-linearly with the increase in the input
concentration of molecules. By comparing the results in Figs. 2
and 3 we realize that the Gaussian noise assumption leads to
an overestimation of the upper bound for low concentration of
the input. On the other hand, the results are very similar for
a high concentration of the input. This is because for a low
concentration of the input the Gaussian shape does not give
a good approximation of the Poisson one, as already noticed
in Sec. III-B. For both Figs. 2 and 3 we also learn that the
upper and lower bounds are much closer for the BCSK case
as compared to the QCSK case.

VI. CONCLUSIONS

In this paper we have presented the analytical bounds on
the capacity of an diffusive MC channel that give a reference
against which it is possible to compare results of in-silico
simulations or of experiments. We derived the upper and
lower bounds of capacity for two scenarios: when the received
signal is approximated by a Poisson distribution and when
it is approximated by a Gaussian distribution. The results
show that both the upper and the lower bounds tend to
increase with the increase in input concentration. We further

observed that for the lower values of input concentrations
the Gaussian approximation leads to an overestimation of the
upper bound as compared to the Poisson approximation. We
further learned that for the BCSK case the bounds are much
closer as compared to the QCSK case.

Future extensions of this work will focus on considering
the effect of ISI in the evaluation of the constrained capacity
for the waveform channel where continuous-time signaling is
considered.
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