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Abstract The Buffer Allocation Problem (BAP) for flow lines has been ex-
tensively addressed in literature. In the framework of iterative approaches,
algorithms alternate an evaluative method and a generative method. Since an
accurate estimation of system performance typically requires high computa-
tional effort, an efficient generative method reducing the number of iterations
is desirable, for searching for the optimal buffer configuration in a reasonable
time. In this work, an iterative optimization algorithm is proposed which a
highly accurate simulation is used as the evaluative method and a surrogate-
based optimization is used as the generative method. The surrogate model
of the system performance is built to select promising solutions so that an
expensive simulation budget is avoided. The performance of the surrogate
model is improved with the help of fast but rough estimators obtained with
approximated analytical methods. The algorithm is embedded in a problem
decomposition framework: several problem portions are solved hierarchically
to reduce the solution space and to ease the search of the optimum solution.
Further, the paper investigates a jumping strategy for practical application of
the approach so that the algorithm response time is reduced. Numerical results
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are based on balanced and unbalanced flow lines composed of single-machine
stations.

Keywords Buffer allocation problem · Multifidelity surrogate modeling ·
Simulation-optimization

1 Introduction1

A production system can be seen as a set of resources interconnected by a ma-2

terial handling system where work-in-process might be held in buffers between3

two sequential stations. These buffers of parts help in reducing the propagation4

of blocking and starvation phenomena along the production system. However,5

dedicating space to maintain interoperative inventories is costly and extends6

the production lead time. For these reasons, the Buffer Allocation Problem7

(BAP) is an optimization problem of high importance for industries where8

there is a trade-off between productivity criteria and design and management9

costs.10

The classical primal BAP considers the total allocated buffer capacity as11

the objective function and the throughput satisfaction as a constraint, this is12

known in literature as the primal problem [Gershwin and Schor, 2000]. The13

dual problem, also common in literature, maximizes the throughput under14

a constrained buffer capacity. This paper focuses on the primal problem.15

Furthermore, we address problems in which the processing times at servers16

follow general distributions and operational dependent failures might occur.17

With these assumptions, it is difficult to obtain accurate estimates of system18

throughput by using analytical methods. Therefore, simulation, despite being19

expensive in terms of execution, is frequently used as estimation method. Also,20

the solution space becomes wide as the number of stations increases and the21

search for the optimum gets harder. Hence, algorithms aim to obtain a good22

solution, with less simulation effort.23

1.1 State of the Art for BAP24

A recent and comprehensive review of BAP can be found in [Weiss et al., 2019]25

where a classification of state-of-the-art approaches is proposed. Solving meth-26

ods are classified into three classes: explicit solutions, iterative optimization27

methods, and integrated optimization methods. The first class of explicit solu-28

tions provides a set of rules or established formulas describing the BAP. The29

methods in this class can only address BAP that are small in size, or with30

significant limitations due to the strong assumptions introduced to make the31

problem analytically tractable. The integrated optimization methods formulate32

the BAP into a mixed integer linear programming (MILP) model. For example,33

[Soyster et al., 1979] use an analytical representation of the problem. Other34

examples build a MILP to find a sample-exact solution, e.g. [Matta, 2008,35

Helber et al., 2011,Alfieri and Matta, 2012,Stolletz and Weiss, 2013].36
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Most of the references in literature follow iterative optimization methods to37

solve the BAP: a generative method selects promising buffer allocations and an38

evaluative method estimates the performance of the given candidate solution39

[Papadopoulos et al., 2009]. Markov chain analysis, decomposition methods40

[Gershwin, 1987], aggregation methods [Li and Meerkov, 2009], and simula-41

tion are used as the performance evaluation method with a clear trade-off be-42

tween the accuracy and the computational effort. Enumeration, meta-heuristic43

and search-based algorithms are mostly used as the generative method. For44

instance, [Hillier, 2000] enumerates a set of the most promising solutions,45

[Matta et al., 2012] uses a surrogate-based optimization algorithm with Krig-46

ing (more details on Kriging as in [Sacks et al., 1989]), [Kose and Kilincci, 2015]47

combines simulated annealing and genetic algorithm for exploring and exploit-48

ing the search spaces, [Shi and Gershwin, 2016] guides the search with the gra-49

dient calculated analytically in the evaluative method. Nested partition and50

branch-and-bound are also used [Shi and Men, 2003,Dolgui et al., 2007]. An51

efficient generative method can reduce the number of algorithm iterations be-52

fore reaching a near-optimal solution and can save the effort required in the53

evaluative method.54

Iterative optimization methods are frequently applied in real cases. Un-55

like integrated optimization methods, iterative optimization methods treat the56

evaluation method as a black-box, i.e., the inner structure of the evaluation57

method is not considered in the optimization algorithm, which makes them58

easy to implement. Nevertheless, the lack of knowledge about the throughput59

function (e.g. gradient information), together with the large search space and60

the time-consuming evaluation method affect the efficiency of commonly used61

searching methods (e.g. enumeration method, meta-heuristic, gradient-based62

method).63

Some state-of-the-art approaches uses problem decomposition to reduce64

the computational effort. The BAP is divided into several sub-problems that65

are easier to solve than the final problem (i.e., the non-decomposed problem).66

The solution of each sub-problem helps to solve the final problem. For exam-67

ple, [Shi and Gershwin, 2016] decomposes the system into several sub-systems,68

each representing an overlapping portion of the system. The BAP is solved for69

each sub-system independently. Then, the near-optimal buffer allocation of70

the system is found by combining the sub-system’s solutions. Another exam-71

ple is found in [Weiss and Stolletz, 2015] and [Weiss et al., 2018]. The authors72

decompose the system into several sub-systems whose dimension provides a hi-73

erarchical ordering. Starting from the lower hierarchy (i.e., single-dimensional74

BAP), local solutions are found and create exact bounds for higher hierarchies75

that are solved afterwards. Despite the advantages of problem decomposition76

approaches, the knowledge obtained at a certain hierarchy is exploited only77

in the form of bounds. A large amount of data about the sub-system’s per-78

formance is wasted when the algorithm moves to higher hierarchies, although79

these sets of data might contain information that could increase the search80

efficiency.81
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1.2 Contribution82

This paper proposes an iterative optimization algorithm for the primal BAP in83

which a surrogate-based optimization method is used as the generative method84

to save the effort in the evaluative method, which is simulation. The algorithm85

is embedded in a problem decomposition framework to save the search effort86

in the generative method.87

Simulation is used as the evaluative method to accurately estimate the88

system’s throughput, but it is time-consuming. A surrogate model can be cre-89

ated from few simulated data to predict the system throughput of the buffer90

configurations that have not been simulated. Thus, promising solutions can91

be pointed out quickly by the surrogate model and the budget for the evalua-92

tive method can be carefully allocated. Throughout the paper, this budget is93

referred to as the simulation budget (i.e., the number of candidate solutions94

that are evaluated using simulation). The Extended Kernel Regression (EKR95

[Lin et al., 2019]) method is used in this paper to create the surrogate model96

since it can improve the accuracy of the build surrogate model by combing the97

simulation data with rough but fast estimators, e.g. analytical methods and98

coarse simulations. The surrogate model might be biased in some areas of the99

domain, which may lead to a wrong promising solution. Therefore, both the100

predicted system performance and the quality of the built surrogate model are101

considered to select the promising solutions.102

The proposed algorithm is embedded in a problem decomposition frame-103

work [Weiss and Stolletz, 2015], in which the original problem is divided into104

sub-problems with different hierarchies. The optimal solutions of sub-problems105

in lower hierarchies provide lower bounds to sub-problems in higher hierar-106

chies according to the features of the system. Therefore, the search space in107

the generative method can be reduced and the search effort can be saved. In108

addition, the estimates obtained during solving a certain sub-problem can be109

re-used throughout the problem decomposition hierarchy. Despite these re-110

used estimates being approximated, they represent a part of the system and111

can improve the accuracy of the surrogate model.112

A preliminary version of the algorithm has been analyzed in recent litera-113

ture [Frigerio et al., 2018]. The work is herewith extended by considering the114

prediction error of the surrogate model and by including an analytical method115

in the creation of surrogate models. A surrogate-based optimization method is116

proposed for BAP in [Matta et al., 2012], in which a surrogate model guides117

the search in the generative method. Differently from [Matta et al., 2012],118

where the Kriging technique is used to create the surrogate model with data119

from a single source, a multi-fidelity surrogate model is created in this pa-120

per. The use of multiple sources can increase the prediction performance of121

the built surrogate model, thereby improving the quality of selected promis-122

ing solutions. Also, [Matta et al., 2012] considers only the system performance123

estimates and does not include the prediction error, i.e., the quality of the sur-124

rogate model.125
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A set of numerical cases shows the accuracy of the surrogate model in terms126

of prediction error. These cases also show that the proposed iterative algorithm127

is efficient and the benefit of the involvement of an analytical method in the128

construction of the surrogate model is significant. The proposed algorithm is129

more effective when the total buffer capacity of the optimal buffer configuration130

is high, i.e. when the required throughput is high. Considering the decomposed131

problem, reusing data can also improve the efficiency of the algorithm. When132

problem dimension becomes high (i.e., long lines), the trade-off between the133

effort to solve sub-problems and the size of cut search space has an important134

impact on the computational time. Some strategies are investigated to improve135

the results in these cases.136

1.3 Paper Outline137

The paper is divided into five sections. After introducing the problem and138

the related literature in Section 1, the proposed iterative algorithm with a139

surrogate-based generative method is described in Section 2. Section 3 de-140

scribes how the proposed algorithm is embedded in a problem decomposition141

framework. Numerical results are provided in Section 4. Section 5 concludes142

the paper.143

2 A Surrogate-Based Solving Algorithm144

In this section, we formulate the problem in question, and we provide the145

description of the proposed algorithm.146

2.1 Problem Description and Modeling147

The system being studied is a classical flow line composed of S single-server148

stations and S − 1 finite intermediate buffers. For the sake of simplicity, the149

first machine is assumed to be never starved of raw parts and the last machine150

is never blocked (i.e., saturated supply and saturated demand). The blocking151

after service rule is used for stations, although the problem is similar for the152

blocking before service rule. Let us use xs to denote the buffer capacity allo-153

cated to the buffer behind station s and x = {x1, x2, . . . xS−1} to denote the154

vector of decision variables describing the buffer allocation along the line.155

The total buffer capacity of the line is defined as follows:156

z(x) =

S−1∑
s=1

xs. (1)

The buffer capacity needs to be allocated in order to minimize the total buffer157

capacity z(x) while a certain throughput target ytarget is reached. We assume158
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that the capacity xs of buffer s is limited by the user-defined upper bound Bs.159

The BAP is formulated as follows:160

min {z(x) | y(x) ≥ ytarget ; 0 ≤ xs ≤ Bs, xs ∈ N,∀s = 1, . . . , S − 1} (2)

where the expected throughput y(·) of the system is a non-linear function161

of decision variables x. We model processing times Ts with s = 1, . . . , S as162

generally distributed random variables. Transportation times are negligible or163

already included in the processing times. Operational dependent failures are164

also included in the processing time distributions.165

2.2 Algorithm Main Structure166

The main structure of the proposed algorithm is represented in Figure 1. The167

algorithm belongs to the category of iterative approaches and it alternates two168

main parts: evaluation and generation [Papadopoulos et al., 2009]. In a general169

iteration i, buffer configuration xi is identified as promising by the generative170

method. Therefore, system performance y(xi) can be accurately obtained using171

a simulation model as the evaluative method.172

We assume the line processes W parts, where W0 parts correspond to the173

warm-up phase. Given proper values for W and W0, the simulation model174

provides an accurate estimate y(xi) of the expected throughput obtained with175

buffer allocation xi.176

At the first iteration, the surrogate model is built, as described in Section177

2.3, starting from an initial set X0 of n0 candidate solutions. The initial design178

X0 is evaluated using simulation and the generative method can start. Then,179

the generative method solves an optimization problem as described in Section180

2.4. Within this phase, a surrogate model is built to provide both the estimate181

of the expected throughput ŷ(·) and the estimated square prediction error182

ŝ2(·). Hence, the promising solution xi is found and evaluated using simulation.183

In subsequent iterations, the surrogate model is updated with new observed184

(or simulated) data. When the stopping condition is satisfied, the algorithm185

stops.186

2.3 A Multi-fidelity Surrogate Model for BAP187

Assume that a certain number of models is available to provide the system188

performance estimates. In particular: one time-consuming High-Fidelity (HF)189

model, i.e., the simulation model, providing highly accurate estimates y(x),190

and a certain number of Low-Fidelity (LF) models, i.e., analytical meth-191

ods, coarse simulations, and meta-models, providing approximated estimates192

quickly.193

We adopt the Dallery-David-Xie (DDX) algorithm [Dallery et al., 1988]194

from the literature to provide the LF estimate yDDX(x) of system performance.195

The reason for this choice is its easiness of implementation without critical196
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Generate promising solution

(Surrogate-based optimization method)

Evaluate promising solution

(Simulation model)
Surrogate Model Search Method

𝒙𝑖 , ො𝑦 𝒙𝑖 , Ƹ𝑠(𝒙𝑖)

𝑦 𝒙𝑖

ො𝑦 𝒙𝑗 , Ƹ𝑠(𝒙𝑗)

𝒙𝑗

Create and evaluate Initial Design 
(Simulation model)

𝕏0, 𝑦 𝕏0

Stopping 

criterion

Stop

Yes

No

Start

Fig. 1 Structure of the solving algorithm.

numerical issues. Other algorithms could be adopted without changing the ap-197

proach, e.g. [Tolio and Matta, 1998,Liberopoulos et al., 2006,Li and Meerkov, 2009,198

Colledani and Gershwin, 2013]. Also, more than one method can be included199

without requiring a large extension to the developed algorithm.200

The initial design X0 is composed of n0 design points sampled using a201

space filling design (we used, as an example, a Latin Hypercube Sampling202

(LHS) [McKay et al., 1979]). The system performance at the design points is203

calculated using both the HF and LF models.204

The creation of the surrogate model is performed using the Extended Ker-205

nel Regression (EKR) method [Lin et al., 2019], based on the available infor-206

mation, i.e, both HF and LF estimates of design point in set X0, and the LF207

estimate of the unknown point x:208

yEKR(x|y(u), yDDX(u),∀u ∈ X0, yDDX(x))⇒ ŷEKR(x), ŝ2EKR(x). (3)

The system performance estimate ŷEKR(x) at a certain buffer allocation x209

is obtained as well as its estimated square error ŝ2EKR(x) that indicates the210

prediction error of the surrogate model. More details on how to build the211

surrogate model using EKR are provided in Appendix ??.212
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2.4 Optimization Procedure213

In the generative method, the built surrogate model is used to guide the search214

for a promising solution. The surrogate model could be biased and the promis-215

ing solution provided could be incorrect. Therefore, to balance the exploitation216

(to find the best solution according to the surrogate model) and the exploration217

(to improve the quality of the surrogate model), the Expected Improvement218

(EI) criterion ([Mockus et al., 1978,Jones et al., 1998]) is applied. It assumes219

that the true value of the system’s performance follows a prior distribution,220

e.g. normal distribution, in which the mean is affected by the system perfor-221

mance estimate provided and the variance is affected by the prediction error.222

Then, the solution that has the maximal EI compared to the current best223

solution is considered as the most promising solution. The EI of an unknown224

solution x is herewith defined as follows:225

EI(x) =
(
z(xbest)− z(x)

)
· P (y(x) ≥ ytarget) . (4)

where the current best solution xbest is defined as the configuration that has226

been simulated, satisfies the throughput target ytarget, and has the lowest227

total buffer capacity. The first term in expression (4) is the distance of the x228

configuration from the current best xbest in terms of total buffer capacity. The229

second term is the probability that configuration x satisfies the throughput230

target. When EI is high, it is more likely that the current best can be improved.231

The probability that a solution is feasible P (y(x) ≥ ytarget) is calculated232

using the system performance estimate ŷEKR(·) and the estimated square error233

ŝ2EKR(·) provided by the surrogate model:234

P (y(x) ≥ ytarget) ≈ Φ
(
ŷEKR(x)− ytarget

ŝEKR(x)

)
. (5)

The normal distribution is used according to [Lin et al., 2019] which is ob-235

tained by applying the Central Limit Theorem.236

At each iteration i, the following optimization problem is solved to obtain237

the promising point xi:238

xi = arg max
x

EI(x) (6)

s.t. : z(x) < z(xbest) (7)

xs ≤ Bs, xs ∈ N+,∀s. (8)

The above optimization problem is bounded by the current best solution using239

constraint (7), this is to avoid wasting effort in unpromising areas. To solve240

this problem, algorithms such as meta-heuristics, random searches, etc. can241

be used to provide good solutions quickly. In Section 4, a common Genetic242

Algorithm from the Matlab package will be used for experiments, but other243

algorithms could be successfully adopted.244
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2.5 Stopping Condition245

The EI measure defined in Section 2.4 is an indicator of solution quality and246

it can be used to interrupt the algorithm. As EI(xi) decreases, the solution247

approaches the optimum and it is difficult (rather than not possible) to find248

an improvement. Therefore, the algorithm is stopped when the maximal EI,249

found in iteration i, is below a certain threshold EItarget:250

EI (xi) ≤ EItarget (9)

Under condition (9), the algorithm returns the current best solution xbest.251

Otherwise, the algorithm performs a new iteration following a sequence of252

steps:253

– The most promising point xi is evaluated using the HF model.254

– If y(xi) ≥ ytarget, the current best solution is updated, i.e., xbest = xi.255

– The surrogate model is updated by adding xi to the set of design points256

X0.257

– The iteration number is updated: i = i+ 1.258

It is noteworthy that the xbest is selected as the upper bounds of the solution259

at the beginning of the algorithm.260

The algorithm accuracy can be tuned by decreasing target EItarget. How-261

ever, as EItarget decreases the computational time also increases because the262

stopping condition becomes harder to satisfy.263

3 The Algorithm Applied in the Problem Decomposition264

Framework265

The algorithm proposed in Section 2 is embedded in a problem decomposition266

framework where the main BAP is decomposed into several sub-problems of267

smaller dimension. Hierarchical problem decomposition methods are widely268

used in optimization when the scale of the problem is large. Thus, a bottom-269

up approach is followed as described in Section 3.1. Also, when the BAP is270

decomposed, models with different detail levels are used to represent each sub-271

problem, and bounds are created as in Section 3.2. An innovative approach is272

proposed to exploit the knowledge, in addition to the bounds, derived from a273

certain sub-problem (Section 3.3).274

3.1 Problem Decomposition Approach275

Adopting the problem decomposition approach of [Weiss and Stolletz, 2015],276

the system is divided into several sub-systems assuming that the first station277

of each sub-system has an unlimited supply (i.e., saturated supply) and that278

the last station is never blocked (i.e., saturated demand). Each sub-system,279

denoted as M(`, j), represents a portion of ` + 1 sequential stations of the280
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system. Index j indicates the first machine in the sub-system and j+` indicates281

the last. A total of S−1 hierarchies is created and each hierarchy ` ∈ [1, S−1]282

includes S − ` sub-systems, i.e., M(`, j)|j = 1, . . . , S − `. Figure 2 represents283

an example of system decomposition.284

Fig. 2 System decomposition in sub-systems with stations (represented with circles) and
buffers (represented with triangles). As an example, three hierarchies are reported: the final
and complete system of hierarchy S − 1, hierarchy S − 2 composed of two sub-systems of
S − 2 sequential machines, and the lowest hierarchy composed of S − 1 sub-systems of two
sequential machines.

Each sub-system M(`, j) implies a BAP whose dimension ` is smaller com-285

pared to that of the complete system, i.e., S − 1. Let us denote the optimal286

solution of sub-system M(`, j) as the (`)-tuple of buffer capacities from xj to287

xj+`−1:288

xbest
(`,j) = {xbestj , . . . , xbestj+`−1}. (10)

Figure 3 represents the main framework of the proposed algorithm embed-289

ded in the bottom-up decomposition approach. The overall algorithm consists290

of the following steps:291

i) Following a bottom-up approach, the first level of hierarchy ` = 1 is292

addressed starting from machine j = 1.293
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Fig. 3 The algorithm embedded in the problem decomposition framework.

ii) Focusing on sub-system M(`, j), the solution xbest
(`,j) of the associated BAP294

is found using the algorithm described in Section 2.295

iii) A lower bound is created as in Section 3.2.296

iv) Steps (ii), (iii), and (iv) are repeated with the next sub-system (j = j+1)297

or with the next hierarchy level (` = `+ 1; j = 1) until the final problem298

M(S − 1, 1) is solved.299

Given ` and j, the sub-problem in question belongs to hierarchy level `, it300

includes stations s = j to s = j+ `, and it has ` dimensions. Note that all sub-301

systems in the lower hierarchy have been solved previously since a bottom-up302

approach is used, and their solutions xbest
(L,J)|L < `, J ∈ [1, S − `] exist.303

3.2 Creation of Lower Bounds304

The isolated throughput of sub-system M(`, j) is higher than that of a larger305

system with the same corresponding buffer allocation [Weiss and Stolletz, 2015].306

For example, assume that the best buffer allocation for system M(2, 1) is307

xbest
(2,1) = {3, 5} for a certain throughput target. This implies that sub-systems308

M(L, 1)|L > 2, which include M(2, 1), require a total buffer capacity among309

the first two buffers of at least 8 buffer slots, i.e., x1 + x2 ≥ z(xbest
(2,1)) = 8.310

The solution xbest
(`,j) of sub-problem M(`, j) provides a lower bound to all311

sub-problems belonging to a higher hierarchy (L > `) and including sub-system312
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M(`, j). Therefore, bounds are formalized as follows:313

z(x) ≥ z(xbest
(`,j)) (11)

and they are effective for all sub-systems belonging to the following set:314

M(L, J)|L > `; J ∈ [max(1, j + `− L), j]. (12)

These lower bounds, introduced by [Weiss and Stolletz, 2015], are added into315

the optimization problem (cf. equations (6)–(8)). They can narrow the search316

space and accelerate the generative method.317

3.3 The Re-use of Data318

Let us consider sub-system M(`, j) and its associated BAP. According to the319

bottom-up solving approach, sub-systems of lower hierarchies, i.e., L < `, have320

already been solved. As a consequence, the surrogate models of these sub-321

systems are available and can provide coarse estimates of sub-system M(`, j).322

These coarse estimators can be reused as low-fidelity models to improve the323

prediction performance of the surrogate model in sub-system M(`, j). The324

algorithm can use the following models for creating the surrogate model in325

sub-system M(`, j):326

– The HF simulation model of sub-system M(`, j): y(`,j).327

– The LF model of sub-system M(`, j) created with DDX method: y
(`,j)
DDX.328

– The LF surrogate models of sub-systems M(`− 1, j) and M(`− 1, j + 1):329

y
(`−1,j)
EKR and y

(`−1,j+1)
EKR .330

The re-use of data might be helpful and, in general, many LF models can331

be included. It is noteworthy that the computational time of the EKR model332

increases with the number of LF models included and the surrogate model333

becomes redundant as the sub-system hierarchy increases. The EKR method334

autonomously identifies which models are more helpful in different regions335

of the domain and assigns area-based weights accordingly. Therefore, as an336

additional improvement, the algorithm removes the LF models that have low337

weights in the whole domain. This feature extends the original EKR method338

in [Lin et al., 2019] to further save computational time.339

4 Numerical Results340

In this section, experiments are carried out and reported to show the effi-341

ciency and effectiveness of the proposed method. Section 4.1 describes the342

scenarios used to obtain numerical results. Section 4.2 analyzes the predictive343

performance of the surrogate model. Then, numerical results are divided into344

two main parts: the first part (Section 4.3) focuses on the performance of the345

algorithm when applied directly to the final problem (M(S − 1, 1)), and the346

second part (Section 4.4) is devoted to the algorithm within the decomposition347

framework.348
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4.1 Scenario Description349

Numerical results are based on both balanced (denoted as BAL) and unbal-350

anced production lines with a maximum buffer capacity of Bs = 30. Scenarios351

are created by varying the position of the bottleneck: MID denotes a line with a352

bottleneck in the middle and B2 denotes a line with two bottleneck machines.353

Short lines are analyzed firstly, and the analysis on long lines follows. Fur-354

thermore, two production rate targets are used to represent high-target (large355

allocated buffer capacity required) and low-target (small allocated buffer ca-356

pacity required) situations. The analyzed scenarios are summarized in Table 1.357

Notation Mz-XXX-X is used: Mz indicates a line of z machines, XXX indicates358

the position of the bottleneck, and the last letter indicates the throughput tar-359

get (H = high and L = low).360

The processing times are assumed deterministic: 0.5 minutes are required361

to process a part in balanced lines, whilst 0.45 minutes are required in unbal-362

anced lines where only the bottleneck machines require 0.5 minutes. Further,363

machines are unreliable and the Times To Repair (TTR) follow a Weibull364

distribution with λ = 5.64 and shape k = 2. Times to Failure (TTF) are365

correlated to TTR so that TTF = TTR + Z where Z is a random variable366

distributed accordingly to a Weibull distribution with scale λ = 22.15 and367

shape k = 1.5. The correlation between TTR and TTF is used to model that368

failures requiring long repair times occur less frequently.369

Scenario Number of machines Bottleneck position ytarget[ppm]
M5-BAL-H 5 none 1.52
M5-BAL-L 5 none 1.44
M5-MID-H 5 middle, i.e. s = 3 1.60
M5-MID-L 5 middle, i.e. s = 3 1.51
M5-B2-H 5 two, i.e. s = 2 and s = 4 1.60
M5-B2-L 5 two, i.e. s = 2 and s = 4 1.51
M15-BAL-H 15 none 1.60
M15-BAL-L 15 none 1.44
M15-MID-H 15 two, i.e. s = 5 and s = 11 1.60

Table 1 Scenario description with production rate target expressed in parts per minute
[ppm].

The algorithm and the methods included are implemented in the Matlab370

environment. The Welch method [Law and Kelton, 2000] is used to identify371

simulation initial transitory which is 5 · 104 parts for 5 machine lines and372

3 · 105 for long lines. Simulation length is 2.5 · 105 parts for short lines and373

5 · 105 parts for long lines.374

The DDX method requires failures and repairs follow geometric distribu-375

tions with rates p and r respectively. These parameters have been estimated376

from the TTF and TTR distributions, i.e., p̂ = 0.02 and r̂ = 0.1, to properly377

represent each machine. Furthermore, DDX cannot consider the correlation378

between TTR and TTF.379
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4.2 Surrogate Model Prediction Performance380

The Mean Absolute Percentage Error (MAPE) of the estimated production381

rate is considered as an accuracy index. The MAPE is defined as follows:382

MAPE =
1

nc

nc∑
j=1

|y(xj)− ŷ(xj)|
y(xj)

· 100[%] (13)

where ŷ is the estimator of the production rate to be compared and xj is383

a checkpoint, i.e., a buffer allocation sampled from the solution space to as-384

sess the prediction performance of the estimator. Independently from design385

points, nc checkpoints are sampled using LHS. Using HF simulation estimate386

y as a reference, we compare the error of the EKR method and that of the387

standard Kernel Regression (KR) method [Wand and Jones, 1995] which does388

not use LF data in surrogate creation. The DDX error is also included in the389

comparison. In this analysis, the optimization is not performed, because the390

scope is to focus only on the accuracy of the surrogate model.391

We only provide results obtained on balanced lines of 5 and 15 equal ma-392

chines, because their performance is generally more difficult to predict than393

unbalanced lines. Similar insights can be obtained with unbalanced lines. In394

these experiments, the simulated sample path changes at each design point395

and at each checkpoint. Using nc = 104 checkpoints, the DDX method ob-396

tains: MAPE = 8.18% for M5-BAL, and MAPE = 8.21% for M15-BAL.397

Figure 4 represents the MAPE obtained with EKR and KR methods as the398

number of design points n0 increases. The EKR method is more accurate than399

the KR method, meaning that the use of DDX estimates provides useful in-400

formation. From another perspective, the accuracy of DDX is highly improved401

by using few simulation data.402

4.3 Benefit of Surrogate-Based Optimization403

The proposed algorithm is denoted as ”KR” and ”EKR” respectively when the404

surrogate model is created with the KR and EKR methods. The GA available405

in the Matlab package is used for selecting candidate solutions xi by maxi-406

mizing the expected improvement EI(x) in EKR and KR algorithm settings.407

Hence, KR and EKR stops when EItarget = 0 is reached. The reasons for408

choosing GA are its performance in combinatorial problems and the availabil-409

ity of a code in the Matlab package. As already explained in Section 2.4, other410

algorithms could be adopted or developed.411

Results have been compared with those obtained by an iterative algo-412

rithm, labeled ”SIM”, that does not use a surrogate-based method but uses413

a pure GA as the generative method. Therefore, SIM stops when GA stops.414

(EItarget = 0 is used for M5-scenarios, EItarget = 0.02 for M15-scenarios). The415

DDX method, in the evaluated scenarios, underestimates the system through-416

put. In most of the evaluated scenarios, the DDX output for the combination417
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Fig. 4 MAPE of the surrogate models, created with the EKR and KR methods, for sce-
narios M5-BAL and M15-BAL as the number of design points n0 increases. Boxplots are
created with 20 algorithm replications by varying the initial design X0.

of the buffer capacity upper bounds is lower than the defined throughput tar-418

get, i.e., all solutions are infeasible according to the DDX outputs. Therefore,419

the DDX method cannot provide a promising solution to be simulated. For420

this reason, results obtained using DDX instead of the surrogate model are421

not included in the comparison. For this reason, results obtained using DDX422

instead of the surrogate model are not included in the comparison.423

The parameters used for the GA embedded in SIM, KR and EKR have been424

calibrated. The GA selects the best candidates using a fitness scaling function425

based on candidate ranking. At each iteration, new candidates are generated426

(population size PS): a certain elite is guaranteed to survive (elite fraction EF )427

and new candidates are generated with a crossover function (crossover fraction428

CF ) or with a mutation function. We used a scattered crossover function (a429

random binary vector identifies the variables from parents) and a gaussian430

mutation function (unitary scale and shrink factor). The algorithm stops when431

the maximum number of generations MG is reached or when the average432

relative change in the fitness function value over a certain number of stall433

generations SG is less than a certain tolerance T . Factors PS,EF,CF and T434
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have been selected as in Table 2. Factors SG and MG are tuned to stop the435

GA more efficiently.436

Table 2 Selected parameters for GA.

Parameter Value
Population Size PS 50
Elite Fraction EF 0.05

Crossover Fraction CF 0.8
Tolerance T 1e-6

Stall Generations SG 20 for M5; 8 for M15
Max Generations MG 1000

KR starts with the initial budget n0 = 32 simulations, dedicated to eval-437

uating design points, and performs a single simulation run at each iteration.438

Similarly, EKR starts with no = 12. Whereas, SIM performs 50 simulations439

at each iteration (therefore it starts at n0 = 50). The current best solution440

improves as simulation budget n increases and tends to the optimum.441

In order to reduce solution variability, the simulated sample-path used442

to evaluate configuration x is fixed for each scenario. Therefore, algorithm443

replicates differ in terms of creation of the surrogate model and in the search444

performed by the generative method.445

4.3.1 Analysis of Algorithm Performance446

Figure 5 shows the comparison for scenario M5-BAL-H. Of the KR and EKR447

algorithms, EKR obtains the best performance on average. Furthermore, com-448

pared to SIM, both KR and EKR converge quickly to the optimum which is449

obtained after around 1000 simulations by the SIM algorithm. A similar con-450

clusion can be drawn with other scenarios as collected in Table 3, which shows451

the mean number of simulations required to reach the optimum for different452

algorithms. The objective value of the optimal solution, i.e., z(x∗), of each453

scenario is reported in Table 3 and has been validated using the algorithm454

proposed in [Weiss and Stolletz, 2015].455

Scenario z(x∗)
Simulation Budget n

SIM KR EKR
M5-BAL-H 63 1060± 170 196± 31 78± 14
M5-BAL-L 39 592± 72 159± 25 35± 8
M5-MID-H 55 1693± 326 289± 48 46± 7
M5-MID-L 35 786± 107 214± 39 95± 22
M5-B2-H 83 675± 79 217± 34 122± 21
M5-B2-L 45 958± 116 188± 28 39± 6

Table 3 The simulation budget n required to obtain the optimum z(x∗) is reported accord-
ing to the algorithm used (mean and corresponding 95% confidence interval is computed
over 50 algorithm replications).
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Fig. 5 Comparison of algorithm performance for scenario M5-BAL-H. The mean of 50
algorithm replications and its 95% confidence interval (dotted lines) is represented. Lines
start when all replications reach a feasible solution. When the line of the mean reaches the
optimum (i.e., 63 for this case), it means that all replications obtain the optimum.

Moreover, it is noteworthy that the accuracy of the solution obtained using456

the proposed algorithm varies according to the stopping condition used, i.e.,457

the EItarget. The double effect on solution accuracy and simulation budget458

n can be analyzed as in Figure 6. For both algorithms (KR and EKR), the459

number of simulations used before the algorithm stops decreases as the EItarget460

increases. With EItarget = 0.2 the algorithms stop at first iteration so that the461

simulation budget n is equal to the initial budget n0 (the initial budgets for462

KR and EKR are set to be the same, i.e., n0 = 16, in this experiment for463

comparison purposes). On the contrary, the higher the EItarget, the lower the464

solution quality because the value of the total buffer capacity increases. In465

the figures, the average total buffer capacity with EItarget = 0.2 is lower than466

that with EItarget = 0.15 because of the sampling noise. According to the 95%467

confidence interval, the results of these two EItarget values are not statistically468

different. With the same value for EItarget, the EKR performs better than KR.469

Similar conclusions can be drawn for long lines, i.e., scenarios M15-BAL-L470

and M15-MID-H. Figure 7 represents how the solution improves as simulation471

budget n increases. The best found solution among all algorithm replications472

is 189 for M15-BAL-L and 226 for M15-MID-H. Despite not knowing the opti-473

mum, we assume that the best found is the near-optimum solution of reference.474

SIM and KR perform similarly, whereas EKR obtains good solutions after475

few simulations. The surrogate model created by KR is built with few initial476

pieces of data (n0 = 56 for these scenarios) and, given the high-dimension477

of the problem, it does not perform well in estimating system performance.478

Therefore, the quality of the promising points, provided by the KR-based479

generative method, is low and the algorithm is slow in improving the objective480

function. On the contrary, despite the initial budget being low, the prediction481

accuracy of the surrogate model built with the EKR is highly improved by the482
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Fig. 6 Final solution obtained and number of simulations used (mean of 50 algorithm
replications and 95% confidence interval) for M5-BAL-H varying EItarget.

involvement of the DDX method. A good and feasible solution is found after483

a few runs of the generative method (the cliff down in Figure 7).484

4.3.2 A Note on Computational Time485

The proposed algorithm is efficient in obtaining a good solution within few486

iterations, i.e., with limited simulation budget. Although the execution of the487

surrogate model is fast, at each iteration the generative method executes the488

surrogate model many times, thus it might lead to a high computational time.489

Nevertheless, the computational time required by the generative method is not490

affected by the running time of the simulation model, which is involved only491

in the evaluation phase. As a consequence, the proposed approach maintains492

efficiency in problems in which the evaluation method is highly time-consuming493

as well.494

For the evaluated cases, the simulation of short (long) lines requires on the495

average 0.09 seconds (0.41 seconds) with Matlab2018b on a laptop Intel(R)496

Core(TM) i7-6600U with 2.6GHz and 16GB of RAM. The total simulation497

time accounts of around 10% of the total time required. The rest of the time498

includes the creation and update of the surrogate model and the generative499
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Fig. 7 Comparison of algorithm performance for scenarios M15-BAL-L and M15-MID-H.
The mean of 10 algorithm replications and its 95% confidence interval (dotted lines) is
represented for SIM, EKR, and KR.

method, i.e., the execution of the DDX method and the surrogate model to500

provide estimates. This time can be further reduced by improving the opti-501

mization technique.502

It takes on average about 65 seconds to reach the optimum in scenario M5-503

BAL-H, and about 23 minutes to solve scenario M15-BAL-L (in M15-BAL-L504

the solution is on average 1% larger than the best found 189). These times505

will be reduced by using the proposed algorithm in a problem decomposition506

approach, as shown in Section 4.4.507

4.4 Benefit of Problem Decomposition508

In the previous section, we show that the proposed generative method can509

reduce the effort of the evaluative method, i.e., the simulation budget. In this510



20 Ziwei LIN et al.

section, we show that the use of the problem decomposition framework can511

reduce the search effort in the proposed generative method.512

In this section, the algorithms are compared in terms of solution obtained513

and the required computational time. Time is used instead of simulation bud-514

get for two reasons. One is that within the decomposition framework, the515

simulation budget used at a certain hierarchy is not equivalent to that used516

at a higher one, which makes it difficult to compare the simulation effort for517

different hierarchies. The other reason is that the use of the problem decom-518

position approach has a significant effect on algorithm efficiency because of519

the time spent in the generative method, which does not affect the simulation520

budget. As in Section 4.3, the simulated sample-path used to evaluate solution521

x is fixed for each scenario. Results of this section have been obtained with522

Matlab2018 on a server with Xeon cores and 196 GB of RAM (data refers to523

a single core).524

GA parameters are as in Table 2, except that the population size is selected525

as min(10∗ `, 50) for hierarchy `. Algorithm parameters (initial budget n0 and526

EItarget) have been tuned according to problem dimension (i.e., the hierarchy527

`) as in Table 4. It is important to mention that the final problem (i.e., the528

system belonging to the higher hierarchy ` = S−1) is solved with EItarget = 0529

to have a more accurate solution, as discussed in Section 4.3.1.530

Table 4 Selected initial budget size and stopping criterion for each sub-problem M(`, j)|` =
1, . . . , S − 2 where xbest

(`,j)
is the current best solution for the sub-problem M(`, j).

Algorithm Initial Budget Size n0 Sub-problem EItarget
Dec + KR 5 * ` 2% ∗ z(xbest

(`,j)
)

Dec + EKR 3 * `
8% ∗ z(xbest

(`,j)
) for M5 scenarios

0.2% ∗ z(xbest
(`,j)

) for M15 scenarios

4.4.1 The Effect of Problem Decomposition and Throughput Target531

The average total computational time that different algorithm settings require532

to solve the BAP is reported in Table 5. Comparing the use of KR and EKR533

is aligned with Section 4.3: the use of DDX reduces the time required to find534

a BAP solution with up to an 85% reduction in the M5-MID-H scenario (51%535

on the average, only in the M5-B2-H scenario are the results not significantly536

different).537

In the evaluated cases, the problem decomposition approach further re-538

duces the computational time and it is more efficient when high total buffer539

capacity is required, i.e., ”H” scenarios with a high throughput target. Indeed,540

the lower bounds set by low hierarchies in ”H” scenarios are higher than those541

in ”L” scenarios because the throughput target constraint is present in all the542

sub-problems. As a consequence, the remaining search space is small in ”H”543

scenarios and the efficiency is highly improved. Compared to EKR, Dec+EKR544
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saves on average 83% of the time for high target scenarios and 48% for low545

target ones. Similar results apply for KR versus Dec+KR.546

Scenario z(x∗)
Computational Time (Relative frequency of exact solution)

KR Dec+KR EKR Dec+EKR
M5-BAL-H 63 100± 21 (1) 50± 7 (0.94) 65± 14 (1) 8± 0.3 (1)
M5-BAL-L 39 70± 15 (1) 68± 13 (0.84) 18± 6 (1) 11± 1 (1)
M5-MID-H 55 213± 43 (1) 59± 12 (0.92) 33± 7 (1) 11± 1 (1)
M5-MID-L 35 111± 28 (1) 105± 24 (0.94) 60± 19 (1) 30± 8 (1)
M5-B2-H 83 128± 26 (1) 31± 4 (0.98) 139± 27 (1) 9± 0.3 (1)
M5-B2-L 45 91± 18 (1) 67± 18 (0.5) 23± 5 (1) 10± 1 (0.98)

Table 5 The mean computational times [seconds] required to solve the BAP and the cor-
responding 95% confidence intervals according to the algorithm used (50 algorithm repli-
cations). The numbers in brackets represent the relative frequency of the algorithm finding
the exact solution z(x∗).

It might happen that algorithms Dec+EKR and Dec+KR do not find547

the optimal solution. Indeed, the solution found might not be exact when548

EItarget > 0 (Section 4.3.1). As a consequence, a bound might cut the optimal549

solution. In Table 5, the numbers in brackets represent the relative frequency of550

the algorithm finding the exact solution z(x∗). As a consequence, solving sub-551

problem M(`, j) with EI
(`,j)
target > 0 could save computational time, whereas,552

the lower the EI
(`,j)
target, the more accurate the bounds provided.553

Figure 8 shows a more detailed comparison for scenarios M5-BAL-H and554

M5-BAL-L. Similarly to Figure 5, the evolution of the objective function is555

reported according to different algorithm settings, and computational time is556

used as the horizontal axis. Lines start when all replications reach a feasible557

solution for the system. Also, for Dec+KR and Dec+EKR, lines start when558

all sub-problems M(`, j) are solved, which happens later compared to KR and559

EKR algorithms. The problem decomposition framework is efficient when high560

buffer capacities are needed, i.e., when the throughput target is high. On the561

contrary, if the throughput target is low, buffers are small and the benefit562

provided by the lower bounds is not significant and is counterbalanced by the563

additional effort required to solve sub-problems.564

Similar results can be obtained with long lines: M15-BAL-H and M15-565

MID-H. We limit the comparison between algorithm settings Dec+EKR and566

EKR since the surrogate model created with KR is shown to be less efficient567

(cf. Section 4.3). As a reference, the best found solution among all algorithm568

replications is 291 for M15-BAL-H and 226 for M15-MID-H.569

For M15-BAL-H, EKR stops after 18 hours, on average, and results in an570

average distance from the best found solution of 2.4 buffer spaces. Despite571

Dec+EKR starting to solve the last hierarchy after around 2 hours, it stops572

after 2.94 hours on average, and results in an average distance from the best573

found to be 1.15 buffer spaces. The advantage also appears in M15-MID-H:574

EKR and Dec+EKR stop after 11.7 and 3 hours respectively, and the average575

distance from the best found is 2.2 and 1.3 buffer slots respectively.576
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Fig. 8 Comparison of algorithm performance (mean of 50 algorithm replications) for sce-
narios M5-BAL-L and M5-BAL-H according to algorithm setting.

4.4.2 Jumping Approach577

In the problem decomposition framework, the bounds applied reduce the so-578

lution space simplifying the search in the generative method. Table 6 shows579

the buffer allocation xbest
(`,j) found by solving BAP of sub-system M(`, j). So-580

lutions are optima and have been validated using the algorithm proposed in581

[Weiss and Stolletz, 2015]. A is used to denote the feasibility region of the582

final problem, i.e., M(4, 1) having hierarchy ` = 4 and including the whole583

system. We compute the fraction P of search space A that remains after all584

sub-systems are solved:585

P = 1−
S−2∑
`=1

S−∑̀
j=1

p(`,j) (14)

where p(`,j) is the fraction of additional cut space provided by the bound from586

sub-system M(`, j). For the evaluated scenarios, the remaining spaces are 26%,587

34%, and 7% of search space A respectively for M5-BAL-H, M5-MID-H, and588

M5-B2-H. For a low throughput target, the reduction is significant but much589

smaller, i.e., the remaining spaces are 70%, 66%, and 51% for M5-BAL-L,590

M5-MID-L, and M5-B2-L, respectively. Results in Table 6 support the results591
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obtained in Section 4.4.1: the bounds are more effective in ”H” scenarios than592

in ”L” scenarios.593

M5-BAL-H M5-MID-H M5-B2-H

M(`, j) z(xbest
(`,j)

) p(`,j) z(xbest
(`,j)

) p(`,j) z(xbest
(`,j)

) p(`,j)
M(1,1) 6 0.19 1 0.03 11 0.35
M(1,2) 6 0.16 9 0.28 11 0.23
M(1,3) 6 0.13 9 0.20 11 0.15
M(1,4) 8 0.14 1 0.02 11 0.10
M(2,1) 22 0.03 22 0.06 28 0.01
M(2,2) 22 0.02 24 0.01 38 0.05
M(2,3) 24 0.03 22 0.04 28 0.00
M(3,1) 42 0.02 40 0.01 61 0.03
M(3,2) 44 0.02 39 0.01 60 0.01

z(x∗) P z(x∗) P z(x∗) P
M(4,1) 63 0.26 55 0.34 83 0.07

M5-BAL-L M5-MID-L M5-B2-L

M(`, j) z(xbest
(`,j)

) p(`,j) z(xbest
(`,j)

) p(`,j) z(xbest
(`,j)

) p(`,j)
M(1,1) 1 0.03 1 0.03 3 0.10
M(1,2) 1 0.03 3 0.09 3 0.09
M(1,3) 1 0.03 3 0.08 3 0.08
M(1,4) 1 0.03 1 0.03 3 0.07
M(2,1) 12 0.05 12 0.03 16 0.05
M(2,2) 12 0.04 14 0.03 18 0.05
M(2,3) 14 0.06 12 0.03 16 0.03
M(3,1) 25 0.02 25 0.01 31 0.01
M(3,2) 26 0.01 24 0.01 31 0.01

z(x∗) P z(x∗) P z(x∗) P
M(4,1) 39 0.70 35 0.66 45 0.51

Table 6 Effect of bounds on high and low-target scenarios. Solution xbest
(`,j)

of each sub-

problem M(`, j) and fraction p(`,j) of the additional cut space. The fraction P of remaining
search space for the final problem M(4, 1) is also reported.

From results in Table 6, the additional cut space p(`,j) reduces as the hi-594

erarchy ` of the sub-problem increases. This means that the benefit provided595

by solving a sub-problem reduces while approaching the final problem. Com-596

putational time to solve M15-BAL-H using the Dec+EKR algorithm and the597

remaining space given the lower bounds are analyzed as in Figure 9:598

– A bowl effect is noticed in the computational time required to solve sub-599

systems in hierarchy `.600

– The fraction of the additional cut space over the whole domain (as for the601

fraction of the additional cut space over the remaining space) decreases as602

the hierarchy increases.603

As the hierarchy increases, the effort required to solve all sub-problems604

is high whereas the benefit provided by the bounds is small. Moreover, the605

higher the hierarchy, the closer the created bound to the optimum. Thus, the606

risk of excluding the optimal solution from the search space increases as we607

approach the final problem. Hence, we investigate a ”jumping strategy” that608
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only partially solves the set of sub-problems and focuses on those with lower609

hierarchies.610
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Fig. 9 Computational effort and efficiency of bounds for scenario M15-BAL-H. The fraction
of the additional space cut by solving sub-problems at each hierarchy and the average of
the total time used for solving sub-problems at each hierarchy for scenario M15-BAL-H.
The diamond mark indicates that the fraction relates to the whole feasible domain and the
triangular mark indicates the fraction with respect to the remaining space at the current
hierarchy. The mean of 20 algorithm replications is reported.

A first analysis is focused on M5-BAL-H where several ”jumping strategies”611

are evaluated. If all hierarchies are jumped, the algorithm solves the final612

problem directly (i.e., hierarchy ` = 4) resulting in the EKR algorithm setting.613

Vice versa, if all hierarchies are executed (i.e., hierarchy ` = 1, 2, 3, 4), the614

algorithm has Dec+EKR setting and results are equal to that of Section 4.4.1.615

We consider three ”jumping” strategies: to solve hierarchies ` = {1, 4}, to616

solve hierarchies ` = {1, 2, 4}, and to solve hierarchies ` = {1, 3, 4}. As shown617

in Figure 10, solving the first and last hierarchies (` = {1, 4}) is the best618

approach analyzed.619

The benefit provided by lower bounds might be offset by the effort spent on620

solving sub-problems at high hierarchies. This phenomenon is more significant621

in long lines. For scenarios M15-BAL-H and M15-MID-H respectively, Fig-622

ure 11 and Figure 12 show the solution provided by algorithms with different623

jumping strategies as the computational time increases. It can be found that,624

for cases for which a high total buffer capacity required (i.e., high through-625

put target), a decomposition approach is efficient compared to solving the626

final problem directly. Nevertheless, a long computational time is needed to627

solve sub-problems at all hierarchies before obtaining a feasible solution. As628

discussed for 5-machine lines, jumping high-hierarchies might save computa-629

tional times.630

The idea of skipping some sub-problems also appears in the segmentation631

approach proposed by Shi and Gershwin [Shi and Gershwin, 2016]. However,632

the authors do not apply a hierarchical solving approach, but focus on solving633
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Fig. 10 Comparison of algorithm performance for scenarios M5-BAL-H (mean of 20 algo-
rithm replications). The EKR model is used in decomposition framework although only a
subset of hierarchies is solved.

some sub-problems and combining their local solutions. Therefore, the authors634

decompose the system into a few overlapping sub-systems and solve each of635

them to obtain local solutions.636

Differently, in the proposed ”jumping strategy”, we set out to solve all637

sub-problems in a certain hierarchy because we cannot state a-priori which638

sub-problem is more significant in terms of generated cut without additional639

information.640

4.4.3 The Effect of Re-using Data641

The use of the EKR method to create the surrogate model combined with642

a decomposition approach enables the re-use of data from one hierarchy to643

the next. This feature might be useful when an analytical approach is not644

available.645

M5-BAL-H is used as an example to evaluate how the re-use of data affects646

the results. Figure 13 shows that Dec + EKR (re-use) performs better than647

Dec + KR, although it is not as useful as including the DDX method. The648

computational effort required by the setting Dec + EKR (re-use) to solve the649

BAP is reported in Table 7 and can be compared with that for other settings650

(cf. Table 5). When helpful analytical methods cannot be applied or are not651

available, re-using data from lower hierarchical systems can also be promising652

compared to KR, that uses only HF simulation data.653

This result is also supported by Figure 14 representing the prediction er-654

ror obtained while evaluating the productivity of the final system M(S −655

1, 1). Three algorithm settings are compared using nc = 104 checkpoints:656

Dec+KR, Dec+EKR(DDX), and Dec+EKR(re-use). When the proposed al-657

gorithm reaches the highest hierarchy and creates the surrogate model of the658

final system, the MAPE is computed. For comparison purposes, the initial659
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Fig. 11 Comparison of algorithm performance for scenario M15-BAL-H (mean of 20 algo-
rithm replications).
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Fig. 12 Comparison of algorithm performance for scenario M15-MID-H (mean of 20 algo-
rithm replications).

design at hierarchy ` = S − 1 contains the same number of design points for660

different algorithm settings: ||X0|| = 16 for scenario M5-BAL-H and ||X0|| = 56661

for scenario M15-BAL-L. These design points are sampled in the search space662

resulting after the cuts provided in the decomposed approach.663

The surrogate model created using the EKR(DDX) has the smallest pre-664

diction error and re-using data also improves the quality of the built surrogate665

model compared to that created using the KR method.666
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Fig. 13 Comparison of algorithm performance for scenarios M5-BAL-H (mean 50 algorithm
replications).

Scenario z(x∗) Computational Time Relative frequency of exact solution
M5-BAL-H 63 39± 7 (1)
M5-BAL-L 39 57± 8 (1)
M5-MID-H 55 50± 9 (0.98)
M5-MID-L 35 72± 9 (1)
M5-B2-H 83 44± 10 (1)
M5-B2-L 45 56± 10 (0.94)

Table 7 The mean computational times [seconds] required to solve the BAP and the cor-
responding 95% confidence intervals with setting Dec+EKR(re-use) (50 algorithm repli-
cations). Relative frequency of the exact solution z(x∗) is also reported. Results can be
compared with those of Table 5.

EKR(DDX) EKR(re-use data) KR
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M
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M5-BAL-H

EKR(DDX) EKR(re-use data) KR
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M
A

PE

M15-BAL-L

Fig. 14 MAPE of the surrogate models created by KR, EKR using DDX as LF, and EKR
using lower hierarchy models as LF. Boxplots are created with 50 algorithm replications for
scenario M5-BAL-H and 10 replications for scenario M15-BAL-L.

5 Conclusions667

The proposed method is efficient when the evaluative method is time-consuming668

(e.g. highly detailed simulation model). Also, the algorithm has a significant669

advantage in BAP where the optimal total buffer capacity is high. These ad-670

vantages are due to two properties of our approach:671

1. The simulation budget is saved through an efficient allocation of the budget672

in near-optimum areas thanks to the use of the surrogate model;673
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2. The generative method increases efficiency as more search space is cut by674

the decomposition approach.675

Because of the randomness of the initial design, and the GA used in the gen-676

erative method, the overall algorithm has a heuristic nature. Nevertheless, the677

variability of the results is very limited. Further, the combination of simula-678

tion and analytical methods improves the accuracy of the surrogate model even679

with few observations and improves the efficiency of the algorithm significantly.680

Where no analytical method is available, re-using data in the decomposition681

framework could be also helpful.682

In the decomposition framework, running all the hierarchies might be not683

efficient. A trade-off exists between additional computational effort required to684

solve sub-problems and the size of solution space cut by the provided bounds.685

In this case, jumping some hierarchies might be helpful.686

The proposed method is highly flexible in terms of applications besides the687

BAP. It can be applied potentially to other problems in which the decision688

variables are continuous or discrete values with a larger candidate set (so that689

the surrogate model can be built) and lower/upper bounds can be provided690

from lower hierarchies (so that the decomposition framework is helpful), e.g.691

resource and server allocation problems, line balancing problems, redundancy692

problems, design and control problems of production lines. Hence, future de-693

velopments will be focused on generalising the approach.694

Future work will be devoted to investigating the use of surrogate models695

in an exact approach. Moreover, ”jumping” strategies will be further investi-696

gated in order to understand which hierarchies should be jumped to improve697

efficiency. Also, sub-systems containing the bottleneck can be prioritized com-698

pared to others since they provide more efficient bounds.699

The EKR method provides an efficient way to create a surrogate model700

of system performance from multi-fidelity sources. The expensive high-fidelity701

data (e.g. outputs of highly detailed simulation models or data from the field) is702

combined with low-fidelity estimates (e.g. outputs of coarse simulation models703

or analytical methods), which are fast and easy to calculate, to improve the704

prediction performance of the built surrogate model. The EKR method can705

assign different weights to different low-fidelity models in different areas of the706

domain automatically, according to the observed data.707

This section describes briefly how to build the surrogate model using the708

EKR method. A Matlab EKR toolbox (both the EKR code and a manual)709

can be found at [Lin et al., 2020] DOI: 10.13140/RG.2.2.16632.19206. More710

details about the method can be found in [Lin et al., 2019].711

Given a system configuration x under which the high-fidelity system perfor-712

mance yh(x) is unknown, its low-fidelity outputs ylj (x),∀j are firstly corrected713

by scaling functions. Two scaling functions are considered:714

1. Additive scaling function: ỹ
lj
i (x) = ylj (x)+(yh(x0

i )−ylj (x0
i )),∀i ∈ N ,∀j ∈715

J ;716

2. Multiplicative scaling function: ỹ
lj
i (x) =

yh(x
0
i )

ylj (x
0
i )
· ylj (x),∀i ∈ N ,∀j ∈ J .717
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where yh(x0
i ) and ylj (x0

i ) are the outputs of the high-fidelity model and the j-718

th low-fidelity model at the i-th design point x0
i , respectively. Different scaling719

functions can be used for different low-fidelity models.720

These corrected outputs are expected to have more reliable prediction per-
formance if their scaling functions are estimated by the initial design points
close to the unobserved point. Therefore, for the j-th low-fidelity model, Ker-
nel regression [Wand and Jones, 1995] is used to locally fit a polynomial on

the corrected data ỹ
lj
i (x) with distance-based weights. The system perfor-

mance estimate at the unobserved point x, using the j-th low-fidelity model’s
corrected data, has a closed form:

ŷlj (x) = eT1 (XT
xWxXx)−1XT

xWxỸlj ,∀j ∈ J , (15)

where e1 is a (dp+ 1)-dimensional vector whose first element is 1 and the rest
are 0,

Xx =


1 (x0

1 − x)T · · ·
[
(x0

1 − x)p
]T

1 (x0
2 − x)T · · ·

[
(x0

2 − x)p
]T

...
...

. . .
...

1 (x0
n − x)T · · ·

[
(x0
n − x)p

]T


is an n × (dp + 1) matrix, p is the degree of the fitted polynomial and Ỹlj =

[ỹ
lj
1 (x), · · · , ỹljn (x)]T . Wx = diag{K1,Θ1

(x0
1 − x), · · · ,K1,Θ1

(x0
n − x)} is an

n× n diagonal matrix where

K1,Θ1
(x0
i − x) =

d∏
k=1

exp

{
− 1

2θ1,k
(x0ik − xk)2

}
,∀i ∈ N ,

Θ1 = diag{θ1,1, · · · , θ1,d}, and θ1,k > 0, k = 1, · · · , d are parameters to be721

selected.722

Finally, the estimates from different low-fidelity models are combined with
the weights related to the estimated weighted square error:

ŷEKR(x) =
∑
j∈J

wlj (x)ŷlj (x),

where:

wlj (x) =
K2,θ2( ˆWSElj (x))∑
i∈J K2,θ2( ˆWSEli(x))

,

ˆWSElj (x) = (tr(Wx))−1Ỹ T
lj (Wx−W T

xXx(XT
xWxXx)−1XT

xWx)Ỹlj ,∀j ∈ J ,

and tr(Wx) is the trace of Wx. K2,θ2(·) has the following form:

K2,θ2( ˆWSElj (x)) = exp

{
−

ˆWSElj (x)

2θ2WSEmin(x)

}
,∀j ∈ J ,
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where:
WSEmin(x) = min

j∈J
{ ˆWSElj (x)},

and θ2 is an unknown parameter to be selected.723

The model parameters θ1,k, θ2 are selected according to the cross validation.
Where p = 1, the estimated root square error of ŷEKR(x) as an estimate of
the high-fidelity response is provided as:

ŝEKR(x) =

√
ˆWSE(x)

(
1 +

1

2d/2tr(Wx)

)
where:

ˆWSE(x) = (tr(Wx))−1Ỹ T (Wx −W T
xXx(XT

xWxXx)−1XT
xWx)Ỹ

and:

Ỹ =

∑
j∈J

wlj (x)ỹ
lj
1 (x), · · · ,

∑
j∈J

wlj (x)ỹljn (x)

T .
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