
IFAC PapersOnLine 52-27 (2019) 38–43

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.12.729

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.12.729 2405-8963

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

An event-based multi-purpose approach
to computational sprinting

Alberto Leva ∗ Federico Terraneo ∗ Chiara Cimino ∗∗

Silvano Seva ∗∗∗

∗ DEIB, Politecnico di Milano, Italy
(e-mail: {alberto.leva,federico.terraneo}@polimi.it).

∗∗ PhD student at the DEIB (e-mail: chiara.cimino@polimi.it).
∗∗∗ Graduate student at the DEIB

(e-mail: silvano.seva@mail.polimi.it).

Abstract Computational sprinting was introduced to tackle the “dark silicon” problem, i.e.,
to allow a processor to transiently consume a power that could not be sustained indefinitely
without thermal damage. However, the idea of sprinting has other potential applications, also
tightly related to embedded systems. In this paper we evidence a few of these, and discuss the
scenario in a view to abstracting and defining general problems. We then propose an event-based
approach to treat the said problems in a unitary manner.

Keywords: Event-based control, computational sprinting, performance boosting.

1. INTRODUCTION

In Raghavan et al. (2012), computational sprinting is de-
fined as a technology by which “a chip temporarily exceeds
its sustainable thermal power budget to provide instan-
taneous throughput, after which the chip must return to
nominal operation to cool down”. Given the unprecedented
power densities of modern processors sprinting is deeply
investigated, but mostly as a runtime means to trade
performance versus thermal safety: a famous industrial
realisation is the Intel Turbo Boost (Rotem et al., 2012).

Many systems – also embedded ones – operate in con-
ditions and under requirements that make sprinting at-
tractive; for example, a microcontroller in as harsh an
environment as the engine compartment of a vehicle, could
take profit of sprinting to reduce thermal stress.

In this paper we attempt to widen the perspective about
sprinting, by addressing the research questions below.

• RQ1. Can the idea of “sprinting” be extended beyond
that of transiently exceeding a power budget?

• RQ2. If so, is there a means to qualify the class of
problems to which it can be applied?

• RQ3. If still so, can some unified approach to those
problems be envisaged?

We then propose event-based sprinting as a design frame-
work for a (qualitatively) qualified class of problems, ad-
dressing different purposes, related to the efficient and safe
management of computing systems.

2. BRIEF LITERATURE REVIEW

To date, the literature on sprinting is centred on tem-
porarily exceeding a thermal budget to deliver increased
performance (Taylor, 2013). Foundations were laid down
by works like Raghavan et al. (2012); Rotem et al. (2012);

Raghavan et al. (2013), and developments are still being
investigated, both methodologically (Fan et al., 2016) and
technologically (Kondguli and Huang, 2018). There are
also some modelling and simulation works (Lopez-Novoa
et al., 2015), but with the computer engineering viewpoint,
not the control-theoretical one adopted herein.

On the other hand, the idea of augmenting or diminishing
the resources for an entity based on the state of that
entity, the requirements it has to fulfil, and the condi-
tion of the system to which it belongs, has been envis-
aged in fields like quality of service (Ghosh et al., 2003),
scheduling (Leva and Maggio, 2010; Maggio et al., 2014),
containerized applications (Baresi et al., 2016), cloud com-
puting (Zhang et al., 2011; Xiao et al., 2013), data centre
efficiency (Zheng and Wang, 2015), communications (Suh
and Mo, 2008; Čelik and Sung, 2018), infrastructure-as-a-
service systems (Ataie et al., 2018), but not with a unitary
methodological framework.

Several solutions were in fact derived based more on
the available sensing and actuation machinery than on
the dynamic character of the encountered control prob-
lems. A notable example is the number of papers that
appeared once the Docker technology (Boettiger, 2015)
became available to reduce actuation delays with respect
to alternatives based on virtual machines (Seth and Singh,
2017), and make the said delays far more deterministic
than before (Baresi et al., 2016; Guan et al., 2017). At
the same time, methodological developments mostly con-
cerned modelling and solution frameworks to reproduce
the structure of the controlled systems, resorting e.g. to
game-theoretic (Wei et al., 2010) or agent-based (Zahedi
et al., 2017) approaches. The survey by Yousafzai et al.
(2017)can provide the interested reader with a lot of addi-
tional references. Finally, as for the use of event-based con-
trol in this arena, despite its inherent keenness to embed-
ded/distributed systems (Abdelaal et al., 2017), studies

are still confined to the mainstream sprinting framework,
as witnessed e.g. by Chen et al. (2018).

Summing up, we believe that sprinting can be given a
more general and unitary sense than the literature does
to date. This paper attempts to provide a contribution
by casting the problem into the framework of switching
systems,for which a huge interest is testified by research
and application works in diverse domains like control (Zhu
and Antsaklis, 2015), computer engineering (Ma et al.,
2017) and economics (Kim et al., 1999)—many of them
sharing the idea of saving resources when possible, and
use them to enhance performance when required.

3. GENERALISED COMPUTATIONAL SPRINTING

We introduce our general sprinting framework referring to
the high-level description shown in Figure 1, that evidences
its organisation into a time-based and an event-based part.

Actions from higher system levels

Sprint Requester

Sprint Manager

C(z, θ) P (z)
u(h)

y(h)
−

w

+

θ Ssus(h)

Sreq

m(h) Event-based
Time-based

Figure 1. General scheme for the proposed event-based
sprinting framework.

The time-based part is composed of the controller C and
of the measurements m and Ssus, discussed later on, all
executed periodically at step q and counted by the index
h. The event-based part comprises the Sprint Requester
(SR) and the Sprint Manager (SM) blocks. We assume
the process to be LTI, with transfer function P (z); C(z, θ)
is conversely LPV, as the event-based part can change the
set point w, but also modify the parameter vector θ.

3.1 The time-based part

We assume to date a SISO control loop. The controller
is endowed with saturation management and antiwindup,
hence θ contains the parameter of its transfer function, but
also the upper and lower saturation values for the control
signal u. The motivation for this will emerge shortly, when
specialising the scheme to some cases of interest.

Given the above, the time-based part of the scheme is
represented as



xP (h) = APxP (h− 1) + bPu(h− 1)
y(h) = cPxP (h)
e(h) = w(h)− y(h)

xC(h) = AC(θ)xC(h− 1) + bC(θ)e(h− 1)
uns(h) = cC(θ)xC(h) + dC(θ)e(h)
u(h) = max(umin,min(umax, uns(h)))

(1)

where xP and xC are the state vectors of P and C, e is
the error, the matrices of P are constant while those of
C depend on θ, [umin, umax] is the control signal range,
and the other symbols have the meaning stemming from
Figure 1. We do not spend further words on this part, if

not for saying that in computing systems it is convenient
to consider the actuator as part of the controller (an idea
exploited later on).

3.2 The event-based part

We illustrate the event-based part by means of the au-
tomaton depicted in Figure 2.

N S

U

↑ Sreq AND Ssus

↓ Sreq

Sreq AND ↓ Ssus

Sreq AND ↑ Ssus

↓ Sreq

Figure 2. Transitioning among the (N)ormal, (S)print and
(U)nder-performing operating modes.

The system has a “normal” (N) and a “sprint” (S) operating
mode. The request or an N→S transition comes from the
SR block in Figure 1 and is caused by exogenous actions
denoted there as “from higher system levels”, although it
may account for some metrics m coming the time-based
loop. The S→N transition can happen either due to an
exogenous request as well, which means that remaining in
S is not necessary anymore, or because the S mode is not
further sustainable. The booleans Sreq and Ssus dictate
respectively that the S mode is requested and sustainable,
while ↑ and ↓ indicate the false→true and the true→false
transitions. If staying in S is not required the system goes
back to N, while if S is not sustainable it reaches an “under-
performing” (U) mode, from which it can go to N if the
reasons to desire S cease, or back to S if the said reasons
persist, and S becomes sustainable again.

4. SPRINTING PROBLEMS

To characterise our framework we map the structure just
devised to some cases of interest, thus coming to a problem
classification along the research questions of Section 1.

Starting with RQ1, one has a sprinting problem when there
is a resource to use that is “normally” limited, but the limit
can be sometimes superseded if (i) somebody asks for this,
and (ii) no damage is caused. The application of such an
idea to thermal management is immediate. However, if one
takes a less physical viewpoint, a lot of resources need
allotting, the reasons to ask for “more than usual” can be
various, and the feasibility or infeasibility of that request
may depend on a lot of equally various things.

In some cases S is not indefinitely sustainable owing to
physical facts—thermal safety is the obvious example.
In some others staying in S forever would physically be
possible, but there may be economic reasons to not do so:
for example, a server can have free virtual machines to
allot to a customer, but doing this could result in over-
provisioning, and depending on the stipulated cost plan,
may or may not be profitable for the provider. Problems
of this type are in fact optimal allocation ones, but com-
puting (and especially embedded) systems require rapid
decisions, and solving an optimisation problem online is

	 Alberto Leva et al. / IFAC PapersOnLine 52-27 (2019) 38–43	 39

are still confined to the mainstream sprinting framework,
as witnessed e.g. by Chen et al. (2018).

Summing up, we believe that sprinting can be given a
more general and unitary sense than the literature does
to date. This paper attempts to provide a contribution
by casting the problem into the framework of switching
systems,for which a huge interest is testified by research
and application works in diverse domains like control (Zhu
and Antsaklis, 2015), computer engineering (Ma et al.,
2017) and economics (Kim et al., 1999)—many of them
sharing the idea of saving resources when possible, and
use them to enhance performance when required.

3. GENERALISED COMPUTATIONAL SPRINTING

We introduce our general sprinting framework referring to
the high-level description shown in Figure 1, that evidences
its organisation into a time-based and an event-based part.

Actions from higher system levels

Sprint Requester

Sprint Manager

C(z, θ) P (z)
u(h)

y(h)
−

w

+

θ Ssus(h)

Sreq

m(h) Event-based
Time-based

Figure 1. General scheme for the proposed event-based
sprinting framework.

The time-based part is composed of the controller C and
of the measurements m and Ssus, discussed later on, all
executed periodically at step q and counted by the index
h. The event-based part comprises the Sprint Requester
(SR) and the Sprint Manager (SM) blocks. We assume
the process to be LTI, with transfer function P (z); C(z, θ)
is conversely LPV, as the event-based part can change the
set point w, but also modify the parameter vector θ.

3.1 The time-based part

We assume to date a SISO control loop. The controller
is endowed with saturation management and antiwindup,
hence θ contains the parameter of its transfer function, but
also the upper and lower saturation values for the control
signal u. The motivation for this will emerge shortly, when
specialising the scheme to some cases of interest.

Given the above, the time-based part of the scheme is
represented as



xP (h) = APxP (h− 1) + bPu(h− 1)
y(h) = cPxP (h)
e(h) = w(h)− y(h)

xC(h) = AC(θ)xC(h− 1) + bC(θ)e(h− 1)
uns(h) = cC(θ)xC(h) + dC(θ)e(h)
u(h) = max(umin,min(umax, uns(h)))

(1)

where xP and xC are the state vectors of P and C, e is
the error, the matrices of P are constant while those of
C depend on θ, [umin, umax] is the control signal range,
and the other symbols have the meaning stemming from
Figure 1. We do not spend further words on this part, if

not for saying that in computing systems it is convenient
to consider the actuator as part of the controller (an idea
exploited later on).

3.2 The event-based part

We illustrate the event-based part by means of the au-
tomaton depicted in Figure 2.

N S

U

↑ Sreq AND Ssus

↓ Sreq

Sreq AND ↓ Ssus

Sreq AND ↑ Ssus

↓ Sreq

Figure 2. Transitioning among the (N)ormal, (S)print and
(U)nder-performing operating modes.

The system has a “normal” (N) and a “sprint” (S) operating
mode. The request or an N→S transition comes from the
SR block in Figure 1 and is caused by exogenous actions
denoted there as “from higher system levels”, although it
may account for some metrics m coming the time-based
loop. The S→N transition can happen either due to an
exogenous request as well, which means that remaining in
S is not necessary anymore, or because the S mode is not
further sustainable. The booleans Sreq and Ssus dictate
respectively that the S mode is requested and sustainable,
while ↑ and ↓ indicate the false→true and the true→false
transitions. If staying in S is not required the system goes
back to N, while if S is not sustainable it reaches an “under-
performing” (U) mode, from which it can go to N if the
reasons to desire S cease, or back to S if the said reasons
persist, and S becomes sustainable again.

4. SPRINTING PROBLEMS

To characterise our framework we map the structure just
devised to some cases of interest, thus coming to a problem
classification along the research questions of Section 1.

Starting with RQ1, one has a sprinting problem when there
is a resource to use that is “normally” limited, but the limit
can be sometimes superseded if (i) somebody asks for this,
and (ii) no damage is caused. The application of such an
idea to thermal management is immediate. However, if one
takes a less physical viewpoint, a lot of resources need
allotting, the reasons to ask for “more than usual” can be
various, and the feasibility or infeasibility of that request
may depend on a lot of equally various things.

In some cases S is not indefinitely sustainable owing to
physical facts—thermal safety is the obvious example.
In some others staying in S forever would physically be
possible, but there may be economic reasons to not do so:
for example, a server can have free virtual machines to
allot to a customer, but doing this could result in over-
provisioning, and depending on the stipulated cost plan,
may or may not be profitable for the provider. Problems
of this type are in fact optimal allocation ones, but com-
puting (and especially embedded) systems require rapid
decisions, and solving an optimisation problem online is

40	 Alberto Leva et al. / IFAC PapersOnLine 52-27 (2019) 38–43

Problem Reason(s) for Metric Condition w Controller Action of Effect on θ
Sreq m Ssus and y (LPV) the S mode and/or w

Processor More Perf. CPU Temperature Typically Allow CPU Increase/decrease
thermal performance indic./ temperature PI-like to draw w
management needed counters acceptable more power

Power-aware All permitted Case- Extra units Case- Various Allow to Increase/decrease
resource units already specific available, specific types allot more upper saturation
allocation allotted power OK units value for u

Application Allotted units Progress Extra units Progress Integral Actuate on Increase/decrease
progress used up to rate in system rate or PI more units the C (i.e., the
control nearly 100% not claimed loop) gain

Network Applications Various, Network Various Low-order, Make data Increase/decrease
bandwidth signal low sometimes bandwidth often purely transfers actuation delay
distribution data rate progress available proportional faster (modelled in C)

Adaptive Occupations Queue Spare Typically Low-order Increase Increase/decrease
queue and/or service lengths, capacity queue max server loop gain
networks rates drift rates available occupations shares

Table 1. Synthetic description of some “generalised sprinting” problems.

often too demanding. In such cases, a sprinting-based
approach like ours can be the right choice.

A sample of the results obtained by taking the general
standpoint above, and mapping the proposed framework
to real problems, is shown in Table 1, where we mention
thermal management in the first place to better evidence
the extension introduced with respect to the sprinting idea.
As can be seen, the answer to RQ1 is evidently affirmative.

The general characteristics of a sprinting problem, as
evidenced above, implicitly answer RQ2 as well. It is just
worth adding that almost invariantly, entering the S mode
is viewed by the control loop – where, recall, the actuator
is considered part of the controller – as a modification of
a set point, a saturation value, a gain, or a delay. It is now
time to address RQ3, showing that a unitary approach can
be found to address the class of problems just outlined.

5. AN EVENT-BASED UNIFIED APPROACH

Addressing systems described by (1) in the most general
form would largely exceed both the available space and
the scope of this paper, but on the other hand it would
also be unduly complicated for many of the computing-
related cases we target. We therefore start by introducing
and justifying some simplifications.

5.1 Preliminaries

We assume P (z) to have a low-order dynamics, asymptot-
ically stable or integrating. This dynamics can sometimes
be cascaded to a delay, that we assume to be an integer
multiple of the timestep q for the time-based loop.

The first hypothesis is backed up by a number of cases
covering all the domains quoted here and more, see e.g.
the book Leva et al. (2013). The second is reasonable as
long as event times are integer multiples of the quantum
q; this is in turn justified because in a fully digital system
like a computing one, all sensing events are clocked. In
fact we are also assuming that the time- and the event-
based parts of the system share the time quantum q and
are synchronised to some clock, physical or virtual, with
that period. This may be critical for distributed systems,
but reasonable values for q are normally far higher than
communication-induced delays, and even more important,

than the variability of those delays: modern high-precision
synchronisation techniques Terraneo et al. (2014) can mit-
igate delay-related issues, providing technologically sound
solutions. Furthermore, we assume C(z, θ) to be low-order
as well. This is justified by the wide use of integral or PI
controllers in our applications, see again Leva et al. (2013)
for a list of cases.

We finally have to assume that the closed time-based loop
is asymptotically stable for any θ, as this is necessary
for treating switching stability as we are going to do. In
the context of this work, this leads to also conclude that
some events (namely, modifications in the set point or in a
saturation value) can affect performance but not stability.

5.2 Stability

Denoting by AN and AS the closed-loop dynamic matrices
of the time-based loop in the N and S mode, we can state
the following result.

Proposition 1. If both AN and AS are Schur and
diagonalisable, two finite dwell times ∆N and ∆S can be
computed that ensure asymptotic switching stability.

Proof. Indicating with νi and σi the eigenvalues of AN

and AS , by hypothesis there exist two nonsingular matri-
ces TN and TS such that

T−1
N ANTN = diag{νi}, T−1

S ASTS = diag{σi}. (2)
hence the h-steps state transition matrix for the S mode
(the N case is analogous) is

ΦS(h) = TS diag{σh
i }T−1

S . (3)

Now consider a generic matrix norm ‖ · ‖p induced by the
vector p-norm

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

(4)

in the state space. Since such a norm is an operator norm
and therefore inherently submultiplicative, an overbound
for ‖ΦS(h)‖p is readily obtained in the form

‖ΦS(h)‖p ≤ cp(TS)‖diag{σh
i }‖p, (5)

where
cp(TS) = ‖TS‖p ‖T−1

S ‖p (6)
is the condition number for matrix TS in norm p. Also,
since by hypothesis |σi| < 1 ∀i, the overbound just

calculated monotonically decreases with h and tends to
zero for h → ∞, independently of p. Hence there surely
exists an integer ∆S ≥ 0 such that

‖ΦS(∆S)‖p < 1, (7)
i.e., such that the system contracts the state norm after
∆S steps in S mode; ∆S is the sought S-mode dwell time.
As said, the N case is analogous. �

Remark 1. The computed ∆N,S do ensure switching
stability as required, but are in fact over-estimates of the
real minimum dwell times. Obvious, but worth noticing.

Remark 2. In the light of the remark above, to avoid
unduly over-estimating the dwell times, among the infinite
TN,S matrices one has to select those with the minimum
condition number.

5.3 Realisability, performance, constraints

Having established a sufficient stability condition simple
enough for use in an iterative design process, the question
arises whether enforcing the estimated dwell times can
impact the control system’s operation to a critical extent.

In this respect, the two dwell times above may have dif-
ferent meanings. Precisely, if ∆N is “too large” the system
may not go into the S mode immediately when required,
i.e., not “sprint” as much as possible, to the detriment of
performance. If the “too large” dwell time is ∆S , the system
may be obliged to defer exiting the S mode, hence not
release resources timely, hence impacting somebody else’s
performance, but even not return promptly enough to a
safe operation, jeopardising its own health.

As such, for the scheme to be realisable and enhance
performance via sprinting as much as possible, ∆N should
be minimised subject to a strict upper bound for ∆S .

6. APPLICATION EXAMPLES

The problem of choosing the diagonalising matrices with
minimum condition number, which in general is difficult,
can however be quite easily treated in the second-order
case, that luckily fits several situations of engineering
interest, hence on which we concentrate.

6.1 Example 1

One of the situation just mentioned is application progress
control Leva et al. (2018), which amounts to analysing
a control loop with an integrating process and a PI
controller, described respectively as{

xP (k) = xP (k − 1) + bPu(k − 1)
y(k) = xP (k)

(8)

and{
xC(k) = xC(k − 1) + bC (w(k − 1)− y(k − 1))
u(k) = xC(k) + dC (w(k)− y(k))

(9)

The interpretation of (8,9) is that u is a resource –
typically, computational capability – and y the work
accomplished by a software application, for example the
number of processed “items” no matter what these are.

Physically, the N → S transition can take several forms. It
can just be increasing the maximum allowed u, for example

allowing a higher CPU share and/or the use of more CPUs,
and in this case stability cannot be affected. It can however
also be increasing the value of bP , for example replacing a
CPU with a more powerful one—a quite typical manoeu-
vre in the so called “big.LITTLE” architectures, frequently
encountered in embedded systems. In this second case, we
need to bring the analysis in Section 5.2 into play.

To lighten the notation, since the same considerations
apply to the N and the S mode, in the following we
denote the closed-loop dynamic matrix by just A and the
estimated dwell time by ∆. This said, from (8,9) we have

A =

[
1− bP dC bP

−bC 1

]
. (10)

The eigenvalues of A are assigned to be (λ1, λ2) by setting

bC =
(1− λ1)(1− λ2)

bP
, dC =

2− λ1 − λ2

bP
. (11)

and the corresponding family of diagonalising matrices,
with real parameter α, reads

T (α) =

[
1 α

1−λ1

bP
α 1−λ2

bP

]
. (12)

The condition number of T (α) in any p-norm does not
depend on the sign of α, hence without loss of generality we
assume α > 0. We also intuitively suppose that increasing
a resource speeds up an application, hence bP > 0. Finally,
to avoid oscillatory behaviours, we assume λ1,2 to be real
and lie in the [0,1) range.

All this said, the computational difficulty of enforcing (7)
to find ∆, significantly depends on the chosen norm. For
example, if one selects the ∞-norm, with the assumptions
above the condition number of T (α) turns out to be

c∞(T (α)) = max
(
α+ 1, 1−λ1+α(1−λ2)

bP

)

×max
(

1+bP−λ1

α(λ1−λ2)
, 1+bP−λ2

λ1−λ2

)
,

(13)

and defining
λmax = max(λ1, λ2), (14)

the required dwell time is estimated as

∆∞ = min
α

⌈
log(c∞(T (α)))

log(1/λmax)

⌉
. (15)

This is a simple procedure, but has two main drawbacks.
First, the derivative of c∞(T (α)) with α is not continuous,
making it difficult to find the minimum c∞ if not numeri-
cally. Second, one would prefer to use the 2-norm, as this is
more easily interpreted than the ∞-norm, as ‖x‖2 ≥ ‖x‖∞
so that the 2-norm yields tighter convergence conditions,
as the 2-norm is easy to relate to Lyapunov functions,
and for other reasons inessential herein. However, the 2-
norm (hence the corresponding condition number c2) is
well known to be harder to compute. To overcome this
difficulty, we propose to go through the Frobenius condi-
tion number cF , because for any square matrix M

cF (M) = ‖M‖F ‖M−1‖F ≥ ‖M‖2‖M−1‖2 = c2(M),
(16)

thus estimating the 2-norm dwell time with cF (T (α)) in
the place of the desired c2(T (α)), is conservative. In the
case at hand, omitting trivial computations, we have

cF (T (α)) =
b2P + (1− λ1)

2 + (b2P + (1− λ2)
2)α2

bP |λ2 − λ1|α
, (17)

	 Alberto Leva et al. / IFAC PapersOnLine 52-27 (2019) 38–43	 41

calculated monotonically decreases with h and tends to
zero for h → ∞, independently of p. Hence there surely
exists an integer ∆S ≥ 0 such that

‖ΦS(∆S)‖p < 1, (7)
i.e., such that the system contracts the state norm after
∆S steps in S mode; ∆S is the sought S-mode dwell time.
As said, the N case is analogous. �

Remark 1. The computed ∆N,S do ensure switching
stability as required, but are in fact over-estimates of the
real minimum dwell times. Obvious, but worth noticing.

Remark 2. In the light of the remark above, to avoid
unduly over-estimating the dwell times, among the infinite
TN,S matrices one has to select those with the minimum
condition number.

5.3 Realisability, performance, constraints

Having established a sufficient stability condition simple
enough for use in an iterative design process, the question
arises whether enforcing the estimated dwell times can
impact the control system’s operation to a critical extent.

In this respect, the two dwell times above may have dif-
ferent meanings. Precisely, if ∆N is “too large” the system
may not go into the S mode immediately when required,
i.e., not “sprint” as much as possible, to the detriment of
performance. If the “too large” dwell time is ∆S , the system
may be obliged to defer exiting the S mode, hence not
release resources timely, hence impacting somebody else’s
performance, but even not return promptly enough to a
safe operation, jeopardising its own health.

As such, for the scheme to be realisable and enhance
performance via sprinting as much as possible, ∆N should
be minimised subject to a strict upper bound for ∆S .

6. APPLICATION EXAMPLES

The problem of choosing the diagonalising matrices with
minimum condition number, which in general is difficult,
can however be quite easily treated in the second-order
case, that luckily fits several situations of engineering
interest, hence on which we concentrate.

6.1 Example 1

One of the situation just mentioned is application progress
control Leva et al. (2018), which amounts to analysing
a control loop with an integrating process and a PI
controller, described respectively as{

xP (k) = xP (k − 1) + bPu(k − 1)
y(k) = xP (k)

(8)

and{
xC(k) = xC(k − 1) + bC (w(k − 1)− y(k − 1))
u(k) = xC(k) + dC (w(k)− y(k))

(9)

The interpretation of (8,9) is that u is a resource –
typically, computational capability – and y the work
accomplished by a software application, for example the
number of processed “items” no matter what these are.

Physically, the N → S transition can take several forms. It
can just be increasing the maximum allowed u, for example

allowing a higher CPU share and/or the use of more CPUs,
and in this case stability cannot be affected. It can however
also be increasing the value of bP , for example replacing a
CPU with a more powerful one—a quite typical manoeu-
vre in the so called “big.LITTLE” architectures, frequently
encountered in embedded systems. In this second case, we
need to bring the analysis in Section 5.2 into play.

To lighten the notation, since the same considerations
apply to the N and the S mode, in the following we
denote the closed-loop dynamic matrix by just A and the
estimated dwell time by ∆. This said, from (8,9) we have

A =

[
1− bP dC bP

−bC 1

]
. (10)

The eigenvalues of A are assigned to be (λ1, λ2) by setting

bC =
(1− λ1)(1− λ2)

bP
, dC =

2− λ1 − λ2

bP
. (11)

and the corresponding family of diagonalising matrices,
with real parameter α, reads

T (α) =

[
1 α

1−λ1

bP
α 1−λ2

bP

]
. (12)

The condition number of T (α) in any p-norm does not
depend on the sign of α, hence without loss of generality we
assume α > 0. We also intuitively suppose that increasing
a resource speeds up an application, hence bP > 0. Finally,
to avoid oscillatory behaviours, we assume λ1,2 to be real
and lie in the [0,1) range.

All this said, the computational difficulty of enforcing (7)
to find ∆, significantly depends on the chosen norm. For
example, if one selects the ∞-norm, with the assumptions
above the condition number of T (α) turns out to be

c∞(T (α)) = max
(
α+ 1, 1−λ1+α(1−λ2)

bP

)

×max
(

1+bP−λ1

α(λ1−λ2)
, 1+bP−λ2

λ1−λ2

)
,

(13)

and defining
λmax = max(λ1, λ2), (14)

the required dwell time is estimated as

∆∞ = min
α

⌈
log(c∞(T (α)))

log(1/λmax)

⌉
. (15)

This is a simple procedure, but has two main drawbacks.
First, the derivative of c∞(T (α)) with α is not continuous,
making it difficult to find the minimum c∞ if not numeri-
cally. Second, one would prefer to use the 2-norm, as this is
more easily interpreted than the ∞-norm, as ‖x‖2 ≥ ‖x‖∞
so that the 2-norm yields tighter convergence conditions,
as the 2-norm is easy to relate to Lyapunov functions,
and for other reasons inessential herein. However, the 2-
norm (hence the corresponding condition number c2) is
well known to be harder to compute. To overcome this
difficulty, we propose to go through the Frobenius condi-
tion number cF , because for any square matrix M

cF (M) = ‖M‖F ‖M−1‖F ≥ ‖M‖2‖M−1‖2 = c2(M),
(16)

thus estimating the 2-norm dwell time with cF (T (α)) in
the place of the desired c2(T (α)), is conservative. In the
case at hand, omitting trivial computations, we have

cF (T (α)) =
b2P + (1− λ1)

2 + (b2P + (1− λ2)
2)α2

bP |λ2 − λ1|α
, (17)

42	 Alberto Leva et al. / IFAC PapersOnLine 52-27 (2019) 38–43

whence the conservative estimate of ∆ in the 2-norm

∆̂2 = min
α

⌈
log(cF (T (α)))

log(1/λmax)

⌉
. (18)

Taking the further conventional assumption λ1 > λ2, the
minimum of ∆2 as a real function of α occurs at

αo =

√
b2P + (1− λ1)2

b2P + (1− λ2)2
(19)

and this produces

∆̂2 =




log

(
2
√

b2
P
+(1−λ1)2

√
b2
P
+(1−λ2)2

bP (λ1−λ2)

)

log(1/λ1)



. (20)

In general, the value of α that minimises the condition
number in a certain norm, does not have the same effect
in another norm; finding a counterexample is easy. It is
however interesting to observe that for a 2×2 matrix, the
above is instead true for the 2-norm and the Frobenius
norm, i.e., αo as per (19) minimises both. The proof is
readily obtained by construction and is omitted for brevity,
but further corroborates the rationale behind (20).

6.2 Example 2

A second case – actually a specialisation of the one just
treated – is when λ2 is set to zero, which is a quite common
choice in progress control, as it guarantees tracking of a
ramp set point (one integrator is in the process and one
in the PI) with a response that could be called, stretching
the terminology a bit, a first-order filtered deadbeat one.

In this case ∆̂2 is a function of two parameters only,
namely bP and λ1, as (20) reduces to

∆̂2 =




log

(
2
√

b2
P
+1

√
b2
P
+(1−λ1)2

bPλ1

)

log(1/λ1)



, (21)

A plot of ∆̂2 as per (21) is shown in Figure 3. It can be
observed that for any bP , values of λ1 closer to the unity
result in larger dwell times. This is physically consistent:
supposing that the control system ultimately governs some
continuous-time phenomenon, and that the characteristics
of that phenomenon dictate the dwell time, λ1 closer to
one means smaller sampling times, hence larger values of
the dwell time when counted in samples.

Along the same reasoning, when starting from a continuous-
time control synthesis, one should select the sampling time
q for the time-based part of the control system – see the
scheme in Figure 1 – so as to obtain a discrete-time pole
λ1 not exceeding say 0.6–0.8, and in this case dwell times
below 4 are well achievable.

6.3 Example 3

Still on the same situation, we can examine the effect of
an increment of bP when transitioning from the N to the
S mode. For simplicity we assume that in the N mode
bP = 1, while in the S mode bP = bPS > 1.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.511.522.533.544.55
2
3
4
5
6
7
8
9

10
11

bP

λ1

Δ2
^

Figure 3. Plot of ∆̂2 as a function of (bP , λ1) with λ2 = 0.

0.2
0.3

0.4
0.5

0.6
0.7

0.8

1234567
8910

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6

λ1
bPS

χΔ

Figure 4. Relative dwell time increment for a multiplicative
variation of bP .

Defining χ∆ as the ratio between ∆̂2 in the S and the N
modes, Figure 4 summarises the effect of the corresponding
process gain increment. As can be seen, multiplying bP
by a factor up to 10, at most triples the sampling time.
However, such a factor is hardly conceivable in practice:
for example, in progress control, S-mode speedups of 2–3
times is what one can normally expect because the spare
resources required for higher accelerations are seldom (if
ever) available in a well sized system. If this is the case
and/or λ1 is kept low, one can keep �χ∆� below two.

7. CONCLUSIONS AND FUTURE WORK

We proposed a common framework to address computa-
tional sprinting applications, a subject of undue interest
for the time- and energy-efficient operation of several mod-
ern computing systems.

We showed that different problems can be viewed in a
unitary manner, and that event-based control is a natural
framework to cast them. We proposed a methodology to
analyse a sprinting application as a mixed time/event-
based system, for stability and (preliminarily) for per-
formance. We presented a few results to show that the
proposed analysis method is sensible, and can effectively
complement control design ones. Future work will be di-
rected at treating the open issues mentioned in the paper,
together with addressing some practical applications in
computing systems control, and control-based design.

REFERENCES

Abdelaal, A., Hegazy, T., and Hefeeda, M. (2017). Event-
based control as a cloud service. In Proc. 2017 American
Control Conference, 1017–1023. Seattle, WA, USA.

Ataie, E., Entezari-Maleki, R., Ehsan, S.E., Egger, B.,
Ardagna, D., and Movaghar, A. (2018). Power-aware
performance analysis of self-adaptive resource manage-
ment in IaaS clouds. Future Generation Computer Sys-
tems (in press, DOI 10.1016/j.future.2018.02.042).

Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G.
(2016). A discrete-time feedback controller for con-
tainerized cloud applications. In Proc. 24th ACM SIG-
SOFT International Symposium on the Foundations of
Software Engineering. Seattle, WA, USA.

Boettiger, C. (2015). An introduction to Docker for re-
producible research. ACM SIGOPS Operating Systems
Review, 49(1), 71–79.

Čelik, H. and Sung, K. (2018). Scalable resource allocation
for dynamic TDD with traffic and propagation aware-
ness. In Proc. 2018 IEEE Wireless Communications and
Networking Conference. Barcelona, Spain.

Chen, X., Wardi, Y., and Yalamanchili, S. (2018).
Instruction-throughput regulation in computer proces-
sors with data-center applications. Discrete Event Dy-
namic Systems, 28(1), 127–158.

Fan, S., Zahedi, S., and Lee, B. (2016). The computational
sprinting game. ACM SIGARCH Computer Architec-
ture News, 44(2), 561–575.

Ghosh, S., Rajkumar, R., Hansen, J., and Lehoczky, J.
(2003). Scalable resource allocation for multi-processor
QoS optimization. In Proc. 23rd International Confer-
ence on Distributed Computing Systems, 174–183. Prov-
idence, RI, USA.

Guan, X., Wan, X., Choi, B., Song, S., and Zhu, J. (2017).
Application oriented dynamic resource allocation for
data centers using docker containers. IEEE Commu-
nications Letters, 21(3), 504–507.

Kim, C., Nelson, C., et al. (1999). State-space models
with regime switching: classical and gibbs-sampling ap-
proaches with applications. MIT Press Books, 1. Num-
ber 0262112388.

Kondguli, S. and Huang, M. (2018). A case for a more
effective, power-efficient turbo boosting. ACM Transac-
tions on Architecture and Code Optimization, 15(1).

Leva, A. and Maggio, M. (2010). Feedback process
scheduling with simple discrete-time control structures.
IET Control Theory & Applications, 4(11), 2331–2342.

Leva, A., Maggio, M., Papadopoulos, A., and Terraneo, F.
(2013). Control-based Operating System Design. IET,
London, UK.

Leva, A., Seva, S., and Papadopoulos, A. (2018). Progress
rate control for computer applications. In Proc. 2018
European Control Conference, 3173–3178. Limassol,
Cyprus.

Lopez-Novoa, U., Mendiburu, A., and Miguel-Alonso, J.
(2015). A survey of performance modeling and simula-
tion techniques for accelerator-based computing. IEEE
Transactions on Parallel and Distributed Systems, 26(1),
272–281.

Ma, M., Wang, Y., and Li, Y. (2017). Robust output
feedback control of positive switched systems with time-
varying delays. International Journal of Advanced Re-
search in Computer Engineering & Technology, 6(9),

1374–1378.
Maggio, M., Terraneo, F., and Leva, A. (2014). Task

scheduling: A control-theoretical viewpoint for a general
and flexible solution. ACM Trans. Embed. Comput.
Syst., 13(4), 76:1–76:22.

Raghavan, A., Emurian, L., Shao, L., Papaefthymiou,
M., Pipe, K., Wenisch, T., and Martin, M. (2013).
Utilizing dark silicon to save energy with computational
sprinting. IEEE Micro, 33(5), 20–28.

Raghavan, A., Luo, Y., Chandawalla, A., Papaefthymiou,
M., Pipe, K., Wenisch, T., and Martin, M. (2012). Com-
putational sprinting. In Proc. 18th IEEE International
Symposium on High Performance Computer Architec-
ture, 1–12. New Orkeans, LA, USA.

Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann,
E., and Rajwan, D. (2012). Power-management archi-
tecture of the Intel microarchitecture code-named Sandy
Bridge. IEEE Micro, 32(2), 20–27.

Seth, S. and Singh, N. (2017). Dynamic threshold-based
dynamic resource allocation using multiple vm migra-
tion for cloud computing systems. In Proc. Interna-
tional Conference on Information, Communication and
Computing Technology, 106–116. New Delhi, India.

Suh, C. and Mo, J. (2008). Resource allocation for mul-
ticast services in multicarrier wireless communications.
IEEE Transactions on Wireless Communications, 7(1).

Taylor, M. (2013). A landscape of the new dark silicon
design regime. IEEE Micro, 8–19.

Terraneo, F., Rinaldi, L., Maggio, M., Papadopoulos, A.,
and Leva, A. (2014). FLOPSYNC-2: Sub-microsecond
and sub-µa clock synchronisation for wireless sensor
networks. In Proc. 35th IEEE Real-Time Systems
Symposium. Rome, Italy.

Wei, G., Vasilakos, A., Zheng, Y., and Xiong, N. (2010).
A game-theoretic method of fair resource allocation for
cloud computing services. The journal of supercomput-
ing, 54(2), 252–269.

Xiao, Z., Song, W., and Chen, Q. (2013). Dynamic
resource allocation using virtual machines for cloud
computing environment. IEEE transactions on parallel
and distributed systems, 24(6), 1107–1117.

Yousafzai, A., Gani, A., Noor, R., Sookhak, M., Talebian,
H., Shiraz, M., and Khan, M. (2017). Cloud resource al-
location schemes: review, taxonomy, and opportunities.
Knowledge and Information Systems, 50(2), 347–381.

Zahedi, S., Fan, S., Faw, M., Cole, E., and Lee, B. (2017).
Computational sprinting: Architecture, dynamics, and
strategies. ACM Transactions on Computer Systems,
34(4), 12.

Zhang, Q., Zhu, Q., and Boutaba, R. (2011). Dynamic
resource allocation for spot markets in cloud comput-
ing environments. In Proc. 4th IEEE International
Conference on Utility and Cloud Computing, 178–185.
Melbourne, Australia.

Zheng, W. and Wang, X. (2015). Data center sprinting:
Enabling computational sprinting at the data center
level. In Proc. 35th IEEE International Conference
on Distributed Computing Systems, 175–184. Columbus,
OH, USA.

Zhu, F. and Antsaklis, P. (2015). Optimal control of
hybrid switched systems: A brief survey. Discrete Event
Dynamic Systems, 25(3), 345–364.

	 Alberto Leva et al. / IFAC PapersOnLine 52-27 (2019) 38–43	 43

REFERENCES

Abdelaal, A., Hegazy, T., and Hefeeda, M. (2017). Event-
based control as a cloud service. In Proc. 2017 American
Control Conference, 1017–1023. Seattle, WA, USA.

Ataie, E., Entezari-Maleki, R., Ehsan, S.E., Egger, B.,
Ardagna, D., and Movaghar, A. (2018). Power-aware
performance analysis of self-adaptive resource manage-
ment in IaaS clouds. Future Generation Computer Sys-
tems (in press, DOI 10.1016/j.future.2018.02.042).

Baresi, L., Guinea, S., Leva, A., and Quattrocchi, G.
(2016). A discrete-time feedback controller for con-
tainerized cloud applications. In Proc. 24th ACM SIG-
SOFT International Symposium on the Foundations of
Software Engineering. Seattle, WA, USA.

Boettiger, C. (2015). An introduction to Docker for re-
producible research. ACM SIGOPS Operating Systems
Review, 49(1), 71–79.

Čelik, H. and Sung, K. (2018). Scalable resource allocation
for dynamic TDD with traffic and propagation aware-
ness. In Proc. 2018 IEEE Wireless Communications and
Networking Conference. Barcelona, Spain.

Chen, X., Wardi, Y., and Yalamanchili, S. (2018).
Instruction-throughput regulation in computer proces-
sors with data-center applications. Discrete Event Dy-
namic Systems, 28(1), 127–158.

Fan, S., Zahedi, S., and Lee, B. (2016). The computational
sprinting game. ACM SIGARCH Computer Architec-
ture News, 44(2), 561–575.

Ghosh, S., Rajkumar, R., Hansen, J., and Lehoczky, J.
(2003). Scalable resource allocation for multi-processor
QoS optimization. In Proc. 23rd International Confer-
ence on Distributed Computing Systems, 174–183. Prov-
idence, RI, USA.

Guan, X., Wan, X., Choi, B., Song, S., and Zhu, J. (2017).
Application oriented dynamic resource allocation for
data centers using docker containers. IEEE Commu-
nications Letters, 21(3), 504–507.

Kim, C., Nelson, C., et al. (1999). State-space models
with regime switching: classical and gibbs-sampling ap-
proaches with applications. MIT Press Books, 1. Num-
ber 0262112388.

Kondguli, S. and Huang, M. (2018). A case for a more
effective, power-efficient turbo boosting. ACM Transac-
tions on Architecture and Code Optimization, 15(1).

Leva, A. and Maggio, M. (2010). Feedback process
scheduling with simple discrete-time control structures.
IET Control Theory & Applications, 4(11), 2331–2342.

Leva, A., Maggio, M., Papadopoulos, A., and Terraneo, F.
(2013). Control-based Operating System Design. IET,
London, UK.

Leva, A., Seva, S., and Papadopoulos, A. (2018). Progress
rate control for computer applications. In Proc. 2018
European Control Conference, 3173–3178. Limassol,
Cyprus.

Lopez-Novoa, U., Mendiburu, A., and Miguel-Alonso, J.
(2015). A survey of performance modeling and simula-
tion techniques for accelerator-based computing. IEEE
Transactions on Parallel and Distributed Systems, 26(1),
272–281.

Ma, M., Wang, Y., and Li, Y. (2017). Robust output
feedback control of positive switched systems with time-
varying delays. International Journal of Advanced Re-
search in Computer Engineering & Technology, 6(9),

1374–1378.
Maggio, M., Terraneo, F., and Leva, A. (2014). Task

scheduling: A control-theoretical viewpoint for a general
and flexible solution. ACM Trans. Embed. Comput.
Syst., 13(4), 76:1–76:22.

Raghavan, A., Emurian, L., Shao, L., Papaefthymiou,
M., Pipe, K., Wenisch, T., and Martin, M. (2013).
Utilizing dark silicon to save energy with computational
sprinting. IEEE Micro, 33(5), 20–28.

Raghavan, A., Luo, Y., Chandawalla, A., Papaefthymiou,
M., Pipe, K., Wenisch, T., and Martin, M. (2012). Com-
putational sprinting. In Proc. 18th IEEE International
Symposium on High Performance Computer Architec-
ture, 1–12. New Orkeans, LA, USA.

Rotem, E., Naveh, A., Ananthakrishnan, A., Weissmann,
E., and Rajwan, D. (2012). Power-management archi-
tecture of the Intel microarchitecture code-named Sandy
Bridge. IEEE Micro, 32(2), 20–27.

Seth, S. and Singh, N. (2017). Dynamic threshold-based
dynamic resource allocation using multiple vm migra-
tion for cloud computing systems. In Proc. Interna-
tional Conference on Information, Communication and
Computing Technology, 106–116. New Delhi, India.

Suh, C. and Mo, J. (2008). Resource allocation for mul-
ticast services in multicarrier wireless communications.
IEEE Transactions on Wireless Communications, 7(1).

Taylor, M. (2013). A landscape of the new dark silicon
design regime. IEEE Micro, 8–19.

Terraneo, F., Rinaldi, L., Maggio, M., Papadopoulos, A.,
and Leva, A. (2014). FLOPSYNC-2: Sub-microsecond
and sub-µa clock synchronisation for wireless sensor
networks. In Proc. 35th IEEE Real-Time Systems
Symposium. Rome, Italy.

Wei, G., Vasilakos, A., Zheng, Y., and Xiong, N. (2010).
A game-theoretic method of fair resource allocation for
cloud computing services. The journal of supercomput-
ing, 54(2), 252–269.

Xiao, Z., Song, W., and Chen, Q. (2013). Dynamic
resource allocation using virtual machines for cloud
computing environment. IEEE transactions on parallel
and distributed systems, 24(6), 1107–1117.

Yousafzai, A., Gani, A., Noor, R., Sookhak, M., Talebian,
H., Shiraz, M., and Khan, M. (2017). Cloud resource al-
location schemes: review, taxonomy, and opportunities.
Knowledge and Information Systems, 50(2), 347–381.

Zahedi, S., Fan, S., Faw, M., Cole, E., and Lee, B. (2017).
Computational sprinting: Architecture, dynamics, and
strategies. ACM Transactions on Computer Systems,
34(4), 12.

Zhang, Q., Zhu, Q., and Boutaba, R. (2011). Dynamic
resource allocation for spot markets in cloud comput-
ing environments. In Proc. 4th IEEE International
Conference on Utility and Cloud Computing, 178–185.
Melbourne, Australia.

Zheng, W. and Wang, X. (2015). Data center sprinting:
Enabling computational sprinting at the data center
level. In Proc. 35th IEEE International Conference
on Distributed Computing Systems, 175–184. Columbus,
OH, USA.

Zhu, F. and Antsaklis, P. (2015). Optimal control of
hybrid switched systems: A brief survey. Discrete Event
Dynamic Systems, 25(3), 345–364.

