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Abstract: Next Generation Sequencing technologies have produced a substantial increase of publicly
available genomic data and related clinical/biospecimen information. New models and methods to
easily access, integrate and search them effectively are needed. An effort was made by the Genomic
Data Commons (GDC), which defined strict procedures for harmonizing genomic and clinical
data of cancer, and created the GDC data portal with its application programming interface (API).
In this work, we enhance GDC harmonization by applying a state of the art data model (called
Genomic Data Model) made of two components: the genomic data, in Browser Extensible Data (BED)
format, and the related metadata, in a tab-delimited key-value format. Furthermore, we extend the
GDC genomic data with information extracted from other public genomic databases (e.g., GENCODE,
HGNC and miRBase). For metadata, we implemented automatic procedures to extract and normalize
them, recognizing and eliminating redundant ones, from both Clinical/Biospecimen Supplements
and GDC Data Model, that are present on the two sources of GDC (i.e., data portal and API).
We developed and released the OpenGDC software, which is able to extract, integrate, extend,
and standardize genomic and clinical data of The Cancer Genome Atlas (TCGA) from the GDC.
Additionally, we created a publicly accessible repository, containing such homogenized and enhanced
TCGA data (resulting in about 1.3 TB). Our approach, implemented in the OpenGDC software,
provides a step forward to the effective and efficient management of big genomic and clinical
data of cancer. The strong usability of our data model and utility of our work is demonstrated
through the application of the GenoMetric Query Language (GMQL) on the transformed TCGA
data from the GDC, achieving promising results, facilitating information retrieval and knowledge
discovery analyses.

Keywords: data modeling; data integration; next generation sequencing; cancer; knowledge extraction

1. Background

The large amount of genomic data generated by Next Generation Sequencing (NGS)
technologies [1,2] and their related clinical data brings significant value for medical research,
especially for cancer studies [3]. Thanks to NGS techniques, different types of experimental data are

Appl. Sci. 2020, 10, 6367; doi:10.3390/app10186367 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-2778-3709
https://orcid.org/0000-0003-2920-5838
https://orcid.org/0000-0001-8016-5750
https://orcid.org/0000-0003-4528-6586
https://orcid.org/0000-0003-0671-2415
https://orcid.org/0000-0003-2574-1174
https://orcid.org/0000-0002-8045-2925
http://www.mdpi.com/2076-3417/10/18/6367?type=check_update&version=1
http://dx.doi.org/10.3390/app10186367
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 6367 2 of 20

produced, whose storage and analysis can be very demanding [4–6]. More and more often researchers
have to face big biological data [7,8], frequently lacking integrated data models and accessible schema
representations. Thus, storing, retrieving, integrating, comparing, and analyzing heterogeneous
biomedical data becomes a major challenge.

In cancer research, several organizations are involved in the collection, management and
publication of genomic and clinical data. In particular, the Genomic Data Commons (GDC [9,10]) is
a recent initiative of the National Cancer Institute (NCI) with the aim of creating a unified system to
promote the sharing of these data. The GDC supports several programs and defines bioinformatics
pipelines: it provides Clinical/Biospecimen Supplements and genomic data harmonization procedures
related to DNA-sequencing [11], RNA-sequencing [12,13], miRNA-sequencing [14], Copy Number
Variation [15] and DNA-methylation [16]. The processed data is publicly available through the GDC
portal, which deals with different cancer programs; The Cancer Genome Atlas (TCGA) [17] is the most
relevant project within the GDC, collecting genomic and clinical data of 33 different tumor types of
over 11,000 patients [18].

TCGA data were available at its own portal until late 2016, but since early 2017 they were
migrated to the new GDC portal, resulting in a major change of genomic and clinical/biospecimen
formats and schema. In the GDC portal, experimental data (i.e., DNA-sequencing, RNA-sequencing,
miRNA-sequencing, Copy Number Variation and DNA-methylation data) are produced from
harmonization procedures applied on different analysis strategies, improving the quality of data
available at the old TCGA portal. Indeed, the GDC provides a programmatic access to interact with
these harmonized data through Application Programming Interfaces (APIs), e.g., to obtain aliquot
Universal Unique Identifiers (UUIDs) that identify uniquely GDC experiments. The harmonization
procedures provide standardized and comparable data, depending on the type of NGS experiment,
regardless of the program where they were generated.

For what concerns metadata, Clinical/Biospecimen Supplements were represented in
an unstructured format in the TCGA portal; conversely, the GDC introduced a new structured data
model (i.e., the GDC Data Model). The transition is however still incomplete: the GDC provides some
relevant clinical/biospecimen information only in the old unstructured format and some other only
or also in the new format. Correspondingly, the GDC exposes two different methods for retrieving
clinical and biospecimen information. The first one is the direct download of Supplements from the
GDC portal in XML format, which is semi-structured and does not adhere to a specific data model.
The second one is through the GDC APIs, which allow downloading structured information according
to the GDC Data Model and provide output in JSON format. These methods allow reaching two
different materializations of the metadata, partly overlapping with each other.

The GDC is proceeding with the migration from the first representation to the second one,
importing and inserting the data contained in the first within the second. However, in this transitory
phase (that has lasted for several months and will probably last for a long time), much of the
information in the first model is not yet replicated to the second, and there is no single source that
provides information from both models. In order to obtain a comprehensive representation of such
information, it is therefore necessary to extract data using a pipeline that deals with model differences
and identifies, manages and removes the overlapping information. The first contribution of our work is
the design and development of such a pipeline, such that the clinical and biospecimen data (referred to
as metadata) are represented with a common format.

In our work, we solve the issues arisen in the transition from the TCGA data portal to the GDC one,
providing genomic data and their associated clinical/biospecimen metadata in a standardized format,
making both of them seamless, straightforward and easy to be used. We enhance GDC harmonized
data by applying a state of the art data model for genomics, in order to uniform genomic and
clinical/biospecimen data. We automatically standardize data by mapping them to such unique
common schema, thereby supporting scientists in data integration and analyses [19–21]. We also
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integrate information extracted from external public databases, i.e., GENCODE [22], HGNC [23],
miRBase [24] and NCBI genome annotations [25], enriching the content of the experimental data.

This work is an evolution of another project, TCGA2BED [26], which faced partially similar
but much simpler issues, focusing on the old TCGA portal. Unlike TCGA2BED, beside extending
TCGA genomic data and standardize the format in which they are provided by the GDC, we integrate,
normalize and make non-redundant their multiple metadata available with different representations;
we do so by mapping them to a unique data model and widely exploiting the GDC APIs to interact
with and extract GDC data. Our main contribution is the integrative representation of experimental
and clinical/biospecimen data by applying the Genomic Data Model (GDM [27]); this then allows
querying them, together with other data from multiple sources, uniformly and comprehensively
through the GenoMetric Query Language (GMQL [28,29]) directly on a new publicly available
repository of standardized data. GDM consists of two parts, one describing processed datasets with
a genomic region-based format, and one describing the metadata. For the former one, we map the
content of GDC data to GDM, thereby transforming the experimental data of the GDC into a new data
collection, which we denote as OpenGDC, harmonized and extended by linking with other public
databases. For the latter one, the Clinical and Biospecimen Supplements (which are semi-structured,
not part of a data model) are extracted and merged with all the information on clinical and biospecimen
data available through the GDC APIs (which is structured and adheres to the GDC Data Model),
and finally converted to the metadata format of GDM, used by OpenGDC.

Other works have dealt with the problem of storing, retrieving and enhancing data of the GDC,
almost all of them are focused on the TCGA program. Among them, we mention: (i) TCGA-assembler
2 [30], a software pipeline which allows downloading TCGA data from the GDC defining filtering
criteria to merge the extracted data files of samples into a single data table, and finally to process
them; (ii) The International Cancer Genome Consortium (ICGC [31]), which provides a data portal to
characterize genomic abnormalities in different cancer types, including data from TCGA; (iii) The Seven
Bridges Cancer Genomics Cloud (CGC [32]), which allows accessing data from public cancer genomic
datasets (e.g., TCGA) and analyzing them in the cloud by using bioinformatics tools and workflows.
All these works are of great interest and improve the access to GDC data; in particular they
aggregate them, identify important genomic features, and analyze them with cloud computing
resources. Moreover, there are several state-of-the-art tools to retrieve and analyze TCGA data,
including some R packages like (i) TCGAbiolinks [33], which provides algorithms for data mining
and analysis of cancer genomics, (ii) cbioportal [34], an open platform for interactively exploring
multidimensional cancer genomics data sets in the context of clinical data and biologic pathways,
(iii) Xena [35], an easy-to-use cancer genomics visualization tool for large public data resources of
the GDC. Conversely, our approach is different, as it aims at facilitating the use of TCGA data of the
GDC by providing it in a standardized and extended format, and enriched with multiple integrated
metadata. In particular, OpenGDC provides a structured data format of the different types of genomic
experiments through a single schema, and considers the clinical and biospecimen information as strict
defined structured metadata. For a more detailed overview of the available tools for TCGA data
we refer to the work [36], where the authors identify two main categories of TCGA tools, for data
Extraction and for Integrative data analysis. We can use this distinction and classify our novel system in
the first category.

The rest of this manuscript is organized as follows. Section 2 presents the Genomic Data Model and
its application to the different data types retrieved from the GDC. Here, we also describe the pipeline
used to build metadata from Clinical/Biospecimen Supplements and from additional information
retrieved through GDC APIs, as well as we illustrate the detection and removal procedure of redundant
metadata attributes. In Section 3 we show the architecture of our novel software system, OpenGDC,
for the extraction, harmonization and extension of genomic data and metadata from the GDC. We also
describe the structure of the created FTP repository, containing all the public accessible genomic and
clinical data of the TCGA program of the GDC and their harmonized and extended OpenGDC version
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already produced using our software system. Section 4 shows examples of querying and processing
of the new OpenGDC data with GMQL, highlighting the advantages provided by the performed
harmonization and extension. In Section 5 we discuss the main aspects of our contribution, summarize
our final remarks and mention future developments.

2. Methods

In this section we describe the standardization of GDC experimental data and
Clinical/Biospecimen Supplements through the application of GDM, which provides a representation
of the genomic experimental data in Browser Extensible Data (BED) format [37] and of its
biological/clinical properties (i.e., metadata) in a key-value format. Genomic data are extended with
additional information extracted from external public databases. Using GDM, experimental data
are unified into a single format, thus becoming homogeneous, coherent, and comparable. Metadata
are also unified, as the original GDC metadata formats are all associated with a single format of
key-value pairs, although the keys and the number of pairs may vary across different datasets.
Because of the heterogeneous nature of data, it is not possible to know a priori all the clinical,
biological and experimental properties of the experimental samples; these are produced as a result
of metadata mapping. Futhermore, to generate metadata we develop intelligent procedures for
identifying redundant metadata information that are present on the two different sources of the GDC:
Clinical/Biospecimen Supplements from the data portal and GDC Data Model information from
the API.

In the next two subsections we detail the genomic data and metadata formats obtained by applying
the Genomic Data Model to all open data types provided by the GDC.

2.1. The Genomic Data Format

For genomic data, we use a free-BED data representation, in which fix coordinate fields
(chromosome, start position, end position, strand) and we include additional fields according to
the specific type of experiment; for every data type we provide a specific ready-to-use schema in
XML format. We implemented automatic procedures for converting the original GDC genomic data
into such free-BED format; to index our BED output files, we introduce opengdc_id, an extension of
the aliquot Universal Unique Identifier (UUID, that is the unit of analysis for GDC genomic data
identifying a sample analyzed portion). Since in the GDC an aliquot relates to different data types,
opengdc_id concatenates the aliquot uuid with the specific data type. In the following, we provide an
overview of the input and output data of our standardization procedures; for a detailed description of
all input and output fields of each data type, the reader may refer to the OpenGDC Format Definition
(Supplementary File 1).

Gene Expression Quantification data are provided in the GDC for each aliquot in three tab-delimited
files, each of which presents the Ensembl ID of the gene and one of the following values:

1. FPKM, the number of Fragments Per Kilobase of transcript per Million mapped reads;
2. FPKM-UQ, the Upper Quartile normalized FPKM value;
3. counts, the number of reads aligned to each gene, calculated by HT-Seq.

We merge the content of these files using the common Gene_Ensembl field. Then, we extract
additional information to describe the gene regions. In the final free-BED structure we include the
genomic coordinates (i.e., chromosome, start position, end position and strand), the gene_symbol from
GENCODE (human genome version GRCh38 annotation), and the corresponding entrez_gene_id from
the NCBI genome annotation.

MiRNA Expression Quantification data are derived from the sequencing of the micro RNA
(i.e., miRNA). They contain information about the nucleotide sequence and the expression of miRNAs.
One file per aliquot is provided by the GDC, where each row refers to a single miRNA and contains
its expression computed on all reads aligning to that particular miRNA. In the free-BED output we
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consider all fields provided in input, with the addition of the miRNA genomic coordinates extracted
from miRBase and the corresponding entrez_gene_id and gene_symbol extracted from HGNC.

Isoform Expression Quantification data contain expression profiles calculated for each isoform of
the miRNA sequence. The GDC provides one file for each aliquot, where each row refers to a single
isoform. For the free-BED structure, all input fields are left unchanged with the exception of the
isoform_coords field, which is parsed to obtain separate genomic coordinate fields. As an addition,
we retrieve the corresponding entrez_gene_id and gene_symbol from HGNC.

A copy number variation (CNV) is a variation in the number of copies of a given genomic
segment per cell. The GDC provides two data types related to CNVs: Copy Number Segment (including
both germline and somatic CNVs) and Masked Copy Number Segment (including only somatic CNVs).
The internal representation is the same for both data types. A single experiment is represented by a
tab-delimited file, where each row refers to a single CNV. For the free-BED representation we reuse all
input fields except for the sample id; we add the strand field—required for the BED standard—which
we always set to ‘unknown’ using the wildcard character ‘*’.

Masked Somatic Mutation experiments discover mutations by aligning DNA sequences derived
from tumor samples to sequences derived from normal samples and to a reference sequence.
A Mutation Annotation Format (MAF) file is used to specify, for each sample, the discovered
putative or validated mutations and to categorize those mutations (SNP, deletion, or insertion) as
‘somatic’ (i.e., originating in the tissue) or ‘germline’ (i.e., originating from the germline), as well as
to specify additional information about the mutations. Four MAF files for each tumor sample are
provided by the GDC, each representing DNA-sequencing data. Each file is generated by a specific
analysis pipeline [38–41] and includes 125 attributes. By merging the four input files, we defined
a free-BED structure with 18 fields including the main information, such as genomic coordinates,
the corresponding gene_symbol and entrez_gene_id (if the mutation involve a gene), the type of mutation,
the tumor and matched normal sequencing alleles 1 and 2, and the aliquot barcode/UUID for the
tumor and matched normal samples.

A DNA methylation experiment consists in deep sequencing of bisulfite-treated DNA. It can
be obtained as the covalent modification of cytosine bases at the C-5 position, generally within a
CpG sequence context. If DNA methylation occurs in promoter regions, it is an epigenetic mark
that represents the repression of the transcripts of the promoter gene. We consider both Illumina
Infinium HumanMethylation27 (HM27) and HumanMethylation450 (HM450) DNA methylation
platforms, used for measuring the level of methylation at 27,578 and 485,577 known CpG sites as
beta values (respectively for HM27 and HM450). By using probe sequence information provided
in the manufacturer manifest, HM27 and HM450 probes are remapped to the GRCh38 reference
genome. These probe coordinates are then used to identify the associated transcripts from GENCODE,
the associated CpG island (CGI), and the position of the CpG site in reference to the island. For each
methylated site the GDC reports a list of gene symbols; the genes that fall within 1500 bp from the
methylated site are used, considering the gene as starting from the transcription start site (TSS) to the
end of the gene body. For each aliquot, the GDC provides a tab-delimited Methylation Beta Value
data file with 11 fields. We define a free-BED structure composed of 18 fields, which includes all
original fields with the addition of the strand, the entrez_gene_id retrieved from GENCODE or HGNC,
the ensembl_transcript_id, the position_to_tss (distances in base pairs of the CpG site from each associated
transcript start site; negative values indicate that the CpG site is located downstream with respect to
the TSS), and the cgi_coordinate (i.e., the start and end coordinates of the CpG island associated with the
CpG site). Moreover, we filtered out the methylation sites with missing beta values (i.e., not measured
or with unreliable measurement) and reported the gene symbol that is at minimum bp distance from the
methylated CpG dinucleotide, in case this is outside a gene region.
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2.2. Metadata Format

Each experimental BED file is associated with a metadata file containing a list of key-value pairs.
Also metadata files are indexed with an opengdc_id, which identifies the pair of BED-metadata files.
To populate the OpenGDC metadata files, we retrieve clinical/biospecimen information from the GDC
data type called Clinical and Biospecimen Supplements. In addition, we consider other properties
retrieved using the GDC APIs (specifying aliquot uuid and data type as parameters).

Clinical and Biospecimen Supplements are a special data type that contains data documentation;
this information is stored in two different XML format files, originally provided by Biospecimen Core
Repositories (BCRs) under contract of the National Cancer Institute (NCI). A Clinical Supplement is a
collection of information about demographics, medical history (i.e., diagnosis, treatments, follow ups,
and molecular tests), and family relationships (i.e., exposure and history) of a particular patient.
A Biospecimen Supplement instead includes information associated with the physical sample taken
from a patient and its processing.

2.3. Metadata Extraction And Composition

The content of an OpenGDC metadata file is obtained by taking into account:

1. the BCR Biospecimen and Clinical Supplements,
2. the information retrieved through the GDC APIs,
3. additional manually curated attributes computed within our standardization pipelines.

Given a converted experimental data file in free-BED format, identified by an opengdc_id,
the corresponding metadata file is generated according to the pipeline shown in Figure 1.
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Figure 1. Metadata pipeline overview. The procedure starts with the download of the Biospecimen and
Clinical Supplement files by using the Genomic Data Commons (GDC) application programming
interfaces (APIs) according to a patient uuid. Aliquot uuids are extracted from the Biospecimen
Supplement file, whose content is split by aliquot. Based on these aliquot uuids and their associated
data types, the GDC Data Model is queried through the GDC APIs, in order to obtain additional
metadata information. Finally, inside a unique metadata file, we merge together: clinical data, a portion
of biospecimen data, GDC Data Model metadata, and manually curated attributes (automatically
generated by the pipeline). The obtained metadata attributes and their values are processed by
two additional components of the pipeline: the Data redundancy solver, which deals with removing
redundant attributes and their values, and the Data renaming module, which applies rules for renaming
attributes. The remaining and possibly renamed attributes, along with their values, compose the final
OpenGDC metadata file.

https://gdc.cancer.gov/about-data/data-harmonization-and-generation/clinical-data-harmonization
https://gdc.cancer.gov/about-data/data-harmonization-and-generation/biospecimen-data-harmonization
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On the top left corner of Figure 1, we consider Biospecimen and Clinical Supplements; they are
organized by patient (identified by the bcr_patient_uuid attribute), with a patient typically related to
many aliquots. Multiple OpenGDC metadata files are created, one for each aliquot reported in the
patient biospecimen file. We replicate the full content of the Clinical Supplement of a patient over all
metadata files regarding the aliquots of the patient. The resulting metadata attribute keys start with
the clinical__ prefix. A Biospecimen Supplement, instead, contains a unique section on the patient,
but also distinct sections on multiple samples, their portions, and the resulting aliquots. In each
aliquot metadata file we replicate the common parts about the patient (and, in case, about related
samples/portions), while the remaining content of the biospecimen file is divided among the different
metadata files according to the specific aliquot each of them refers to. The resulting metadata attribute
keys start with the biospecimen__ prefix.

On the bottom left corner of Figure 1, we query GDC Data Model elements using the GDC
RESTful APIs. We call the API services once for each aliquot listed in a Biospecimen Supplement and
each data type of interest, by specifying the aliquot uuid and the data type, and then associate with each
OpenGDC data file all information retrieved in the obtained response. The extracted attributes describe
a data file along different GDC Data Model conceptual areas (i.e., administrative, biological, clinical and
analysis). Relevant administrative entities include the PROGRAM (i.e., the broad framework of goals to
be achieved by multiple experiments, such as TCGA), the PROJECT (i.e., the specifically defined piece
of work that is undertaken or attempted to meet a single requirement, such as TCGA-LAML—which
refers to Acute Myeloid Leukemia), the CASE (i.e., the collection of all data related to a specific subject
in the context of a specific project, such as a patient). Among biological entities there are SAMPLE

(i.e., any material sample taken from a biological entity for testing, diagnostic, propagation, treatment,
or research purposes) and ALIQUOT (i.e., pertaining to a portion of the whole; any one of two or
more samples of something, of the same volume or weight). Clinical entities include TREATMENT

(i.e., therapeutic agents provided, or to be provided, to a patient to alter the course of a pathologic
process) and DIAGNOSIS (i.e., data from the investigation, analysis and recognition of the presence and
nature of disease, condition, or injury from expressed signs and symptoms). Analysis entities include
harmonization pipelines such as “Copy Number Variation” and “Methylation Liftover”, each related
to one data type.

In case an OpenGDC data file corresponds to n original GDC files, the JSON response to
the corresponding API call is divided in n partitions, each containing information on one single
GDC original file and on the related aliquot (the information of the latter one is replicated in each
partition). Then, in the final OpenGDC metadata file, we group the information from the original
files (by concatenating multiple values in a single key-value pair), while we consider the aliquot
information only once. All these metadata attribute names are prefixed with gdc__ and obtained by
flattening the hierarchical structure of the JSON responses, i.e., through concatenation of JSON keys at
each traversed level of the response structure.

As an addition to GDC inputs, we generate a set of manually curated key-value pairs (gathered in
the group of metadata keys prefixed with manually_curated__). These contain information that is
missing in the GDC and derived from other sources or specified by our system. We add the data
format (e.g., BED file textual format), URLs of the data and metadata files on the FTP server publicly
offered by OpenGDC (see Section 3 for details about the OpenGDC software and the FTP repository),
the genome built (i.e., reference assembly), the id, checksum, size and download date of the data file,
and the status of the tissue, which indicates if it is of a normal or control sample.

Combining Clinical/Biospecimen Supplement information with GDC Data Model information
leads to value redundancy, which is due to the fact that there does not exist a specific data model for
the Supplement data and it is impossible to determine a priori which information are non-overlapping.
We ascertained the presence of attributes holding different names but same semantics and associated
values. We profiled all input data, obtaining sets of different keys that present same values within a
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same metadata file. Example groups of key-value pairs with different keys and same value, along with
the corresponding chosen candidate key preserved in each group, are shown in Table 1.

Table 1. Example of choices produced by the Data redundancy solver.

Preserved Different Attributes Values

biospecimen__bio__analyte_type RNA
× gdc__cases__samples__portions__analytes__analyte_type RNA

× biospecimen__admin__day_of_dcc_upload 31
clinical__admin__day_of_dcc_upload 31

× gdc__cases__primary_site Ovary
gdc__cases__project__primary_site Ovary

× gdc__cases__samples__portions__analytes__aliquots__concentration 0.17
gdc__cases__samples__portions__analytes__concentration 0.17

The preliminary profiling activity was used to provide guidance to create a list of data redundancy
heuristics—with the aim to remove the redundant metadata attributes and their values—applied by
the Data redundancy solver (at the center of Figure 1).

The heuristics have been primarily devised as a result of a long email exchange with the
GDC Support team (support@nci-gdc.datacommons.io) that helped us to understand how the
ingestion process works: a restricted number of attributes from the supplements are already
provided with a defined mapping to the data model attributes, while for others the relation is still
uncertain (i.e., not curated yet by the GDC)—for these we reconstructed common semantics through
a semi-automated approach.

Moreover, clinical and biospecimen supplements cover overlapping semantics spaces (as it can be
understood by their definitions in Section 2.2). Thus we make the deliberate decision of extracting
only one of them.

Finally, the new data model entities are non overlapping but the APIs provide their content in
a nested fashion. For example, a project is related to a case with a functional dependency, therefore the
project information can be uniquely reached through the case entity. As a consequence, any information
related to the case__project group is redundant w.r.t. the one given by a dual attribute with the same
suffix. Analogously, aliquots are comprised in analytes (N aliquots are in 1 analyte), therefore we keep
the information that is most specific, pertaining to the aliquot.

We have summarized our approach to solve redundancy in four rules. These cover the whole
space of possibilities at the time of writing this manuscript; however this set will be updated as the need
for new rules will arise, in conjunction with updates of OpenGDC scheduled releases: The preliminary
profiling activity was used to define the following list of heuristics to remove the redundant metadata
attributes and their values, which is applied by the Data redundancy solver (at the center of Figure 1):

1. verify mappings on the official GDC GitHub repository available at https://github.com/NCI-
GDC/gdcdatamodel/tree/develop/gdcdatamodel/xml_mappings, specifying which fields from
the BCR Supplements correspond to the GDC API fields: when redundant, keep the second ones;

2. when a field from the BCR Biospecimen Supplement is redundant w.r.t. a field of the BCR Clinical
Supplement, keep the first one;

3. when a field belonging to the case group is redundant w.r.t. a case__.project group field, keep the
first one;

4. when a field belonging to the analytes group is redundant w.r.t. a analytes__aliquots group field,
keep the second one.

To facilitate the use of metadata key-value pairs, in case keys are very long and
cumbersome, we simplify them through the Data renaming module, which applies renaming rules

https://github.com/NCI-GDC/gdcdatamodel/tree/develop/gdcdatamodel/xml_mappings
https://github.com/NCI-GDC/gdcdatamodel/tree/develop/gdcdatamodel/xml_mappings


Appl. Sci. 2020, 10, 6367 9 of 20

according to a match-and-replace strategy based on regular expressions. With respect to the
original keys retrieved from the GDC APIs, we usually leave unchanged the rightmost part
(i.e., last subgroup and name of the attribute); this ensures that the attributes remain uniquely
identified. As an example, gdc__cases__samples__portions__analytes__aliquots__aliquot_id

becomes gdc__aliquots__aliquot_id. The three levels of the resulting attribute, separated by double
underscore, identify respectively an attribute retrieved through the GDC APIs (“gdc”), belonging to the
“aliquots” entity of the GDC Data Model, and indicating specifically the identifier of the represented
aliquot (i.e., “aliquot_id”). Examples of renaming rules and their results are shown in Table 2.

Table 2. Examples of metadata attribute renaming rules and their results.

GDC Naming OpenGDC Flattened OpenGDC Renamed

cases.diagnoses.age_at_diagnosis gdc__cases__diagnoses__age_at_diagnosis gdc__diagnoses__age_at_diagnosis
analysis.input_files.data_category gdc__analysis__input_files__data_category gdc__input_files__data_category
cases.project.program.name gdc__cases__project__program__name gdc__program__name

Column 1: attribute names as they are specified in GDC APIs parameters; Column 2: OpenGDC naming
convention; Column 3: results of the renaming phase applied to the attributes in Column 2.

3. Results

In this Section we present the created OpenGDC software, which implements, for the GDC
data, the mapping to the Genomic Data Model and the retrieval, extension and standardization
procedures described in Section 2. Additionally, we illustrate the FTP repository where we provide
the standardized genomic data and metadata obtained by applying OpenGDC to the GDC data of the
TCGA program.

3.1. Opengdc Software Architecture

OpenGDC is an open-source and cross-platform software, written in Java programming language;
(The corresponding code is openly available on the GitHub repository: https://github.com/DEIB-
GECO/OpenGDC) it allows the extraction, extension and standardization of publicly available data
from the GDC. The software is provided as a standalone desktop application with a friendly user
interface and supports the BED, GTF, CSV, JSON and XML standard formats as output. Its architecture
has been implemented following the Model-View-Controller (MVC) design pattern, as shown by the
flowchart in Figure 2. The software is composed of two main pipelines: (i) the GDC data download
procedure and (ii) the data conversion one.

The whole system can be summarized by three main software components:

- Controller: it redirects the user instructions to the correct software module and initializes an
instance of the software able to download and/or convert the GDC data;

- Data Download: it manages the process of search and retrieval of the public GDC data,
taking advantage of the GDC APIs;

- Data Standardization: it allows to easily convert and standardize data according to a specific
data type. The process is facilitated by the ad-hoc class BioParser, which provides an abstract
representation for all GDC data types; this class can be extended to support new data types in
case of future extensions of the GDC repository.

OpenGDC benefits from the public GDC APIs during the data download procedure to retrieve
the original genomic, clinical and biospecimen data. It also makes use of the GDC APIs during the
conversion procedure of the Clinical and Biospecimen Supplements to extract additional information
such as the size of the downloaded files, their MD5 checksum, as well as the last creation and update
timestamps, which are then added in the metadata files.

Data conversion uses a different parser depending on the type of converted data. Additionally,
the process retrieves complementary information from a set of external data sources, such as NCBI

https://github.com/DEIB-GECO/OpenGDC
https://github.com/DEIB-GECO/OpenGDC
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Genome and Gene databases, GENCODE, HGNC and miRBase, to extract the genomic coordinates,
Entrez Gene ID and gene symbols starting from the information already existing in the original data.

Figure 2. OpenGDC architecture. Graphical representation of the flowchart describing the OpenGDC
software architecture. Every feature is differentiated in two pipelines, i.e., Download and Convert,
represented by red and green arrows, respectively. Software modules are additionally enclosed in
a dotted line to delineate their function (i.e., User Interface, Instruction Redirection, Genomic Data
Commons APIs, External Data Sources, and the List of Parsers).

3.2. Interacting with the GDC Public Apis

We search and extract data and other information from the GDC through its public APIs.
In particular we use three main API endpoints:

• cases: to find all files related to a specific case (i.e., sample donor);
• files: to find all files with specific characteristics such as the file name, MD5 checksum and

data format;
• data: to download GDC data files.

As an example of interplay among two of these endpoints, consider a scenario where we want
to download all publicly available Gene Expression Quantification data for the tumor Breast Invasive
Carcinoma in the context of the TCGA program. First, we query the GDC for all file unique identifiers
(UUIDs) related to this particular case. To this end, we make an HTTP POST request to the files
endpoint. As a result, the GDC returns a list of file UUIDs (file_id fields). Starting from this list, we then
download the associated files; this is done by querying the data endpoint specifying a single file UUID,
e.g., https://api.gdc.cancer.gov/data/1837ad2a-4edf-4d80-9050-f78115e54454 (i.e., one HTTP GET
request for each result file_id in the previous query response). For a detailed description about the
syntax of the payload and the other ways to query the GDC, the interested reader may refer to the
GDC API documentation available at https://docs.gdc.cancer.gov/. For additional details about the
OpenGDC software and its usage we point the reader to the user guide and readme file, available as
Supplementary File 2 and Supplementary File 3, respectively.

https://api.gdc.cancer.gov/data/1837ad2a-4edf-4d80-9050-f78115e54454
https://docs.gdc.cancer.gov/
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3.3. Data Repository

We created an open access FTP repository containing all the publicly available data of the
TCGA program of the GDC in their original and new standardized extended version (genomic
data in BED format and metadata in key-value format). The repository is available at [42]. The data
are firstly divided in two branches, original GDC data and extended BED ones (original and bed
folders, respectively). The structure of the FTP space is then organized within the two branches
using the following structure: program (e.g., TCGA), tumor (e.g., TCGA-BRCA, TCGA-KIRP,
TCGA-OV, etc.), and finally data type (e.g., gene_expression_quantification, methylation_beta_value,
clinical_and_biospecimen_supplements, etc.). For each data type, the genomic and metadata are
separately provided for each aliquot. Currently, a total volume of 2.7 TB of data (1.4 TB of original GDC
data and 1.3 TB of converted data) of 33 different tumors is maintained. Table 3 shows the number of
aliquots, patients and samples available for each tumor.

Table 3. List of processed tumors with the related number of involved aliquots, samples and patients.

Tumor Aliquots Samples Patients

Acute Myeloid Leukemia 1605 1605 1211
Adrenocortical Carcinoma 771 771 595
Bladder Urothelial Carcinoma 3786 3762 2873
Brain Lower Grade Glioma 4674 4674 3590
Breast Invasive Carcinoma 10,305 10,280 7520
Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 2706 2706 2118
Cholangiocarcinoma 401 401 267
Colon Adenocarcinoma 4358 4244 3121
Esophageal Carcinoma 1705 1701 1271
Glioblastoma Multiforme 3347 3282 2190
Head and Neck Squamous Cell Carcinoma 4955 4951 3636
Kidney Chromophobe 667 667 462
Kidney Renal Clear Cell Carcinoma 5322 5155 3499
Kidney Renal Papillary Cell Carcinoma 2812 2784 2023
Liver Hepatocellular Carcinoma 3604 3602 2610
Lung Adenocarcinoma 5245 5146 3722
Lung Squamous Cell Carcinoma 4780 4736 3460
Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 423 423 327
Mesothelioma 775 775 603
Ovarian Serous Cystadenocarcinoma 4825 4777 3586
Pancreatic Adenocarcinoma 1659 1659 1267
Pheochromocytoma and Paraganglioma 1652 1652 1253
Prostate Adenocarcinoma 4778 4778 3473
Rectum Adenocarcinoma 1462 1453 1124
Sarcoma 2341 2335 1797
Skin Cutaneous Melanoma 4197 4197 3242
Stomach Adenocarcinoma 4108 4080 3018
Testicular Germ Cell Tumors 1377 1377 1045
Thymoma 1120 1120 862
Thyroid Carcinoma 4827 4827 3523
Uterine Carcinosarcoma 504 504 398
Uterine Corpus Endometrial Carcinoma 5088 5058 3860
Uveal Melanoma 720 720 560
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Structure and content of the created FTP repository are described in detail in the Supplementary
File 4 and Supplementary File 5, respectively.

4. Use Case Examples

In this Section, we show some examples of application of the GenoMetric Query Language
(GMQL [28]) on the OpenGDC standardized data in order to highlight the advantages of our data
representation in terms of information retrieval and integrative processing. GMQL is a high-level
domain-specific query language. It can be executed in the system architecture described in [29],
which is specific for genomic data processing. The current available version of the GMQL system uses
Apache Spark [43] as its backbone; along with other design choices, this provides high scalability in
cloud computing. The GMQL system contains a multiplicity of public genomic datasets from a variety
of sources [44], ready to be used within tertiary analysis pipelines (as shown in [29]); among other
sources, it features all the datasets available in the OpenGDC FTP service, providing an interface for
browsing and processing data curated in OpenGDC. The produced datasets are also made available
within another system, GenoSurf (GenoSurf is available at [45]) [46], a semantic search engine based
on a Conceptual Model [47] that integrates TCGA data, imported by OpenGDC, with several sources
such as ENCODE [48], Roadmap Epigenomics [49], and 1000 Genomes [50], among others, using the
META-BASE integration framework [51].

In the following, we propose three use cases along with their GMQL queries (the corresponding
GMQL queries are available in the Supplementary File 6, ready to be executed on [52])
(alternatively expressible using the Python package [53]); we focus on query aspects, acting on
both region data and metadata, which highlight the strengths of the datasets produced by
OpenGDC, i.e.: (1) enabling the combined use of metadata derived from the GDC Data Model,
the Clinical/Biospecimen Supplements, and our manually curated additions; (2) providing positional
information (i.e., genomic coordinates) in a standardized structure, which encourages data inter- and
intra-source interoperability; (3) allowing joined use of different data types even from different sources
(e.g., gene expression and methylation, or mutations and gene annotations) based on common gene
identifiers (e.g., the HUGO gene symbol), or genomic positions.

4.1. Use Case 1: for Kidney Cancers, Find Mutations and Their Number in Each Exon

For this example, we consider TCGA public somatic mutation data samples of Kidney Adenoma
and Adenocarcinoma patients—which are contained in three TCGA projects, i.e., Kidney Chromophobe
(KICH), Kidney Renal Clear Cell Carcinoma (KIRK) and Kidney Renal Papillary Cell Carcinoma
(KIRP)—and extract novel mutations (i.e., not listed in dbSNP [54]) in gene exons. For each sample,
we count the mutations occurring in each exon, filter-out the exons without any mutation, and finally
return the remaining mutated exons, equipped with their number and the maximum number of
mutations in one exon.

In this example: (1) we use GDC mutation data in combination with a GENCODE annotation
dataset—demonstrating the interoperability of OpenGDC curated data with other sources; (2) we
use seamlessly metadata from GDC APIs (i.e., first and second conditions in line 2 in Listing 1) and
Clinical Supplements (third and fourth conditions in line 3 and 4 in Listing 1)—this is not possible
on the GDC portal, where only the former are supported; (3) we select three TCGA projects together
by using the characterization of the tissue and the classification of diseases (note that the OpenGDC
normalized metadata attribute gdc__disease_type represents the type of malignant disease (The disease
is categorized by the World Health Organization’s (WHO) International Classification of Diseases
for Oncology (ICD-O).), while the attribute gdc__project__disease_type contains the full name for the
project. The output dataset contains in total 227 samples with 15,517 exon regions and 296 distinct
metadata attributes.
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1 #Select mutation data based on both region and metadata attributes
2 MUT = SELECT(gdc__primary_site == "Kidney" AND gdc__disease_type == "Adenomas and Adenocarcinomas" AND

3 clinical__shared__history_of_neoadjuvant_treatment == "No" AND

4 clinical__clin_shared__followup_treatment_success == "Complete Remission/Response";

5 region: dbsnp_rs == "novel") GRCh38_TCGA_somatic_mutation_masked_2019_10;

6 #Select known human protein−coding and non−protein−coding exon regions of the GENCODE annotation release 27
7 EXON = SELECT(annotation_type == "exon" AND release_version == "27") GRCh38_ANNOTATION_GENCODE;

8 #Map the mutations to the exons and count how many they are in each exon of each sample
9 EXON_MUT = MAP(count_name: MUT_count) EXON MUT;

10 #Remove exons that do not contain mutations
11 EXON_MUT_SELECT = SELECT(region: MUT_count > 0) EXON_MUT;

12 #In the metadata of each sample add the count of how many exons remain and the maximum number of mutations in
13 #an exon of the sample
14 EXON_RES = EXTEND(exon_count AS COUNT(), max_mut AS MAX(MUT_count)) EXON_MUT_SELECT;

15 MATERIALIZE EXON_RES INTO result1_exons_mutations;

Listing 1. Example of GenoMetric Query Language (GMQL) query to find exons with somatic
mutations in kidney cancers.

4.2. Use Case 2: in Breast Invasive Carcinoma, Find the Genomic Regions Whose Mirna Expression Counts
Result above Average in at Least 10 % of Tumoral Samples

We translate these specifications into selecting TCGA miRNA expression samples corresponding
to patients who are affected by primary tumors of Breast Invasive Carcinoma, and into selecting the
miRNA regions that exhibit a value of reads_per_million_mirna_mapped (In the miRNA Expression
Quantification data type, it is the read normalized count in reads-per-million-miRNA-mapped
associated with each miRNA ID.) above the average of the dataset in 10% or more of such samples.
We first use a simple query (lines 3–8 in Listing 2) to evaluate the average of miRNA normalized reads.
In order to obtain the lightest query possible in terms of computational time, from the selected TCGA
dataset we PROJECT only the required field, MERGE all samples into one, compute the average as
a metadata attribute (avg_reads) and MATERIALIZE a small dataset in order to get the required average
value (531.6 for the considered data). We then perform a query to filter out miRNA regions that present
a reads_per_million_mirna_mapped value equal or below the calculated average of the dataset (lines 11–13
in Listing 2). In addition, we use COVER to extract in one sample only the remaining miRNA regions
that are present in at least 10% of the dataset samples and equip each extracted region with: (1) the
number of samples in which the region is expressed above average; (2) the list of co-located genes,
using specifically the entrez_gene_id region attribute—which is a new attribute added in the OpenGDC
data, with respect to the original GDC data. The output dataset contains a sample with 102 miRNA
regions (with reads_per_million_mirna_mapped above average) out of the 1881 distinct ones considered
in the initial dataset.
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1 #This first query materializes a dataset from whose single metadata attribute (avg_reads) we read the average
2 #number of reads in the dataset, which is then used as threshold in the second query
3 S0 = SELECT(gdc__project__disease_type == "Breast Invasive Carcinoma" AND

4 gdc__samples__sample_type == "Primary Tumor") GRCh38_TCGA_miRNA_expression_2019_10;

5 P = PROJECT(reads_per_million_mirna_mapped; metadata: none) S0;

6 M = MERGE() P;

7 E = EXTEND(avg_reads AS AVG(reads_per_million_mirna_mapped)) M;

8 MATERIALIZE E INTO result2_reads_threshold;

10 #Find miRNA regions with a number of reads above the average in the dataset
11 S = SELECT(gdc__project__disease_type == "Breast Invasive Carcinoma" AND

12 gdc__samples__sample_type == "Primary Tumor"; region: reads_per_million_mirna_mapped > 531.6)

13 GRCh38_TCGA_miRNA_expression_2019_10;

14 #Find genomic regions present in more than 10% of samples; for each
15 #region report a list of overlapping genes and the number of samples in
16 #which it occurs
17 C = COVER(ALL / 10, ANY; aggregate: num_samples AS COUNT(), all_genes AS BAGD(entrez_gene_id)) S;

18 MATERIALIZE C INTO result2_cover;

Listing 2. Example of GMQL query that finds miRNA regions with expression above average
in more than 10% of samples and the associated genes.

4.3. Use Case 3: in a Comparative Study, For Both Normal and Tumoral Tissue Samples of Each Patient Affected
by Cholangiocarcinoma Extract the Expression and Average Promotorial Methylation Levels of Each Gene

In the OpenGDC standardized data of TCGA, using with value “normal” our
manually_curated__tissue_status metadata attribute, added with respect to the original GDC data, we can
select normal samples of five different types at once (i.e., Blood Derived Normal, Solid Tissue Normal,
Buccal Cell Normal, EBV Immortalized Normal, Bone Marrow Normal—corresponding to sample
type codes 10–14 https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes).
Similarly, the value “tumoral” of the same attribute refers to ten different types of cancer samples
(corresponding to sample type codes 01-09 and 40). Since methylation sites of interest for gene
expression regulation are typically located in the surroundings of a gene TSS, we consider methylation
values only in the promotorial region of each gene, extracted around the gene TSS from 2000 bases
upstream to 1000 bases downstream (lines 5 and 19 in Listing 3); for gene expression data we only
keep the fpkm values and the gene_symbol (line 5 in Listing 3), while for methylation data only the
beta_values (line 10 in Listing 3).

Note that the code described in Listing 3 lines 1–13 for normal samples is repeated in lines 15–27
for tumoral samples. For methylation data, we compute the average beta_value in each gene promoter.
With the MAP at line 13 we associate each gene expression and promotorial region (in each sample of
the normal N_EXPR dataset) with the average of the methylation beta_values in the gene promotorial
region (in a sample of the normal N_METH dataset); N_EXPR and N_METH samples are matched
only if belonging to the same tissue sample (uniquely identified by the gdc__samples__sample_id).

At Listing 3 line 30 the datasets resulting from line 13 and line 27 are combined using a JOIN
operation, which allows associating each gene promotorial region with the gene_symbol and the gene
expression fpkm value and methylation avg_beta_value from both the normal and tumoral samples of a
patient. Note that the equi predicate on_attributes can only be applied thanks to the addition of the
gene_symbol attribute in the OpenGDC gene expression data (as original GDC data did not include it).

Lines 33–38 in Listing 3 are only needed for shaping results into a convenient format, as it can
be appreciated in Table 4, which contains an excerpt from the result dataset (in the column names of
Table 4 we use the subscripts n and t for normal and tumoral, respectively).

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
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1 #Select Cholangiocarcinoma gene expression normal samples
2 N0_EXPR = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

3 manually_curated__tissue_status == "normal") GRCh38_TCGA_gene_expression_2019_10;

4 #Extract only attributes of interest and gene promoter regions
5 N_EXPR = PROJECT(fpkm, gene_symbol; metadata: gdc__case_id, gdc__samples__sample_id); region_update:

6 start AS start - 2000, stop AS start + 1000) N0_EXPR;

7 #Select Cholangiocarcinoma methylation normal samples and extract only attributes of interest
8 N0_METH = SELECT(gdc__project__disease_type == "Cholangiocarcinoma"AND

9 manually_curated__tissue_status == "normal") GRCh38_TCGA_methylation_2019_10;

10 N_METH = PROJECT(beta_value; metadata: gdc__case_id, gdc__samples__sample_id) N0_METH;

11 #For each patient, to~each reference gene promotorial region (in normal data) add the average beta value of the
12 #methylations occurring in the region
13 N_EXPR_METH = MAP(avg_beta_value AS AVG(beta_value); joinby: gdc__samples__sample_id) N_EXPR N_METH;

15 #Select Cholangiocarcinoma gene expression tumor samples
16 T0_EXPR = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

17 manually_curated__tissue_status == "tumoral") GRCh38_TCGA_gene_expression_2019_10;

18 #Extract only attributes of interest and gene promoter regions
19 T_EXPR = PROJECT(fpkm, gene_symbol; metadata: gdc__case_id, gdc__samples__sample_id; region_update:

20 start~AS start - 2000, stop AS start + 1000) T0_EXPR;

21 #Select Cholangiocarcinoma methylation tumor samples and extract only attributes of interest
22 T0_METH = SELECT(gdc__project__disease_type == "Cholangiocarcinoma" AND

23 manually_curated__tissue_status == "tumoral") GRCh38_TCGA_methylation_2019_10;

24 T_METH = PROJECT(beta_value; metadata: gdc__case_id, gdc__samples__sample_id) T0_METH;

25 #For each patient, to~each reference gene promotorial
26 #region (in tumor data) add the average beta value of the methylations occurring in the region
27 T_EXPR_METH = MAP(avg_beta_value AS AVG(beta_value); joinby: gdc__samples__sample_id) T_EXPR T_METH;

29 #To each region add the related normal/tumor gene expression values and average beta values
30 J = JOIN(DLE(0); on_attributes: gene_symbol; joinby: gdc__case_id) N_EXPR_METH T_EXPR_METH;

31 #For each patient, format results as a matrix with a row for each gene promotorial region and columns regarding only
32 #region attributes of interest, and~with only patient ID as metadata
33 J1 = PROJECT(region_update: gene_symbol AS N_EXPR_METH.gene_symbol, normal_fpkm AS N_EXPR_METH.fpkm,

34 normal_avg_beta_value AS N_EXPR_METH.avg_beta_value, tumor_fpkm AS T_EXPR_METH.fpkm, tumor_avg_beta_value

35 AS T_EXPR_METH.avg_beta_value; metadata_update: patient AS N_EXPR_METH.N_EXPR.gdc__case_id) J;

36 J2 = PROJECT(gene_symbol, normal_fpkm, normal_avg_beta_value, tumor_fpkm, tumor_avg_beta_value;

37 metadata: patient) J1;

38 MATERIALIZE J2 INTO result3_matrix_normal_tumor;

Listing 3. Example of GMQL query that, for each Cholangiocarcinoma patient, builds a data
matrix including for each gene the expression Fragments Per Kilobase of transcript per Million
mapped reads (FPKM) values and average beta values of promotorial methylation in normal
and tumoral tissues.

Table 4. Excerpt from the output dataset of the example use case 3. In the column names, the subscripts
n and t are for normal and tumoral, respectively.

Chr Left Right Strand Gene_symbol Fpkmn avg_beta_valuen fpkmt avg_beta_valuet

chr1 166971581 166976581 + MAEL 0.27401479 0.07428182 0.19981536 0.06583118
chr1 166974482 166979482 - ILDR2 0.13031929 0.11815327 0.06208503 0.13756338
chr3 38949561 38954561 - SCN11A 0.04643162 0.88310268 0.01814642 0.73347131
chr6 152746797 152751797 + VIP 0.50472323 0.13604175 0.11766157 0.35010738
chr11 114558895 114563895 - NXPE1 0 0.80843122 0.01618970 0.82677058
chr4 8955627 8960627 + UNC93B8 0 null 0 null
chr12 126615554 126620554 - RP11-407A16.8 0 0.96168949 0 0.97617533
chr1 154205333 154210333 - C1orf189 0.16309294 0.89600850 0 0.90502790
chr10 88786061 88791061 - RCBTB2P1 0 null 0 null
... ... ... ... ... ... ... ... ...
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Occurrences of null in the average beta values correspond to cases where no methylation probes
are located in the specified gene promotorial region. Overall, the output dataset contains 9 samples
with about 60,670 distinct regions each.

5. Conclusions and Future Work

In this work, we presented a novel approach and its implementation in a set of automatic
procedures able to extract, integrate, extend and standardize genomic and clinical data of The Cancer
Genome Atlas as included in the Genomic Data Commons portal. Our approach and software were
applied to multiple data types obtained from different types of NGS experiments (i.e., Gene-, miRNA-,
Isoform-Expression Quantification, Masked Somatic Mutation, Copy Number Segment, Masked Copy
Number Segment, Methylation Beta Value). Additionally, we considered clinical and biospecimen
information about the experimental data.

To reach our objective, we took advantage of the Genomic Data Model, which allowed us to
represent an experimental sample by its genomic regions and its related metadata. The genomic
regions are defined by their genomic coordinates (chr, left, right, strand) and genomic features,
which are produced by the specific NGS experiment. Conversely, metadata report clinical and biological
properties in attribute-value pair format.

Based on the GDM representation, we implemented OpenGDC, a software for retrieving TCGA
experimental data in the GDC portal, which is then processed with ad-hoc procedures for each
data type. Our standardization procedure provides all the data in free-BED format, which contains
a set of experiment-specific fields in addition to the genomic coordinates. In order to obtain this
standardized format, the software is able to automatically extract additional features from external
data sources (e.g., GENCODE, HGNC and miRBase), which are not provided in the original GDC
data files. The software also integrates experimental data with clinical and biospecimen information
derived from different GDC sources.

Our pipeline extracts metadata attributes from the original Clinical and Biospecimen Supplements
and from the GDC RESTful APIs. The obtained attributes are merged in a single metadata file for
each experiment, using a tab-delimited key-value format. Then, two software components are used
in the metadata pipeline: (i) the Data Redundancy Solver, to detect and remove redundant metadata
attributes, and (ii) the Data Renaming Module, to redefine attribute names. In particular, data profiling
is performed to identify redundant attributes, i.e., with the same values and different names. All these
procedures and their input/output data types are thoroughly described in the OpenGDC Format
Definition document, available as Additional File 1.

We collected the standardized genomic data and metadata in a FTP repository, which we made
publicly available at [42]. We also showed usage examples of these data through the application
of GMQL queries, to highlight the validity and utility of our approach. They demonstrate that our
data representation facilitates data retrieval, integrated processing and analyses, especially thanks
to the combination of the filtering on specific clinical/biospecimen attributes and the extraction of
genomic features.

Future work concerns the application of our data representation and software pipeline to other
projects integrated in the GDC portal and to other cancer-related repositories, in order to facilitate
knowledge discovery over multiple cancer data. Additionally, we plan to use our approach and
software in order to further enhance the data integration among different biomedical public repositories.
Finally, we are going to take advantage of the standardized data, which is easily processable by
several state of the art bioinformatics tools, in order to perform new knowledge extraction analyses
about cancer.

Supplementary Materials: The following are available at http://www.mdpi.com/2076-3417/10/18/6367/,
Supplementary File 1—OpenGDC_format_definition.pdf, PDF file that contains, for each considered data
types included in OpenGDC: the format definition, the format conversion details from the GDC original
TCGA format into OpenGDC format, and external database integration specifications. (Available at http:

http://www.mdpi.com/2076-3417/10/18/6367/,
http://www.bioinformatics.deib.polimi.it/opengdc/
http://www.bioinformatics.deib.polimi.it/opengdc/
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//www.bioinformatics.deib.polimi.it/opengdc/); Supplementary File 2—OpenGDC_User_Guide.pdf, PDF file
that contains a practical guide to introduce OpenGDC software use; Supplementary File 3—OpenGDC_readme.txt,
Text file that includes installation and execution details of the OpenGDC software package; Supplementary
File 4—OpenGDC_repository_description.txt, Text file that details the content and the structure of the
OpenGDC data repository; Supplementary File 5—OpenGDC_statistics.xlsx, Spreadsheet file that contains
3 sheets: (i) All_statistics, including patient, sample and aliquot counts for each tumor and experiment type;
(ii) Counts_for_each_experiment, including the occurrences of the patients, samples and aliquots for each experiment;
(iii) Total_counts_for_each_tumor, including the occurrences of the patients, samples and aliquots for each tumor;
Supplementary File 6—OpenGDC_GMQL_queries.txt, Text file including the ready-to-run GMQL queries
described in Section 4 to reproduce the experiments on [52].
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