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A Numerical Approach to the Problem of Angles-Only

Initial Relative Orbit Determination in Low Earth Orbit

Jean-Sébastien Ardaens1, Gabriella Gaias

DLR, German Aerospace Center, 82234 Wessling, Germany

Abstract

A practical and effective numerical method is presented, aiming at solv-
ing the problem of initial relative orbit determination using solely line-of-
sight measurements. The proposed approach exploits the small discrepan-
cies which can be observed between a linear and a more advanced relative
motion model. The method consists in systematically performing a series of
least-squares adjustments at varying intersatellite distances in the vicinity of
a family of collinear solutions coming from the linear theory. The solution
presenting the smallest fitting residuals is then selected. The investigations
specifically focus on the rendezvous in low Earth near-circular orbit with a
noncooperative target. The objective is to determine the relative state of the
formation using only bearing observations when the spacecraft are separated
by a few dozen kilometers without any a-priori additional information. The
method is validated with flight data coming from the ARGON (2012) and
AVANTI (2016) experiments. Both cases demonstrate that an observation
time span of a few maneuver-free orbits is enough to compute a solution
which can compete with Two-Line Elements in terms of accuracy.

Keywords: angles-only navigation; noncooperative rendezvous;
formation-flying; flight demonstration; initial orbit determination

1. Introduction

The determination of the trajectories of celestial objects based on line-
of-sight measurements is an ancient and well-established technique. Gauss
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and Laplace already addressed this problem more than 200 years ago when
observing asteroids (Gauss, 1809). More recently, it has been recognized that
angles-only navigation could also be a powerful method to track noncooper-
ative objects in space from a satellite (Chari, 2001; Woffinden, 2008). In this
case, the observer is no longer located on Earth but is also orbiting, creating
a new difficulty: the relative navigation problem becomes weakly observable
if both observer and tracked object are flying on similar orbits.

A particular use case of angles-only relative navigation consists in em-
ploying a single monocular camera to rendezvous in space with a noncooper-
ative object. Over the last few years, the German Space Operations Center
(DLR/GSOC) has dedicated considerable efforts in this research field. Two
in-orbit demonstrations with increasing complexity have been conducted to
collect relevant flight experience. The first experiment, called ARGON (Ad-
vanced Rendezvous demonstration using GPS and Optical Navigation), took
advantage of the PRISMA formation-flying testbed (Persson et al., 2005) to
demonstrate in 2012 the ability to perform a far- to mid-range ground-in-the-
loop rendezvous with a noncooperative target, reducing the intersatellite sep-
aration from 30 km to 3 km (D’Amico et al., 2013). Based on this experience,
a second more challenging endeavor was conducted in 2016: the AVANTI
(Autonomous Vision Approach Navigation and Target Identification) ex-
periment, which successfully demonstrated the ability to autonomously ren-
dezvous with a fully noncooperative spacecraft (Gaias and Ardaens, 2018).
AVANTI has been implemented on the BIROS satellite (Halle et al., 2014),
which was chasing a picosatellite named BEESAT-4 (Baumann et al., 2012)
from 50 km to only 50 m separation.

Both experiments solely relied on images taken by a monocular camera
to estimate the relative motion. However, due to the weak observability
of the problem, the provision of an a priori coarse solution was required
to ensure the convergence of the estimation techniques. This Initial Relative
Orbit Determination (IROD) has been done using Two-Line Elements (TLE)
and was employed to initialize the on-ground precise angles-only relative or-
bit determination (supporting the ARGON (Gaias et al., 2014) and AVANTI
(Ardaens and Gaias, 2018a) experiments) and the on-board autonomous real-
time relative navigation filter (used only for AVANTI, see Ardaens and Gaias
(2018b)). This was justified by the fact that a rendezvous in space is always
done with a target object which is not unknown, so that coarse orbit infor-
mation is always available. Still, it remains an interesting research question
to investigate if the use of TLEs could have been entirely avoided. This
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would have simplified the interfaces, making the relative navigation task in-
dependent from external additional information. Moreover, this would have
contributed to increase the autonomy level of the spaceborne rendezvous
system employed during the AVANTI experiment.

The problem of IROD has recently attracted considerable attention. Sec-
tion 2.2 provides an overview of the current research directions in this domain.
All these activities are of great relevance, since they provide the theoretical
justification of possible approaches to improve the observability property of
the relative orbit determination problem. This work intends to complement
this fundamental research by providing a quantitative analysis based on flight
data and experience collected during the ARGON and AVANTI experiments,
which were both conducted in low Earth orbits (LEO). The objective consists
in determining the relative trajectory of objects flying on near-circular orbits,
with applicability to in-space debris monitoring, active debris removal or on-
orbit servicing activities. Note that these topics are currently of primary
interest, given the density and natural evolution of the population of objects
flying in the LEO belt (Liou and Johnson, 2008; Liou, 2011). A second con-
tribution of this study regards the domain of applicability of the proposed
solution in terms of relative range. From an operational point of view, in fact,
IROD has to be performed when the spacecraft are separated by a few dozen
of kilometers, as it would be too dangerous to start estimating the relative
state only at few hundred meters of distance. On the other hand, working
with too large separations (a few hundred kilometers) poses the problem of
detectability of the target, a technological constraint driven by the sensor
capabilities. As explained more in details in the next section, these practi-
cal considerations limit the domain of applicability of some of the theoretical
methods designed to perform at close or very large distances. The experience
gained with AVANTI indicates that a small picosatellite would not have been
visible at such distances (in fact, it was barely visible at 50 km separation,
cf. Ardaens and Gaias (2018a)).

After a brief description of the observability problem, the different ap-
proaches proposed in the literature for IROD are reviewed in Section 2. A
new method is then introduced to numerically solve this problem. Section 3
provides an analysis of the factors influencing the solution in terms of accu-
racy. These investigations are conducted by the means of simulations, which
allow for individual and systematical activation of key parameters and per-
turbations. Finally, Section 4 shows how this numerical method performs on
two different cases taken from the AVANTI and ARGON experiments.
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2. Initial Relative Orbit Determination

2.1. Woffinden’s Dilemma

The problem of angles-only relative navigation consists in finding the rela-
tive state (i.e., position and velocity) between a target and a chaser spacecraft
corresponding to a given set of n line-of-sight measurements {ui} taken at
times ti. These observations are unit vectors directed to the target object,
and can equivalently be parameterized by a set of two angles (for example
right-ascension and declination, or azimuth and elevation). It is well-known
that this problem is weakly observable. Woffinden and Geller (2009a) ele-
gantly demonstrated that, under the assumption of an homogeneous linear
relative motion with a linear measurement model, the relative motion is even
not observable. The demonstration is quickly recalled here for completeness.
Let x(t) denote the relative state at time t (either in a Cartesian frame or
parameterized with relative orbital elements). A linear relative motion model
implies that

x(t) = Φ(t, t0) · x(t0), (1)

where Φ(t, t0) is the state transition matrix between an initial epoch t0 and
t. Let assume that the relative position r(t) has a linear dependency to the
state vector x(t) (which is trivial if x is formulated in the Cartesian frame
but is not necessarily the case if relative orbital elements are employed):

r(t) = C(t) · x(t) (2)

Each observation from a given set of measurements obviously satisfies:

ui × r(ti) = 0, i ∈ [1, n] (3)

Substituting Eq. 1 and Eq. 2 into Eq. 3 yields:

ui × (C(ti)Φ(ti, t0)x(t0)) = 0, i ∈ [1, n] (4)

It can clearly be recognized that, if x(t0) = x0 is solution of Eq. 4, the
scaled solution µx0 is also a solution, leading to an infinity of solutions
matching a given measurement profile. This result is known as Woffinden’s
dilemma.

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2.2. Improving the Observability
Full nonobservability is however strictly valid under the aforementioned

assumptions. Many authors have investigated how the observability prop-
erty improves by relaxing some of them. A first possibility consists in exe-
cuting maneuvers, so that the relative motion is no more homogeneous (i.e.,
x(t) 6= Φ(t, t0) · x(t0)). Examples are provided in (Woffinden and Geller,
2009b; Gaias et al., 2014; Grzymisch and Fichter, 2014a,b), where the focus
is given on finding optimal location and direction of impulsive maneuvers
to be performed during the rendezvous to improve the observability of the
bearing-only relative navigation problem. In practice this strategy has been
used to enable the vision-based activities carried out within the PRISMA
mission (Noteborn et al., 2011; Delpech et al., 2012; D’Amico et al., 2013) as
well as in AVANTI (Gaias and Ardaens, 2018; Ardaens and Gaias, 2018b).
A second option consists in introducing a camera offset with respect to the
center of mass of the spacecraft (Geller and Klein, 2014; Perez, 2017). A
third approach is to improve the modeling of the relative dynamics and/or
the modeling of the measurement equations to enhance maneuver-free ob-
servability. In (Lovell and Tragesser, 2004), for example, an observability
criterion based on Lie derivatives for the nonlinear two-body relative prob-
lem is proposed. A beneficial effect over time is achieved by including orbit
perturbations (i.e., the secular effect due to the J2 term of the gravitational
potential) in the relative motion modeling as discussed in (Gaias et al., 2014)
and (Sullivan et al., 2016). This latter work also considers the eccentricity
of the spacecraft orbit and nonlinearities in the measurement model. Note
that these works exploit the parametrization in terms of relative orbital el-
ements, as linearization with respect to mean orbital elements produces a
better modeling of the orbit curvature compared to linearization in Carte-
sian coordinates.

Focusing on algorithms dedicated to IROD, Garg and Sinclair (2015) use
a second-order model of the relative dynamics combined with line-of-sight
measurements modeled from the Cartesian relative state; whereas Geller and
Lovell (2017) alter the linear dependency of the measurement equation using
cylindrical coordinates. Sullivan et al. (2016) exploit the decoupling between
the weakly observable range and the observable relative geometry (see also
(Gaias et al., 2014)) to define a reduced set of relative orbital elements (ROE)
normalized by the relative mean longitude. The resulting normalized state
vector is then used to fit the observation batch, neglecting its dynamical
evolution. In order to reduce the amount of required measurements, Sullivan
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and D’Amico (2017) propose two variants to their original algorithm. The
first, fully analytical, option consists in retaining the second-order expansion
of the nonlinear transformation from the mean ROE to local relative position
to determine the predominant unknown scaling factor which approximates
the null space of observability matrix. This approximation, in fact, allows
reducing the IROD problem to a 2n (with n number of measurements) system
of linear equations in the unknown larger scaling factor. The second option,
which improves the performance of the analytical method in the presence
of realistic noise, fits the scaled ROE set accounting for J2 (secular, long-
period, and short-period effects) and starting from the a-priori knowledge of
the relative mean longitude derived from TLE products.

In view of the main characteristics of the scenario under considerations
(i.e., near-circular low Earth orbits with intersatellite distance of a few dozen
kilometers), some of the aforementioned approaches are naturally excluded.
Improving the observability by considering the camera offset, for example, is
rather intended for close-proximity regions (i.e., up to a few dozen meters)
and will be unrealistic/impracticable for far-range IROD. At the same time,
the methods based on an analytical model which does not include at least J2

introduce too large modeling errors when flying in the LEO region. Although
performing orbit corrections revealed a viable and practical solution for ini-
tializing angles-only relative navigation filters, this requires the estimation
of additional parameters (i.e., maneuver execution errors) and the expendi-
ture of supplementary fuel during the rendezvous phase. In this framework,
the proposed methodology aims at enhancing such practical solution exploit-
ing nonlinearities in the modeling within a maneuver-free observation arc.
First the decoupling between intersatellite range and shape of the relative
orbit is exploited to reduce the search space of the solution. Then several
least-squares fitting are performed in the vicinity of the solution of the linear
model, sliding along different magnitude of the scaling factor. The obtained
fitting residuals reflect the effect of the nonlinearities of the problem, thus
the IROD solution corresponds to the global minimum of the fitting resid-
uals over the scaling direction. Contrary to other works in the literature,
this algorithm does not require any external a-priori information to resolve
the scaling factor. The approach is detailed in the next sections. Despite
its apparent simplicity, the major challenges arise when dealing with real
operational conditions: the ability for the camera to distinguish the small
differences with respect to the linearized relative motion, given the sensor
noise, the intersatellite separation and the visibility conditions.
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2.3. Algorithm Description

As already stated, the linear assumptions leading to the Woffinden’s dilemma
result in a infinity of solutions matching a given measurement profile. In real-
ity, these approximations translate into small discrepancies which will appear
when trying to fit a solution from the linear theory with a set of real measure-
ments. Intuitively, the smallest fitting errors will be obtained in the vicinity
of the true solution, allowing for a discrimination between all the collinear
candidate solutions. This statement sounds simple but is in fact not obvious.
A mathematical proof is provided in the Appendix to support this assertion.

In order to accurately fit the measurements, a more advanced relative
motion model is required, able to faithfully capture the effects neglected by
the linear model. In this case, the state propagation becomes

x(t) = f(t,x(t0)) (5)

where f is a nonlinear function. Let x0 = x(t0) denote the initial state
vector at time t0. The modeled relative position takes the general form
r(t,x0) = g(x(t,x0)), g also being a nonlinear function. The measurement
model h(t,x0) is derived from the relative position:

h(t,x0) =
r(t,x0)

‖r(t,x0)‖
(6)

The problem of IROD consists in finding x0 which minimizes the loss
function

J =
n∑
i=1

‖h(ti,x0)× ui‖2 (7)

The difficulty here is to derive a method able to find in a reasonable time
the global minimum of J . Due to the weak observability of the problem,
a simple batch least-squares method will have some difficulties to converge
to the global minimum. The proposed approach consists in aiding the least-
squares method with the family of solutions coming from the linear theory to
perform a systematical search of the best candidate within this family. For
this purpose, it is first necessary to compute the linear solution. According
to Eq. 4, a single measurement ui provides a set of three equations. By com-
bining n measurements, a set of 3n equations can be derived and rearranged
to form the following linear system:

A · x0 = 0, (8)
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where A is a 3n × 6 matrix of rank 5. Due to the rank deficiency of the
matrix, a non-trivial solution x̂0 exists. This solution can be easily derived
by computing the one-dimensional null-space of A.

sm

m

perfect observations

presence of sensor errors

m
 x̂

0

m1 m2 m3

Figure 1: Fitting residuals corresponding to a series of least-squares adjustments in the
vicinity of the linear solutions µx̂0, which are schematically represented by ellipses on top
of the graph.

A constrained (using an a priori covariance) batch least-squares adjust-
ment is subsequently performed in the vicinity of this solution. Since x̂0 is
a solution in the linear theory, the batch-least squares method will easily
converge to a local solution x0 in the vicinity of x̂0. This process can be
repeated using a scaled solution µx̂0 (which belongs as well to the null-space
of A) leading to new a local solution xµ0 . Let σ(µ) denote the root mean
square value of the measurement fitting residuals associated to xµ0 :

σ(µ) =

√√√√ 1

n
·

n∑
i=1

‖h(ti,x
µ
0)× ui‖2 =

√
1

n
J(xµ0) (9)

where h(ti,x
µ
0) stands for the modeled line-of-sight measurement at time ti

corresponding to the initial relative state xµ0 . The numerical values for the
lower and upper limits of µ are derived from the physical properties of the
sensor and target spacecraft: for a given measured quantity of light, it can for
example be stated that the intersatellite distance must be comprised between
1 and 100 km. By varying the scaling factor µ within this range, it becomes
possible to find the solution xµ0 which minimizes the fitting residuals σ. This
process is depicted in Fig. 1, where the solution found for µ = µ2 corresponds
to the global minimum of the fitting residuals. Thanks to this approach, the
search space has thus been reduced from six dimensions (x0) to only one (µ).
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The accuracy of the solution will depend on the flatness of the valley formed
by the residuals. The flatter the curve is, the less observable the problem
becomes. The steepness of the curve depends on several factors which are
described more in details in Section 3. One of these factors is the noise of the
sensor, which tends to fade the effects of the nonlinearity, as schematically
depicted in Fig. 1.

3. Numerical Analysis

3.1. Parameterization of Relative Motion

In order to ease the interpretation of the numerical analyses, it is conve-
nient to first introduce of a set of dimensionless relative orbital elements δα
(Gaias et al., 2014):

δα =
(
δa δλ δex δey δix δiy

)T
, (10)

where δa is the dimensionless relative semi-major axis, δλ stands for the

relative mean longitude, and δe =
(
δex, δey

)T
and δi =

(
δix, δiy

)T
are re-

spectively called relative eccentricity and inclination vectors.

ade

adi

ada

2ade

adl

eN

eR eR

eT

eR

eT

eN

chaser

target

Figure 2: Relative motion parameterized with relative eccentricity/inclination vectors.

Compared to a Cartesian representation, this parameterization offers among
others the advantage of providing a quick insight into the geometry of the

9
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formation. Figure 2 depicts for example the relative motion in a local Carte-
sian orbital frame (Radial-Tangential-Normal or R-T-N), whose unit vectors
are defined as follows: eR and eN are respectively aligned with the abso-
lute position of the chaser and the orbit momentum, while eT completes the
triad. As depicted in Fig. 2, the size of the relative elliptical motion can be
described by the means of the dimensioned (i.e, scaled with the semi-major
axis a) relative orbital elements.

This set of relative orbital elements is also particularly suited to the prob-
lem of angles-only navigation, because the weakly observable intersatellite
distance almost coincides with one component, yielding a geometrical de-
coupling between size and range of the relative motion. In fact, in the case
of a rendezvous with two spacecraft separated by several dozen kilometers,
the apparent motion seen by the camera mainly corresponds to the eclipse
described in the (Radial-Normal), while aδλ describes the mean along-track
separation. For clarity, this parameterization will from now on always be
used to describe the relative motion.

3.2. Relative Motion and Measurement Models

As already stated, accurate models for the relative motion and measure-
ments are needed to enable the observation of small differences with respect
to the linear motion model. Two options are investigated:

• Numerical propagation. In this case, x is the Cartesian inertial
relative state vector, g is the identity and f corresponds to a numerical
integration of the equations of motion considering a gravity field which
includes at least J2. As the equations are numerically integrated, no
linearization is performed and the overall accuracy depends on the order
and degree of the considered terms of the gravitational potential, as
well as on the additional perturbations included in the model (e.g.,
aerodynamical drag, solar radiation pressure, third-body). This model
is very accurate, provided that these perturbations can be precisely
modeled, which is in reality often not the case, given the uncertainties
associated to the atmosphere density and to the characteristics of a
noncooperative target. The main drawback of this model lies in the
high computational costs.

• Analytical propagation using mean relative orbital elements.
In this case, the relative motion model is parameterized using the mean

10
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relative orbital elements (i.e., x = δα) introduced in Section 3.1, for
which a linear motion model is available (i.e. δα(t) = Φ(t, t0) · δα(t0),
see Gaias et al. (2015)). On the contrary, the model of the relative
position g is not linear anymore. In order to retrieve the Cartesian rel-
ative position, it is first necessary to convert the mean relative orbital
elements into osculating relative elements, thus recovering long-term
and short-term contributions induced by J2, then to map the osculat-
ing elements into a Cartesian position vector. This model allows the
introduction of additional empirical parameters, in order to reflect the
mean effect of the differential drag. However, it does not include for
the moment the higher terms of the gravity field and is thus slightly
less accurate than the numerical integration with a full gravity field,
but presents the advantage of being computationally-light.

As rule of thumb, it can be stated that the method will correctly perform if
the measurement noise is similar to the errors of the model but smaller than
the discrepancies between the model and the linear motion model (otherwise
they cannot be observed). The camera (Jørgensen et al., 2003) employed for
ARGON and AVANTI exhibits a line-of-sight noise of about 40” at far-range
(corresponding to less than half-a-pixel). This translates into an error of
about 5 m at 30 km. The differential drag is the second largest perturbation
after J2 in low Earth orbit. This perturbation can be helpful to accentuate
the discrepancies with respect to the linear motion model but is extremely
difficult to faithfully model, especially when dealing with a noncooperative
target, with unknown geometry and attitude. Hence, in the case of IROD,
it might be more judicious to reduce the observation time span as much
as possible (a few orbits), in order to limit the effect of this mismodeled
perturbation.

Fig. 3 depicts the performance of the different models, which has been
assessed using a reference relative motion coming from the PRISMA mis-
sion (in a phase when the spacecraft were separated by 30 km). This ref-
erence relative trajectory has been determined using differential GPS and
is accurate at the subcentimeter level (Ardaens et al., 2012). The initial
conditions for each model have been adjusted to best fit the reference trajec-
tory, as typically done in an orbit determination task. The model of Fig. 3a
consists in a numerical propagation using a 20x20 gravity field and includ-
ing the perturbation due to the drag (using simple cannon-ball model and
empirically-measured ballistic coefficients), the solar radiation pressure and
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(a) Numerical propagation including all perturbations.
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(b) Numerical propagation including only a full gravity field.

er
ro

r 
[m

]

08:00 10:05 12:10 14:15 16:20
-5

-2

0

2

5

2012/04/23

(c) Numerical propagation including only J2.
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(d) Analytical propagation of relative orbital elements.

Figure 3: Error of different relative motion models with respect to GPS-based relative
orbit determination from the PRISMA mission.
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the luni-solar perturbations. This model performs well but can hardly be
used during noncooperative operations, since the drag coefficients need to
be empirically determined to reach a good modeling of the differential drag.
This was possible with the PRISMA spacecraft, both equipped with GPS
receiver, but is much more arduous in the case of a noncooperative target.
The models of Fig. 3b and Fig. 3c are numerical propagations respectively
considering a 20x20 gravity field and only J2. The model corresponding to
Fig. 3d is the analytical propagation using relative orbital elements. Note
that the model using the 20x20 gravity field slightly outperforms the J2-
numerical propagation and the analytical model, but these two models are
still accurate at the meter level. In order to better compare these errors with
the observation noise, Fig. 4 depicts the line-of-sight errors resulting from
the model errors. This figure indicates that, for a limited time span of 5
orbits, all model errors stay well below the sensor noise. As a result, it can
be stated that both analytical and numerical models are suited for IROD.
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Figure 4: Line-of-sight (LoS) errors introduced by the model deficiencies.

3.3. Influence of different factors

As already stated in Section 2.3, several effects contribute to influence the
steepness of the valley of fitting residuals. This section intends to investigate
the impact of five factors by the means of simulations. The ultimate valida-
tion with flight data will follow in the next section. The scenario used for the
simulation is directly inspired from the ARGON experiment. A chaser satel-
lite is flying on a 750 km high, dusk-dawn, Sun-synchronous, near-circular
orbit and observes a target satellite at 30 km distance. The formation con-
figuration is defined by aδα =

(
−20 −30000 −50 −390 0 295

)
m. For

the need of the simulations, the reference motions of the chaser and tar-
get are numerically propagated using a 20x20 gravity field, and including
the third-body, solar radiation pressure and drag perturbation. The default
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settings for the different scenarios foresee perfect line-of-sight measurements
and a maneuver-free observation arc of two orbits (these parameters will be
modified case by case if needed). A set of observations is finally created from
the simulated states of the chaser and target spacecraft.

The investigations are performed by the means of residuals plots (cf.
Fig. 1) created according to the method described in Section 2.3. To that
end, the linear solution is first derived by building the system A ·x0 = 0 (cf.
Eq. 4). Since relative orbital elements are used, care has to be taken to de-
fine the matrix C, which maps the relative orbital elements into a Cartesian
relative position (Gaias et al., 2014):

C(t) =

 1 0 − cosu(t) − sinu(t) 0 0
0 1 2 sinu(t) −2 cosu(t) 0 0
0 0 0 0 sinu(t) − cosu(t)

 , (11)

where u stands for the mean argument of latitude and i for the inclination.
Note that this linear measurement model is not very accurate but is sufficient
to derive a coarse solution to initialize the relative orbit determination. Since
δλ is not observable (Gaias et al., 2014), the linear solution corresponding to
a specific value aδλ = L in a least-squares sense can be derived as follows:

Ã =
(
A1 A3 A4 A5 A6

)
(12a)

b = −L ·A2 (12b)

γ = (Ã
T · Ã)−1 · ÃT · b (12c)

where Ai corresponds to the ith column of A. Finally, the linear solution
x̂L0 corresponding to the relative motion at mean relative longitude L is
reconstructed as

x̂L0 =
(
γ1 L γ2 γ3 γ4 γ5

)
, (13)

where γi represents the ith component of γ.
In order to create the residual plots, a granularity of 1 km is employed,

which means that the linear solution x̂L0 corresponding to the relative mo-
tion at discretized distance L ∈ J5, 100K km is used to initialize the batch
least-squares adjustments. This process is executed 95 times, starting with
L=5 km. The covariance matrix used to constrain the solution is set as
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P = diag(1002, 12, 1002, 1002, 1002, 1002) m2. Based on the residual plots,
the influence of several factors can be investigated:

• Observation time span. A longer observation time span increases
the impact of the nonlinearities and perturbations and thus plays a
predominant role in the improvement of the solution accuracy. Fig-
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Figure 5: Improvement of observability due to the observation time span.

ure 5 shows that a significant steepness already appears by collecting
observations over more than 2 orbits.

• Execution of maneuvers. Maneuvers act as perturbations which
introduce additional discrepancies with respect to the linear motion.
Even if any maneuver could in principle be used, the main drivers dur-
ing a rendezvous concern the mission safety and propellant consump-
tion. For IROD, it is tempting to seek for the smallest maneuver able
to improve observability given the intersatellite satellite separation and
the sensor noise. Since the drift of the formation is unknown at this
stage, it is preferable to execute cross-track maneuvers which will not
put the formation at a risk.

In order to investigate their impact on the IROD, cross-track maneuvers
of different sizes are executed. Their locations do not influence the
results, thus each maneuver has simply been executed 100 minutes
after the simulation start. What counts is their magnitude, which is
directly related to the amount of nonhomogeneity introduced in the
relative motion model. Figure 6 indicates that, at 30 km separation,
a 3 cm/s maneuver can already greatly improve the steepness of the
residual curve. Note that a known and predicable perturbation (for
example solar radiation pressure or differential drag) will have a same
effect, as long as it can be accurately modeled.
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Figure 6: Improvement due to the execution of cross-track maneuvers.

• Sensor noise. The noise of the line-of-sight measurements contributes
to flatten the curve, and is thus the biggest challenge for the IROD.
Figure 7 depicts the effect of the observation noise. It can be noticed
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Figure 7: Negative influence of sensor noise.

that a small noise level of 15” already causes a significant flattening
of the curve, diluting thus the accuracy of the solution. During a ren-
dezvous, the noise will depend on the camera characteristics but also on
the size of the imaged target (thus on the separation and target charac-
teristics). As rule of thumb, the noise decreases when the image of the
target increases, since the centroiding function in charge of measuring
the position of the center of mass is more precise when the image is
spread over more pixels (this is not true anymore at mid-range where
the image of the target cannot be considered anymore as a point spread
function, cf. Ardaens and Gaias (2018b)). In case of larger measure-
ment noise, it will be necessary to increase the observation time span
to counterbalance the flattening effect introduced by the sensor noise.

• Visibility. ARGON was a favorable case, because the relative motion
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was fully visible thanks to the dusk-dawn orbit of the PRISMA satel-
lites. When flying on an arbitrary orbit in LEO, part of the motion
is not visible anymore, because the target is eclipsed or because the
camera is blinded by the Sun. The AVANTI experiment showed that
as little as 10% of the relative motion was visible during the rendezvous
(Ardaens and Gaias, 2018a). This has as well a strong impact in the
shape of the residuals as depicted in Fig. 8.
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Figure 8: Influence of the visibility of the relative motion.

In order to simulate this case, only the measurements taken at mean
argument of latitude u ∈ [0, 2π/10] are kept. In Fig. 8, the small level
of residuals at wrong separations (e.g., at 100 km) can be explained by
the fact that the least-squares process will simply find a wrong solution
which will correspond to the very few available measurements, thus
exhibiting good fitting residuals. Here again, increasing the observation
time span or executing maneuvers can help mitigating this problem.

• Formation configuration. The configuration of the formation also
plays a role in the overall observability. It would be out of the scope
of the paper to investigate all the possible configurations. For the sake
of this analysis, only δλ is changed, keeping the other relative orbital
elements constant. Such assumption does not represent a limitation in
the validity of the analysis, but rather reflects the fact that a slowly
drifting (anti-)parallel e/i configuration trajectory is the operationally
safest way to rendezvous a noncooperative target. Figure 9 shows that,
when staying in the same order of magnitude of several dozen kilome-
ters, the increasing separation slightly flattens the curve, but this effect
is not as pronounced as the ones described above.
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Figure 9: Influence of the intersatellite separation.

4. Flight Demonstration

4.1. Selection of the Demonstration Cases

The demonstration cases presented in this section aim at validating the
method described above with flight data from the ARGON and AVANTI
experiments. Unfortunately, very few data arcs could be exploited. The
ARGON experiment was short (4 days) with frequent maneuvers and sev-
eral data outages due to the limited onboard data storage capability. As a
result, only two representative maneuver-free data arcs could be extracted.
The AVANTI experiment was much longer (more than 2 months of observa-
tions) and offers numerous interesting data arcs to exercise IROD. However,
it suffers from the fact that no reference exists for the relative state (since
the target spacecraft was fully noncooperative) except for one single occa-
sion. During this particular day, a ground-based radar-tracking campaign
has been conducted to precisely measure the relative state of the formation
(Ardaens and Gaias, 2018a). Consequently, it was possible to extract a sin-
gle demonstration case from the AVANTI experiment for which an external
reference is available.

4.2. 5h-Long Arc with Optimal Visibility (ARGON)

The IROD is performed using a 5h-long (or 3 orbits) maneuver-free data
arc on April 24th, 2012. At that time the chaser and target are separated by
30 km. The two models described in Section 3.2 are investigated to create
the residuals plots in Fig. 10 and represented by two different colors. The
solution to the IROD corresponds to the measurement fitting which exhibits
the smallest residuals. This global minimum is graphically identified by a
round marker of the same color as the corresponding curve.
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Figure 10: Solution for the ARGON case.

Table 1 summarizes the solutions found using both models, as well as
the reference relative state derived with relative GPS. Table 1 indicates that
both models exhibit similar performance, reaching accuracy of a few percents.
However the numerical model comes at the cost of much larger computational
time. On a desktop computer equipped with a Core i5 processor clock at 2.6
GHz, a few dozen seconds are typically required to derive the solution based
on the analytical model while the numerical integration can take more than
one hour, depending on the number of measurements and iterations required
for the least-squares adjustments.

Reference [ -21 -29568 -51 -395 -4 295] m
Relative orbital elements [ -20 -32000 -55 -429 -4 317] m
Numerical propagation [ -21 -32146 -56 -430 -4 319] m

Table 1: Solution δα for the 5h-long ARGON case.

The similarity of the results can be explained by the fact that both models
are more or less equivalent in this case. The differential drag at the altitude
of PRISMA (750 km) is weak and the short observation time limits as well its
effects. In both cases, the longitudinal (along-track) accuracy of the solution
is equivalent to the one of TLEs (a few km). The lateral (radial + cross-
track) accuracy outperforms the TLEs by several orders of magnitude (it is
indeed not uncommon for TLEs to exhibit cross-track errors of a few hundred
meters (Kahle et al., 2014)). For completeness, the observation residuals
(parameterized in terms of right-ascension α and declination δ) corresponding
the selected solution are depicted in Fig. 11. It can be seen that, thanks
to the dusk-dawn orbit of the PRISMA satellites, the measurements are
homogeneously distributed over time.

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

re
s
id

u
a

ls
 [

a
rc

s
e

c
]

02:00 03:15 04:30 05:45 07:00
-100.0

-50.0

0.0

50.0

100.0

right-ascension (α) declination (δ)

2012/04/24

α: 0±65''
δ: 7±26''

Figure 11: Residuals of the orbit determination corresponding to the solution for the
5h-long ARGON case.

4.3. 14h-Long Arc with Optimal Visibility (ARGON)

If more time is available to collect measurements, it might be judicious
to extend the observation arc to improve the observability (as depicted in
Fig. 5). The second study case comes again from the PRISMA mission, but
spans now 14 h (April 25th 2012, from 2:00 to 14:00 UTC). At that time, the
chaser and target are separated by 23.5 km.
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Figure 12: Solution for the ARGON case.

As depicted in Fig. 13, a large data gap (7 hours) affects the observations,
but this is not an issue as long as the measurements are located at the
beginning and at the end of the data arc.

Reference [ -131 -23650 -20 -303 -4 247] m
Relative orbital elements [ -139 -24593 -21 -315 -5 257] m
Numerical propagation [ -139 -24990 -19 -321 -5 261] m

Table 2: Solution δα for the 14h-long ARGON case.
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As expected, Figure 12 shows that the steepness of the residual curve
is much more pronounced, leading to a more accurate solution. Table 2
indicates that the range ambiguity can be determined with an error of less
than 5%. In such a case, the result from the IROD clearly outperforms a
solution derived from TLEs.
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Figure 13: Residuals of the orbit determination corresponding to the solution for the
14h-long ARGON case.

4.4. 18h-Long Arc with Poor Visibility (AVANTI)

The same method is now applied to a data arc coming from the AVANTI
experiment. The collection of observations starts on October 20th, 2016 22:00
UTC when the satellites are separated by 45 km. Due to the poor visibility
conditions encountered during AVANTI, this case is much more challenging
because only 10 minutes of observations are available every orbit. According
to the preliminary investigations done in Section 3.3, the residual curve is
expected to be extremely flat due to the limited visibility (cf. Fig. 8) and
to the larger distance (cf. Fig. 9). In order to counterbalance this flatness,
it is necessary to extend the observation time span: the data arc has thus
been extended to span 18 h (11 orbits). Figure 14 depicts the residual plot
obtained using the numerical and analytical models.

In view of the difficulty to estimate the drag of a noncooperative object,
this perturbation has been first disabled in the numerical model. Both models
exibit a very similar residual curve. However, its extrem flateness makes the
accurate determination of the global minimum very challenging: a difference
of 10% can be observed in Table 3 between both solutions. The reference
solution is derived from the ground-based radar observations and is expected
to be accurate to 10 m.
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Figure 14: Solution for the AVANTI case.

Reference [ 84 44786 155 609 -8 714] m
Relative orbital elements [ 68 39000 137 533 -10 625] m
Numerical propagation (no drag) [ 78 43953 152 614 -12 704] m
Numerical propagation (with drag) [ 89 48947 164 696 -14 782] m

Table 3: Solution δα for the AVANTI case.

It can be tempting to include the perturbation due to the differential drag
to improve the observability. Since a reference trajectory is available for the
target, it is possible to estimate empirically the drag coefficient of the target.
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Figure 15: Solution found by enabling and desabling the drag.

Figure 15 depicts the results obtained by including the drag. As expected,
the residual curve is steeper when considering this perturbation but the im-
provement is unfortunately too weak at this intersatellite distance to really
enhance the accuracy of the solution. In fact, Table 3 indicates that the
solution found by activating the differential drag is even less accurate.

The orbit determination residuals are finally depicted in Fig. 16, high-
lighting the challenging sparsity of the measurement distribution.
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Figure 16: Residuals of the orbit determination corresponding to the solution for the
AVANTI case.

Conclusion

Despite the weak observability of the angles-only relative navigation prob-
lem, it is possible to perform an initial relative orbit determination in low
Earth near-circular orbit without executing any maneuver, by simply observ-
ing during a few orbits the apparent motion of a target with a camera.

The proposed approach aims at exploiting the small discrepancies which
can be observed between a linear relative motion and the reality. The method
consists in performing a series of least-squares adjustments at varying dis-
tances in the vicinity of a family of collinear solutions coming from the linear
theory. The solution of the problem is found by selecting the distance corre-
sponding to the global minimum of the fitting residuals. It order to correctly
perform, this method relies on relative motion models which can effectively
capture these small differences. Two models are considered: an analyti-
cal model based on relative orbital elements which considers only J2 and a
numerical propagation for which additional perturbations can be included.
De facto the proposed method consists in an oriented search in the solution
space, where the search direction is determined by varying the relative range,
which corresponds to one component of the state expressed in terms of rel-
ative orbital elements (i.e., the relative mean longitude). Accordingly, this
method does not have the elegance of a direct analytical solution and is com-
putationally intensive. However the use of an analytical model can reduce
the computational time by two orders of magnitude without degradation of
performance, making this method eligible for onboard implementation.

Different factors influence the accuracy of the solution, such as obser-
vation time span, visibility conditions, formation configuration, presence of
additional maneuvers, and sensor noise. Consequently, it is difficult to out-
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line a general performance index of the proposed methodology. Nevertheless
its effectiveness has been proved by processing two different real-data sets
coming from the ARGON and AVANTI experiments. The obtained results
show that this approach can at least achieve the same accuracy as offered by
Two-Line-Element products.

Acknowledgments

The construction of the BIROS satellite was funded by the Federal Min-
istry of Education and Research of Germany (BMBF) (project number FKZ
01LK0904A).

Appendix

The proposed algorithm relies on the fact that the residual curve σ(µ) is
convex and reaches its minimum for µ = µ̂, where µ̂ is the value corresponding
to the solution yielding the global minimum of the loss function J . Unfortu-
nately this behavior is not always true for an arbitrary loss function J(x) (for
example if J depends on cos2 µ). Thus, the empirically observed convexity
of the residual function has to be linked to the nature of the problem under
consideration. For simplicity, the minimum m(µ) of the loss function J will
be now investigated instead of the residual curve σ(µ) (this is justified by
the fact that m is convex if and only if σ is convex, cf. Eq. 9).

In order to analyze the behavior of this minimum, an analytical formu-
lation of the problem is required. Unfortunately, the minimum m(µ) is the
result of an iterative nonlinear least-squares estimation and cannot be ana-
lytically described. Thus the problem needs to be simplified and reshaped to
reach a formulation for which an analytical expression of the minimum can
be found.

Until now, it has been stated that the nonlinearities with respect to Eq. 4
were responsible for the weak observability. This is correct but it is possible
to be more precise. In fact, it has to be distinguished if the nonlinearities
are due to:

1. the first order linearization done when deriving the relative motion
model;

2. the neglect of the curvature of the orbital path.
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These effects can be isolated and thus individually quantified by adopting
a specific parameterization of the relative state x. In fact, the curvature of
the orbital path can be taken into account by using a set of relative orbital
elements or a set of curvilinear Cartesian components to describe the vector
x. In this case, the relative motion model f describes the time evolution
of the state vector (and thus deals with the possible approximations due to
the linearization of the relative motion model) while the function g maps
the relative state vector x into a rectilinear Cartesian relative position, thus
capturing the effect of the curved orbital path.

A linear model describing the time evolution of the curvilinear Cartesian
relative state vector is now adopted. As seen later, compared to a param-
eterization based on relative orbital elements such as the one described in
Section 3.1, this choice is driven by the fact that a simpler g function is
subsequently obtained. An alternative precise linear model using a curvilin-
ear Cartesian state is thus needed for the sake of the demonstration. Two
options are now investigated: the curvilinear Hill-Clohessy-Wiltshire (HCW)
(de Bruijn et al., 2011) and Gim-Alfriend (Gim and Alfriend, 2003) models.
The latter is in fact based on relative orbital elements but provides a linear
mapping T to transform the orbital elements into a curvilinear Cartesian
state representation (that is, x(t) = T (t)D(t)ϕ(t, t0)D−1(t0)T−1(t0)x0 =
Φ(t, t0)x0, ϕ being the state transition matrix based on mean relative or-
bital elements and D the transformation matrix between mean and osculat-
ing elements). Note that, in near-circular orbits, ϕ is equivalent to the state
transition matrix of the model described in Section 3.1. The benefits of the
Gim-Alfriend formulation in terms of accuracy lies in the mapping matrix
T , which is more accurate than the matrix C described by Eq. 11.
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Figure 17: Line-of-sight (LoS) errors introduced by the model deficiencies.

In order to quantify the nonlinearities neglected by the linear motion mod-
els, the same approach used to create Fig. 4 is employed: both models are
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fitted against an accurate nonlinear reference model and the difference in
terms of line-of-sight errors is analyzed. Figure 17 shows that the angular
errors introduced by the curvilinear HCW model are large despite the mod-
eling of the curvature of the orbital path. This is due to the fact that this
simple model does not take the effect of J2 into account, thus resulting in
unacceptable errors. Obviously this model is not adapted to our problem.
On the contrary, the Gim-Alfriend model behaves much better, because it
includes in the state transition matrix a linear model for the effect of J2. Us-
ing this model, the line-of-sight errors introduced by the model deficiencies
over several orbits are below the sensor noise and thus cannot be observed
(that is, it does not make any observable difference to use a state transition
matrix Φ instead of a nonlinear model f to describe the time evolution of
the relative state vector x). The Gim-Alfriend model deficiencies can thus
be treated together with the sensor noise. Consequently, it can be assumed
that it is mainly the curvature of the orbital path which brings observability
and which is measured by the relative orbit determination.

Using a linear relative motion model, the general nonlinear measurement
equation described by Eq. 3:

ui × r(ti) = ui × (g(ti,f(ti,x0)) = 0, i ∈ [1, n] (14)

can be simplified to:

ui × (g(ti,Φ(ti, t0)x0)) = 0, i ∈ [1, n] (15)

It is now assumed that the curvilinear relative state is expressed in the orbital
frame and that the components are ordered in the Radial-Tangential-Normal
sequence. For the rendezvous problem under consideration (that is, the rel-
ative motion is mainly an along-track separation), the rectilinear relative
position r can be approximated from the curvilinear relative position r̆ as:

r = r̆ +

 R−
√
R2 + r̆2

2

0
0

 (16)

where R is the radius of the circular orbit and r̆2 denotes the along-track
component of the relative position. Noting that R� r̆2, this simplifies to:

r = r̆ +

 − r̆22
2R

0
0

 (17)
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Let the state transition matrix be split into two blocks such as Φ =(
Φ1-3,1-6

Φ4-6,1-6

)
and let Φ2,1-6 denote the second line of the matrix Φ. Not-

ing that r̆ = g(x) = g(Φx0) = Φ1-3,1-6x0, Eq. 15 takes the form

ui ×

Φ1-3,1-6x0 −
1

2R

 1
0
0

xT0 ΦT
2,1-6Φ2,1-6x0

 = 0, i ∈ [1, n] (18)

Thus, with respect to the general nonlinear formulation of Eq. 14, the
problem has been simplified to the minimization of a quadratic function,
which seems simpler but is in fact still not obvious. The quadratic part
q, corresponding to the model of the curvature of the orbital path, is now
introduced for simplification:

q(x) = − 1

2R

 1
0
0

xTΦT
2,1-6Φ2,1-6x (19)

The algorithm described in Section 2.3 consists in fixing one component
of the state vector to a parameter µ, in order to reduce the dimension of the
search space. Let x̂µ0 denote the linear solution (i.e., found by neglecting the
curvature of the orbital path) for a given µ. This solution is easily computed
as shown in Section 3.3. A more general formulation is recalled here for
completeness. The initial state vector x0 is parameterized as x0 = (x̃0, µ)
for simplicity. Without loss of generality and to simplify the notation, the
parameter µ is arbitrarily chosen to be the last component (as seen earlier
in the paper, it is in reality more convenient to chose the second component
corresponding to the along-track relative position, because a physical range
for this variable can be more intuitively derived). Starting from Eq. 18 and
neglecting the quadratic part, an approximate relation is obtained:

ui × (Φ1-3,1-6 · x0) = 0, i ∈ [1, n] (20)

which expands to:

ui × (Φ1-3,1-5 · x̃0) = −µui ×Φ1-3,6, i ∈ [1, n] (21)

where Φ1-3,1-6 =
(

Φ1-3,1-5 Φ1-3,6

)
has been split into the blocks. After

accumulating n measurements, a linear system is obtained (identified by the
subscript �L which denote the linear problem):

ALx̃0 = µbL (22)
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whose 5-dimensional solution is given in a least-squares sense by:

ˆ̃xµ0 = µ(AT
LAL)−1AT

LbL = µA+
LbL (23)

Here the Moore–Penrose pseudoinverseA+ = (ATA)−1AT is used to simplify
the notation. Thus, the 6-dimensional linear solution x̂µ0 is a function of µ.

In the algorithm described in Section 2.3, a series of local minimizations is
done in the vicinity of the solution x̂µ0 . Thus, it is legitimate to assume that
the solution of each minimization will be close to x̂µ0 . By linearizing Eq. 18
around this linear solution, the following relation is obtained.

ui ×
(

Φ1-3,1-6x0 + q(x̂µ0) +
dq

dx0

∣∣∣
x0=x̂µ

0

(x0 − x̂µ0)

)
= (24)

ui ×

Φ1-3,1-6x0 −
1

2R

 1
0
0

 x̂µT0 ΦT
2,1-6Φ2,1-6(2x0 − x̂µ0)

 = 0, i ∈ [1, n]

(25)

The same approach used for Eq. 21 is now used to restrict the problem in a
5-dimensional space:

ui ×

Φ1-3,1-5 −
1

R

 1
0
0

 x̂µT0 ΦT
2,1-6Φ2,1-5

 · x̃0 =

ui ×

µ
−Φ1-3,6 +

1

R

 1
0
0

 x̂µT0 ΦT
2,1-6Φ2,6

+ q(x̂µ0)

 , i ∈ [1, n] (26)

However it has to be recalled that, following this strategy, the minimum of∑n
i=1 ‖r(ti,x0)× ui‖2 would then been obtained instead of the minimum of

J =
∑n

i=1 ‖h(ti,x0)× ui‖2. Thus, Eq. 26 has to be divided by the norm of
the relative position, which can be approximated as

rµ ≈ ‖Irx̂
µ
0‖ = |µ|

∥∥IrA
+
LbL

∥∥ . (27)

where Ir =
(
I3×3 03×3

)
is a simple identity matrix returning only the

relative position. After accumulating n measurements, another linear system
is again obtained:

A(µ)x̃0 = b(µ) (28)
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for which the minimum can be analytically computed. Remember that A
and b depend on µ because they are function of x̂µ0 . The minimum m(µ) of
‖A(µ)x̃0 − b(µ)‖2 is obtained introducing the solution ˆ̃xµ0 in the loss func-
tion:

m(µ) =
∥∥∥A(µ)ˆ̃xµ0 − b(µ)

∥∥∥2

(29)

= (A(µ)ˆ̃xµ0 − b(µ))T (A(µ)ˆ̃xµ0 − b(µ)) (30)

= b(µ)T (P (µ)− I)2b(µ) (31)

= b(µ)T (I − P (µ))b(µ) (32)

where the projection matrix P (µ) = A(µ)(A(µ)TA(µ))−1A(µ)T has been
introduced for simplicity.

An analytical formulation of the minimum in the least-squares sense of the
loss function when µ is arbitrarily fixed has now been derived. Its convexity
has still to be demonstrated. Deriving the analytical formulation of P (µ)
would be extremely tedious. Fortunately, it is possible to simplify Eq. 26 in
order to approximate A(µ) by considering that :

‖Φ1,1-5‖ >>
1

R

∥∥∥x̂µT0 ΦT
2,1-6Φ2,1-5

∥∥∥ (33)

This assumption is easily justified: Φ2,1-6x̂
µ
0 is nothing else than the along-

track component of the propagated linear solution using a linear relative
motion model, which amounts to a few dozen kilometers in the problem under
consideration, while R is the orbit radius. Consequently, the left part of the
inequality is three order of magnitude larger than the right part. Recalling
that Eq. 26 has been divided by rµ, this allows us to assume that A(µ) is
inversely proportional to |µ| (that is A(µ) ≈ 1

|µ|A) and that P (µ) ≈ AA+ =

P , which does not depend on µ anymore. The expression of b(µ) can be
more easily derived. Introducing Eq. 23 in Eq. 26, the contribution bi of a
single measurement to the vector b is:

bi =
1

|µ|
∥∥IrA

+
LbL

∥∥ui × µ
−Φ1-3,6 +

1

R

 1
0
0

µ
(
A+

LbL

)T
ΦT

2,1-6Φ2,6


− 1

|µ|
∥∥IrA

+
LbL

∥∥ui × 1

2R

 1
0
0

µ2
(
A+

LbL

)T
ΦT

2,1-6Φ2,1-6A
+
LbL, i ∈ [1, n]

(34)
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Thus, the vector b can be expressed in the form:

b = sign(µ)(b1 + µb2) (35)

and, by introducing for simplicity M = (I − P ), the minimum becomes

m(µ) = bT1Mb1 + µ2bT2Mb2 + 2µbT1Mb2 (36)

The convexity of the function m(µ) is verified using the second order deriva-

tive, which is positive because M is semi-definite positive, yielding d2m(µ)
dµ2

=

bT2Mb2 ≥ 0. Consequently, the minimum function is convex and reaches its
minimum for

µ̂ = −b
T
1Mb2

bT2Mb2

(37)

Interestingly, an approximate value for µ̂ is analytically provided as by-
product. This could be extremely valuable in case there is no time to per-
form the series of nonlinear least-square estimations (typically for onboard
implementation). In this case, it would be enough to choose an arbitrary
value for µ, to linearize around the associated linear solution and to directly
retrieve the approximate value of µ̂. The performance of this direct method
will be investigated in more detail in future work.
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