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ABSTRACT. We give a notion of “combinatorial proximity” among strongly stable ideals in a
given polynomial ring with a fixed Hilbert polynomial. We show that this notion guarantees
“geometric proximity” of the corresponding points in the Hilbert scheme. We define a graph
whose vertices correspond to strongly stable ideals and whose edges correspond to pairs of ad-
jacent ideals. Every term order induces an orientation of the edges of the graph. This directed
graph describes the behavior of the points of the Hilbert scheme under Gröbner degenerations
with respect to the given term order.

Then, we introduce a polyhedral fan that we call Gröbner fan of the Hilbert scheme. Each cone of
maximal dimension corresponds to a different directed graph induced by a term order. This fan
encodes several properties of the Hilbert scheme. We use these tools to present a new proof of the
connectedness of the Hilbert scheme. Finally, we improve the technique introduced in the paper
“Double-generic initial ideal and Hilbert scheme” [5] (Bertone, Cioffi, Roggero, Ann. Mat. Pura
Appl. (4) 196(1), 19–41, 2017) to give a lower bound on the number of irreducible components of
the Hilbert scheme.
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1. INTRODUCTION

The Hilbert scheme Hilbn
p(t), parametrizing subschemes of Pn with Hilbert polynomial p(t),

has been intensively studied since its definition and proof of existence by Grothendieck [19].
Nevertheless, very few comprehensive properties are known and lots of natural questions are
still open. Among the known results, we mention connectedness [21, 36], the smoothness of
the lexicographic point [39] and the existence of bound on the “distance” between irreducible
components [38].
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The problem of understanding the topological structure of the Hilbert scheme is usually
complicated due to its unpredictable and mysterious behavior. Questions such “how many
irreducible components are there in Hilbn

p(t)?”, “how are the irreducible components related?”,
“are the irreducible components rational?” are in most cases without a complete answer. More
is known about some particular Hilbert schemes or some special sub-loci. The case of punctual
Hilbert schemes has been studied continuously since the 70s (see [25] and references therein),
and it is still under investigation nowadays [8, 24, 27, 28, 37]. In the case of 1-dimensional
subschemes of the projective space P3 there is a remarkable variety of results (for instance
about ACM curves, see [13, 42, 14, 5]).

In this context, a classical approach consists in trying to rephrase a global question in terms
of a local question for a few, possibly finite, number of points of Hilbn

p(t). For instance, un-
der the right conditions, the rationality of an irreducible component can be deduced by the
smoothness of a special point lying on it [31, Corollary 6.10], [5, Theorem 6]. An efficient
way to accomplish this task is to consider Gröbner degenerations to monomial ideals and in
particular to generic initial ideals. Indeed, on one hand each irreducible component and each
intersection of irreducible components of Hilbn

p(t) contains at least one point corresponding to a
generic initial ideal. On the other hand, generic initial ideals are Borel-fixed ideal, i.e. invariant
under the action of the Borel subgroup of GLK(n + 1) consisting of upper triangular matrices.
Furthermore, in characteristic 0, Borel-fixed ideals enjoy additional combinatorial properties.
Hence, Borel-fixed ideals are well distributed throughout the Hilbert scheme and have special
properties that make them extremely effective.

This paper is strongly influenced by the theory of Gröbner strata and marked families (see
[32] and references therein). Given a Borel-fixed ideal J and a term order Ω, the Gröbner stra-
tum StΩ

J is the scheme parametrizing the family of ideals with initial ideal J with respect to
Ω. The marked scheme MfJ is the scheme parametrizing the family of ideals whose quotient
algebras have the set of monomials not contained in J as basis. These two types of families are
flat, so that Gröbner strata and marked schemes describe subsets of the Hilbert scheme. These
families can be used to parametrize open subsets of Hilbn

p(t) (or of one of its irreducible com-
ponent) or sub-loci corresponding to schemes with special properties (such as Hilbert function,
type of resolution, . . . ).

However, if one is interested in studying the irreducible components of Hilbn
p(t), the set of

Borel-fixed ideals turns out to be redundant, in a sense clarified by the following example.

Example. Consider the Hilbert scheme Hilb3
6t−3 parametrizing 1-dimensional subschemes of

P3 of degree 6 and arithmetic genus 4. There are 3 irreducible components:

• the first component has dimension 48 and the general element is the union of a plane
curve of degree 6 and 6 isolated points;
• the second component has dimension 32 and the general element is the union of a plane

quintic and a line intersecting in one point, and 2 isolated points;
• the third component has dimension 24 and the general element is a complete intersec-

tion of a quadric surface and a cubic surface.

By the theory of marked families, in order to parametrize an open subset of each irreducible
component, we need at most 3 Borel-fixed ideals. In Hilb3

6t−3 there are 31 points correspond-
ing to Borel-fixed ideals to choose from (see Example 5.16), whose algebraic and geometric
properties are very diverse. First, such points are not equally distributed along the irreducible
components. In fact, most of them lie exclusively on the first irreducible component. Second,



THE GRÖBNER FAN OF THE HILBERT SCHEME 3

there are smooth points, singular points lying on a single component and singular points that
are in the intersection of 2 irreducible components and that are smooth if we restrict to any of
them. Third, these points have different behavior with respect to Gröbner degenerations (see
Example 5.21).

Two natural questions arise.

(Q1) Assume that the topological structure of the Hilbert scheme and the distribution be-
tween components of points corresponding to Borel-fixed ideals are known. Which
ones are better suited for effective investigation?

(Q2) Suppose that one knows nothing about the Hilbert scheme, but the list of Borel-fixed
ideals defining points on it. Is it possible to deduce information about the topological
structure of Hilbn

p(t)?

These two problems are discussed in the inspiring paper “Double-generic initial ideal and
Hilbert scheme” [5] by Bertone, Cioffi and Roggero. The double-generic initial ideal is a Borel-
fixed ideal associated to an irreducible component of Hilbn

p(t). Intuitively, it is the generic initial
ideal of the ideal describing the generic element of the component. Hence, choosing the double-
generic initial ideal among Borel-fixed ideals lying on a given component is a reasonable and
natural option to answer (Q1). Still, there are some difficulties. First of all, the double-generic
initial ideal is not intrinsically determined by an irreducible component, but it depends on the
term order. Secondly, if we do not know a priori the list of Borel-fixed ideals defining points
on a given irreducible components, we might not be able to detect the corresponding double-
generic initial ideal with respect to a fixed term order (this makes it difficult to answer (Q2)).

The definition of the double-generic initial ideal is based on a careful analysis of the action of
the linear group on the generators of an ideal defining a point on the Hilbert scheme. Instead
of the standard action of GLK(n + 1) on K[x0, . . . , xn] used for defining the generic initial ideal
(see [11, Chapter 15]), in [5] the group GLK(n + 1) acts on the elements f1 ∧ · · · ∧ fq of the
exterior algebra

∧q K[x0, . . . , xn]r, where { f1, . . . , fq} is a basis of the homogeneous piece Ir of
an ideal I defining a point on Hilbn

p(t) for a sufficiently large r.
In this paper, we present a different approach based on the study of the combinatorial prop-

erties of Borel-fixed ideals. In particular, the combinatorics allow to better understand the
behavior of the points of the Hilbert scheme under Gröbner degenerations (and thus also the
dependence of double-generic initial ideal on the term order). We begin by studying the rela-
tive position of points corresponding to Borel-fixed ideals in the Hilbert scheme.

Theorem (Definition 3.1 and Theorem 3.5). Let J, J′ ⊂ K[x0, . . . , xn] be two saturated Borel-fixed
ideals defining points on Hilbn

p(t) and denote by J and J′ the monomial bases of Jr and J′r for r sufficiently
large. If the monomials in the sets J \ J′ and J′ \ J have the same linear syzygies, then there is a rational
curve on Hilbn

p(t) passing through the points defined by J and J′, so that these points lie on a common
irreducible component.

As a consequence of this result, we introduce the Borel graph of Hilbn
p(t) (Definition 4.1)

whose vertices correspond to Borel-fixed ideals and whose edges correspond to unordered
pairs of ideals satisfying the hypothesis of the previous theorem. We underline that the rational
curve passing through two Borel-fixed points is in fact the closure of a one-dimensional orbit of
the action on Hilbn

p(t) of the standard torus T = (K∗)n+1 of Pn (Remark 3.6). Hence, the Borel
graph turns out to be a subgraph of the T-graph of Hilbn

p(t) [2, 23] whose vertices correspond
to monomial ideals and whose edges correspond to unordered pairs of ideals contained in the
closure of a one-dimensional T-orbit (Remark 4.3).
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Any term order induces an orientation of the edges of the Borel graph. We call degenera-
tion graphs the directed graphs supported on the Borel graph induced by a term order. The
name is motivated by the fact that this type of graphs encodes the behavior of the points in the
neighborhood of a Borel-fixed ideal with respect to Gröbner degenerations (Proposition 4.4).

Then, we classify all the possible degeneration graphs, by means of a polyhedral fan that we
call Gröbner fan of the Hilbert scheme (Definition 4.12 and Theorem 4.13). Each cone of max-
imal dimension corresponds to a different directed degeneration graph where the orientation
of the edges is induced by some term order. Cones of lower dimension correspond to mixed
graphs, where the orientation of the edges is induced by weight orders on the monomials.

For several degeneration graphs, we are able to construct a minimum spanning tree. This
implies that the Borel graph is a connected graph (Corollary 5.6) and gives a new strategy
to prove the connectedness of the Hilbert scheme (see proofs of Hartshorne [21] and Peeva,
Stillman [36]).

Theorem (Theorem 5.8). The Hilbert scheme is rationally chain connected.

In the degeneration graphs having a minimum spanning tree, there is a unique vertex with
no incoming edge. Typically, this is not the case. Rather the number of vertices with no in-
coming edge in a degeneration graph can give interesting information about the topological
structure of the Hilbert scheme (answering (Q2)). Exploiting again properties of double-generic
initial ideals (see [5, Proposition 9]), we can give the following lower bound on the number of
irreducible components of the Hilbert scheme.

Theorem (Proposition 5.14 and Conjecture 5.17). The number of irreducible components of Hilbn
p(t)

is at least the maximum number of vertices with no incoming edge in any degeneration graph.

In order to obtain the best estimate, one has to examine a finite number of degeneration
graphs, one for each cone of maximal dimension of the Gröbner fan. For instance, in the case
of the Hilbert scheme Hilb3

6t−3, the Gröbner fan has 268 cones of maximal dimension and the
maximum number of vertices with no incoming edge in a degeneration graph is 3. Hence,
in this case our method detects all the irreducible components of the Hilbert scheme and it
also suggests three Borel-fixed ideals to consider to parametrize the components via marked
families.

Organization. In Section 2, we discuss preliminaries about Hilbert schemes and Borel-fixed
ideals in characteristic 0. In Section 3, we introduce a notion of combinatorial proximity of
two Borel-fixed ideals with the same Hilbert polynomial and we show that it corresponds to
geometric proximity on the Hilbert scheme. In Section 4, we classify the behavior of the points
of the Hilbert scheme with respect to Gröbner degenerations by means of a polyhedral fan. In
Section 5, we exploit the Gröbner fan to prove that the Hilbert scheme is rationally chain con-
nected and to give an efficient method to compute a lower bound on the number of irreducible
components of the Hilbert scheme.

Software. We implemented the algorithms for using the tools developed in the paper in the
Macaulay2 package GroebnerFanHilbertScheme.m2. The package is available at the web
page www.paololella.it/publications/kl/with a second file containing the scripts for
computing the examples of the paper.

Acknowledgements. We thank the referee for the careful reading of our manuscript and for
valuable suggestions.
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2. PRELIMINARIES

Let K[x] := K[x0, . . . , xn] be a polynomial ring in n + 1 with coefficient in an algebraically
closed field K of characteristic 0. We denote by Tn the set of monomials of K[x] and we describe
them with the standard multi-index notation; namely, for any a = (a0, . . . , an) ∈ Zn+1

>0 , xa

stands for xa0
0 · · · x

an
n . Whenever the multi-index a is in Zn+1, xa stands for the generalized

monomial in K(x) := Frac(K[x]). We denote the set of generalized monomial by T̂n.
We think of K[x] as the coordinate ring of the projective space Pn = Proj K[x]. We consider

the standard grading on K[x] and we denote by |a| = a0 + · · ·+ an the total degree of a mono-
mial xa. Given a positive integer m, we denote by Tn

m the set of monomials of degree m, by
K[x]m the homogeneous piece of degree m of K[x] and by K[x]>m the direct sum

⊕
t>m K[x]t.

Every ideal I ⊂ K[x] is always assumed to be homogeneous, Im = I ∩K[x]m denotes the ho-
mogeneous piece of degree m and I>m = I ∩K[x]>m denotes the truncated ideal in degree
m.

For a subscheme X ⊂ Pn, we denote by IX ⊂ K[x] the unique saturated ideal such that
X = Proj K[x]/IX and by pX(t) its Hilbert polynomial, that is the unique numerical polyno-
mial such that pX(t) = dimK(K[x]/IX)t = dimK K[x]t/(IX)t for t large enough. By a little
abuse of notation, we refer to the Hilbert polynomial pI(t) of an ideal I as the Hilbert polyno-
mial of its quotient ring K[x]/I. We refer to the unique numerical polynomial qI(t) such that
dimK It = qI(t), t � 0 as volume polynomial of the ideal I. By definition, qI(t) = (t+n

n )− pI(t)
for t sufficiently large.

Given a Hilbert polynomial p(t) ∈ Q[t], we study the Hilbert scheme Hilbn
p(t) representing

the contravariant Hilbert functor Hilbn
p(t) : (K-schemes)◦ → (Sets). This functor associates to

a scheme Z over K the set

Hilbn
p(t)(Z) =

{
Y Pn ×K Z

Z

∣∣∣∣∣ Y → Z flat morphism whose fibers over
points have Hilbert polynomial p(t)

}

and to a morphism of schemes f : X → Z the map Hilbn
p(t)( f ) : Hilbn

p(t)(Z)→ Hilbn
p(t)(X)

Y → Z ∈ Hilbn
p(t)(Z) 7−→ Y×Z X → X ∈ Hilbn

p(t)(X).

For all schemes Z, there is a 1-to-1 correspondence between the set Hilbn
p(t)(Z) and the set of

morphisms Mor(Z, Hilbn
p(t)) from Z to the Hilbert scheme. For a scheme X ∈ Hilbn

p(t)(Spec K),
we denote by [X] ∈ Hilbn

p(t) the corresponding K-rational point (the image of the correspond-
ing morphism Spec K→ Hilbn

p(t)).
The Hilbert functor has been introduced by Grothendieck [19], who first proved its repre-

sentability. The Hilbert scheme is classically constructed as a subscheme of a suitable Grass-
mannian and eventually as subscheme of a projective space through the corresponding Plücker
embedding. We recall briefly the idea of the construction, because it motivates the setting of
this paper (for more details see [3, 26, 20, 7]).

Every Hilbert polynomial p(t) has a unique decomposition as finite sum of binomial coeffi-
cients

p(t) = (t+a1
a1

) + (t+a2−1
a2

) + · · ·+ (t+ai−i+1
ai

) + · · ·+ (t+ar−r+1
ar

), a1 > · · · > ar > 0.

The first coefficient a1 equals the degree of p(t), i.e. the dimension of the schemes parametrized
by Hilbn

p(t), and the number of summands r is called Gotzmann number of p(t). Gotzmann’s
Regularity Theorem [17] says that the saturated ideal IX of a scheme [X] ∈ Hilbn

p(t) is r-regular,
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so that we can associated to every scheme X ⊂ Pn with Hilbert polynomial p(t) the vec-
tor space K[x]r/(IX)r of dimension p(r) (or equivalently the vector space (IX)r of dimension
q(r)). This result explains the idea of embedding Hilbn

p(t) in the Grassmannian Gr(p(r), K[x]r)
of p(r)-dimensional quotients of the vector space K[x]r. The closed condition describing the
Hilbert scheme as subscheme of the Grassmannian is given by a second crucial result by Gotz-
mann. Gotzmann’s Persistence Theorem [17] states that an ideal I, generated by polynomials
of degree r and such that K[x]r/Ir has dimension p(r), has Hilbert polynomial p(t) if, and only
if, the quotient K[x]r+1/Ir+1 has dimension p(r + 1).

Lots of investigations about Hilbert schemes are conducted with the help of the theory of
Gröbner bases (and generalizations). In fact, the procedure of associating to any ideal I ⊂ K[x]
the initial ideal inΩ(I) (for some term order Ω) can be described in terms of a flat family over the
affine line A1 (see for instance [11, Theorem 15.17]). The generic fiber is projectively equivalent
to I, while the special fiber is inΩ(I).

When working with term orders and initial ideals, we need to fix an order on variables. We
use the order x0 < · · · < xn, so that the minimum index min xa and maximum index max xa of a
variable appearing in a monomial xa correspond to the minimum and maximum variables. As
the orders we consider on monomials have to be multiplicative orders, the choice x0 < · · · < xn

induces a partial order on the set of monomials of a given degree:

xi > xj =⇒ xa = xi · xc > xj · xc = xb.

We refer to this order as Borel order and we denote it by ≥B. Each graded term order is a
refinement of ≥B.

Definition 2.1. For i < n and j > 0, we define the i-th increasing elementary move and the j-th
decreasing elementary move as the maps

(2.1)
e+i : T̂n → T̂n

xa 7→ xi+1
xi

xa and
e−j : T̂n → T̂n

xa 7→ xj−1
xj

xa .

We say that an elementary move is admissible for a monomial xa ∈ Tn if also the image is a
monomial in Tn. Compositions e+i ◦ e−i+1 and e−j ◦ e+j−1 give the identity id : T̂n → T̂n.

We can interpret the Borel order ≥B as the transitive closure of the relations

xa >B xb ⇐⇒ xa = e+i (x
b), for some i,

and use these elementary relations to visualize the order among monomials (see Figure 2.1). By
definition xa >B xb means that there is sequence of (admissible) elementary moves e+i1 , . . . , e+is

such that

xa = e+i1 (x
c1) = e+i1 ◦ e+i2 (x

c2) = . . . = e+i1 ◦ · · · ◦ e+is−1
(xcs−1) = e+i1 ◦ · · · ◦ e+is

(xb)

⇒ xa =
xi1+1

xi1
· . . . · xis+1

xis

xb.

Even though the product in K(x) is commutative, we notice that if we change the order of
application of the elementary moves we may lose the admissibility at each step. Next lemma
shows that a composition of moves that is overall admissible for xb can be always decomposed
in a composition of moves admissible at each step.

For a monomial xa ∈ Tn, we denote by |a|i the sum ai + · · ·+ an, i.e. the degree of the part
of xa in K[xi, . . . , xn]. Obviously, |a|0 = |a|.
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Lemma 2.2. Let xa and xb be two monomials in Tn.

(2.2) xa ≥B xb ⇐⇒ |a|i > |b|i, ∀ i = 0, . . . , n.

Proof. (⇒) xa ≥B xb implies that xa = ( x1
x0
)c1 · · · ( xn

xn−1
)cn xb = x−c1

0 xc1−c2
1 · · · xcn−1−cn

n−1 xcn
n xb, so that

|a|0 = |a| = |b| = |b|0,

|a|i = (ci − ci+1) + (ci+1 − ci+2) + · · ·+ (cn−1 − cn) + cn + |b|i =
= ci + |b|i > |b|i, i = 1, . . . , n.

(⇐) We have xa = E(xb), where E is the composition of elementary moves

e+n−1 ◦ · · · ◦ e+n−1︸ ︷︷ ︸
|a|n−|b|n times

◦ · · · ◦ e+1 ◦ · · · ◦ e+1︸ ︷︷ ︸
|a|2−|b|2 times

◦ e+0 ◦ · · · ◦ e+0︸ ︷︷ ︸
|a|1−|b|1 times

. �

Example 2.3. Consider the monomials x2
0x1 = x(2,1,0), x0x2

2 = x(1,0,2) and x3
1 = x(0,3,0) in T2

3. We
have

|(1, 0, 2)|0 = |(2, 1, 0)|0 = 3, |(1, 0, 2)|1 = 2 > 1 = |(2, 1, 0)|1, |(1, 0, 2)|2 = 2 > 0 = |(2, 1, 0)|2,

so that x0x2
2 >B x2

0x1 and x0x2
2 = e+1 ◦ e+1 ◦ e+0 (x2

0x1), while x0x2
2 and x3

1 are not comparable with
respect to ≥B, as

|(1, 0, 2)|0 = |(0, 3, 0)|0 = 3, |(1, 0, 2)|1 = 2 < 3 = |(0, 3, 0)|1, |(1, 0, 2)|2 = 2 > 0 = |(0, 3, 0)|2.

In the context of Hilbert schemes we are particularly interested in generic initial ideals, that is
initial ideal in generic coordinates. Galligo [16] proved that generic initial ideals are monomial
ideals fixed by the action of the Borel subgroup of upper triangular matrices of the projective
linear group and thus called Borel-fixed ideals. When the characteristic of the base field is 0, the
notion of Borel-fixed ideal coincides with the notion of strongly stable ideal. This type of ideals
is characterized by the following combinatorial property.

Definition 2.4. An ideal J ⊂ K[x] is called strongly stable if

(1) J is a monomial ideal;
(2) xa ≥B xb and xb ∈ J imply xa ∈ J.

By the definition, the set of monomials of degree m of a strongly stable ideal J is a subset
of Tn

m closed with respect to increasing elementary moves. Such a set is often call Borel set of
Tn

m. From now on, when considering a strongly stable ideal, we focus on the set of monomials
of degree equal to the Gotzmann number of its Hilbert polynomial. This set plays a crucial
role throughout the paper, so that we introduce some special notation. We write in superscript
“sat” to denote a saturated strongly stable ideal and, given a saturated ideal Jsat, we denote with
J (same letter, no superscript) the truncation Jsat

>r , where r is the Gotzmann number of the Hilbert
polynomial of Jsat. Furthermore, given a saturated ideal Jsat or its truncation J, we denote with
the same letter in fraktur alphabet J the set of its monomials of degree r, i.e. J = (J).

For any set A, we denote by |A| its cardinality and for any pair of sets A,B, we write A \B
meaning A \ (A ∩B). For a subset A ⊂ Tn

m, we consider the partition A0 t · · · t An, where
Ai = {xa ∈ A | min xa = i}, and A>i stands for the set Ai t · · · tAn = {xa ∈ A | min xa > i}.
Moreover, we denote by Ac the complementary set Tn

m \A.
We briefly recall the deep relation between the combinatorics of a strongly stable ideal and its

Hilbert polynomial (see [33, 6, 30, 1] for details). From now on, r is for the Gotzmann number
of the Hilbert polynomial of any strongly stable ideal J we consider. We denote the volume
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polynomial of J by q(t). The set J is a basis of the vector space Jr, i.e. it consists of q(r) distinct
monomials of degree r. For any m > r, the monomial basis of Jm can be decomposed as follows

(Jn ·K[x]m−r) t (Jn−1 ·K[x0, . . . , xn−1]m−r) t · · · t (J1 ·K[x0, x1]m−r) t (J0 ·K[x0]m−r),

where Ji ·K[x0, . . . , xi]m−r stands for the set of monomials xa · xc with xc ∈ K[x0, . . . , xi]m−r and
xa ∈ Ji. Consequently, one has

q(t) =
n

∑
i=0
|Ji|
(

i + t− r
i

)
=⇒ p(t) =

(
n + t

n

)
−

n

∑
i=0
|Ji|
(

i + t− r
i

)
.

Furthermore, set ∆0 p(t) = p(t) and ∆k p(t) = ∆k−1 p(t)− ∆k−1 p(t− 1) for k > 0, one deduces

|J>i| =
n

∑
k=i
|Jk| =

(
n + r− i

n− i

)
− ∆i p(r) =⇒ |Ji| =

(
n + r− i− 1

n− i− 1

)
− ∆i p(r) + ∆i+1 p(r).

Hence, for any pair of strongly stable ideals J, J′ ⊂ K[x] with Hilbert polynomial p(t), it
holds |Ji| = |J′i| for all i = 0, . . . , n. This property has been used for designing the algo-
rithm computing the set of saturated strongly stable ideals in K[x] with a given Hilbert poly-
nomial introduced in [9] and improved in [30, 1]. Another algorithm was known since [38] and
has been taken up more recently in [34]. We denote by Sn

p(t) the set of strongly stable ideals
J = (J) ⊂ K[x0, . . . , xn] with Hilbert polynomial p(t).

Example 2.5. Consider the saturated strongly stable ideal Jsat = (x2
2, x1x2, x2

1) ⊂ K[x0, x1, x2].
Its Hilbert polynomial is p(t) = 3 with Gotzmann number 3. In Figure 2.1, there is the subset
J ⊂ T2

3. As ∆i p(t) = 0, for all i > 0, we have

|J0| =
(

4
2

)
− 3 = 3, |J1| =

(
3
1

)
= 3, |J2| =

(
2
0

)
= 1.

There is a second saturated strongly stable ideal with Hilbert polynomial p(t) = 3, the lexico-
graphic ideal Lsat = (x2, x3

1). In this case, we have

L0 =
{

x2
0x2, x0x1x2, x0x2

2
}

, L1 = {x1x2
2, x2

1x2, x3
1}, L2 = {x3

2}.

x3
2 x1x2

2 x2
1x2 x3

1
e+

1 e+
1 e+

1

x0x2
2 x0x1x2 x0x2

1

e+
0 e+

0
e+

0

e+
1 e+

1

x2
0x2 x2

0x1

e+
0 e+

0

e+
1

x3
0

e+
0

FIGURE 2.1. The Borel order ≥B on the set of monomials T2
3 and the Borel set J

corresponding to the ideal Jsat = (x2
2, x1x2, x2

1) ⊂ K[x0, x1, x2].

Each component and each intersection of components of the Hilbert scheme contains at least
a point corresponding to a scheme Proj K[x]/J defined by a strongly stable ideal J. For this
reason, it has been natural to look for flat families of ideals “centered” at a strongly stable ideal
to study the Hilbert scheme. In this context, a key notion is that of marked family of ideals (see
[10, 4, 31] and references therein for a detailed treatment of the topic). Given a strongly stable
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ideal J = (J) generated in degree r equal to the Gotzmann number of its Hilbert polynomial, a
monic reduced J-marked set is a set of polynomials of the shape

(2.3)

{
fa := xa + ∑

xb∈Jc

ca,b xb

∣∣∣∣∣ xa ∈ J, ca,b ∈ K

}
.

Each polynomial fa in the collection contains only the monomial xa belonging to J. Such mono-
mial has to be monic, it is called head term of fa and it is denoted by Ht(fa). This set of polyno-
mials resembles a reduced Gröbner basis, but we underline that in general the marking is not
given by a term order, i.e. Ht(fa) might not be the leading term with respect to any term order.

Among all the J-marked sets, we are interested in those defining ideals sharing properties
with the fixed monomial ideal J (as in the case of a Gröbner basis and the corresponding initial
ideal). A marked set F is called marked basis if the monomials of degree m not contained in J
form a basis of the vector space K[x]m/(F)m for all m > r. In particular, the ideal defined by a
J-marked basis has the same Hilbert polynomial of J.

Proposition 2.6 ([32, Theorem 2.11]). Given a strongly stable ideal J = (J) ⊂ K[x], a J-marked set F
is a J-marked basis if, and only if, all syzygies among monomials in J lift to syzygies among polynomials
in F.

Obviously, we can restrict to a basis of the syzygies of J and since we are dealing with
strongly stable ideals, it is natural to look at the Eliahou-Kervaire syzygies [12]. Furthermore,
the ideal J = (J) is generated in degree r and r-regular, so that the Eliahou-Kervaire syzygies of
J are linear. Let xb ∈ J be a generator of J with min xb = h. In the Eliahou-Kervaire resolution
of J, xb appears in syzygies of the type

xi · xb − xh · xa = 0, i = h + 1, . . . , n.

Notice that
xa =

xi

xh
xb =

xi

xi−1
· · · xh+1

xh
xb ⇒ xa >B xb.

The assumption that the head term is monic makes natural to extend the definition of marked
set and marked basis to polynomial rings A[x] with coefficient in any K-algebra A. Given a
strongly stable ideal J = (J), we define the covariant marked family functor

MfJ : (K-Algebras)→ (Sets).

This functor associates to a K-algebra A the family of ideals in A[x] generated by a J-marked
basis

MfJ(A) = {I = (F) ∈ A[x] | F is a J-marked basis}
and to a morphism of K-algebras f : A→ B the map MfJ( f ) : MfJ(A)→ MfJ(B)

(I ⊂ A[x]) ∈ MfJ(A) 7−→ (I ⊗A B ⊂ B[x]) ∈ MfJ(B).

The functor MfJ is representable [32, Theorem 2.6] and the representing scheme is called J-
marked scheme and denoted by MfJ . Moreover, the inclusion MfJ → Hilbn

p(t) given by

(I ⊂ A[x]) ∈ MfJ(A) 7−→ Proj A[x]/I → Spec A ∈ Hilbn
p(t)(Spec A),

where p(t) is the Hilbert polynomial of J, realizes the marked family functor as open subfunctor
of the Hilbert functor. Hence, MfJ turns out to be an open subscheme of the Hilbert scheme
Hilbn

p(t). For an ideal I ∈ MfJ(K), we denote by [I] the corresponding point in MfJ or in
Hilbn

p(t).
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In order to study the family of ideals having initial ideal J with respect to a given term order
Ω, we consider monic reduced (J, Ω)-marked sets, namely sets of polynomials of the shape

(2.4)

fa := xa + ∑
xb∈Jc

xb<Ωxa

ca,b xb

∣∣∣∣∣∣∣∣ xa ∈ J, ca,b ∈ K

 .

In this case, for each fa the head term xa is the leading term inΩ(fa) with respect to the term
order Ω. If a (J, Ω)-marked set is a marked basis, then it is indeed the reduced Gröbner ba-
sis of the ideal I with respect to Ω and J = inΩ(I). Also in this case, we define a covariant
functor StΩ

J : (K-Algebras) → (Sets) [32, Section 5]. This functor is called Gröbner functor and
associates to a K-algebra A the family of ideals in A[x] generated by a (J, Ω)-marked basis

StΩ
J (A) =

{
I = (F) ∈ A[x]

∣∣ F is a (J, Ω)-marked basis
}

and to a morphism of K-algebras f : A→ B the map StΩ
J ( f ) : StΩ

J (A)→ StΩ
J (B)

(I ⊂ A[x]) ∈ StΩ
J (A) 7−→ (I ⊗A B ⊂ B[x]) ∈ StΩ

J (B).

The functor StΩ
J is a closed subfunctor of MfJ and it is representable [32, Theorem 5.3]. Hence,

in general the representing scheme StΩ
J , called Gröbner stratum, is a locally closed subscheme

of the Hilbert scheme Hilbn
p(t).

A Gröbner stratum can describe an open subset of the Hilbert scheme if the inclusion StΩ
J ↪→

MfJ is in fact a bijection. This happens with a special class of strongly stable ideals and with
particular term orders.

Definition 2.7 ([31, Definition 6.5][9, Definition 3.7]). Let Ω be a term order. We say that an
ideal J ∈ Sn

p(t) is the Ω-hilb-segment ideal if

xa >Ω xb, ∀ xa ∈ J, ∀ xb ∈ Jc.

This definition generalizes the notion of lexsegment ideals. In fact, the unique lexicographic
ideal L ∈ Sn

p(t) is the DegLex-hilb-segment ideal. If J ∈ Sn
p(t) is the Ω-hilb-segment ideal, then

the Gröbner stratum StΩ
J coincides with the marked scheme MfJ and it is an open subset of

Hilbn
p(t).

3. BOREL DEFORMATIONS

In this section, we investigate the relative position of points of the Hilbert scheme corre-
sponding to strongly stable ideals. In particular, we determine a combinatorial condition for
two strongly stable ideals J, J′ ∈ Sn

p(t) to define points on a common irreducible component of
Hilbn

p(t). In next section, we discuss their behavior with respect to Gröbner degenerations.

Definition 3.1. We say that two strongly stable ideals J, J′ ⊂ K[x] with the same Hilbert poly-
nomial are Borel adjacent if the following conditions hold:

(1) - J \ J′ has a Borel maximum xa (i.e. a maximum with respect to the Borel order);
- J′ \ J has a Borel maximum xa′ ;

(2) there is a set EJ,J′ made of the identity id : T̂n → T̂n and compositions of elementary
decreasing moves e−i1 ◦ · · · ◦ e−is

with such that

J \ J′ = {E(xa) | E ∈ EJ,J′} and J′ \ J = {E(xa′) | E ∈ EJ,J′}.
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Example 3.2 (Borel adjacent ideals). [BA1 – Figure 3.1(A)] Consider the ideals Lsat = (x2, x3
1)

and Jsat = (x2
2, x1x2, x2

1) introduced in Example 2.5. We have

J \ L = {x0x2
1}, L \ J = {x2

0x2} and EJ,L = {id}.

Conditions (1) and (2) are obviously satisfied, so that L and J are Borel adjacent.

[BA2 – Figure 3.1(B)] In the polynomial ring K[x0, x1, x2], consider the lexicographic ideal
Lsat = (x2, x5

1) and the ideal Jsat = (x2
2, x2

1x2, x3
1). The sets

L \ J = {x3
0x1x2, x4

0x2} and J \ L = {x0x4
1, x2

0x3
1}

have Borel maxima x3
0x1x2 and x0x4

1. Moreover,

L \ J =
{

id(x3
0x1x2), e−1 (x3

0x1x2)
}

and J \ L =
{

id(x0x4
1), e−1 (x0x4

1)
}

so that L and J are Borel adjacent.

[BA3] Consider the ideals Jsat = (x2
3, x2x3, x2

2) and J′sat = (x2
3, x2x3, x1x3, x3

2) defining points
in the Hilbert scheme Hilb3

3t+1. The Gotzmann number of p(t) = 3t + 1 is 4. We have

J \ J′ = {x2
1x2

2, x0x1x2
2, x2

0x2
2} and J′ \ J = {x3

1x3, x0x2
1x3, x2

0x1x3}.

The Borel maximum of J \ J′ is x2
1x2

2, the Borel maximum of J′ \ J is x3
1x3. The set of composi-

tions of decreasing elementary moves satisfying condition (2) is EJ,J′ = {id, e−1 , e−1 ◦ e−1 }.

(A) Example 3.2 – BA1

x3
2 x1x2

2 x2
1 x2 x3

1

x0x2
2 x0x1x2 x0x2

1

x2
0 x2 x2

0 x1

x3
0

(B) Example 3.2 – BA2

x5
2 x1x4

2 x2
1 x3

2 x3
1 x2

2 x4
1 x2 x5

1

x0x4
2 x0x1x3

2 x0x2
1 x2

2 x0x3
1 x2 x0x4

1

x2
0 x3

2 x2
0 x1x2

2 x2
0 x2

1 x2 x2
0 x3

1

x3
0 x2

2 x3
0 x1x2 x3

0 x2
1

x4
0 x2 x4

0 x1

x5
0

FIGURE 3.1. Examples of Borel adjacent pairs of strongly stable ideals in the
polynomial ring K[x0, x1, x2].

Example 3.3 (non Borel adjacent ideals). [nBA1 – Figure 3.1(A)] In the polynomial ring K[x0, x1, x2],
consider the ideals Jsat = (x2

2, x2
1x2, x6

1) and J′sat = (x3
2, x1x2

2, x3
1x2, x4

1) with Hilbert polynomial
p(t) = 8 (the Gotzmann number is also 8). We have

J \ J′ = {x6
0x2

2, x5
0x2

1x2} and J′ \ J = {x3
0x5

1, x4
0x4

1}.

The monomials in J \ J′ are not comparable with respect to ≥B, since |(6, 0, 2)|1 = 2 < 3 =

|(5, 2, 1)|1 and |(6, 0, 2)|2 = 2 > 1 = |(5, 2, 1)|2 (Lemma 2.2). Hence, J \ J′ has two maximal
elements and does not satisfy condition (1).

[nBA2 – Figure 3.1(B)] In the polynomial ring K[x0, x1, x2], consider the ideals Jsat = (x2
2, x1x2, x5

1)

and J′sat = (x3
2, x1x2

2, x2
1x2, x3

1) with Hilbert polynomial p(t) = 6 (the Gotzmann number is also
6). We have

J \ J′ = {x4
0x2

2, x4
0x1x2} and J′ \ J = {x2

0x4
1, x3

0x3
1}.
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Condition (1) is satisfied because both J \ J′ and J′ \ J have the Borel maximum (x4
0x2

2 and x2
0x4

1
respectively). Whereas, condition (2) can not be satisfied as

x4
0x1x2 = e−2 (x4

0x2
2) and x3

0x3
1 = e−1 (x2

0x4
1).

[nBA3] Consider the lexicographic ideal Lsat = (x3, x4
2, x1x3

2) ⊂ K[x0, x1, x2, x3] defining a
point on the Hilbert scheme Hilb3

3t+1 and the ideal Jsat = (x2
3, x2x3, x2

2) already introduced in
Example 3.2 [BA3]. We have

L \ J = {x3
1x3, x0x2

1x3, x2
0x1x3, x3

0x3} and J \ L = {x2
1x2

2, x0x1x2
2, x2

0x2
2, x0x3

2}.

The set L \ J has Borel maximum x3
1x3, while J \ L has two maximal elements: x2

1x2
2 and x0x3

2.
Hence, L and J are not Borel adjacent.

(A) Example 3.3 – nBA1

x8
2 x1x7

2 x2
1 x6

2 x3
1 x5

2 x4
1 x4

2 x5
1 x3

2 x6
1 x2

2 x7
1 x2 x8

1

x0x7
2 x0x1x6

2 x0x2
1 x5

2 x0x3
1 x4

2 x0x4
1 x3

2 x0x5
1 x2

2 x0x6
1 x2 x0x7

1

x2
0 x6

2 x2
0 x1x5

2 x2
0 x2

1 x4
2 x2

0 x3
1 x3

2 x2
0 x4

1 x2
2 x2

0 x5
1 x2 x2

0 x6
1

x3
0 x5

2 x3
0 x1x4

2 x3
0 x2

1 x3
2 x3

0 x3
1 x2

2 x3
0 x4

1 x2 x3
0 x5

1

x4
0 x4

2 x4
0 x1x3

2 x4
0 x2

1 x2
2 x4

0 x3
1 x2 x4

0 x4
1

x5
0 x3

2 x5
0 x1x2

2 x5
0 x2

1 x2 x5
0 x3

1

x6
0 x2

2 x6
0 x1x2 x6

0 x2
1

x7
0 x2 x7

0 x1

x8
0

(B) Example 3.3 – nBA2

x6
2 x1x5

2 x2
1 x4

2 x3
1 x3

2 x4
1 x2

2 x5
1 x2 x6

1

x0x5
2 x0x1x4

2 x0x2
1 x3

2 x0x3
1 x2

2 x0x4
1 x2 x0x5

1

x2
0 x4

2 x2
0 x1x3

2 x2
0 x2

1 x2
2 x2

0 x3
1 x2 x2

0 x4
1

x3
0 x3

2 x3
0 x1x2

2 x3
0 x2

1 x2 x3
0 x3

1

x4
0 x2

2 x4
0 x1x2 x4

0 x2
1

x5
0 x2 x5

0 x1

x6
0

FIGURE 3.2. Examples of non Borel adjacent pairs of strongly stable ideals in
the polynomial ring K[x0, x1, x2].

After giving some examples of Borel adjacent ideals, we make explicit some properties that
are in a sense hidden in the definition.

Remark 3.4. (i) Any pair of strongly stable ideals J, J′ ∈ Sn
p(t) such that |J \ J′| = |J′ \ J| = 1

is Borel adjacent.
(ii) The fact that J and J′ are closed under the action of increasing elementary moves implies

that also sets J \ J′ and J′ \ J are. Indeed, if xa is the Borel maximum of J \ J′, xb is another
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monomial in J \ J′ and xc is a monomial such that xa ≥B xc ≥B xb, then xc ∈ J \ J′ (the
same holds for J′ \ J).

(iii) The set EJ,J′ represents a bijection between the sets J \ J′ and J′ \ J. One has

min E(xa) = min E(xa′), ∀ E ∈ EJ,J′ (in particular min xa = min xa′).

In fact, assume min xa > min xa′ . By definition of Borel order, we have min E(xa′) 6
min xa′ < min xa for all E ∈ EJ,J′ . But this is not possible because J and J′ have the same
Hilbert polynomial and |Ji| = |J′i| for all i = 0, . . . , n. This implies that |(J \ J′)i| =
|(J′ \ J)i| for all i = 0, . . . , n.

(iv) The monomials xb′ ∈ J′ \ J are on the “outer border” of J. For any admissible move e+i
the monomial e+i (x

b′) either remains in J′ \ J or comes into J. The monomials xb ∈ J \ J′
are on the “inner border” of J. For any admissible move e−j the monomial e−j (x

b) is either
contained in J or exits in J′.

(v) The previous remark suggests how to search for Borel adjacent ideals to a given ideal J.
Step 1. Determine the set of maximal elements in Jc with respect to the Borel order ≥B.
Step 2. For each maximal element xa with min xa = k, determine the set of minimal elements

in J>k with respect to ≥B.
Step 3. For each minimal element xb ∈ J>k not comparable with xa with respect to ≥B, con-

sider the set E = {xc ∈ J | xc ≤B xb} and the corresponding set of moves E such that
E = {E(xb) | E ∈ E}. E describes a “inner border” of J.

Step 4. Compute F = {E(xa) | E ∈ E} and check whether F describes an “outer border” of
J. This means that (†) all the moves E ∈ E are admissible for xa and (‡) for xc ∈ F,
e+h (x

c) is either in F or in J for every admissible e+h . If this is the case, then J \ E ∪ F

describes the set of generators in degree r of a strongly stable ideal J′ with the same
Hilbert polynomial of J.

Notice that in general this procedure does not exhaust the list of all Borel adjacent ideals
to J. (see for instance Example 3.2 [BA2]).

Next theorem shows that our definition of “combinatorial proximity” of strongly stable
ideals carries also a “geometric proximity” meaning.

Theorem 3.5. Let J, J′ ⊂ K[x] be two Borel adjacent strongly stable ideals. Let xa and xa′ be the Borel
maxima of J \ J′ and J′ \ J. The bi-homogenous ideal IJ,J′ ⊂ K[y0, y1][x] generated by the polynomials

(3.1)
(
J∩ J′

)
∪
{

y0E(xa) + y1E(xa′)
∣∣∣ E ∈ EJ,J′

}
defines a flat family π : XJ,J′ ⊂ P1 ×K Pn → P1, where XJ,J′ = Proj K[y0, y1][x]/IJ,J′ and π is
the restriction to XJ,J′ of the standard projection P1 ×K Pn → P1. Moreover, the fiber XJ,J′ |[1:0] is the
scheme Proj (K[x]/J) and the fiber XJ,J′ |[0:1] is Proj (K[x]/J′). We call this family Borel deformation
of J and J′.

Proof. The second part of the statement is straightforward from the definition of the ideal IJ,J′ .
In fact,

{E(xa) | E ∈ EJ,J′} = J \ J′ and {E(xa′) | E ∈ EJ,J′} = J′ \ J.

Let us consider the standard affine open cover of P1 made up of U0 = P1 \ {[0 : 1]} and
U1 = P1 \ {[1 : 0]}. We prove the flatness of XJ,J′ over P1 by showing that both families
XJ,J′ |U0 → U0 and XJ,J′ |U1 → U1 are flat.
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Over U0, we can rewrite the ideal IJ,J′ as the ideal IJ, Ĵ′ ⊂ K[T][x], T = y1/y0, generated by
the J-marked set (

J∩ J′
)
∪
{
E(xa) + TE(xa′)

∣∣∣ E ∈ EJ,J′
}

.

In order to prove that the family is flat, we show that Eliahou-Kervaire syzygies of the ideal J
lift to syzygies among the elements of the J-marked set (Proposition 2.6).

Let xb ∈ J∩ J′. Any monomial xc appearing in an Eliahou-Kervaire syzygy

xixb − xhxc = 0, i > h = min xb

is also contained in J ∩ J′, because xc >B xb. Then, xb and xc are both generators of J and IJ, Ĵ′

and the syzygy among them trivially lifts.

Now, consider xb ∈ J \ J′. A monomial xc involved in the syzygy xixb − xhxc = 0, i > h =

min xb can either belong to J \ J′ or to J∩ J′.
Case 1: xc ∈ J \ J′. Let E, Ẽ be the elements of EJ,J′ such that

xb = E(xa) = Ht
(
E(xa) + TE(xa′)

)
and xc = Ẽ(xa) = Ht

(
Ẽ(xa) + TẼ(xa′)

)
.

From the syzygy xiE(xa)− xhẼ(xa), one has

Ẽ(xa) =
xi

xh
E(xa) = e+i−1 ◦ · · · ◦ e+h ◦ E(xa) ⇒ Ẽ = e+i−1 ◦ · · · ◦ e+h ◦ E.

As min E(xa) = min E(xa′), the composition e+i−1 ◦ · · · e
+
h is also admissible for E(xa′) and

e+i−1 ◦ · · · e
+
h ◦ E(xa′) = Ẽ(xa′) ⇒ Ẽ(xa′) =

xi

xh
E(xa′),

so that the syzygy between the generators xb and xc of J lifts to the syzygy

xi
(
E(xa) + TE(xa′)

)
− xh

(
Ẽ(xa) + TẼ(xa′)

)
= xiE(xa)− xhẼ(xa) + T

(
xiE(xa′)− xhẼ(xa′)

)
= 0

between the generators E(xa) + TE(xa′) and Ẽ(xa) + TẼ(xa′) of IJ, Ĵ′ .

Case 2: xc ∈ J ∩ J′. Let E be the element of EJ,J′ such that xb = E(xa). As min E(xa) =

min E(xa′), the product xi
xh

E(xa′) is a standard monomial xc′ and is contained in J ∩ J. Hence,
the syzygy xixb − xhxc = 0 lifts to the syzygy

xi
(
E(xa) + TE(xa′)

)
− xhxc − (xhT)xc′ = 0.

The proof of the flatness of XJ,J′ |U1 → U1 follows the same argument exchanging the role of
J and J′. �

Remark 3.6. We notice that the ideal IJ,J′ ⊂ K[y0, y1][x] describing a Borel deformation is homo-
geneous with respect to the non-standard grading

degc : Tn −→ Zn+1/cZ

xv 7−→ v
where c = a− a′.

In fact, for any element E ∈ EJ,J′ , let xp

xq be the generalized monomial associated to E, i.e. E(xa) =
xp

xq xa and E(xa′) = xp

xq xa′ . One has

degc E(xa)− degc E(xa′) = (p + a− q)− (p + a′ − q) = a− a′ = 0 ∈ Zn+1/cZ.

Note that by Remark 3.4 and Lemma 2.2, there exist i and j such that ci > 0 and cj < 0. Under
these assumptions, Hering and Maclagan prove that the ideal IJ,J′ identifies a one-dimen- sional
orbit O ⊂ Hilbn

p(t) of the action induced on the Hilbert scheme by the standard torus T =
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(K∗)n+1 of Pn such that O = O ∪ {[J], [J′]} [23, Proposition 2.5]. Therefore, every rational
curve describing a Borel deformation turns out to be the closure of a T-orbit.

One may wonder whether also the contrary is true, i.e. whether the closure of a one-dimen-
sional T-orbit always corresponds to a Borel deformation. This is not the case and we exhibit
two types of counterexamples.

(i) The closure of a one-dimensional T-orbit does not contain a pair of strongly stable ideals. For
instance, in the case of the Hilbert scheme Hilb2

2, there are 18 one-dimensional T-orbits
(see [23, Section 5.2]). However, none of them corresponds to a Borel deformation. In fact,
chosen an order on the variables there exists a unique strongly stable ideal.

(ii) The closure of a one-dimensional T-orbit contains a pair of strongly stable ideals that are not
Borel adjacent. Consider the strongly stable ideals J = (x4

2, x1x3
2, x2

1x2
2, x5

1x2, x6
1)>14 and

J′ = (x3
2, x3

1x2
2, x4

1x2, x7
1)>14 in K[x0, x1, x2] defining points on Hilb2

14. The ideal generated
by (

J∩ J′
)
∪
{

y0 x11
0 x3

2 + y1 x10
0 x2

1x2
2, y0 x9

0x4
1x2 + y1 x8

0x6
1
}

is homogeneous with respect to the grading T2 → Z3/(1,−2, 1)Z and identifies a one-
dimensional T-orbit. Hence, such ideal defines a flat family that describes a rational curve
on Hilbn

p(t) passing through the points [J] and [J′]. However, J and J′ are not Borel adja-
cent, as

J \ J′ =
{

x11
0 x3

2, x9
0x4

1x2
}

and J′ \ J =
{

x10
0 x2

1x2
2, x8

0x6
1
}

do not satisfy condition (1) of Definition 3.1. �

Corollary 3.7. Let J, J′ ⊂ K[x] be two Borel adjacent strongly stable ideals. The points [J], [J′] ∈
Hilbn

p(t) are contained in a common irreducible component. Moreover, [J′] is contained in the closure
MfJ ⊂ Hilbn

p(t) and [J] is contained in the closure MfJ′ ⊂ Hilbn
p(t).

Proof. By Theorem 3.5, we have XJ,J′ → P1 ∈ Hilbn
p(t)(P

1). Hence, there exists a morphism
of schemes ϕI,J : P1 → Hilbn

p(t) such that XJ,J′ is the pullback of the universal family U n
p(t) →

Hilbn
p(t). The image ϕI,J(P

1) is contained in a unique irreducible component of Hilbn
p(t) and

contains the points [J] = ϕJ,J′([1 : 0]) and [J′] = ϕJ,J′([0 : 1]).
The second part of the statement is a consequence of the observation that IJ, Ĵ′ ∈ MfJ(A

1),
where IJ, Ĵ′ is the ideal defining the restriction of the family XJ,J′ |U0 → U0, with U0 = P1 \ {[0 :
1]}. The same holds for I Ĵ,J′ ∈ MfJ′(A

1). �

Example 3.8. Consider the Borel adjacent strongly stable ideals Jsat = (x2
3, x2x3, x2

2) and J′sat =

(x2
3, x2x3, x1x3, x3

2) in K[x0, x1, x2, x3] introduced in Example 3.2 [BA3]. The ideal IJ,J′ in the
polynomial ring K[y0, y1][x0, x1, x2, x3] defining the Borel deformation XJ,J′ → P1 described in
Theorem 3.5 is generated by the polynomials(

J∩ J′
)
∪
{

y0 x2
1x2

2 + y1 x3
1x3, y0 x0x1x2

2 + y1 x0x2
1x3, y0 x2

0x2
2 + y1 x2

0x1x3
}

,

where J∩ J′ contains the monomials of degree 4 of the intersection ideal Jsat ∩ J′sat = (x3
3, x2x3,

x3
2). Let us consider the restriction XJ,J′ |U0 → A1, where U0 = P1 \ {[0 : 1]}, and the associated

J-marked basis (
J∩ J′

)
∪
{

x2
1x2

2 + Tx3
1x3, x0x1x2

2 + Tx0x2
1x3, x2

0x2
2 + Tx2

0x1x3
}

.
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The Eliahou-Kervaire syzygies of J that we lift are

x3 · x2
1x2

2 − x1 · x1x2
2x3 = 0  x3(x2

1x2
2 + Tx3

1x3)− x1 · x1x2
2x3 − Tx1 · x2

1x2
3 = 0,

x2 · x2
1x2

2 − x1 · x1x3
2 = 0  x2(x2

1x2
2 + Tx3

1x3)− x1 · x1x3
2 − Tx1 · x2

1x2x3 = 0,

x3 · x0x1x2
2 − x0 · x1x2

2x3 = 0  x3(x0x1x2
2 + Tx0x2

1x3)− x0 · x1x2
2x3 − Tx0 · x2

1x2
3 = 0,

x2 · x0x1x2
2 − x0 · x1x3

2 = 0  x2(x0x1x2
2 + Tx0x2

1x3)− x0 · x1x3
2 − Tx0 · x2

1x2x3 = 0,

x1 · x0x1x2
2 − x0 · x2

1x2
2 = 0  x1(x0x1x2

2 + Tx0x2
1x3)− x0(x2

1x2
2 + Tx3

1x3) = 0,

x3 · x2
0x2

2 − x0 · x0x2
2x3 = 0  x3(x2

0x2
2 + Tx2

0x1x3)− x0 · x0x2
2x3 − Tx0 · x0x1x2

3 = 0,

x2 · x2
0x2

2 − x0 · x0x3
2 = 0  x2(x2

0x2
2 + Tx2

0x1x3)− x0 · x0x3
2 − Tx0 · x0x1x2x3 = 0,

x1 · x2
0x2

2 − x0 · x0x1x2
2 = 0  x1(x2

0x2
2 + Tx2

0x1x3)− x0(x0x1x2
2 + Tx0x2

1x3) = 0.

Example 3.9. In the polynomial ring K[x0, x1, x2], consider the strongly stable ideals Jsat =

(x2
2, x1x2, x5

1) and J′sat = (x3
2, x1x2

2, x2
1x2, x3

1) introduced in Example 3.2 [nBA2]. The sets

J \ J′ = {x4
0x2

2, x4
0x1x2} and J′ \ J = {x2

0x4
1, x3

0x3
1}

do not satisfy the requirements of the definition of Borel adjacency. Let us show that Eliahou-
Kervaire syzygies can not be lifted. Consider the pairing x4

0x2
2 ↔ x2

0x4
1, x4

0x1x2 ↔ x3
0x3

1 (the
other pairing leads to analogous problems) and the associated J-marked set(

J∩ J′
)
∪ {x4

0x2
2 + Tx2

0x4
1, x4

0x1x2 + Tx3
0x3

1}.

The syzygy x1 · x4
0x1x2 − x0 · x3

0x2
1x2 = 0 does not lift. In fact,

x1(x4
0x1x2 + Tx3

0x3
1)− x0 · x3

0x2
1x2 = Tx3

0x4
1 6= 0 ∀ T 6= 0

and for T 6= 0 the ideal defined by the marked set has Hilbert polynomial p(t) = 5.

Remark 3.10. Consider the projective embedding of the Hilbert scheme as subscheme of the
Grassmannian via Plücker coordinates:

Hilbn
p(t) ⊂ Gr

(
p(r), K[x]r

) P
↪→ PN , N =

(
(n+r

n )

p(r)

)
− 1.

Furthermore, let J, J′ ∈ Sn
p(t) be two Borel adjacent ideals and let ϕJ,J′ : P1 → Hilbn

p(t) the
morphism of scheme given by the family XJ,J′ → P1 ∈ Hilbn

p(t)(P
1). The composition P ◦ ϕJ,J′

is a Veronese embedding of degree d = |J \ J′|, so that the image P ◦ ϕJ,J′(P
1) is a rational

normal curve lying on Hilbn
p(t). In fact, Plücker coordinates of Gr

(
p(r), K[x]r

)
can be indexed

by the set of sets of q(r) monomials of degree r. Given a K-rational point [X] ∈ Hilbn
p(t), its

Plücker coordinates are (up to a sign) the q(r)-minors of the q(r)× (n+r
r ) matrix representing

a basis of (IX)r. If we consider the set of generators (3.1) of the ideal IJ,J′ , for any closed point
[y0 : y1] ∈ P1, the q(r)-minors are either 0 or a monomial yv0

0 yv1
1 with v0 + v1 = |J \ J′| = d.

And this corresponds exactly to the Veronese embedding of P1 of degree d. �

Example 3.11. Consider the Borel adjacent ideals L = (x2, x3
1) and J = (x2

2, x1x2, x2
1) introduced

in Example 3.2 [BA1]. The Hilbert scheme Hilb2
3 can be seen as subscheme of the Grassmannian

Gr(3, K[x0, x1, x2]3). Via Plücker embedding, Gr(3, K[x0, x1, x2]3) is a subscheme of P119 (see [7,
Section 7.4] for the equations). The Plücker coordinates (up to a sign) of the Borel deformation
XJ,L are the minors of order 7 of the matrix (where � stands for 0)
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x
3

2 x 1x
2

2
x
2

1
x 2

x
3

1 x 0x
2

2
x 0x

1x
2

x 0x
2

1
x
2

0
x 2

x
2

0
x 1

x
3

0

1 � � � � � � � � �

� 1 � � � � � � � �

� � 1 � � � � � � �

� � � 1 � � � � � �

� � � � 1 � � � � �

� � � � � 1 � � � �

� � � � � � y0 y1 � �



so that the image of the morphism P1 P◦ϕJ,L−−−→ P119 is a straight line.

4. THE GRÖBNER FAN

In this section, we look at the whole set of Borel deformations. In particular, we investigate
how Borel deformations are related to Gröbner deformations.

Definition 4.1. We call Borel graph of the Hilbert scheme Hilbn
p(t) the undirected graph G n

p(t)
whose

• vertices V(G n
p(t)) correspond to strongly stable ideals in Sn

p(t);
• edges E(G n

p(t)) correspond to unordered pairs {J, J′} of Borel adjacent strongly stable
ideals.

To describe an edge of G n
p(t), we write [Ja−J′a′ ] in order to add the information that xa and xa′

are the Borel maxima of J \ J′ and J′ \ J.

Example 4.2. (1) Consider the Hilbert scheme Hilb2
5 parametrizing 0-dimensional schemes of

degree 5 in the projective plane P2. There are 3 strongly stable ideals in S2
5 and the Borel graph

G 2
5 is a complete graph K3 (see Figure 4.1(A)).

(2) Consider the Hilbert scheme Hilb3
3t+1 parametrizing 1-dimensional schemes of degree 3

and arithmetic genus 0 in P3. There are 3 strongly stable ideals in S3
3t+1 and the Borel graph

G 2
3t+1 has two edges (see Figure 4.1(B)).

Remark 4.3. In [2] Altmann and Sturmfels define the T-graph of a (multigraded) Hilbert scheme
as the undirected graph whose vertices correspond to monomial ideals and whose edges cor-
respond to pairs of ideals contained in the closure of a one-dimensional T-orbit of the action of
the standard torus T = (K∗)n+1 of Pn. Remark 3.6 implies that the Borel graph G n

p(t) is a proper
subgraph of the T-graph of Hilbn

p(t). �

J1 = (x2, x5
1)>5

J2 = (x2
2, x1x2, x4

1)>5

J3 = (x2
2, x2

1x2, x3
1)>5

J1

J2 J3

x 0
x

4 1
�

x
4 0
x 2

x 30 x
1 x

2 �
x

0 x 41

x3
0 x1x2 � x2

0 x3
1

(A) The Borel graph G 2
5 .

J1 = (x3, x4
2, x1x3

2)>4

J2 = (x2
3, x2x3, x1x3, x3

2)>4

J3 = (x2
3, x2x3, x2

2)>4

J1 J2 J3
x3

0 x3 � x0x3
2 x3

1 x3 � x2
1 x2

2

(B) The Borel graph G 3
3t+1.

FIGURE 4.1. The Borel graph of the Hilbert schemes Hilb2
5 and Hilb3

3t+1.

In order to investigate properties of an undirected graph (such as connectedness, maximum
distance between nodes, . . . ), it is often preferable to assign orientation of the edges and look
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at it as a directed graph. A natural way to decide the direction of an edge [Ja−J′a′ ] is to compare
the Borel maxima with a term order on Tn.

Let J and J′ be two Borel adjacent ideals, let xa and xa′ be the Borel maxima of J \ J′ and J′ \ J
and let EJ,J′ be the set of compositions of decreasing moves such that

J \ J′ = {E(xa) | E ∈ EJ,J′} and J′ \ J = {E(xa′) | E ∈ EJ,J′}.

Moreover, consider a term order Ω and assume that xa >Ω xa′ . For any element E ∈ EJ,J′ , let
xp

xq be the generalized monomial associated to E, i.e. E(xa) = xp

xq xa and E(xa′) = xp

xq xa′ . As Ω is a
multiplicative order, one has

xa >Ω xa′ ⇒ E(xa) = xp

xq xa >Ω
xp

xq xa′ = E(xa′), ∀ E ∈ EJ,J′ .

This means that head terms of the polynomials in the J-marked basis that generates the ideal
IJ, Ĵ′ (

J∩ J′
)
∪
{
E(xa) + TE(xa′)

∣∣∣ E ∈ EJ,J′
}

.

are in fact leading terms: E(xa) = Ht
(
E(xa) + TE(xa′)

)
= inΩ

(
E(xa) + TE(xa′)

)
, ∀ E ∈ EJ,J′ .

Hence, the J-marked basis represents the reduced Gröbner basis of IJ, Ĵ′ with respect to Ω and
J = inΩ(IJ, Ĵ′).

Proposition 4.4. Let Ω be a term order and let J, J′ ⊂ K[x] be two Borel adjacent strongly stable ideals
such that the Borel maximum of J \ J′ is greater than the Borel maximum of J′ \ J with respect to Ω.
The point [J′] ∈ Hilbn

p(t) is contained in the closure StΩ
J ⊂ Hilbn

p(t).

Proof. We use the same argument of the proof of Corollary 3.7 starting from the observation
that IJ, Ĵ′ ∈ StΩ

J (A
1), where IJ, Ĵ′ is the ideal defining the restriction of the family XJ,J′ |U0 → U0,

with U0 = P1 \ {[0 : 1]}. �

In geometric terms, the proposition says that the ideal J′ can be deformed to some ideal J̃′

such that inΩ( J̃′) = J, while there is no deformation J̃ of J such that inΩ( J̃) = J′. From this
perspective, we can say that J′ is more special or degenerate than J with respect to the term
order Ω. For this reason, whenever a point [J′] is contained in the closure of a Gröbner stratum
StΩ

J , we say that J′ is a Ω-degeneration of J.

Definition 4.5. Consider a term order Ω. We call Ω-degeneration graph of the Hilbert scheme
Hilbn

p(t) the directed graph G n
p(t)(Ω) whose

• vertices V
(
G n

p(t)(Ω)
)

correspond to strongly stable ideals in Sn
p(t);

• edges E
(
G n

p(t)(Ω)
)

correspond to ordered pairs (J, J′) of Borel adjacent ideals such that
J′ is a Ω-degeneration of J.

To describe an edge of G n
p(t)(Ω), we write [Ja

Ω−→J′a′ ] meaning that xa is the Borel maximum of

J \ J′, xa′ is the Borel maximum of J′ \ J and xa >Ω xa′ .

An immediate consequence of the definition is that every Ω-degeneration graph is a direct
acyclic graph (namely, a graph with no oriented cycles). In fact, from the point of view of the
generators of the ideals, an edge [Ja

Ω−→J′a′ ] ∈ E
(
G n

p(t)(Ω)
)

corresponds to the replacement of
some monomials of J with smaller monomials with respect to Ω. Consequently, there can not
be proper oriented paths in G n

p(t)(Ω) with same initial and final vertex (see Figure 4.2 for an
example).

Direct acyclic graphs describe orders of finite sets.
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J1

J2 J3

x 0
x

4 1
�

x
4 0
x 2

x 30 x
1 x

2 �
x

0 x 41

x3
0 x1x2 � x2

0 x3
1

(A) The degeneration graph G 2
5 (DegLex).

J1 J2 J3
x3

0 x3 � x0x3
2 x3

1 x3 � x2
1 x2

2

(B) The degeneration graph G 3
3t+1(RevLex).

FIGURE 4.2. The degeneration graphs of Hilb2
5 with respect to the graded lexi-

cogaphic order and of Hilb3
3t+1 with respect to the graded reverse lexicographic

order.

Definition 4.6. Let Ω be a term order and consider the set Sn
p(t). We denote by �Ω the partial

order on Sn
p(t) defined by

J �Ω J′ ⇐⇒ there is a path in G n
p(t)(Ω) with initial vertex J and final vertex J′.

Example 4.7. Consider the Hilbert schemes Hilb3
5t−2 parametrizing 1-dimensional schemes of

degree 5 and arithmetic genus 3 in P3. The set S3
5t−2 contains 7 ideals and there are 12 pairs

of Borel adjacent ideals, so that the Borel graph G 3
5t−2 has 7 vertices and 12 edges. In Figure

4.3, the edges of G 3
5t−2 are oriented according to the graded reverse lexicographic order. with

respect to the order �RevLex, the set S3
5t−2 has two maximal elements (ideals J6 and J7 are not

comparable) and the minimum (the lexicographic ideal J1).

J1 = (x3, x6
2, x3

1x5
2)>8

J2 = (x3, x7
2, x1x6

2, x2
1x5

2)>8

J3 = (x2
3, x2x3, x1x3, x6

2, x2
1x5

2)>8

J4 = (x2
3, x2x3, x2

1x3, x6
2, x1x5

2)>8

J5 = (x2
3, x2x3, x3

1x3, x5
2)>8

J6 = (x2
3, x2

2x3, x1x2x3, x2
1x3, x5

2)>8

J7 = (x2
3, x2x3, x4

2)>8

J1

J2

J3

J4

J5

J6

J7

FIGURE 4.3. The RevLex-degeneration graph of the Hilbert scheme Hilb3
5t−2.

Now, we classify all the possible partial orders on the set Sn
p(t) defined via degeneration

graph. Namely, we classify which directed graphs supported on the the Borel graph of Hilbn
p(t)

can be induced by a term order. We are inspired by the classification of all Gröbner bases
of a given ideal by means of the Gröbner fan (see [35, 41, 15]). We start enlarging the set of
monomials orders to weight orders. Given a vector ω ∈ Rn+1, we denote by ≥ω the partial
order defined by

xa ≥ω xb ⇐⇒ 〈a, ω〉 > 〈b, ω〉,
where 〈·, ·〉 stands for the standard scalar product.

As≥ω is a partial order on the monomials, it may happen that for an edge [Ja−J′a′ ] ∈ E(G n
p(t))

of the Borel graph, it holds 〈a, ω〉 = 〈a′, ω〉. This means that a weight order ≥ω does not
determine the orientation of all edges of G n

p(t). In such cases, we associate to ω a mixed graph.
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Definition 4.8. Consider a vector ω ∈ Rn+1. We call ω-degeneration graph of the Hilbert scheme
Hilbn

p(t) the mixed graph G n
p(t)(ω) whose

• vertices V
(
G n

p(t)(ω)
)

correspond to strongly stable ideals in Sn
p(t);

• undirected edges Eu
(
G n

p(t)(ω)
)

correspond to unordered pairs {J, J′} of Borel adjacent

ideals such that 〈a, ω〉 = 〈a′, ω〉, where xa and xa′ are the Borel maxima of J \ J′ and
J′ \ J;
• directed edges Ed

(
G n

p(t)(ω)
)

correspond to ordered pairs (J, J′) of Borel adjacent ideals
such that 〈a, ω〉 > 〈a′, ω〉.

To describe an undirected edge of G n
p(t)(ω), we write [Ja−

ω J′b], while to describe a directed edge,

we write [Ja
ω−→J′b].

Remark 4.9. Consider the action of the one-dimensional torus K∗ on K[x] with weights ω de-
fined by

(4.1) t � xb = t−〈b,ω〉xb, ∀ xb ∈ Tn, ∀ t ∈ K∗

and an undirected edge [Ja−
ω J′a′ ] ∈ Eu

(
G n

p(t)(ω)
)
. The ideal IJ,J′ describing the Borel deforma-

tion of J and J′ is homogeneous with respect to the Z-grading xb 7→ 〈b, ω〉. Therefore, the
rational curve in Hilbn

p(t) defined by IJ,J′ is point-wise fixed by the torus action induced by (4.1)
on the Hilbert scheme.

Instead if we consider a directed edge [Ja
ω−→J′a′ ] ∈ Ed

(
G n

p(t)(ω)
)
, the ideal IJ,J′ corresponds to

a degeneration using the one-parameter torus action, i.e.

J = lim
t→0

(t � I) and J′ = lim
t→∞

(t � I)

where I is the ideal of the generic fiber of the family IJ,J′ . �

Remark 4.10. Notice that the Borel graph G n
p(t) of Hilbn

p(t) turns out to coincide with the degen-
eration graph given by the weight vector (1, . . . , 1). �

J1

J2 J3

x 0
x

4 1
�

x
4 0
x 2

x 30 x
1 x

2 �
x

0 x 41

x3
0 x1x2 � x2

0 x3
1

(A) The degeneration graph G 2
5
(
(0, 1, 3)

)
.

J1 J2 J3
x3

0 x3 � x0x3
2 x3

1 x3 � x2
1 x2

2

(B) The degeneration graph G 3
3t+1

(
(0, 1, 2, 3)

)
.

FIGURE 4.4. Examples of degeneration graphs induced by weight orders.

A natural equivalence relation on Rn+1 can be given considering mixed graphs supported
on the Borel graph G n

p(t):

(4.2) ω ∼ σ ⇐⇒ G n
p(t)(ω) = G n

p(t)(σ).

As the number of vertices of the graphs is finite, the number of equivalence classes is finite. A
second immediate remark is that equivalence classes are convex cones with vertex in the origin.
In fact, consider two vectors ω, ω′ in the same equivalence class C ⊆ Rn+1. They induce the
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same orientation of all edges of the Borel graph G n
p(t). Namely, for an edge [Ja−J′a′ ] ∈ E(G n

p(t)),
we have either 〈a− a′, ω〉 = 〈a− a′, ω′〉 = 0 or 〈a− a′, ω〉 · 〈a− a′, ω′〉 > 0. In the first case, we
have an undirected edge and

〈a− a′, Tω + (1− T)ω′〉 = 0, ∀ T 〈a− a′, cω〉 = 0, ∀ c.

In the second case, we have a directed edge. Assuming 〈a− a′, ω〉 > 0 and 〈a− a′, ω′〉 > 0, we
obtain

〈a− a′, Tω + (1− T)ω′〉 > 0, ∀ T ∈ [0, 1] and 〈a− a′, cω〉 > 0, ∀ c > 0.

Hence, vectors Tω + (1− T)ω′ and cω are in C for every T ∈ [0, 1] and every c > 0.

Lemma 4.11. Each equivalence class of vectors is a convex polyhedral cone relatively open, that is open
in a suitable affine subspace of Rn+1.

Proof. Fix a mixed graph G supported on the Borel graph of Hilbn
p(t) and let W = (W0, . . . , Wn)

be the coordinates of Rn+1. For every directed edge [Ja→J′a′ ] ∈ Ed(G ) consider the inequality

(4.3) 〈a− a′, W〉 > 0,

while for every undirected edge [Ja−J′a′ ] ∈ Eu(G ) consider the equality

(4.4) 〈a− a′, W〉 = 0.

The solutions (if there are) of the system made of inequalities (4.3) and equalities (4.4) represent
the equivalence class of vectors ω ∈ Rn+1 such that G n

p(t)(ω) = G . The set of solutions is an

open subset of the affine subspace of Rn+1 defined by equations (4.4). �

For any term order Ω, all variables xi are greater than 1. Since for a weight vector ω, xi >ω 1
if and only if ωi > 0, we restrict to the positive orthant Rn+1

>0 . Notice that there is no loss of
information, because each equivalence class C intersects the positive orthant. In fact, consider
vectors ω ∈ C and ω′ = ω + c(1, . . . , 1). As we are in the homogeneous context, ω and ω′

induces the same weight order. For all xa, xb s.t. |a| = |b|,

〈a− b, ω′〉 = 〈a− b, ω + c(1, . . . , 1)〉 = 〈a− b, ω〉+ c〈a, (1, . . . , 1)〉 − c〈b, (1, . . . , 1)〉 =
= 〈a− b, ω〉 − c|a|+ c|b| = 〈a− b, ω〉.

For c sufficiently large, ω′ is contained in C ∩Rn+1
>0 .

Furthermore, in the definition of Borel-fixed ideals, we need to fix an order among variables
and our choice is x0 < · · · < xn. Consequently, we are interested in weight vectors ω such that
x0 <ω x1 <ω · · · <ω xn (this guarantees that the weight order ≥ω refines the Borel order ≥B).
Therefore, we further restrict to the open polyhedral cone

W =
{

ω ∈ Rn+1
>0 | ωi < ωi+1, i = 0, . . . , n− 1

}
.

We introduce the following notation for the equivalence classes:

for a term order Ω, Cn
p(t)(Ω) =

{
σ ∈ W

∣∣∣ G n
p(t)(σ) = G n

p(t)(Ω)
}

,

for a vector ω ∈ W , Cn
p(t)(ω) =

{
σ ∈ W

∣∣∣ G n
p(t)(σ) = G n

p(t)(ω)
}

.

Definition 4.12. The Gröbner fan GF(Hilbn
p(t)) of the Hilbert scheme Hilbn

p(t) is the set of the
closures of all equivalence classes of the relation (4.2) with their proper faces, intersected with
the closureW of the coneW .



22 Y. KAMBE AND P. LELLA

Theorem 4.13. The Gröbner fan GF(Hilbn
p(t)) is a polyhedral fan.

Proof. By Lemma 4.11, we know that GF(Hilbn
p(t)) is a collection of convex polyhedral cones.

In order to prove that GF(Hilbn
p(t)) is a polyhedral fan, we need to show that

(i) for every cone C ∈ GF(Hilbn
p(t)), all its faces are contained in GF(Hilbn

p(t));
(ii) for every pair of cones C1, C2, the intersection C1 ∩ C2 is a face of C1 and a face of C2.

Moreover, as the intersection of a fan with a unique polyhedral cone is still a fan, we show that
the set of the closures of all equivalence classes in Rn+1 is a polyhedral fan.

Consider a face F of the closure C of the equivalence class C. This means that some of the
inequalities defining C become equalities when defining F . From the point of view of degener-
ation graphs, passing from C to the relative interior ofF means to remove the orientations from
edges associated to those inequalities that become equalities. Hence, all the interior points of F
induce the same degeneration graph, i.e. F ⊂ C ′ for some equivalence class C ′. In fact, equality
F = C ′ holds, because outside of F the degeneration graph is different. This proves (i).

To prove (ii), consider two cones C1, C2 and the intersection P = C1 ∩ C2. In the previous
paragraph, we showed that every ω′′ ∈ P in contained in a the cone C ′′ that is a face of both C1

and C2. Hence, P is a finite union of common faces. However, P is convex and a finite union
of cones can only be convex if the union is a singleton. Hence, P is a common face of C1 and
C2. �

If n = 2, we represent a Gröbner fan through the intersection of the fan with the plane
ω0 + ω1 + ω2 = 1 (each equivalence class intersects such plane).

If n = 3, we consider the intersection of the fan with the plane ω0 = 0, ω1 + ω2 + ω3 = 1.
For each ω 6= (1, . . . , 1) ∈ W , the point

ω′ =
1

ω3 + ω2 + ω1 − 3ω0
(ω−ω0(1, . . . , 1)) ∈ W

lies on the plane and the weight order ≥ω′ coincides with the weight order ≥ω. Hence, all
equivalence classes are represented except the one corresponding to the Borel graph.

Example 4.14. Consider the Hilbert scheme Hilb2
5 whose Borel graph G 2

5 is depicted in Figure
4.1(A). The orientation of edges depends on the sign of

• [J1−J2] x4
0x2 � x0x4

1

(4W0 + W2)− (W0 + 4W1) = 3W0 − 4W1 + W2 T 0,

• [J1−J3] x3
0x1x2 � x0x4

1

(3W0 + W1 + W2)− (W0 + 4W1) = 2W0 − 3W1 + W2 T 0,

• [J2−J3] x3
0x1x2 � x2

0x3
1

(3W0 + W1 + W2)− (2W0 + 3W1) = W0 − 2W1 + W2 T 0.

It turns out that the fan GF(Hilb2
5) has 4 cones of maximal dimension and there are 8 different

degeneration graphs (see Figure 4.5).

Proposition 4.15. For every term order Ω, there exists ω ∈ W such that

Cn
p(t)(Ω) = Cn

p(t)(ω).

Furthermore, Cn
p(t)(Ω) is an open polyhedral cone of maximal dimension.
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(0, 0, 1) (0, 1, 1)
(0, 1, 2)(0, 1, 3)(0, 1, 4)

(1, 1, 1)

J1

J2 J3

J1

J2 J3

J1

J2 J3

J1

J2 J3

J1

J2 J3

J1

J2 J3

J1

J2 J3

J1

J2 J3

FIGURE 4.5. The Gröbner fan of the Hilbert scheme Hilb2
5 and the possible de-

generation graphs.

Proof. The Ω-degeneration graph G n
p(t)(Ω) is a directed graph. Thus, the equivalence class

Cn
p(t)(Ω) is defined only by strict inequalities:

Cn
p(t)(Ω) =

{
σ ∈ W

∣∣∣ 〈a− a′, σ〉 > 0, ∀ [Ja
Ω−→J′a′ ] ∈ Ed

(
G n

p(t)(Ω)
)}

.

The statement is proved if we can show that Cn
p(t)(Ω) is not empty. In order to prove the

claim, we recall that every term order Ω can be described by means of a rational full rank
(n + 1)× (n + 1) matrix MΩ (see [29, 40]) satisfying the following property:

xa ≥Ω xb ⇐⇒ xa = xb or
first non zero entry of MΩ(a− b)T is positive.

Let R0, . . . , Rn be the rows of a matrix MΩ representing the term order Ω. We construct an
element of Cn

p(t)(Ω) as a linear combination λ0R0 + · · ·+ λnRn. Consider sets Ei, i = 0, . . . , n
defined by

Ei =
{
[Ja

Ω−→J′a′ ] ∈ Ed
(
G n

p(t)(Ω)
) ∣∣∣ 〈a− a′, Ri〉 > 0 and 〈a− a′, Rj〉 = 0 for j < i

}
,

and Xi, i = 0, . . . , n defined by

Xi =
{

xk
∣∣ Ri,k > Ri,k−1 and Rj,k = Rj,k−1 for j < i

}
.
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vertices
of G n

d

edges
of G n

d

Borel graph
approximate

cpu time
maximal cones
of GF(Hilbn

d )
extremal rays
of GF(Hilbn

d )
approximate

cpu time

Gröbner fan

P2, d = 5 3 3 0.009 s 4 6 0.07 s

P3, d = 5 4 5 0.02 s 10 12 0.1 s

P4, d = 5 5 6 0.06 s 11 14 0.2 s

P2, d = 8 6 10 0.04 s 8 10 0.09 s

P3, d = 8 12 31 0.4 s 70 55 1.8 s

P4, d = 8 16 45 4.3 s 310 162 15.5 s

P2, d = 11 12 33 0.2 s 14 16 0.3 s

P3, d = 11 32 134 12.1 s 259 186 28.5 s

P4, d = 11 50 235 320 s 3678 1761 1131 s

(A) Examples of computation of Gröbner fans of Hilbert schemes parametrizing
0-dimensional subschemes in P2, P3 and P4.

vertices
of G n

d

edges
of G n

d

Borel graph
approximate

cpu time
maximal cones
of GF(Hilbn

d )
extremal rays
of GF(Hilbn

d )
approximate

cpu time

Gröbner fan

p(t) = 3t + 1 3 2 0.008 s 3 7 0.03 s

p(t) = 4t 4 4 0.02 s 5 9 0.04 s

p(t) = 5t− 2 7 12 0.1 s 18 19 0.3 s

p(t) = 6t− 3 31 110 14 s 268 186 22 s

p(t) = 7t− 5 112 651 588 s 1204 806 542 s

(B) Examples of computation of Gröbner fans of Hilbert schemes parametrizing
1-dimensional subschemes in P3.

TABLE 4.1. Examples of computation of Borel graphs and Gröbner
fans. The code is implemented with Macaulay2 [18] in the pack-
age GroebnerFanHilbertScheme.m2 available at the web page
www.paololella.it/publications/kl/. The algorithms have been
run on a MacBook Pro with an Intel Core i5 dual-core 2.9 GHz processor.

Sets {Ei}i=0,...,n represent a partition of the set of edges of G n
p(t)(Ω) and sets {Xi}i=0,...,n represent

a partition of the set of variables {x1, . . . , xn}. The set Xi contains the variables xk such that the
i-th row of MΩ is the row giving the order relation xk >Ω xk−1. Then, let s = max{i | Ei 6=
∅ or Xi 6= 0} and set λs = 1, λi = 0, i > s. Assuming to have fixed a value for the last n− i
coefficients λi+1, . . . , λn (i < s), we choose

λi =


0, if Ei = ∅, Xi = ∅,

λ′i + 1, if Ei 6= ∅, Xi = ∅,

λ′′i + 1, if Ei = ∅, Xi 6= ∅,

max{λ′i, λ′′i }+ 1, if Ei 6= ∅, Xi 6= ∅,

http://www.paololella.it/publications/kl/
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where

λ′i = max

{
− 1
〈a− a′, Ri〉

n

∑
j=i+1

λj〈a− a′, Rj〉
∣∣∣∣∣ [Ja

Ω−→J′a′ ] ∈ Ei

}
,

λ′′i = max

{
− 1

Ri,k − Ri,k−1

n

∑
j=i+1

λj(Rj,k − Rj,k−1)

∣∣∣∣∣ xk ∈ Xi

}
.

Then, consider ω = λ0R0 + · · · + λnRn. For every edge [Ja
Ω−→J′a′ ] ∈ Ed

(
G n

p(t)(Ω)
)
, it holds

〈a− a′, ω〉 > 0. In fact, the edge [Ja
Ω−→J′a′ ] belongs to Ei for some i, so that

〈a− a′, ω〉 =
〈

a− a′,
n

∑
j=0

λjRj

〉
=

n

∑
j=0

λj〈a− a′, Rj〉 =
n

∑
j=i

λj〈a− a′, Rj〉.

By the choice of λi, we have

λi > λ′i > −
1

〈a− a′, Ri〉
n

∑
j=i+1

λj〈a− a′, Rj〉

and, since 〈a− a′, Ri〉 > 0,

λi〈a− a′, Ri〉 > −
n

∑
j=i+1

λj〈a− a′, Rj〉 ⇐⇒
n

∑
j=i

λj〈a− a′, Rj〉 > 0.

Moreover, ω satisfies inequalities ωk > ωk−1 for k = 1, . . . , n:

ωk −ωk−1 =
n

∑
j=0

λj(Rj,k − Rj,k−1) =
n

∑
j=i

λj(Rj,k − Rj,k−1), ∀ xk ∈ Xi

and by the choice of λi, we have

λi > λ′′i > −
1

Ri,k − Ri,k−1

n

∑
j=i+1

λj(Rj,k − Rj,k−1).

If ω0 > 0, then ω ∈ Cn
p(t)(Ω), otherwise if ω0 6 0, ω + (1−ω0)(1, . . . , 1) ∈ Cn

p(t)(Ω). �

The previous statement can be easily reversed. Given an equivalence class C of maximal
dimension, we can produce a term order Ω such that C = Cn

p(t)(Ω) as follows. Pick ω ∈ C and
define the term order Ω as follows

(4.5) xa ≥Ω xb ⇐⇒ 〈a, ω〉 > 〈b, ω〉 or
〈a, ω〉 = 〈b, ω〉 and xa ≥Λ xb

where Λ is an arbitrary term order used as a “tie breaker”.

Remark 4.16. In general, a cone of codimension k (not contained in the boundary ofW) corre-
sponds to the closure of an equivalence class Cn

p(t)(ω) such that the ω-degeneration graph has
at least k undirected edges. �

Example 4.17. Consider the Hilbert scheme Hilb3
3t+1 and its RevLex-degeneration graph rep-

resented in Figure 4.2(B). A matrix describing the graded reverse lexicographic order for the
polynomial ring K[x0, x1, x2, x3], with the choice x0 < x1 < x2 < x3, is

MRevLex =


1 1 1 1
−1 0 0 0
0 −1 0 0
0 0 −1 0

 .
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Going through the lines of the proof of Proposition 4.15, we consider partitions

E0 = ∅, E1 = {[J2→J1]}, E2 = {[J3→J2]}, E3 = ∅,

X0 = ∅, X1 = {x1}, X2 = {x2}, X3 = {x3},

and we start setting λ3 = 1. Then, we have

λ2 = max{λ′2, λ′′2}+ 1 = max{2, 1}+ 1 = 3,

λ1 = max{λ′1, λ′′1}+ 1 = max
{ 3

2 , 3
}
+ 1 = 4,

λ0 = 0.

We obtain ω = 4(−1, 0, 0, 0) + 3(0,−1, 0, 0) + (0, 0,−1, 0) = (−4,−3,−1, 0) and

C3
3t+1(RevLex) = C3

3t+1
(
(1, 2, 4, 5)

)
= C3

3t+1
(
(0, 1, 3, 4)

)
.

In the case of the graded lexicographic order, the edges of the DegLex-degeneration graph
are [J1→J2] and [J2→J3], a matrix representing the term order is

MDegLex =


1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0


and partitions are

E0 = ∅, E1 = {[J1→J2], [J2→J3]}, E2 = ∅, E3 = ∅,

X0 = ∅, X1 = {x3}, X2 = {x2}, X3 = {x1}.

We have λ3 = 1, λ2 = λ′′2 + 1 = 2, λ1 = max{λ′1, λ′′1}+ 1 = max{6, 2}+ 1 = 7 and λ0 = 0, so
that

C3
3t+1(DegLex) = C3

3t+1
(
(1, 2, 3, 8)

)
= C3

3t+1
(
(0, 1, 2, 7)

)
.

(0, 0, 0, 1) (0, 0, 1, 1)
(0, 0, 1, 2)(0, 0, 1, 3)

(0, 1, 1, 1)

(0, 1, 1, 3)

(0, 1, 2, 7)
(0, 1, 3, 4)

DegLex

RevLex

FIGURE 4.6. The Gröbner fan of the Hilbert scheme Hilb3
3t+1.

5. APPLICATIONS

In this last section, we use the machinery of Gröbner fans to study geometric properties of
the Hilbert scheme such as connectedness and irreducibility. We start recalling the definition
of a partial order among sets of a fixed number of monomials of a given degree induced by a
term order.
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Definition 5.1 ([5, Definition 6, Proposition 5]). Let Ω be a term order in K[x] and let Mr
q

be the collection of sets of q monomials of degree r. We denote by ��Ω the partial order on
Mr

q defined as follows: given two sets A = {xa1 , . . . , xaq}, xa` >Ω xa`+1 , ` = 1, . . . , q− 1 and
B = {xb1 , . . . , xbq}, xb` >Ω xb`+1 , ` = 1, . . . , q− 1 inMr

q

A ��Ω B ⇐⇒ xa` ≥Ω xb` , ∀ ` = 1, . . . , q.

We write A ��Ω B if at least one of the inequalities xa` ≥Ω xb` is strict.

For every ideal J ∈ Sn
p(t), the monomial basis J of Jr is contained in the set Mr

q with q =

q(r) = (n+r
n )− p(r). Therefore, the order ��Ω induces a partial order on Sn

p(t):

(5.1) J ��Ω J′ ⇐⇒ J ��Ω J′.

Both orders �Ω and ��Ω are determined by the term order Ω and they are far from being
unrelated. We now explain the relation and we exploit it to deduce properties of the Hilbert
scheme.

Lemma 5.2. Let A,B be two subsets inMr
q such that A ��Ω B. For any pair of monomials xa, xb of

degree r such that xa /∈ A, xb /∈ B and xa ≥Ω xb,

A∪ {xa} ��Ω B∪ {xb}.

Moreover, the strict inequality xa >Ω xb guarantees the strict inequality A∪ {xa} ��Ω B∪ {xb}.

Proof. Let us consider the indices i and j defined by

i = min{` | xa >Ω xa`} and j = min{` | xb >Ω xb`}.

We can write

A∪ {xa} = {xa′1 , . . . , xa′q+1}, where xa′` =


xa` , ` = 1, . . . , i− 1,

xa, ` = i,

xa`−1 , ` = i + 1, . . . , q + 1.

and

B∪ {xb} = {xb′1 , . . . , xb′q+1}, where xb′` =


xb`, ` = 1, . . . , j− 1,

xb, ` = j,

xb`−1 , ` = j + 1, . . . , q + 1.

If i < j, the statement does not really depend on the assumption xa ≥Ω xβ. In fact, one has

xa′` = xa` ≥Ω xb` = xb′` , ` = 1, . . . , i− 1

xa′i = xa >Ω xai ≥Ω xbi = xb′i , ` = i,

xa′` = xa`−1 >Ω xa` ≥Ω xb` = xb′` , ` = i + 1, . . . , j− 1,

xa′j = xaj−1 ≥Ω xbj−1 >Ω xb = xb′j , ` = j,

xa′` = xa`−1 ≥Ω xb`−1 = xb′` , ` = j + 1, . . . , q + 1,

⇒ A∪ {xa} ��Ω B∪ {xb}.

xa1 · · · xai−1 xa xai · · · xaj−2 xaj−1 xaj · · · xaq

xb1 · · · xbi−1 xbi xbi+1 · · · xbj−1 xb xbj · · · xbq
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If i = j, then the statement is straightforward and xa >Ω xb guarantees A ∪ {xa} ��Ω

B∪ {xb}.
Finally, if i > j

xa′` = xa` ≥Ω xb` = xb′` , ` = 1, . . . , j− 1

xa′j = xaj >Ω xa ≥Ω xb = xb′j , ` = j,

xa′` = xa` >Ω xa ≥Ω xb > xb`−1 = xb′` , ` = j + 1, . . . , i− 1,

xa′i = xa ≥Ω xb >Ω xbi−1 = xb′i , ` = i,

xa′` = xa`−1 ≥Ω xb`−1 = xb′` , ` = i + 1, . . . , q + 1,

⇒ A∪ {xa} ��Ω B∪ {xb}.

xa1 · · · xaj−1 xaj xaj+1 · · · xai−1 xa xai · · · xaq

xb1 · · · xbj−1 xb xbj · · · xbi−2 xbi−1 xbi · · · xbq �

Proposition 5.3. The order ��Ω is a refinement of the order �Ω on Sn
p(t), i.e.

(5.2) J �Ω J′ =⇒ J ��Ω J′.

Proof. If J = J′, then obviously J = J′. For the transitive property of �Ω and ��Ω, it suffices to
prove the implication for pairs of Borel adjacent ideals ideals J, J′ such that [Ja

Ω−→J′a′ ] is a directed
edge of G n

p(t)(Ω). By definition, we have

J = (J∩ J′) ∪ (J \ J′) and J′ = (J∩ J′) ∪ (J′ \ J).

We obtain the thesis, starting from J∩ J′ and applying repeatedly Lemma 5.2 on pairs

E(xa) >Ω E(xa′), ∀ E ∈ EJ,J′ . �

In the following, maximal elements of Sn
p(t) with respect to ��Ω and �Ω play a crucial role.

We introduce the following notation:

max
��Ω

Sn
p(t) =

{
J ∈ Sn

p(t)

∣∣∣ @ J′ 6= J ∈ Sn
p(t) s.t. J′ ��Ω J

}
,(5.3)

max
�Ω

Sn
p(t) =

{
J ∈ Sn

p(t)

∣∣∣ @ J′ 6= J ∈ Sn
p(t) s.t. J′ �Ω J

}
.(5.4)

By Proposition 5.3, we have the inclusion max��Ω Sn
p(t) ⊆ max�Ω Sn

p(t). We underline that com-
puting the set max��Ω Sn

p(t) from Definition 5.1 is quite involved. Whereas, computing the set
max�Ω Sn

p(t) is much easier. Indeed, a maximal element with respect to �Ω corresponds to a
vertex in G n

p(t)(Ω) with no incoming edges (in graph theory, one says that the in-degree of the
vertex is 0).

5.1. Connectedness of the Hilbert scheme. We recall that a strongly stable ideal J ∈ Sn
p(t) is

called Ω-hilb-segment ideal, for some term order Ω, if xa >Ω xb for every xa ∈ J and every
xb ∈ Jc. Moreover, notice that at least one hilb-segment ideal exists for every Hilbert scheme
Hilbn

p(t). Indeed, the unique lexicographic ideal in Sn
p(t) is the DegLex-hilb-segment ideal.

Theorem 5.4. Let Ω be a term order such that there exists the Ω-hilb-segment ideal L ∈ Sn
p(t). Then,

max
��Ω

Sn
p(t) = max

�Ω
Sn

p(t) = {L}.

Proof. Let us start proving that L is the unique maximal element in Sn
p(t) with respect to ��Ω.

For any J 6= L ∈ Sn
p(t), we have

L = (L∩ J) ∪ (L \ J) and J = (L∩ J) ∪ (J \ L).
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By definition of hilb-segment ideal, every monomial in (L \ J) ⊆ L is greater than every mono-
mial in (J \ L) ⊆ Lc. Hence, by Lemma 5.2 L ��Ω J⇔ L ��Ω J.

Since max��Ω Sn
p(t) ⊆ max�Ω Sn

p(t), in order to prove that L is the unique maximal ideal
also respect to �Ω, we show that for any J 6= L ∈ Sn

p(t), there exists a Borel adjacent ideal
I ∈ Sn

p(t) such that I �Ω J. First, we describe the procedure to find I and subsequently we
prove correctness and termination. We use the idea discussed in Remark 3.4(v).

Step 0. Denote by A = L \ J and B = J \ L. We have that every monomial in A is greater
than every monomial in B with respect to ≥Ω.

Step 1. Let xa = max≥Ω A and let xb = min≥Ω Bk, where k = min xa.

Step 2. Consider the set E = {xc ∈ B | xb ≥B xc} and the associated set of compositions
of elementary decreasing moves E such that E = {E(xb) | E ∈ E}. If (†) every move E ∈ E
is also admissible for xa, i.e. E(xa) is a monomial, and (‡) for an admissible move e+h , the
monomial e+h

(
E(xa)

)
is either contained in J or is of the type Ẽ(xa) for some Ẽ ∈ E , then the

Ω-degeneration graph has the edge [Ia
Ω−→Jb], where I is the ideal generated by

I = J \ {E(xb) | E ∈ E} ∪ {E(xa) | E ∈ E}.

Step 3. If condition (†) or condition (‡) in Step 2 is not satisfied, we start again from Step 1
with

A′ = A \ {xc ∈ A | xa ≥B xc}, B′ = B.

Correctness and termination. • The monomial xa is a maximal element of Jc with respect to
≥B. Indeed, xa ∈ A ⊂ L \ J ⊂ Jc and for any admissible move e+h , the monomial e+h (x

a)

is contained in L ∩ J, as L is closed under the action of increasing moves and e+h (x
a) >B xa

implies e+h (x
a) >Ω xa and e+h (x

a) can not be one of the monomials removed from L \ J in Step
3.

• At the beginning, we have |Ai| = |Bi| for all i = 0, . . . , n, subsequently |Ai| 6 |Bi| for all
i = 0, . . . , n. Hence, xa ∈ Ak implies |Bk| > |Ak| > 0, so that the monomial xb = min≥Ω Bk

exists. By definition, xb is a minimal element in J ∩K[xk, . . . , xn] with respect to ≥B. Since
xa >Ω xb, xa ∈ Jc and xb ∈ J are not comparable with respect to ≥B.

• Let F be the set of monomials {E(xa) | E ∈ E admissible for xa} and assume that |F| < |E|
(condition (†) in Step 2 in not satisfied). Then, there exists a monomial E(xb) ∈ B that is not
paired with a monomial xa′ ∈ L \ J by some set E . Hence, A′ is not empty, as F ∩ A ⊂ {xc ∈
A | xa ≥B xc}.
• Assume that condition (‡) in Step 2 is not satisfied. Namely, |F| = |E| but there exists a

monomial E(xa) ∈ F and an elementary move e+h such that e+h (E(x
a)) is not contained in J. If

F ⊂ A, then e+h (E(x
a)) is contained in A and it is not comparable with xa with respect to ≥B

and A′ is not empty. If there exists E ∈ E such that E(xa) /∈ A, then the monomial E(xb) ∈ B

is not paired with a monomial xa′ ∈ L \ J by some set E and we apply the same argument as
before.

• Notice that the minimality of xb among monomials in Bk \ Ak implies that min E(xb) < k
for all E 6= id ∈ E and that min E(xa) = min E(xb) for all E ∈ E .

• Conditions (†) and (‡) required in Step 2 guarantee that the set {E(xa) | E ∈ E} is an “outer
border” of J and the set {E(xb) | E ∈ E} is an “inner border” of J. Furthermore, as xa ∈ Jc and
xb ∈ J are not comparable with respect to ≥B, the set I = J \ {E(xb) | E ∈ E} ∪ {E(xa) | E ∈ E}
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is closed under the action of increasing elementary moves and |Ii| = |Ji|, i = 0, . . . , n. Then, I
corresponds to an ideal I ∈ Sn

p(t) that is Borel adjacent to J and xa >Ω xb implies that I �Ω J.

• Each time that we encounter a failure in Step 3, the non-emptiness of A′ is guaranteed by
monomials with minimum variable strictly lower that min xa. Since J 6= L, then J0 6= L0 and
applying repeatedly the procedure we eventually obtain xa ∈ A0. In this case, xb = min≥Ω B0,
E = {id}, conditions (†) and (‡) are satisfied and we finally find I such that I �Ω J. �

Example 5.5. Consider the polynomial ring K[x0, x1, x2, x3] and the Hilbert polynomial p(t) =
5t− 2. The ideal Lsat = (x2

3, x2x3, x4
2) is the Ω-hilb-segment ideal with respect to the term order

Ω described by the matrix

MΩ =


1 1 1 1
1 3 17 47
0 0 1 0
0 1 0 0

.

Let us determine an edge [I Ω−→J] of G 3
5t−2(Ω) for Jsat = (x2

3, x2
2x3, x1x2x3, x2

1x3, x5
2) following the

procedure presented in the proof of Theorem 5.4. The Gotzmann number of p(t) = 5t− 2 is 8,
so we start considering

A = L \ J = {x4
1x4

2, x0x3
1x4

2, x2
0x2

1x4
2, x3

0x1x4
2, x4

0x4
2, x6

0x2x3},

B = J \ L = {x7
1x3, x0x6

1x3, x2
0x5

1x3, x3
0x4

1x3, x4
0x3

1x3, x5
0x2

1x3}.

We have max≥Ω A = x4
1x4

2, min x4
1x4

2 = 1, min≥Ω B1 = x7
1x3 and

E =
{

id, e−1 , (e−1 )
2, (e−1 )

3, (e−1 )
4, (e−1 )

5
}

Condition (†) of Step 2 is not satisfied because the last move in E is not admissible for x4
1x4

2.
Hence, we consider

A′ = A \ {xc0
0 xc1

1 xc2
2 xc3

3 ∈ A | x4
1x4

2 ≥B xc0
0 xc1

1 xc2
2 xc3

3 } = {x
6
0x2x3} and B′ = B.

The next pair of monomials to examine is max≥Ω A′ = x6
0x2x3 and min≥Ω B′0 = x5

0x2
1x3. As

min x6
0x2x3 = min x5

0x2
1x3 = 0, conditions (†) and (‡) are surely satisfied and the saturation of

the ideal generated by I = J \ {x5
0x2

1x3} ∪ {x6
0x2x3} is Isat = (x2

3, x2x3, x3
1x3, x5

2).

Corollary 5.6. The Borel graph G n
p(t) of Hilbn

p(t) is connected.

Proof. Choose a term order Ω such that Sn
p(t) contains the Ω-hilb-segment ideal (we recall that

each Sn
p(t) contains at least the DegLex-hilb-segment ideal). Then, we consider the subgraph

T n
p(t)(Ω) of the Ω-degeneration graph G n

p(t)(Ω) with the same set of vertices and whose edges

Ed
(
T n

p(t)(Ω)
)
⊆ Ed

(
G n

p(t)(Ω)
)

correspond to pairs of Borel adjacent ideals determined with
the procedure introduced in the proof of Theorem 5.4. The graph T n

p(t)(Ω) turns out to be a
minimum spanning tree of G n

p(t)(Ω), because it is a directed graph and each vertex has exactly
one incoming edge, except the one corresponding to the Ω-hilb-segment ideal that is the root
of the tree. The connectedness of G n

p(t) follows from the connectedness of T n
p(t)(Ω). �

Example 5.7. The set S3
5t−2 introduced in Example 4.7 contains 7 ideals. There is no RevLex-hilb-

segment ideal, as the RevLex-degeneration graph has two vertices with no incoming edges,
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namely max�RevLex
S3

5t−2 = {J6, J7} (see Figure 4.3). The ideals J1, J3, J4, J5 and J7 are hilb-
segment ideals with respect to term orders Ωi described by the matrices

MΩi =


1 1 1 1

ωi,0 ωi,1 ωi,2 ωi,3
0 0 1 0
0 1 0 0

, i = 1, 3, 4, 5, 7

with ω1 = (1, 2, 4, 19), ω3 = (1, 4, 9, 44), ω4 = (1, 4, 12, 53), ω5 = (1, 3, 11, 45) and ω7 =

(1, 3, 17, 47). In Figure 5.1, there is the Borel graph G 3
5t−2 and the spanning trees computed with

the procedure given in the proof of Theorem 5.4 varying the hilb-segment ideal.

J1

J2

J3

J4

J5

J6

J7

(A) G 3
5t−2.

J1

J2

J3

J4

J5

J6

J7

(B) T 3
5t−2(Ω1).

J1

J2

J3

J4

J5

J6

J7

(C) T 3
5t−2(Ω3).

J1

J2

J3

J4

J5

J6

J7

(D) T 3
5t−2(Ω4).

J1

J2

J3

J4

J5

J6

J7

(E) T 3
5t−2(Ω5).

J1

J2

J3

J4

J5

J6

J7

(F) T 3
5t−2(Ω7).

FIGURE 5.1. The spanning trees of G 3
5t−2 determined using Theorem 5.4 and

varying the hilb-segment ideal.

Theorem 5.8. The Hilbert scheme Hilbn
p(t) is rationally chain connected.

Proof. We need to show that for any pair of closed points [X], [Y] ∈ Hilbn
p(t) there exists a se-

quence of rational curves C0, . . . , Cs such that [X] ∈ C0, [Y] ∈ Cs and Ci ∩ Ci−1 6= ∅, ∀ i =

1, . . . , s. It is equivalent to prove that there exists a sequence of rational curves C0, . . . , Cs con-
necting any point of Hilbn

p(t) with a fixed point. Hence, choose a point [L] ∈ Hilbn
p(t) corre-

sponding to the Ω-hilb-segment ideal for some term order Ω (e.g. the lexicogaphic ideal).
Given a point [X] ∈ Hilbn

p(t), denote by IX ⊂ K[x] the saturated ideal defining X. If IX is
not a strongly stable ideal, consider the generic initial ideal J of IX with respect to an arbitrary
term order. It is well-known that there exists a flat family of ideals parametrized by the affine
line A1 = Spec K[T] such that the fiber over the point T = 1 is IX and the fiber over the point
T = 0 is J. Let φX : A1 → Hilbn

p(t) the associated morphism. As φX is non-constant, the closure

CX = φX(A1) of the image of φX is a rational curve contained in Hilbn
p(t) [22, Proposition 9.8].

It remains to show that there is a sequence of rational curves connecting a point [J] ∈ Hilbn
p(t)

to [L] for all J ∈ Sn
p(t). Let T n

p(t)(Ω) be the spanning tree of the Borel graph G n
p(t) constructed in

Corollary 5.6 and consider the list of edges [(L=J0)
Ω−→J1], [J1

Ω−→J2], . . . , [Js−1
Ω−→(Js=J)] that form
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the unique path in T n
p(t)(Ω) going from the root of the tree L to the vertex J. For every edge

[Ji
Ω−→Ji+1], i = 0, . . . , s− 1, consider the flat family XJi ,Ji+1 → P1 described in Theorem 3.5 such

that the fiber over [1 : 0] is the scheme Proj K[x]/Ji and the fiber over [0 : 1] is Proj K[x]/Ji+1.
The associated morphism ϕJi ,Ji+1 : P1 → Hilbn

p(t) is non-constant and the image Ci = ϕJi ,Ji+1(P
1)

is a rational curve contained in Hilbn
p(t) (see also Remark 3.10). The point [Ji] is contained in

the intersection Ci−1 ∩ Ci for i = 1, . . . , s− 1, so that the sequence of curves C0, . . . , Cs gives the
chain connecting [J] to [L]. �

Remark 5.9. The connectedness of Hilbn
p(t) has been proved first by Hartshorne [21] and after-

wards by Peeva and Stillman [36]. Common ideas of all proofs are

1. for any point of Hilbn
p(t) consider a specialization to a point defined by a strongly stable

ideal;
2. determine a sequence of deformations/specializations to move from a strongly stable ideal

to another with the goal of getting closer at each step to a fixed strongly stable ideal.

Hartshorne’s proof make use of polarization to define the deformation/specialization proce-
dure and a hard part of his argument is to show that applying repeatedly his procedure one
reaches the lexicographic ideal. Peeva and Stillman propose a replacement criterion of gener-
ators of strongly stable ideals driven by the graded lexicographic order. Hence, in their proof
is obvious that at each step the new ideal is closer to the lexicographic ideal than the starting
ideal. The main point of their proof is to show that each replacement involves strongly stable
ideals and can be realized by means of a deformation/specialization step.

The idea of our proof is very similar to the one of Peeva and Stillman. We now try to point
out the main differences.

• Our replacement criterion of generators is much more flexible because it is not driven
by a given term order, but it is based on the combinatorial properties of strongly stable
ideals. Term orders help at a later time to move around in the whole set of strongly
stable ideals.
• In our proof the lexicographic ideal can be replaced by any other hilb-segment ideal. In

general, for a given Hilbert polynomial there are lots of hilb-segment ideals and some
of them can be better suited than the lexicographic ideal to study the Hilbert scheme.
For instance, in the case of Hilbert scheme of points, the saturated lexicographic ideal
describe a smooth point in the irreducible component of general points, but it has the
Hilbert function of aligned points. Whereas the hilb-segment ideal with respect to the
graded reverse lexicographic order describe a point in the irreducible component of
general points that can be singular, but it has the Hilbert function of general points.
• In terms of Gröbner deformations, we can say that our replacement criterion corre-

sponds to a binomial ideal with exactly two possible initial ideals that are both strongly
stable. Peeva and Stillman replacement criterion corresponds to a binomial ideal with
two possible initial ideals: one is always strongly stable, but the other may not be.
Hence, they may need an additional Gröbner degeneration to a generic initial ideal to
restore the strong stability property. �

5.2. Punctual Hilbert schemes. The case of constant Hilbert polynomials is quite special and
allows to prove stronger properties about partial orders �Ω and degeneration graphs.

Lemma 5.10. For each term order Ω, the set of ideals Sn
d contains the Ω-hilb segment ideal. Hence,

there is always the maximum in Sn
d with respect to �Ω and ��Ω.



THE GRÖBNER FAN OF THE HILBERT SCHEME 33

Proof. Given a term order Ω, let L be the set of all monomials in K[x] of degree d except the
d smallest monomials with respect to Ω. The set L is closed under the action of increasing
elementary moves. In fact, consider two monomials xa, xb of degree d. If xa ∈ L and xb ≥B xa,
then xb ≥Ω xa and xb ∈ L. Furthermore, all monomials in Lc have minimum equal to 0.
Indeed, Lc is closed under the action of decreasing moves and there does not exist any such set
containing a monomial with minimum greater than 0. This implies that the ideal (L) is strongly
stable and has Hilbert polynomial p(t) = d [9, Theorem 3.13].

The second part of the statement follows from the first part applying Theorem 5.4. �

Notice that Lemma 5.10 does not say that all ideals in Sn
d are hilb-segment ideals. See [9,

Proposition 3.16] for the simplest examples of strongly-stable ideals that are not hilb-segment
ideals in the case of constant Hilbert polynomials.

We now give some information about the maximum distance between vertices of the Borel
graph. We recall that the distance between two vertices of a graph is the number of edges in
the shortest path connecting them.

Proposition 5.11. The distance between vertices J, J′ of the Borel graph G n
d is at most |J \ J′|.

Proof. We prove the statement exhibiting a path of length |J \ J′| between J and J′. Notice that
for every ideal J ∈ Sn

d , the minimum of monomials in Jc is 0. Hence, J \ J′ ⊂ J0 and J′ \ J ⊂ J′0.
We proceed by induction on k = |J \ J′|. If k = 1, J and J′ are Borel adjacent ideals (see

Remark 3.4(i)) and the Borel graph G n
d contains the edge [J−J′]. Now, assume that the statement

is true for pairs of ideal J, J′ such that |J \ J′| 6 k− 1.
Given J and J′ with |J \ J′| = k, consider a maximal element with respect to ≥B in J \ J′ and

xb a minimal element with respect to ≥B in J′ \ J. The monomial xa is a maximal element of J′c

and xb is a minimal element of J′. Then, consider the set J′′ = J′ \ {xb}∪ {xa}. It is closed under
the action of increasing elementary moves and all monomials in J′′c have minimum variable
equal to 0. The ideal J′′ generated by J′′ is in Sn

d . Sets J′ and J′′ differ in one element, so J′ and
J′′ are Borel adjacent, i.e. [J′−J] ∈ E(G n

d ).
Finally, notice that

J \ J′′ = J \ (J′ \ {xb} ∪ {xa}) = (J \ J′) \ {xa} ⇒ |J \ J′′| = k− 1.

By the inductive assumption, there is a path of length k − 1 from J to J′′, so that the distance
between J and J′ is at most k. �

Corollary 5.12. The distance between any two vertices of the Borel graph G n
d is at most

d−min
{

s
∣∣∣∣ (n + s− 1

n

)
> d

}
.

Proof. By Proposition 5.11 the bound on the maximum distance between vertices is given by
the pair of ideals with the smallest intersection. A saturated strongly stable ideal Jsat with
constant Hilbert polynomial has a power xj

1 among the generators (and j is the highest degree
of a generator). This implies that Jc surely contains {xd−j+1

0 xj−1
1 , . . . , xd−1

0 x1, xd
0} plus other d− j

monomials with maximum variable greater that 1.
Now, consider J, J′ ∈ Sn

d and let xj
1 and xj′

1 the powers of x1 appearing among the generators
of Jsat and J′sat. Assuming j < j′, we have that

{xd−j+1
0 xj−1

1 , . . . , xd−1
0 x1, xd

0} ⊆ Jc ∩ J′
c
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and

|J \ J′| = |Jc \ J′c| = |Jc| − |Jc ∩ J′
c| > d− j.

The saturated lexicographic ideal Lsat ∈ Sn
d is generated by (xn, . . . , x2, xd

1) and Lc = {x0xd−1
1 ,

. . . , xd
0}. Consequently, Jc ∩ Lc = {xd−j+1

0 xj−1
1 , . . . , xd−1

0 x1, xd
0} and |J \ L| = d− j. In order to

maximize |J \ L|, we minimize j looking for an ideal J such that Jc contains the d monomials
with the highest power of the last variable x0. We can do this considering the RevLex-hilb-
segment ideal. Indeed, with respect to the graded reverse lexicographic order, the monomials

(5.5) {xd
0} ∪ xd−1

0 ·K[x1, . . . , xn]1 ∪ · · · ∪ xd−j+1
0 ·K[x1, . . . , xn]j−1

form the largest set of monomials with a power of x0 greater than d − j. Then, we take the
minimum j such that the number of monomials in (5.5)

1 + n + · · ·+
(

n− 1 + j− 1
n− 1

)
=

(
n + j− 1

n

)
is at least d. Such j is the minimum for which the saturation of an ideal J ∈ Sn

d has xj
1 among its

generators. �

Example 5.13. (1) Consider the Hilbert scheme Hilb3
8 that parametrizes subschemes of P3 with

Hilbert polynomial p(t) = 8. The set S3
8 contains 12 strongly stable ideals, 10 of which are

hilb-segment ideals with respect to suitable term orders. The Gröbner fan GF(Hilb3
8) has 55

extremal rays and 70 cones of maximal dimension. Lemma 5.10 implies that there are several
degeneration graphs that share the same maximum ideal. In Figure 5.2(B), there is the Gröbner
fan of Hilb3

8 with the maximal cones corresponding to term orders Ω inducing the same maxi-
mum max� S3

8 grouped together.
(2) The ideal in S3

8 with the lowest power of x1 among the generators of its saturation is the
RevLex-hilb-segment ideal

J12 = (x2
3, x2x3, x3

2, x1x2
2, x2

1x3, x2
1x2, x3

1)>8.

By Corollary 5.12, the distance between vertices of the Borel graph G 3
8 is at most 5. In Figure

5.2(A), the path from the RevLex-hilb-segment ideal J12 to the DegLex-hilb-segment ideal J1

constructed in the proof of Proposition 5.11 is drawn with a thick line.
In fact, the distance between J1 and J12 is 3 (and 3 is the maximum distance between vertices

of G 3
8 ). There are two shortcuts: [J5−J12] instead of [J5−J10], [J10−J12] and [J1−J3] instead of

[J1−J2], [J2−J3].

5.3. Irreducibility of the Hilbert scheme. We recall a nice results from [5] that explains how to
use maximal strongly stable ideals with respect to ��Ω to study the irreducibility of Hilbn

p(t).
For any term order Ω, we denote by mn

p(t)(Ω) the number of ideals in max��Ω Sn
p(t).

Proposition 5.14 ([5, Proposition 9]). Let Ω be a term order. The Hilbert scheme Hilbn
p(t) has at least

mn
p(t)(Ω) irreducible components.

To make Proposition 5.14 meaningful and effective, one has to look for the term order Ω
that gives the best lower bound on the number of irreducible components of Hilbn

p(t). From a
computational point of view, finding such Ω from the statement seems as difficult as finding a
needle in the haystack. In this context, the problem becomes treatable.
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J1

J2

J3

J4

J5

J6

J7

J8

J9

J10

J11

J12

J1 = (x3, x2, x8
1)>8

J2 = (x3, x2
2, x1x2, x7

1)>8

J3 = (x3, x2
2, x2

1x2, x6
1)>8

J4 = (x3, x2
2, x3

1x2, x5
1)>8

J5 = (x3, x3
2, x1x2

2, x2
1x2, x5

1)>8

J6 = (x3, x3
2, x1x2

2, x2x3
1, x4

1)>8

J7 = (x2
3, x2x3, x2

2, x1x3, x1x2, x6
1)>8

J8 = (x2
3, x2x3, x2

2, x1x3, x2
1x2, x5

1)>8

J9 = (x2
3, x2x3, x2

2, x1x3, x3
1x2, x4

1)>8

J10 = (x2
3, x2x3, x1x3, x3

2, x1x2
2, x2

1x2, x4
1)>8

J11 = (x2
3, x2x3, x2

2, x2
1x3, x2

1x2, x4
1)>8

J12 = (x2
3, x2x3, x3

2, x1x2
2, x2

1x3, x2
1x2, x3

1)>8

(A) The Borel graph G 3
8 . The path connecting J1 and J12 constructed in the proof of Proposi-

tion 5.11 is highlighted with a thick line.

J12

J11

J10

J8

J7

J6

J4

J3

J2

J1

(B) The Gröbner fan GF(Hilb3
8). Adjacent polygons colored with the same shade of gray

corresponds to term orders Ω whose degeneration graphs have the same maximum in S3
8

with respect to �Ω.

FIGURE 5.2. The Borel graph and the Gröbner fan of the Hilbert scheme Hilb3
8.

Proposition 5.3 and the inclusion max��Ω Sn
p(t) ⊆ max�Ω Sn

p(t) suggest to examine maximal
cones of the Gröbner fan GF(Hilbn

p(t)). For each cone C ∈ GF(Hilbn
p(t)) of maximal dimension,

we want to determine

mn
p(t)(C) := max

{
mn

p(t)(Ω)
∣∣∣ Ω term order s.t. C = Cn

p(t)(Ω)
}

.

First, we consider an interior point ω ∈ C, i.e. C = Cn
p(t)(ω). By Proposition 4.15, the ω-

degeneration graph is a directed graph. Second, we compute the set M of vertices with no
incoming edge in G n

p(t)(ω). We have mn
p(t)(C) 6 |M|. Third, we look for the largest subset

M′ ( M such that there exists a term order Ω such that Cn
p(t)(Ω) = Cn

p(t)(ω) and the ideals in
M′ are not comparable with respect to ��Ω. Hence, mn

p(t)(C) = |M′|. Finally, we compute the
maximum of mn

p(t)(C) for C varying among cones of maximal dimension of GF(Hilbn
p(t)).
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Lemma 5.15. The Hilbert scheme Hilbn
p(t) has at least mn

p(t) irreducible components, where

(5.6) mn
p(t) := max

{
mn

p(t)(C)
∣∣∣ C ∈ GF(Hilbn

p(t)) of maximal dimension
}

.

Example 5.16. Consider the Hilbert scheme Hilb3
6t−3 parametrizing 1-dimensional subschemes

of P3 of degree 6 and arithmetic genus 4. The Borel graph G 3
6t−3 has 31 vertices and 110 edges

(see Figure 5.3(A)) and the Gröbner fan GF(Hilb3
6t−3) has 268 cones of maximal dimension and

186 extremal rays (see Figure 5.3(B)). For every cone, m3
6t−3(C) coincides with the cardinality

of vertices with no incoming edges in the ω-degeneration graph for some ω in the interior
of C. We have 251 cones with m3

6t−3(C) = 1, 13 cones with m3
6t−3(C) = 2 and 4 cones with

m3
7t−5(C) = 3. Therefore, m3

6t−3 = 3 and we can affirm that the Hilbert scheme Hilb3
6t−3 has at

least 3 irreducible components.

We computed a lot of examples and we always found that mn
p(t)(C) coincides with the num-

ber of vertices with no incoming edge of the degeneration graph G n
p(t)(ω), where ω is any vector

in the interior of C. Hence, we propose the following conjecture.

Conjecture 5.17. For every cone of maximal dimension C ∈ GF(Hilbn
p(t)), there exists a term order Ω

such that C = Cn
p(t)(Ω) and

mn
p(t)(C) = mn

p(t)(Ω) =

∣∣∣∣max
��Ω

Sn
p(t)

∣∣∣∣ = ∣∣∣∣max
�Ω

Sn
p(t)

∣∣∣∣ .

If the conjecture were true, we could compute mn
p(t)(C) looking at the ω-degeneration graph

for a single vector ω in the interior of C and compute mn
p(t) considering a finite number of

degeneration graph (one for each maximal cone of the Gröbner fan). However, computing
the Gröbner fan GF(Hilbn

p(t)) can become computationally demanding (see Table 4.1) and the
Gröbner fan may have a huge number of maximal cones, making the naif procedure ineffective.
Moreover, in the previous section we saw that there are directed degeneration graphs with a
unique maximal element. Hence, the corresponding maximal cones can be not considered a
priori. We now focus on the search for weight vectors ω ∈ W inducing a direct ω-degeneration
graph with more than one vertex with no incoming edges.

Definition 5.18. Let J ⊂ K[x] be a strongly stable ideal in Sn
p(t). We call maximality cone of J

(M-cone of J for short) the set

MC(J) :=
{

ω ∈ W
∣∣∣ J has no incoming edges in G n

p(t)(ω)
}

and we call segment cone of J (S-cone of J for short) the set

SC(J) :=
{

ω ∈ W
∣∣∣ 〈a, ω〉 > 〈b, ω〉, ∀ xa ∈ J, ∀ xb ∈ Jc

}
.

Both sets are either empty or open polyhedral cones of maximal dimension. The maximality
cone of J is the set of solutions of the system of inequalities

ω0 > 0

ωi > ωi−1, i = 1, . . . , n,

〈a, ω〉 > 〈a′, ω〉, ∀ [Ja−J′a′ ] ∈ E(G n
p(t)),

and it is equal to interior of the union of cones of GF(Hilbn
p(t)) corresponding to degeneration

graphs in which the vertex J has no incoming edges.
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The segment cone is polyhedral by definition. Notice that it is not necessary to consider all
inequalities 〈a, ω〉 > 〈b, ω〉, ∀ xa ∈ J, ∀ xb ∈ Jc, but it suffices to restrict to those corresponding
to xa ∈ J minimal and xb ∈ Jc maximal with respect to the Borel order ≥B. In general, an S-
cone can have any type of relation with the cones of maximal dimension of GF(Hilbn

p(t)) (see
Example 5.21).

The segment cone of an ideal is contained in the maximality cone and we are interested in
ideals for which the inclusion is proper.

Definition 5.19. We say that an ideal J ∈ Sn
p(t) is regular if MC(J) = SC(J) and irregular if

MC(J) \ SC(J) 6= ∅, i.e. SC(J) (MC(J).

In light of Definition 5.19, in order to determine mn
p(t) we can consider irregular ideals in Sn

p(t)
and look for subsets {J1, . . . , Js} such that

MC(J1, . . . , Js) :=
s⋂

i=1

(
MC(Ji) \ SC(Ji)

)
=

s⋂
i=1

MC(Ji) 6= ∅.

For each subset with this property, we have to check that there exists a term order Ω such that
ideals J1, . . . , Js are maximal elements for �Ω and not comparable with respect to ��Ω. The
cardinality of the largest set of ideals with this property is mn

p(t). Conjecture 5.17 can be restated
as follows.

Conjecture 5.20. For every set of ideals J1, . . . , Js ∈ Sn
p(t) such thatMC(J1, . . . , J2) 6= ∅, there exists

a term order Ω such that {J1, . . . , Js} = max��Ω Sn
p(t).

Example 5.21 (continues Example 5.16). Among the 31 elements of S3
6t−3, we have

• 8 regular ideals (5 of them have empty M-cone, 3 of them are hilb-segment ideals with
the M-cone and S-cone coinciding);
• 23 irregular ideals (10 of which are hilb-segment ideals).

There are 59 cones of maximal dimension of GF(Hilb3
6t−3) whose intersection with at least one

segment cone is a cone of maximal dimension (see Figure 5.3(B)). For these cones, m3
6t−3(C) is

surely 1.
In all degeneration graphs corresponding to the four cones with m3

6t−3(C) = 3, the vertices
with no incoming edge correspond to ideals

J26* = (x3
3, x2x2

3, x2
2x3, x1x2

3, x2
1x2x3, x3

1x3, x6
2)>12,

J30 = (x3
3, x2x2

3, x2
2x3, x1x2

3, x1x2x3, x5
2)>12,

J31 = (x2
3, x2

2x3, x4
2)>12.

The interior of union of these four cones of GF(Hilb3
6t−3) is equal to the intersection of maxi-

mality cones
MC(J26, J30, J31) =MC(J26) ∩MC(J30) ∩MC(J31)

(see Figure 5.3(B)).

We now give a necessary condition for two irregular ideals J and J′ to have non-empty inter-
sectionMC(J) ∩MC(J′). For a strongly stable ideal J, we denote by Jsat

x0
the saturation of the

ideal J +(x0) in K[x1, . . . , xn]. The ideal J +(x0) describes the hyperplane section of the scheme

*The index labeling an ideal is the position of the ideal in the list of strongly stable ideals in K[x0, x1, x2, x3]

with Hilbert polynomial p(t) = 6t − 3 produced by the algorithm implemented in the Macaulay2 package
StronglyStableIdeals.m2 [1].



38 Y. KAMBE AND P. LELLA

Proj K[x]/J with the hyperplane defined by the equation x0 = 0. Notice that if two ideals J and
J′ have the same hyperplane section, then J>1 = J′>1, so that J \ J′ ⊂ J0 and J′ \ J ⊂ J′0.

We denote by Hn
p(t) the set of strongly stable ideals H ⊂ K[x1, . . . , xn] describing a possible

hyperplane section of an ideal in Sn
p(t). The set Hn

p(t) is a subset of Sn−1
∆p(t) and an ideal H ⊂

K[x1, . . . , xn] in Sn−1
∆p(t) belongs to Hn

p(t) if the Hilbert polynomial of H ·K[x] is equal to p(t)− h
with h > 0 (see [9, 30, 1] for more details).

For all Hsat ∈ Hn
p(t), we denote by Sn,H

p(t) the subset

Sn,H
p(t) :=

{
J ∈ Sn

p(t)

∣∣∣ Jsat
x0

= Hsat
}

and by G n,H
p(t) (Ω) the subgraph of G n

p(t)(Ω) containing only vertices in Sn,H
p(t) and edges among

them.

Proposition 5.22. For any term order Ω and for any ideal H ∈ Hn
p(t), the set of ideals Sn,H

p(t) has
maximum with respect to both ��Ω and �Ω.

Proof. First, we prove that there is the maximum with respect to ��Ω by constructing it. Con-
sider the ideal H′ = H ·K[x] and the set H′ of its monomials of degree r. By the assumption,
we have that h = |H′| − q(r) > 0. If h = 0, then H′ is the unique ideal in Sn,H

p(t) and it is
also maximal with respect to ��Ω. If h > 0, the homogeneous piece of degree r of ideals in
Sn,H

p(t) can be obtained from H′ removing h monomials {xa1 , . . . , xah} with minimum 0 such that
H′ \ {xa1 , . . . , xah} remains closed under increasing Borel elementary moves.

Let us call L the ideal whose set of monomials of degree r is H′ \ {xa1 , . . . , xah}, where the
monomials we remove are the h smallest monomials with respect to Ω in H′ with minimum 0.
By construction L is strongly stable and contained in Sn,H

p(t). For any other ideal J ∈ Sn,H
p(t), we

have
J = H′ \ {xb1 , . . . , xbh} and L∩ J = H′ \ ({xa1 , . . . , xah} ∪ {xb1 , . . . , xbh})

that imply

L = (L∩ J) ∪
(
{xb1 , . . . , xbh} \ {xa1 , . . . , xah}

)
,

J = (L∩ J) ∪
(
{xa1 , . . . , xah} \ {xb1 , . . . , xbh}

)
.

By construction, all elements in {xb1 , . . . , xbh} \ {xa1 , . . . , xah} are greater with respect to≥Ω than
all monomials in {xa1 , . . . , xah} \ {xb1 , . . . , xbh} . By Lemma 5.2, L ��Ω J, for all J ∈ Sn,H

p(t).

In order to prove that L is also the maximum with respect to �Ω, we repeat the argument
used in Theorem 5.4. Applying the procedure introduced in the proof of the aforementioned
theorem, we encounter xa = max≥Ω(L \ J) and xb = min≥Ω(J \ L) with minimum 0, that
satisfy conditions (†) and (‡). The ideal I generated by I = J \ {xb} ∪ {xa} is Borel-adjacent to
J, it is contained in Sn,H

p(t) as I>1 = J>1, and xa >Ω xb implies that [I Ω−→J] is an edge of G n,H
p(t) (Ω),

so that I �Ω J. �

Corollary 5.23. Let J and J′ be two irregular ideals in Sn
p(t). IfMC(J) ∩MC(J′) 6= ∅, then Jsat

x0
6=

J′sat
x0

.

Example 5.24 (continues Example 5.21). The hyperplane sections of the maximal elements are

(J26)
sat
x0

= (x3, x6
2), (J30)

sat
x0

= (x2
3, x2x3, x5

2) and (J31)
sat
x0

= (x2
3, x2

2x3, x4
2).

There is no other ideal in H3
6t−3, so 3 is the maximum number of components of Hilb3

6t−3 that
can be detected with this method.
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Remark 5.25. In the case of constant Hilbert polynomials, Lemma 5.10 implies that all ideals
in Sn

d are regular. Namely, either J ∈ Sn
d is a hilb-segment ideal, so that SC(J) 6= ∅ and

MC(J) = SC(J), or MC(J) = ∅. Hence, we have that mn
d = 1 for all n and all d. This is

confirmed by Corollary 5.23, as all ideals in Sn
d share the same (empty) hyperplane section,

namely Hn
d = {(1)}.

Consequently, Proposition 5.15 (or [5, Proposition 9]) can not be used to prove the non-
irreducibility of punctual Hilbert schemes. This was already stated in [5, Section 7.1]. but the
argument was based on a previous results by Reeves saying that the set Sn

d consists of ideals
defining points which all lie on a single irreducible component of Hilbn

d [38, Theorem 6]. We
point out that our proof does not rely on that result. �

Example 5.26 (Cf. [5, Example 8]). Consider the Hilbert scheme Hilb3
7t−5 parametrizing 1-dimensional

subschemes of P3 of degree 7 and arithmetic genus 6. The computation of the Gröbner fan
GF(Hilb3

7t−5) is quite involved and the number of cones of maximal dimension is large (see Ta-
ble 4.1(B)). Hence, we try to compute m3

7t−5 looking for sets of irregular ideals with non-empty
intersection of their maximality cones.

By Corollary 5.23, we know that we have to consider irregular ideals with different plane
section. The set H3

7t−5 is made of 4 ideals:

Hsat
1 = (x3, x7

2), Hsat
2 = (x2

3, x2x3, x6
2), Hsat

3 = (x2
3, x2

2x3, x5
2), Hsat

4 = (x2
3, x3

2x3, x4
2).

The set S3,H4
7t−5 contains only the ideal J112* = (x2

3, x3
2x3, x4

2)>16. Such ideal is irregular and its
M-coneMC(J112) has extremal rays spanned by (1, 1, 0, 0), (2, 1, 0, 0), (1, 1, 1, 0) and (1, 1, 1, 1).

The set S3,H3
7t−5 contains 3 elements: J109, J110, J111*. The ideal J110 can be discarded, because it is

Borel adjacent to J112. The other 2 ideals have distance 2 from J112. The ideal J109 is irregular but
the maximality cone MC(J109) intersects MC(J112) only along the ray spanned by (1, 1, 1, 1).
The ideal J111 = (x3

3, x2x2
3, x2

2x3, x1x2
3, x5

2)>16 is irregular and its M-cone contains MC(J112), so
thatMC(J111, J112) =MC(J112).

The set S3,H2
7t−5 contains 14 elements (from J95 to J108*). Among the irregular ideals, there is only

one ideal whose M-cone intersectsMC(J111, J112) in a cone of maximal dimension. The maxi-
mality cone of the ideal J108 = (x3

3, x2x2
3, x2

2x3, x2
1x2

3, x2
1x2x3, x6

2)>16 has extremal rays spanned by
(1, 1, 0, 0), (1, 1, 1, 0), (3, 2, 1, 0) and (1, 1, 1, 1). This cone is contained inMC(J111, J112), so that
MC(J108, J111, J112) =MC(J108).

The set S3,H1
7t−5 contains the remaining 94 ideals (from J1 to J94*) and 44 of them are irreg-

ular. Only 2 ideals have M-cone intersecting MC(J108, J111, J112) in a cone of maximal di-
mension. The ideal J93 = (x3

3, x2x2
3, x3

2x3, x1x2
2x3, x2

1x2
3, x2

1x2x3, x4
1x3, x7

2)>16 leads to the cone
MC(J93, J108, J111, J112) with extremal rays spanned by (2, 2, 1, 0), (3, 2, 1, 0), (3, 3, 2, 0), (5, 4, 3, 0)
and (1, 1, 1, 1). The ideal J94 = (x3

3, x2
2x2

3, x3
2x3, x1x2x2

3, x2
1x2

3, x2
1x2x3, x3

1x3, x7
2)>16 leads to the

coneMC(J94, J108, J111, J112) with extremal rays spanned by (1, 1, 1, 0), (3, 3, 2, 0), (5, 4, 3, 0) and
(1, 1, 1, 1).

In both cases, a term order Ω obtained from ≥ω and ties broken by DegLex, where ω is a
vector in the interior of the maximality conesMC(J93, J108, J111, J112) andMC(J94, J108, J111, J112)

makes the 4 ideals maximal elements with respect to ��Ω. Finally, m3
7t−5 = 4. The same result

has been showed in Example 8 of [5] using the graded reverse lexicographic order. The cone of
GF(Hilb3

7t−5) corresponding to RevLex is contained inMC(J94, J108, J111, J112).

*The index labeling an ideal is the position of the ideal in the list of strongly stable ideals in K[x0, x1, x2, x3]

with Hilbert polynomial p(t) = 7t − 5 produced by the algorithm implemented in the Macaulay2 package
StronglyStableIdeals.m2 [1].
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J1

J2

J3

J5

J8

J10

J12

J13
J14

J6

J9

J11

J4

J7

J15

J22

J16

J20

J17

J18 J21

J19

J27

J23 J24

J25

J28

J26

J29

J30 J31

(A) The Borel graph G 3
6t−3. Regular ideals are drawn with a thin line, while irregular ideals are drawn

with a thick line. Hilb-segment ideals are marked with a double line. Circle shaped vertices correspond
to ideals with plane section (x3, x6

2), squared shaped vertices correspond to ideals with plane section
(x2

3, x2x3, x5
2) and the diamond shaped vertex correspond to the ideal with plane section (x2

3, x2
2x3, x4

2).
The gray bigger vertices are the maximal elements discussed in Example 5.21.

MC(J26)

MC(J30)

MC(J31)

(B) The Gröbner fan GF(Hilb3
6t−3). The maximality cones of J26, J30 and J31 are highlighted with hori-

zontal, oblique and vertical lines. The gray area corresponds to the union of all segment cones.

FIGURE 5.3. The Borel graph and the Gröbner fan of the Hilbert scheme Hilb3
6t−3.



THE GRÖBNER FAN OF THE HILBERT SCHEME 41

REFERENCES

1. Davide Alberelli and Paolo Lella, Strongly stable ideals and Hilbert polynomials, J. Softw. Algebra Geom. 9 (2019),
1–9.

2. Klaus Altmann and Bernd Sturmfels, The graph of monomial ideals, J. Pure Appl. Algebra 201 (2005), no. 1-3,
250–263.

3. David Allen Bayer, The division algorithm and the Hilbert scheme, ProQuest LLC, Ann Arbor, MI, 1982, Thesis
(Ph.D.)–Harvard University.

4. Cristina Bertone, Francesca Cioffi, Paolo Lella, and Margherita Roggero, Upgraded methods for the effective com-
putation of marked schemes on a strongly stable ideal, J. Symbolic Comput. 50 (2013), 263–290.

5. Cristina Bertone, Francesca Cioffi, and Margherita Roggero, Double-generic initial ideal and Hilbert scheme, Ann.
Mat. Pura Appl. (4) 196 (2017), no. 1, 19–41.

6. A. M. Bigatti and L. Robbiano, Borel sets and sectional matrices, Ann. Comb. 1 (1997), no. 3, 197–213.
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