
Truly Batch Model-Free Inverse Reinforcement Learning

about Multiple Intentions

Giorgia Ramponi⇤ Amarildo Likmeta⇤†

Alberto Maria Metelli⇤ Andrea Tirinzoni⇤ Marcello Restelli⇤
⇤
Politecnico di Milano, Milan, Italy

†
Università di Bologna, Bologna, Italy

Abstract

We consider Inverse Reinforcement Learn-

ing (IRL) about multiple intentions, i.e., the

problem of estimating the unknown reward

functions optimized by a group of experts

that demonstrate optimal behaviors. Most

of the existing algorithms either require ac-

cess to a model of the environment or need

to repeatedly compute the optimal policies

for the hypothesized rewards. However, these

requirements are rarely met in real-world ap-

plications, in which interacting with the en-

vironment can be expensive or even danger-

ous. In this paper, we address the IRL about

multiple intentions in a fully model-free and

batch setting. We first cast the single IRL

problem as a constrained likelihood maxi-

mization and then we use this formulation

to cluster agents based on the likelihood of

the assignment. In this way, we can effi-

ciently solve, without interactions with the

environment, both the IRL and the clustering

problem. Finally, we evaluate the proposed

methodology on simulated domains and on a

real-world social-network application.

1 Introduction

Inverse Reinforcement Learning (IRL) has emerged as

a valuable tool for inferring an expert’s reward func-

tion from demonstrations (Osa et al., 2018). In the

most studied setting, a single expert demonstrates a

behavior by providing a set of trajectories of inter-

action with the environment. The expert’s behavior,

encoded by its policy, is optimizing an unknown re-

ward function. The goal of IRL consists of finding a

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

reward function that makes the expert’s behavior opti-

mal (Ng and Russell, 2000). Compared to other imita-

tion learning approaches (Argall et al., 2009; Hussein

et al., 2017), which output an imitating policy, such

as Behavioral Cloning (BC, Argall et al., 2009), IRL

explicitly provides a succinct representation of the ex-

pert’s intent, i.e., a reward function (Sutton and Barto,

1998). For this reason, it provides more general and

transferable information than an imitating policy.

In several realistic scenarios, however, there may be

multiple agents that possibly pursue distinct interests.

In this case, we are facing a more general problem that

we call Inverse Reinforcement Learning about Multiple

Intentions (MI-IRL, Babes et al., 2011; Choi and Kim,

2012; Almingol and Montesano, 2015). MI-IRL poses

challenges and opportunities. When multiple agents

are involved, MI-IRL requires to understand whether

the agents share the same intent. In other words, we

should address an intent-clustering problem in which

we aim to identify groups of experts that share the

same goal. This problem is formulated at a differ-

ent level w.r.t. to behavioral-clustering, as in a Markov

Decision Process (MDP, Puterman, 1994) there might

exist multiple policies that optimize the same reward.

MI-IRL arises in several common daily situations. In a

social network, we can easily recognize groups of users

that display similar attitudes (e.g., seeking media at-

tention) that can be, possibly, significantly far away

from those of other groups of users (e.g., looking at

the news, sharing content with friends, etc.). Identi-

fying the intents of users might, for instance, provide

valuable information for designing an effective market-

ing or advertising strategy.

As an immediate benefit, grouping experts that show

different behaviors, but share the same intent allows

enlarging the set of demonstrations available for the

reward recovery process. This has a significant im-

pact on several realistic scenarios, where the only in-

formation available is the demonstration dataset and

no further interactions with the environment are al-

lowed. We will refer to this scenario as batch model-

Truly Batch Model-Free Inverse Reinforcement Learning about Multiple Intentions

free IRL. This setting is particularly challenging but

quite common. Consider, for instance, the problem of

inferring the intentions of a group of car drivers, given

a set of demonstrations. We cannot perform forward

learning (at least in a non-simulated environment) for

safety reasons, and, typically, the amount of data avail-

able is not enough to perform off-line learning. In the

single-intention IRL case, only a few algorithms are

able to avoid interaction with the environment (e.g.,

Klein et al., 2012, 2013; Pirotta and Restelli, 2016;

Metelli et al., 2017). These approaches, however, re-

sort to a single-point estimate of the quantities of in-

terest (e.g., feature expectation) and do not take into

account the uncertainty due to estimates with finite

samples. This limitation has a large impact on the

multiple-intention setting, in which the agents might

show a significantly different uncertainty, due, for in-

stance, to the different demonstrated policies.

The contribution of this paper is twofold. We first pro-

pose a novel batch model-free IRL algorithm, named ⌃-
Gradient Inverse Reinforcement Learning (⌃-GIRL),

and then we extend it to the multiple-intention setting.

⌃-GIRL is derived from Gradient Inverse Reinforce-

ment Learning (GIRL, Pirotta and Restelli, 2016), an

IRL algorithm that searches for a reward function that

makes the estimated policy gradient (Sutton et al.,

2000) vanish. Such reward function is a stationary

point of the expected return and, under suitable con-

ditions, it makes the policy demonstrated by the ex-

pert an optimal policy. Our method, instead, explic-

itly considers the uncertainty in the gradient estima-

tion process, by casting the IRL problem as a con-

strained maximum likelihood problem, in which we

look for the reward function that maximizes the likeli-

hood of the estimated policy gradients, under the con-

straint that such reward is a stationary point of the

expected return. The resulting objective function ac-

counts for the variance of the gradient and reduces to

the GIRL case for a specific choice of the covariance

model (Section 4). Then, we embed ⌃-GIRL into the

multiple-intention framework by proposing a cluster-
ing algorithm that, by exploiting the likelihood model

of ⌃-GIRL, groups the experts according to their in-

tentions. The optimization of the multiple-intention

objective is performed in an expectation-maximization
(EM) fashion, in which the (soft) agent-cluster assign-

ments and the reward functions are obtained through

an alternating optimization process (Section 5). Af-

ter having revised the related works (Section 6), we

present an experimental evaluation aimed at highlight-

ing the performance of ⌃-GIRL, compared with state-

of-the-art methods on simulated domains and on a

real-world experiment in which we recover and cluster

the intents of a group of Twitter users (Section 7). The

proof of all the results are reported in Appendix A.

2 Preliminaries

Markov Decision Processes without Reward
An MDP without Reward (MDP\R) (Puterman,

1994) is defined as M = (S,A, P, �, µ), where S is the

state space, A is the action space, P : S ⇥A⇥ S !
R+ is the transition function, which defines the density

P (s0|s, a) between two states s, s0 2 S under action a 2
A, � 2 [0, 1) is the discount factor, and µ : S ! R+

is the initial state distribution. The agent’s behavior

is described by means of a (possibly stochastic) pol-

icy ⇡ : S ⇥A ! R+, where ⇡(·|s) specifies for each

state s a distribution over the action space A. We

consider stochastic differentiable policies belonging to

a parametric space ⇧⇥ = {⇡✓ : ✓ 2 ⇥ ✓ Rd}. When

executing a policy, we define a trajectory as a sequence

of states and actions ⌧ = (s0, a0, . . . , sT�1, aT�1, sT),
where T is the trajectory length.

Inverse Reinforcement Learning The goal IRL

consists of recovering the unknown reward function

optimized by an expert given demonstrations of her

behavior. More formally, the expert plays a policy ⇡E

which is (nearly) optimal for some unknown reward

function R : S ⇥A ! R , and we are given a dataset

D = {⌧1, . . . , ⌧n} of trajectories from ⇡E
. We consider

linear reward functions:

1

R!(s, a) = !
T�(s, a), ! 2 Rq

+, k!k1 = 1, (1)

with � : S ⇥A ! Rq
is a limited feature vector func-

tion. We denote with !E
the parameterization of the

reward optimized by the expert. We define the feature
expectations of a policy ⇡ as:

 ⇡
= E

S
0

⇠µ,
At⇠⇡(·|St),

St+1

⇠P (·|St,At)

"

+1
X

t=0

�t�(St, At)

#

,

For a parametric policy ⇡✓ 2 ⇧⇥, we abbreviate

 (✓) = ⇡✓
. Finally, we define the discounted ex-

pected return of a policy ⇡✓, that decomposes under

the linear reward model as:

J(✓,!) = E
S
0

⇠µ,
At⇠⇡✓(·|St),

St+1

⇠P (·|St,At)

"

+1
X

t=0

�tR!(St, At)

#

= !T (✓).

Furthermore, we assume that the expert’s policy ⇡E

belongs to the known parametric policy space ⇧⇥,

made of differentiable policies, i.e., there exists ✓E 2 ⇥

such that ⇡E
= ⇡✓E almost surely. However, we will

not assume to know the expert parameterization ✓E .

Multiple-Intent IRL In a multiple intent set-

ting (Babes et al., 2011) there is a set of experts

1The constraints force the weight vector ! to belong to
the q-dimensional simplex and allow solving a form of am-
biguity of the reward function (Pirotta and Restelli, 2016).

G. Ramponi, A. Likmeta, A. M. Metelli, A. Tirinzoni, M. Restelli

E = (E1, . . . , Em) and a set of (unknown) reward

functions R = (R!
1

, . . . , R!k), with k  m. Each

expert Ei 2 E demonstrates a policy ⇡Ei 2 ⇧⇥

(i.e., there exists ✓Ei 2 ⇥ such that ⇡Ei
= ⇡✓Ei

almost surely) which optimizes a reward R!ri
, with

ri 2 {1, . . . , k}. Given a dataset D = (D1, . . . , Dm),

where each Di = {⌧1, . . . , ⌧ni} is the set of ni tra-

jectories demonstrated by Ei, the goal is to recover

the reward functions optimized by each of the m ex-

perts. We assume to know the identity of the expert

generating each trajectory and the number of rewards

functions k, but not the policy parameters ✓Ei
.

3 Gradient-based approaches to IRL

In this section, we revise the main elements that are

necessary to understand the approaches to IRL based

on the policy gradient (e.g., Pirotta and Restelli, 2016;

Metelli et al., 2017; Tateo et al., 2017). We start by

stating the policy gradient (Sutton et al., 2000; Peters

and Schaal, 2008) and its decomposition under a linear

reward model R!(s, a) = !T�(s, a):

r✓J(✓,!) = E
S
0

⇠µ,
At⇠⇡✓(·|St),

St+1

⇠P (·|St,At)

+1
X

t=0

�tR!(St, At)

⇥
t

X

l=0

r✓ log ⇡✓(Al|Sl)

�

= r✓ (✓)!,

where r✓ (✓) = (r✓ 1(✓)| . . . |r✓ q(✓)) 2 Rd⇥q

is the Jacobian matrix. When the expert’s policy

⇡✓E 2 ⇧⇥ optimizes the reward function R!E , ✓E

is a stationary point of the expected return J(✓,!E
)

and thus the gradient of r✓J(✓E ,!E
) = r✓ (✓E)!E

must vanish (first-order necessary conditions for opti-

mality (Nocedal and Wright, 2006)). In other words,

the weight !E
, associated to the reward function op-

timized by the expert, belongs to the null space of the

Jacobian r✓ (✓E).

Gradient Inverse Reinforcement Learning
GIRL (Pirotta and Restelli, 2016) leverages on this

observation to recover the expert’s weight vector !E
.

In practice, however, we do not have access to the

true Jacobian matrix r✓ (✓E), but to a finite-sample

estimate

br✓ (✓E), obtained starting from the tra-

jectories in D = {⌧1, ..., ⌧n}.2 This estimation might

result of full rank due to estimation errors, preventing

the search of the corresponding null space. For this

reason, GIRL, instead of looking for the null space of

br✓ (✓E), seeks for the direction of minimum growth

2An unbiased sample-based estimate of r✓ (✓) can
be obtained with the standard policy gradient es-
timators, such as REINFORCE (Williams, 1992) or
G(PO)MDP(Baxter and Bartlett, 2001).

by minimizing the Lp
-norm of the gradient estimate,

leading to the optimization problem:

min

!2Rq
+

k!k
1

=1

�

�

�

br✓ (✓E)!
�

�

�

p

p
. (2)

This objective has the desirable property of being con-

vex for any choice of p � 1.

Estimating the expert’s policy The computation

of the Jacobian r✓ (✓E) requires the knowledge of

the functional form of the expert’s policy, in order to

compute the score r✓ log ⇡✓(a|s). Since we assume

that the expert’s policy belongs to a parametric policy

space ⇧⇥ made of differentiable policies, as explained

in Pirotta and Restelli (2016), we can recover an ap-

proximation of the expert’s parameters ✓E through

behavioral cloning, exploiting the trajectories in D.

If we resort to a maximum-likelihood estimation, we

solve the following optimization problem, obtaining an

estimate

b✓E of ✓E :

max

✓2⇥

1

n

n
X

l=1

T�1
X

t=0

log ⇡✓(al,t|sl,t). (3)

It is known that the maximum likelihood estima-

tion is consistent under mild regularity conditions on

the policy space ⇧⇥ and assuming the identifiabil-

ity property (Casella and Berger, 2002). Some finite-

sample guarantees on the concentration of the distance

kb✓E � ✓Ekp were also derived under stronger assump-

tions (e.g., Spokoiny et al., 2012).

4 ⌃-Gradient Inverse Reinforcement
Learning

In this section, we introduce a novel batch model-

free IRL algorithm, named ⌃-Gradient Inverse
Reinforcement Learning (⌃-GIRL), which extends

GIRL (Pirotta and Restelli, 2016) to account for the

uncertainties injected by the Jacobian estimation pro-

cess. Compared to GIRL, we take a different per-

spective to address the problem of the inaccurate Ja-

cobian estimation. Instead of looking for the direc-

tion of minimum growth, we allow the components of

br✓ (✓) to move in order to generate a new Jacobian

M 2 Rd⇥q
that has a non-empty null space. Intu-

itively, the more a component

br✓ ij(✓) is uncertain,

the more we are allowed to move it. This notion can

be formalized as a constrained maximum-likelihood

problem. We consider a (matrix) Gaussian distribu-

tion (Gupta and Nagar, 2018) to model the Jacobian

estimate:

br✓ (✓) ⇠ N
�

M, 1
n⌃

�

, where ⌃ 2 Rdq⇥dq

is the covariance matrix. This choice is justified by the

Central Limit Theorem as the estimated Jacobian is a

mean of n samples, thus, its distribution approaches

a normal as n grows to infinity (Casella and Berger,

Truly Batch Model-Free Inverse Reinforcement Learning about Multiple Intentions

2002). The corresponding likelihood function, given

the trajectory set D = {⌧1, . . . ⌧n} is:

L
⌃

(M|D) =

p
n

p

(2⇡)dq|⌃|
e�

n
2

kvec(br✓ (✓)�M

)k2

⌃�1 , (4)

where, for a matrix A, vec(A) denotes the vectoriza-

tion of A, i.e., the vector obtained by stacking the

columns of A. We now formulate the IRL problem

as the problem of finding the weight vector ! and the

new Jacobian M that, jointly, maximize the likelihood,

while ! belongs to the null space of M:

min

!2Rq
+

k!k
1

=1

min

M2Rd⇥q

M!=0

�

�

�

vec

⇣

br✓ (✓)�M

⌘

�

�

�

2

⌃

�1

. (5)

This optimization problem can be simplified since the

inner maximization can be solved in a closed form, by

leveraging on a weighted low-rank approximation of

matrix

br✓ (✓) (Manton et al., 2003).

Theorem 4.1. If ⌃ is positive definite, the optimiza-
tion problem (5) can be restated as:

min

!2Rq
+

k!k
1

=1

�

�

�

br✓ (✓)!
�

�

�

2

[

(!⌦Id)
T
⌃(!⌦Id)]

�1

, (6)

where ⌦ denotes the Kronecker product and Id is the
identity matrix of order d. Furthermore, the approxi-
mating Jacobian M(!) is given by:

vec (M(!)) =
n

Idq �⌃(! ⌦ Id)
⇥

(! ⌦ Id)
T
⌃(! ⌦ Id)

⇤�1

⇥ (! ⌦ Id)
T
o

vec

⇣

br✓ (✓)
⌘

.

Unfortunately, the objective function (5) is non-convex

for a generic choice of ⌃. However, for specific choices

of ⌃ we are able to prove the convexity and recover

the objective function optimized by GIRL.

Corollary 4.1. Let Q 2 Rd⇥d be a positive definite
matrix and let 1q denote the q-dimensional vector of
all ones. If ⌃ = 1q1

T
q ⌦Q, then objective function (6)

is convex. Furthermore, if Q = Id, then the objective
function (6) is equivalent to (2) with p = 2.

We can approximate a generic matrix ⌃ as a matrix of

the form 1q1
T
q ⌦Q, getting a closed form for Q. In such

case, the gap in the objective function can be upper

bounded by

2dq
s
min

(⌃)2

�

�br✓ (✓)
�

�

2

F

�

�

⌃ � 1q1
T
q ⌦ Q

�

�

F
.

More details are given in Appendix B. When we do

not have access to the true covariance matrix ⌃, we

can approximate it with the empirical covariance

b

⌃.

3

In the following, we are going to denote with p(D|!) =
L
⌃

(M(!)|D) the value of the objective as a function

of the weight vector attained by the optimal mean ma-

trix M(!). As intuition suggests, this quantity can be

3The empirical covariance matrix b⌃ might be singular
when dq � n. In such cases, we resort to standard correc-
tions to enforce well-conditioning (Ledoit and Wolf, 2004).

interpreted as the likelihood of the dataset D, given a

weight vector !. We will employ it in the clustering

procedure (Section 5).

4.1 Theoretical Analysis

In this section, we provide a finite-sample analysis of

⌃-GIRL, under the assumption that ⌃ is the true co-

variance matrix of the distribution having generated

the estimated Jacobian

br✓ (✓). We consider the case

in which the weight vector !E
is unique under the

simplex constraint (Equation (1)), to avoid multiple

solutions. Similarly to what was done in Pirotta and

Restelli (2016), we can evaluate the norm of the dif-

ference between the expert’s weights !E
and the re-

covered ones

b!. The following result provides a finite-

sample bound for this quantity.

Theorem 4.2. Let br✓ (✓) be an unbiased estimate
of the Jacobian r✓ (✓) obtained with the trajectories
D = {⌧1, . . . , ⌧n}. Let 1

n⌃ = Cov[vec(br✓ (✓))] be the
true covariance matrix of the estimated Jacobian. Let
b! be the weight vector recovered by ⌃-GIRL run with
covariance matrix ⌃ and !E be the expert’s weight
vector. If r✓ (✓) and M(

b!) have rank q � 1 and
sq�1(r✓ (✓)) = s > 0, where sq�1(·) denotes the (q�
1)-th singular value, then it holds that:

E
⇥

�

�

b! � !E
�

�

2

⇤


r

16dq k⌃k2
s2n

,

where the expectation is taken w.r.t. the randomness
of the trajectories in D used to compute br✓ (✓).

Our result extends Theorem 13.2 of Pirotta (2016) in

a few aspects. The result of Pirotta (2016) is clearly

applicable to ⌃-GIRL, as it assumes that the esti-

mated Jacobian

br✓ (✓) has already rank q � 1. In

such case, GIRL and ⌃-GIRL behave in the same way

as M(

b!) =

br✓ (✓). However, Theorem 4.2 is more

general and applies for ⌃-GIRL even for a full-rank

estimated Jacobian

br✓ (✓). Furthermore, although

⌃-GIRL is presented considering a Gaussian likelihood

model, Theorem 4.2 makes no assumption on the dis-

tribution of the Jacobian, but just requires that ⌃ is

the true covariance matrix.

5 Multiple-Intention ⌃-GIRL

In this section, we consider the problem of Multiple-

Intention IRL (MI-IRL), using ⌃-GIRL as a building

block for solving the single-intention IRL problem. A

naïve solution would be to solve m independent IRL

problems, one for each expert agent Ei. However, since

we typically have k ⌧ m (i.e., fewer intentions than

experts), this solution would be highly sub-optimal,

especially in situations where few demonstrations are

available per agent. In such cases, it is much wiser

G. Ramponi, A. Likmeta, A. M. Metelli, A. Tirinzoni, M. Restelli

↵ Yi Di

!j
k

n

Figure 1: Plate notation of the probabilistic model

employed for the clustering procedure.

to cluster the trajectories during the IRL step. To

this end, we adopt an expectation-maximization (EM)

approach (Dempster et al., 1977) to find the param-

eters !j , together with the agent-cluster assignments

that maximize the overall likelihood. We introduce

the hidden random variable Yi 2 {1, . . . , k} that, for

each expert Ei with i 2 {1, . . . ,m}, indicates to which

cluster Ei is assigned. In other words, Yi = j means

that agent Ei is optimizing the reward R!j . For

these random variables we assume a prior distribution

↵j = p(Yi = j), independent from i, where ↵j � 0 and

Pk
j=1 ↵j = 1. We will denote with Y = (Y1, . . . Ym)

the concatenation of all the Yis. The collection of pa-

rameters we are going to optimize on is given by the

concatenation of the weight vectors !j and the prior

probabilities ↵j , i.e., ⌦ = (!1, . . . ,!k,↵1, . . . ,↵k).

Figure 1 reports the probabilistic model of the clus-

tering procedure.

The crucial observation, for applying EM, is that we

can compute the likelihood of a dataset Di, once we

know the cluster assignment of agent Ei, i.e., Yi:

p(Di|Yi = j;⌦) = p(Di|!j), (7)

where the latter is defined in Section 4 (Equa-

tion (4)). Exploiting the independence of the

datasets D = (D1, . . . , Dm) and recalling that

p(Di, Yi|⌦) = p(Di|Yi;⌦)p(Yi|⌦), we can define the

likelihood L(⌦|D,Y) = p(D,Y|⌦) of all the data as:

L(⌦|D,Y) =

m
Y

i=1

p(Di, Yi|⌦) =
m
Y

i=1

↵Yip(Di|!Yi).

According to Bilmes et al. (1998), in the expectation

step (E-step), we compute the probability of the as-

signment Yi, conditioned by the data Di, in terms of

the old parameters ⌦

old

, i.e., zij = p(Yi = j|Di;⌦
old

).

We derive zij using Bayes theorem:

zij =
p(Di|Yi = j;⌦old

)p(Yi = j|⌦old

)

p(Di|⌦old

)

=

↵old

j p(Di|!old

j)

Pk
h=1 ↵

old

h p(Di|!old

h)

.

In the maximization step (M-step), instead, we look

for the new parameters ⌦ that maximize the expec-

tation of the log-likelihood logL(⌦|D,Y) under the

Algorithm 1 Multiple-Intention ⌃-GIRL

input: datasets D = (D1, . . . , Dm), number of clusters k,
number of iterations Nite
output: optimal parameters ⌦ = (!1, . . . ,!k,↵1, . . . ,↵k)

Initialize ⌦

0 randomly
for t = 1, . . . , Nite do

E-step: Compute zij =

↵t�1

j p(Di|!t�1

j)
Pk

h=1

↵t�1

h p(Di|!t�1

h)

M-step: Optimize ⌦

t 2 arg max!j ,↵j
Q(⌦,⌦t�1

)

=

Pk
j=1

Pm
i=1 zij (log↵j + log p(Di|!j))

end for
return ⌦

N
ite

previously found distribution over the assignments Yi:

Q(⌦,⌦old

) = E
Y⇠p(·|D;⌦old)

[logL(⌦|D,Y)]

=

k
X

j=1

m
X

i=1

zij log↵j +

k
X

j=1

m
X

i=1

zij log p(Di|!j).

The derivation of Q(⌦,⌦old

) is reported in Ap-

pendix A.3. Thus, the EM algorithm keeps alternat-

ing the E-step by computing the probabilities zij and

the M-step by computing the new parametrization ⌦

and ↵ optimizing Q(⌦,⌦old

). Algorithm 1 reports an

overview of Multiple-Intention ⌃-GIRL.

4

It is worth

noting that for the computation of the new ⌦ it is re-

quired the solution of k IRL problems. Indeed, for a

fixed j 2 {1, . . . , k}, denoting with

br✓ i(✓) the esti-

mated Jacobian of agent Ei, the objective function to

be optimized is given by:

min

!j2Rq
+

k!jk
1

=1

m
X

i=1

zijni

�

�

�

br✓ i(✓)!j

�

�

�

2

[(!j⌦Id)⌃i(!j⌦Id)T]�1

.

6 Related Works

There has been a growing interest in making IRL

algorithms scale over real-world continuous domains,

where only few or no environment interactions are al-

lowed. Boularias et al. (2011) proposed a model-free

variant of MaxEnt IRL (Ziebart et al., 2008), named

Relative Entropy IRL (REIRL). Although REIRL

avoids solving the MDP, it requires a dataset collected

under an explorative policy. A model-free variant of

the Maximum-Likelihood IRL (MLIRL, Babes et al.,

2011) was recently proposed by Jain et al. (2019).

Although the approach only requires expert demon-

strations, it repeatedly needs to solve batch RL prob-

lems to compute (approximately) optimal Q-functions.

However, none of the methods presented above fully

address the IRL problem in a truly batch model-free

fashion. Instead, Klein et al. (2012) and Klein et al.

(2013) reduced IRL to a structured classification prob-

lem which, similarly to GIRL (Pirotta and Restelli,

4The computational cost is given in Appendix C.

Truly Batch Model-Free Inverse Reinforcement Learning about Multiple Intentions

G

Cluster 1

T1

Cluster 2

T2

T3

S

Figure 2: Gridworld with puddles showing the start

state (S), the goal state (G), puddles (light blue) and

three sample trajectories: T1 (red) from the first clus-

ter, T2 (black) and T3 (green) from the second cluster.

2016) and its extensions (e.g., Metelli et al., 2017;

Tateo et al., 2017), can be solved efficiently using only

the observed trajectories and with no further interac-

tion with the environment. These algorithms require

a good estimate of the expert’s feature expectations

for each action, even those that have not been demon-

strated. ⌃-GIRL mitigates this issue, by considering

an explicit model of the uncertainty ⌃ of the gradient

estimate, while importing all the advantages of GIRL.

In its first formulation, the MI-IRL problem was solved

via an EM algorithm considering a Boltzmann policy

for the expert (Babes et al., 2011). This method, how-

ever, requires accessing the environment (that must

have finite a state-action space) and needs a careful

tuning of the temperature parameter. Our multiple-

intention version of ⌃-GIRL can be employed in con-

tinuous environments and just requires the selection

of the number of clusters k, as unique hyperparame-

ter. Bayesian non-parametric approaches can be em-

ployed when k is unknown at the cost of a significantly

larger overhead, typically requiring the solution of the

forward RL problem (Choi and Kim, 2012). The MI-

IRL problem in continuous state-action spaces was ad-

dressed in a limited number of works (e.g., Almingol

and Montesano, 2015; Rajasekaran et al., 2017).

7 Experiments

This section is devoted to the experimental evaluation

of ⌃-GIRL in both single-intention (Section 7.1) and

multiple-intention (Section 7.2 and 7.3) settings.

5

For

the single intention case, ⌃-GIRL is compared with

some batch model-free IRL algorithms in two contin-

uous domains: the Linear Quadratic Gaussian regula-

tor (LQG, Dorato et al., 2000) and a Gridworld with

puddles domain (Figure 2). For the multiple-intention

case, we test the quality of the clusters identified by

Multiple-Intention ⌃-GIRL compared to Maximum-

5The code is available at github.com/sigma-girl-MIIRL.

10

1

10

2

10

3

�35

�30

�25

�20

Episodes (n)

A
v
e
ra

g
e
R
e
tu

rn
b J
E

10

1

10

2

10

3

0.2

0.3

0.4

0.5

0.6

Episodes (n)

kb!
�

!
E
k 2

⌃-GIRL GIRL REIRL Optimal

Figure 3: Average return in the original environment

bJE of the optimal policy given the recovered weights

b!
(left) and distance between the recovered and expert’s

weights kb! � !Ek2 (right) in the LQG experiment.

100 runs, 95 % c.i.

Likelihood IRL (MLIRL, Babes et al., 2011) in the

Gridworld with puddles. Finally, we evaluate ⌃-GIRL

in a real-world case study in which we infer and cluster

the intentions of a group of Twitter users. Additional

experimental results are reported in Appendix D.

7.1 Single-IRL experiments

We start evaluating the performance of ⌃-GIRL com-

pared with state-of-the-art model-free IRL algorithms

in the single-intention IRL problem.

Linear Quadratic Gaussian regulator We con-

sider the two-dimensional LQG environment in which

the agent has to reach the origin, limiting the magni-

tude of the actions. The reward features are the state

and actions squared �(s,a) = (�s21,�s22,�a21,�a22)
T

and the weights are !E
= (1, 1, 1, 1)T . The expert

plays a Gaussian linear policy, in which the control

matrix K is computed in closed form and with fixed

diagonal covariance diag(0.1, 2).6 We show, for each

of the algorithms considered, the performance of the

optimal policies with the recovered reward function in

the original environment

bJE and the distance between

the weights found and the expert weights kb! �!Ek2,
as a function of the number of trajectories. In Fig-

ure 3, we notice that ⌃-GIRL outperforms both GIRL

and REIRL in both indexes, achieving better perfor-

mance and weights closer to the original ones. REIRL

requires, besides the expert demonstrations, a dataset

collected using a second policy uniform in the action

space. This requirement partially violates the assump-

tion of no interaction with the environment. The full

sample covariance matrix was used in this experiment

since it resulted well-conditioned.

6This asymmetric choice induces a higher variance in
the second dimension of the state and action spaces; so
that we can easily see the benefits of ⌃-GIRL in modeling
the gradient uncertainty.

https://github.com/gioramponi/truly_batch_model-free_MI-IRL.git

G. Ramponi, A. Likmeta, A. M. Metelli, A. Tirinzoni, M. Restelli

10

0

10

1

10

2

10

3

10

4

�1.8

�1.6

�1.4

�1.2

�1

Episodes (n)

A
v
e
ra

g
e
R
e
tu

rn
b J
E

10

0

10

1

10

2

10

3

10

4

0

0.2

0.4

0.6

0.8

1

Episodes (n)

kb!
�

!
E
k 2

⌃-GIRL GIRL REIRL CSI Optimal

Figure 4: Average return in the original environment

bJE of the optimal policy trained with G(PO)MDP

with the recovered weights

b! (left) and distance be-

tween the recovered and expert’s weights kb! � !Ek2
(right) in the Gridworld experiment. 20 runs, 95 % c.i.

Gridworld The second experiment aims at evaluat-

ing the performance of ⌃-GIRL in a continuous Grid-

world environment. The agent is initialized in a ran-

dom position and has to reach the goal in the minimum

number of steps, by playing a bivariate Gaussian pol-

icy, linear in a set of 9 ⇥ 9 radial basis functions, that

generates the x and y displacement. There is a re-

gion in the border of the environment that should be

avoided. To make the environment more challenging

the agent is also penalized for performing high mag-

nitude actions. The reward feature space is given by

three features: two binary features indicating whether

the agent is on the border or in the central region

and �kak22 to penalize the magnitude of actions. The

expert’s weights are !E
= (1, 100, 0)T . In Figure 4,

we compare the performance of ⌃-GIRL with GIRL,

REIRL, and CSI (Cascade Supervised IRL, Klein

et al., 2013). We notice that ⌃-GIRL is able to recover

weights that are almost identical to the expert’s ones

even with a small (30) number of trajectories. This, as

expected, reflects on the performance, in the original

environment, of the optimal policy learned using the

recovered weights. While GIRL is still able to obtain

a good weighting, the performance of REIRL and CSI

are significantly suboptimal, especially the latter that

is unable to provide a suitable weighting.

7.2 Multiple-intentions experiments

In this experiment, we compare the Multiple-Intention

⌃-GIRL with MLIRL (Babes et al., 2011), to test the

capability of clustering agents which demonstrate mul-

tiple intentions. We consider a Gridworld-puddles con-

sisting of a start state, a goal state, and some states are

puddles, as in Figure 2. The world is characterized by

a three-features reward: one for the goal state, one for

the puddles and one for the other states. In this set-

ting, we consider two clusters of agents which demon-

strate different behaviors: the first cluster (T1) goes to

10

1

10

2

0.6

0.8

1

Episodes (n)

C
lu
st
e
ri
n
g
a
c
c
u
ra

c
y

10

1

10

2

�50

0

Episodes (n)

A
v
e
ra

g
e
R
e
tu

rn
b J
E

⌃-GIRL MLIRL T2+T3 T2
T3 Optimal

Figure 5: Clustering accuracy of ⌃-GIRL and MLIRL

(left) and average return in the original environment

bJE of the policies trained given the weights recovered

separately for T2 and T3 and their cluster (right) in

the Gridworld experiment. 20 runs, 98% c.i.

Demonstrations per agent

Running Time 5 10 30 100

⌃-GIRL 1.25s 1.28s 1.21s 1.51s
MLIRL 60.96s 62.20s 69.22s 93.23s

Table 1: Running time of ⌃-GIRL and MLIRL with

increasing number of trajectories per agent.

the goal ignoring puddles, the second (T2+T3) goes to

the goal avoiding puddles. For the second cluster, we

have three agents which have three different but equiv-

alently optimal policies (Figure 2). The first agent

(T2) always chooses as the first action to go up, the

second (T3) to go down and the third one randomly

performs up or down as the first action, and then they

all follow the border. The first cluster weights are

!T1

= (1, 1, 1)T and the second cluster weights are

!T2,T3

= (1, 10, 1)T . The agents are initialized in the

start state S and they play bivariate Gaussian poli-

cies linear in the state space. We set the number of

clusters to 2 and with an increasing number of trajec-

tories per agent (from 5 to 100). For MLIRL we set

the same hyperparameters as in Babes et al. (2011),

and we opportunely discretize the actions.

In Figure 5 left, we show the clustering accuracy of the

two algorithms. Multiple-Intention ⌃-GIRL succeeds

in clustering the agents, even if they show different

behaviors (but same intents), outperforming MLIRL.

Figure 5 right shows the benefit of clustering in the

IRL setting: the two experts T2 and T3, described

above, optimized the same reward !T2+T3

and indeed

are clustered together. Considering only the trajecto-

ries of T2 and using her estimated gradients, ⌃-GIRL

cannot recover the right reward weights; instead, by

clustering T2 together with T3, we correctly recover

the expert weights. Finally, in Table 1, we report the

running times with an increasing number of trajecto-

Truly Batch Model-Free Inverse Reinforcement Learning about Multiple Intentions

Reward Features

N. agentsPopularity N. retweets �time

Cluster 1 0.56 0.00 0.44 4
Cluster 2 0.16 0.19 0.65 6
Cluster 3 0.78 0.03 0.19 4

Table 2: The reward weights learned by ⌃-GIRL: pop-

ularity score of a retweet, number of retweets in a win-

dow T , and retweet proximity (�
time

).

ries. We notice that ⌃-GIRL is faster than MLIRL

and less sensitive to the sample size.

7.3 Twitter experiment

In the last experiment, we employ ⌃-GIRL algorithm

to cluster and infer Twitter users’ intentions.

7

In par-

ticular, we turn to the questions: “Why does a user

decide to retweet a post? What is her intention in

deciding to post the tweet?”

Data The dataset is made of 14 Twitter accounts

(agents) and their followings. The total number of fol-

lowings is 5745. We collected their tweets from Novem-

ber 2018 to the end of January 2019 using a crawl-

ing process. The total number of followings’ tweets is

468304. We suppose that every user can see only the

tweets of whom she follows. We assume that a user

sees a tweet with probability 0.01 to simulate the real

behavior of a social network’s user. After receiving a

tweet the agent has to select between to actions: she

can re-post it on her page or to not re-post it.

Features We represent the state space with three fea-

tures: the popularity of a tweet, the number of retweets
out of the last T = 10 (retweet window) tweets seen

by the agent, and the retweet proximity. The popular-

ity score is the weighted sum of the number of tweet’s

likes and the number of retweets:

Popularity-score = ↵N
like

+ (1� ↵)N
retweet

where ↵ = 0.5 and then normalized by the average of

popularity-score of user’s tweets. The retweet proxim-

ity is computed as �
time

= 0.1˙(t � t0) � 1 where t is

the earliest time at which the agent receives a tweet

that decides to retweet after having retweeted at time

t0 < t. When an agent performs a retweet, she goes

to a next state s0 that is composed of the popularity
of the new tweet, �

time

= 0 (since the last action was

a retweet) and the number of retweet % 10. The re-

ward features are the same as the state ones but the

Popularity-score is set to 0 when the agent does not

re-tweet the tweet.

7It is worth noting that MLIRL (Babes et al., 2011)
cannot be applied in this experiment as we are in a fully
batch setting and we cannot interact with the environment.

1 2 3

0

200

400

600

Cluster

N
.
o
f
fo
ll
o
w
e
rs

1 2 3

0

2000

4000

Cluster

N
.
o
f
fo
ll
o
w
in
g
s

1 2 3

0

20

40

60

80

Cluster

N
.
o
f
re
tw

e
e
ts

Figure 6: Twitter clustering statistics. Average num-

ber of followers (left), followings (center) and retweets

(right) for each cluster.

Clustering results We perform behavioral cloning

on the agents’ demonstrations employing a two-layer

neural network (8 neurons each). Then, we divide

the demonstrations in trajectories of size 10, to have

one retweet window in every trajectory. We apply

Multiple-Intention ⌃-GIRL with k = 3 clusters. The

results are shown in Table 2, while Figure 6 reports

some statistics on the three clusters found. The results

underline that the first cluster is interested in retweet-

ing posts with high popularity at a high frequency.

Indeed, this cluster represents a standard Twitter user

that follows many users and has a lower number of fol-

lowers. The second cluster shows a different behavior:

these agents do not want to retweet too often. They

have not used the social network much, as they have

few retweets and follow a small number of people. The

last cluster is the most interesting one: these agents

tend to retweet all popular tweets. Inspecting those we

discover that they are commercial accounts (a bot, a

company, and two HR managers). It is not surprising

that they show the intention to post popular tweets,

but they are uninterested in following other accounts.

8 Discussion and Conclusions

We presented a novel fully batch model-free IRL algo-

rithm, ⌃-GIRL, that accounts for the uncertainty in

the gradient estimation, and provides the reward func-

tion that maximizes the likelihood of the estimated

policy gradient, with no need of accessing the environ-

ment. We extended our algorithm to MI-IRL setting

to simultaneously recover the agent-cluster assignment

and the reward weights, using an EM alternating pro-

cess. The experimental evaluation allowed us to illus-

trate the benefits of modeling the uncertainty both in

the single-intent and multiple-intent setting, achieving

an improvement over the considered baselines. Finally,

we tested ⌃-GIRL on a Twitter dataset showing quali-

tative results on inferring and clustering social network

users’ intentions. As future work, we plan to extend

⌃-GIRL to the non-parametric setting and to use these

learned intentions to predict the behavior of multiple

users in multi-agent environments.

G. Ramponi, A. Likmeta, A. M. Metelli, A. Tirinzoni, M. Restelli

Acknowledgements

We thank Giuseppe Mascellaro for contributing to the

idea of ⌃-GIRL algorithm.

References

Almingol, J. and Montesano, L. (2015). Learning mul-

tiple behaviours using hierarchical clustering of re-

wards. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages

4608–4613. IEEE.

Argall, B. D., Chernova, S., Veloso, M., and Brown-

ing, B. (2009). A survey of robot learning from

demonstration. Robotics and autonomous systems,
57(5):469–483.

Babes, M., Marivate, V., Subramanian, K., and

Littman, M. L. (2011). Apprenticeship learning

about multiple intentions. In Proceedings of the
28th International Conference on Machine Learning
(ICML-11), pages 897–904.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon

policy-gradient estimation. Journal of Artificial In-
telligence Research, 15:319–350.

Bilmes, J. A. et al. (1998). A gentle tutorial of the

em algorithm and its application to parameter es-

timation for gaussian mixture and hidden markov

models. International Computer Science Institute,
4(510):126.

Boularias, A., Kober, J., and Peters, J. (2011). Rela-

tive entropy inverse reinforcement learning. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 182–

189.

Casella, G. and Berger, R. L. (2002). Statistical infer-
ence, volume 2. Duxbury Pacific Grove, CA.

Choi, J. and Kim, K.-E. (2012). Nonparametric

bayesian inverse reinforcement learning for multiple

reward functions. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, pages 305–313, USA.

Curran Associates Inc.

Dempster, A. P., Laird, N. M., and Rubin, D. B.

(1977). Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 39(1):1–22.

Dorato, P., Cerone, V., and Abdallah, C. (2000). Lin-
ear quadratic control: an introduction. Krieger Pub-

lishing Co., Inc.

Gupta, A. K. and Nagar, D. K. (2018). Matrix variate
distributions. Chapman and Hall/CRC.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne,

C. (2017). Imitation learning: A survey of learn-

ing methods. ACM Computing Surveys (CSUR),
50(2):21.

Jain, V., Doshi, P., and Banerjee, B. (2019). Model-

free irl using maximum likelihood estimation.

Klein, E., Geist, M., Piot, B., and Pietquin, O. (2012).

Inverse reinforcement learning through structured

classification. In Advances in Neural Information
Processing Systems, pages 1007–1015.

Klein, E., Piot, B., Geist, M., and Pietquin, O.

(2013). A cascaded supervised learning approach

to inverse reinforcement learning. In Proceedings of
the 2013th European Conference on Machine Learn-
ing and Knowledge Discovery in Databases - Volume
Part I, ECMLPKDD’13, pages 1–16, Berlin, Heidel-

berg. Springer-Verlag.

Knyazev, A., Jujunashvili, A., and Argentati, M.

(2010). Angles between infinite dimensional sub-

spaces with applications to the rayleigh–ritz and al-

ternating projectors methods. Journal of Functional
Analysis, 259(6):1323–1345.

Ledoit, O. and Wolf, M. (2004). A well-conditioned

estimator for large-dimensional covariance matrices.

Journal of multivariate analysis, 88(2):365–411.

Manton, J. H., Mahony, R., and Hua, Y. (2003).

The geometry of weighted low-rank approximations.

IEEE Transactions on Signal Processing, 51(2):500–

514.

Metelli, A. M., Pirotta, M., and Restelli, M. (2017).

Compatible reward inverse reinforcement learning.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,

H., Fergus, R., Vishwanathan, S., and Garnett, R.,

editors, Advances in Neural Information Processing
Systems 30, pages 2050–2059. Curran Associates,

Inc.

Ng, A. Y. and Russell, S. J. (2000). Algorithms for in-

verse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine
Learning, ICML ’00, pages 663–670, San Francisco,

CA, USA. Morgan Kaufmann Publishers Inc.

Nocedal, J. and Wright, S. (2006). Numerical opti-
mization. Springer Science & Business Media.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A.,

Abbeel, P., Peters, J., et al. (2018). An algorithmic

perspective on imitation learning. Foundations and
Trends R� in Robotics, 7(1-2):1–179.

Peters, J. and Schaal, S. (2008). Reinforcement learn-

ing of motor skills with policy gradients. Neural
Networks, 21(4):682–697.

Pirotta, M. (2016). Reinforcement learning: from the-
ory to algorithms. PhD thesis, Italy.

Truly Batch Model-Free Inverse Reinforcement Learning about Multiple Intentions

Pirotta, M. and Restelli, M. (2016). Inverse reinforce-

ment learning through policy gradient minimization.

In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 1993–1999.

AAAI Press.

Puterman, M. L. (1994). Markov Decision Processes:
Discrete Stochastic Dynamic Programming. John

Wiley & Sons, Inc., New York, NY, USA.

Rajasekaran, S., Zhang, J., and Fu, J. (2017). Inverse

reinforce learning with nonparametric behavior clus-

tering. CoRR, abs/1712.05514.

Spokoiny, V. et al. (2012). Parametric estimation.

finite sample theory. The Annals of Statistics,
40(6):2877–2909.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning: An Introduction. A Bradford book. Brad-

ford Book.

Sutton, R. S., McAllester, D. A., Singh, S. P., and

Mansour, Y. (2000). Policy gradient methods for

reinforcement learning with function approximation.

In Solla, S., Leen, T., and Müller, K., editors, Ad-
vances in Neural Information Processing Systems
12, pages 1057–1063. MIT Press.

Taslaman, L. (2014). The principal angles and the gap.

Tateo, D., Pirotta, M., Restelli, M., and Bonarini,

A. (2017). Gradient-based minimization for multi-

expert inverse reinforcement learning. In 2017 IEEE
Symposium Series on Computational Intelligence
(SSCI), pages 1–8. IEEE.

Williams, R. J. (1992). Simple statistical gradient-

following algorithms for connectionist reinforcement

learning. Machine learning, 8(3-4):229–256.

Ziebart, B. D., Maas, A., Bagnell, J. A., and Dey,

A. K. (2008). Maximum entropy inverse reinforce-

ment learning. In Proc. AAAI, pages 1433–1438.

	Introduction
	Preliminaries
	Gradient-based approaches to IRL
	-Gradient Inverse Reinforcement Learning
	Theoretical Analysis

	Multiple-Intention -GIRL
	Related Works
	Experiments
	Single-IRL experiments
	Multiple-intentions experiments
	Twitter experiment

	Discussion and Conclusions
	Proofs and Derivations
	Proofs of Section 4
	Proofs of Section 4.1
	Proofs of Section 5

	Details on Optimization Problem (6)
	Approximation of as in Corollary 4.1
	Analysis of the Gap

	Computational Cost
	Additional Experiments
	Optimization of -GIRL objective function
	Single-IRL
	Multiple-IRL

