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Abstract 

The present paper provides an extended analysis of a microgrid energy management framework 

based on Robust Optimization (RO). Uncertainties in wind power generation and energy 

consumption are described in the form of Prediction Intervals (PIs), estimated by a Genetic 

Algorithm (GA) – trained Neural Network (NN). The framework is tested and exemplified in a 

microgrid formed by a middle-size train station (TS) with integrated photovoltaic power 

production system (PV), an urban wind power plant (WPP) and a surrounding residential district 

(D). The system is described by Agent-Based Modelling (ABM): each stakeholder is modelled as 

an individual agent, which aims at a specific goal, either of decreasing its expenses from power 

purchasing or increasing its revenues from power selling. The aim of this paper is to identify  

which is the uncertainty level associated to the “extreme” conditions upon which robust 

management decisions perform better than a microgrid management based on expected values. 

This work shows how the probability of occurrence of some specific uncertain events, e.g., 

failures of electrical lines and electricity demand and price peaks, highly conditions the 

reliability and performance indicators of the microgrid under the two optimization approaches: 

(i) RO based on the PIs of the uncertain parameters and (ii) optimization based on expected

values. 

Keywords: microgrid, agent-based model, uncertain scenarios, robust optimization, power 

imbalance, reliability. 

Nomenclature 

� time step (h), 

����� passengers flow through TS at time t (number/h), 



3 

�� average solar irradiation at time t (W/m2), 

�� average wind speed at time t (m/s), 

	�
 energy required for inside and outside lighting in the train station at time t 

(kWh), 

	��
�� energy required for passengers lifting in the train station at time t (kWh), 

	��
� energy required for electronic equipment in the train station at time t 

(kWh), 

	��� total hourly required energy in the train station at time t (kWh), 

	�� total hourly required energy in the district at time t (kWh), 

���� available energy output from the photovoltaic generators installed in the 

train station at time t (kWh), 

����� available energy output from the wind power plant at time t (kWh), 

���� and ��� portions of energy purchased from the external grid by the TS and D, 

respectively (kWh), 

���� and ����� portions of energy sold to the external grid by the TS and WPP, 

respectively (kWh), 

���� and ����� portions of energy sold to the district and generated by the PV panels of 

the TS and WPP, respectively (kWh), 

���� and ������ energy levels in the train station battery at time t and t-1, respectively 

(kWh), 

��� and ����� energy levels in the district battery at time t and t-1, respectively (kWh), 

���,���� energy portion that the train station battery is capable of charging or 

discharging during time t (kWh),  

��,���� energy portion that the district battery is capable of charging or 

discharging during time t (kWh),  
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����,� and ����, !� binary variables which model that the train station battery can either only 

be charged or discharged at time t, 

���,� and ���, !� binary variables which model that the district battery can either only be 

charged or discharged at time t, 

���,"�# the maximum train station battery charge (kWh),  

��,"�# the maximum district battery charge (kWh),  

$ time horizon considered for the optimization (h), 

%�� and %� total costs for TS and D, respectively, for time period T (€), 

%��� total revenue for WPP in time period T (€), 

&�� and &�� average hourly costs of purchasing and selling 1 kWh from the external 

grid, respectively, at time t (€/kWh), 

&�� average hourly cost per kWh from the bilateral contract agreed with D at 

time t (€/kWh). 

' and ( coefficients defining the minimum amount of energy to be sold to D by TS 

and WPP, respectively, 

	)�� expected energy demand for D (for the moment, considered without 

uncertainty) at time step t, predicted by TS and WPP (kWh), 

�)��� and �)���� energy portions, which TS and WPP are ready to sell to D at time step t 

(kWh), 

�*���� level of uncertainty quantified for the robust optimization at time t (kWh), 

�����,+, and �����,
, upper and lower prediction bounds of WPP power output at time t,

respectively (kWh), 

- simulation time period composed of Ns time steps of one hour (h), 

LOLE Loss of Load Expectation, characterizing the probability of unsatisfied 

electricity demand during -, 
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LOEE Loss of Expected Energy, quantifying the expected amount of energy 

losses during -, 

�� available capacity in the microgrid at time step t (kWh), 

	� energy demand in the microgrid at time step t (kWh), 

�.�(�� < 	�)  probability of loss of load at time step t,  

	� − ��  energy portion that the system is not able to supply at time step t (kWh), 

�����, and �����, portions of energy contracted by the WPP to the external grid and 

microgrid, respectively (kWh), 

�����,∗ and �����,∗ actual portions of energy provided by the WPP to the external grid and 

microgrid, respectively (kWh), 

$���� imbalance cost generated by wind power plant at time step t (€), 

4����,∗ energy imbalance generated by wind power plant at time step t (kWh), 

&��,5 and &��,� prices for positive and negative imbalances, respectively, at time step t 

(€/kWh), 

(6  and (� performance ratio calculated over a simulation period of Ns hours by 

normalizing the imbalance cost by the actual expenses / revenues 

calculated in the case of perfect forecast (%), 

$�7 and $8 constants denoting the average annual duration of high and normal wind 

conditions, respectively, over the time period $��� (h), 

9 7!8 (��) and 9 8��"
 failure rates at high and normal wind conditions (occur./y), respectively,

;�(��) weight factor caused by severe weather, 

;�  and ;�� weight factors for hourly and daily variations, respectively, 

. 8��"
reference restoration time during normal weather conditions, modelled as a 

random variable with lognormal distribution. 
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1. Introduction

Renewable energies are promising solutions to the energetic and environmental challenges of the 

21st century [1], [2]. Their integration into the existing grids generates technical and social 

challenges related to their efficient and secure management. 

From this point of view, a closer location of generation and consumption sources in 

decentralized microgrids is expected to increase service quality for the consumers by decreasing 

transmission losses and the time needed to manage fault restoration and congestions. However, 

energy management can become critical in the microgrid, due to possible conflicting 

requirements or poor communication between the different microgrids elements [3]. Therefore, 

there is a need of frameworks for efficient microgrid energy management. 

A way to model microgrids and the related individual goal-oriented decision-making of the 

microgrid elements is that of Agent-Based Modeling (ABM) [4]–[6], which allows analyzing by 

simulating the interactions among individual intelligent decision makers (the agents). The most 

widespread application of this modeling approach concerns the bidding strategies among 

individual agents, who want to increase their immediate profits through mutual negotiations and 

by participating in a dynamic energy market [7]–[10]. Recent studies show the extension of the 

ABM approach to more complex interactions in the energy management of hybrid renewable 

energy generation systems [6], [11], [12]. In these works, the long-term goals are focused on the 

efficient use of electricity within microgrids, e.g., the planning of battery scheduling to locally 

store the electricity generated by renewable sources and reuse it during periods of high electricity 

demand [11]. However, the decision framework is commonly developed under deterministic 

conditions, e.g., those of a typical day in summer.  

To account for the variability and randomness of the operational and environmental parameters 

of the energy systems, several optimization techniques have been progressively introduced for 

handling uncertainty [13]. Fuzzy mathematical programming models and their extensions have 

been developed for optimal management of hybrid energy systems [14], [15]. Stochastic 

programming models, where the uncertain parameters are described by probability distributions, 

and interval programming models, where the uncertainty is described by intervals [16], [17], 

have been used to deal with different sources of uncertainty in optimization problems, like 
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economic-energy scenarios planning [18], design of renewable systems for community energy 

management [19], and water quality and waste management [20], [21].  

In this paper, we propose an analysis of a microgrid energy management framework based on 

Robust Optimization (RO) previously proposed by the authors [22]. The analysis is intended to 

identify the conditions required for an optimal microgrid operation in presence of several sources 

of uncertainty, affecting the power output from renewable generators [23], the production costs 

[24], the electricity demand [25]. The uncertainty in the parameters is represented by Prediction 

Intervals (PIs), which are estimated by a Neural Network (NN), Genetic Algorithm (GA)-trained 

to provide lower and upper prediction bounds between which the uncertain values of the 

parameters are expected to lie for a given confidence level [26], [27]. 

The RO framework improves the reliability of the microgrid operation by selecting energy 

management actions that are optimal under the worst realization of the uncertainty conditions. 

However, this is done at the cost of possible lower revenues for the energy generators and higher 

expenses for the energy consumers than those that could be obtained by optimizing over the 

expected values of the uncertain parameters. The proposed analysis investigates the influence of 

uncertain events on the microgrid performance and identifies the conditions under which the 

application of RO or optimization based on expected values is most advantageous. 

The paper is organized as follows. Section 2 motivates for the analysis carried out. Section 3 

describes the models of the individual agents in the microgrid and the way that the uncertainties 

in the energy management parameters are accounted for. The procedure for the simulation of the 

uncertain scenarios and the definitions of the output quantities are discussed in Section 4 and 

Section 5, respectively. Section 6 applies the presented methodology to a reference microgrid 

system. Finally, the last section draws conclusions and gives an outlook on future research. 

2. Motivation

Two optimization approaches are considered: (i) optimization based on the expected values of 

the uncertain quantities (also called “deterministic” optimization) and (ii) Robust Optimization 

(RO) based on Prediction Intervals (PIs) with a given Coverage Probability (CP).  

In a previous work [22], the authors have shown that the proposed framework of RO based on 

PIs leads to high system reliability, but at the expense of conservative results regarding system 
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revenues or expenses. In fact, the proposed framework leads the decision maker to anticipate the 

worst possible realization of the uncertain parameters and choose the best solution with respect 

to such a case. By so doing, the producer plans its energy scheduling strategy by committing less 

energy for sale while the consumer purchases more energy than it is likely required.  

The analysis proposed in this paper, aims at evaluating the system performance for different 

levels of uncertainty affecting both operational and environmental conditions. These 

uncertainties can be broadly classified in two types: (i) uncertainty related to fluctuations of the 

operational and environmental conditions within expected and acceptable limits. These are 

typical conditions for the microgrid operation, and (ii) uncertainty related to extreme events. In 

the first case, the fluctuations of the operational and environmental conditions can be managed 

by optimization based on expected parameters values without particular performance degradation 

[22]. In the second case RO is expected to lead to management actions that guarantee the 

operation within safety margins. This paper proposes methodology to simulate the uncertainty 

related to extreme events and to evaluate microgrid reliability and performance under different 

optimization approaches. 

To evaluate the performance of the proposed methodology, we adopt classical reliability 

indicators and the so called performance ratio to quantify negative / positive imbalances caused 

by the prediction errors. This analysis allows showing how the probability of occurrence of an 

uncertain event can influence the microgrid performance indicators. Thus, this analysis provides 

a way of identifying the level of uncertainty in the system upon which RO performs better versus 

an optimization based on expected values. 

3. Microgrid energy management: the practical setting

The reference system considered in this paper is the same as in [22]. It includes a middle-size 

train station (TS), which can play the role of power producer and consumer, the surrounding 

district (D) with residences and small businesses, and a small urban wind power plant (WPP). 

The goal of TS is to decrease its electricity expenses while satisfying its demand. To achieve 

this, the TS strategy includes the integration of renewable generators and energy exchanges with 

the local community to increase the power flexibility of the microgrid. Photovoltaic panels (PV) 

have been shown to be an adapted and efficient technology for its implementation on large 

commercial, public buildings and transportation hubs [28], [29]. For the energy exchanges with 
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local community, we consider only the possibility of exchange between the TS and the D. This is 

done to keep the model simple but also complete in order to properly illustrate the optimization 

analysis. Future work includes the modelling of the energy exchanges between the TS and the 

WPP. 

The goal of WPP is to increase its revenues from selling the electricity to the external grid and to 

the D. The latter is considered only as an energy consumer, with the goal of decreasing its 

electricity purchase from the external grid by prioritizing the purchase of electricity from local 

sources, i.e., the TS and the WPP. In addition, we assume that the TS and the D have the 

capacity to store electricity in batteries.  

For our current D model, we assume that the effect of locally installed renewable generators, in 

our case PV panels, can be neglected. The energy  generated with PV panels is around 0.8% of 

the annual energy consumption in 2012 for the considered area [30]. 

Only a synthetic description of the models of the individual agents of the microgrid is presented 

below; for more detailed information, the interested author can refer to [22].  

TS: The energy consumption 	��� (kWh) in the main passengers building is divided into a

variable consumption, i.e. lighting and lifting depending on the solar irradiation and passengers 

flow, respectively, and a fixed consumption represented by plug-in electronic devices. The 

power required by the lifting equipment is calculated by using the methodology in [31], which is 

based on in-situ real time records of passengers flow. The electrical energy consumed by the 

lighting equipment is calculated based on the inside and outside luminosity (e.g., EN13272:2001 

UK) [32]. The total energy produced by PV ��<= (kWh) is calculated based on the solar

irradiation and technical specification of PV module [33], [34].  

WPP: The total energy produced by the WPP ��><< (kWh) is calculated based on the wind speed

data from [35], by using the cubic correlation described in [36]. 

D: To simulate the energy consumption of the D, we use a top-down approach based on 

available statistical collections of electricity consumptions [37].  

Models for the batteries charging/discharging are presented in Appendix A, i.e., eqs. (A.6) – 

(A.8) and eqs. (A.12) – (A.15) for the TS and D, respectively. 



10 

In this work, the market electricity price &�� (€/kWh) is assumed to vary following a similar trend

to the wholesale market price in France [38]. Moreover, we assume that the grid offers an 

electricity price &�� (€/kWh) to purchase the energy from the agents. Finally, the electricity price

&�� (€/kWh) is the one offered by the D to purchase the energy from the other microgrid energy

producers. 

As it is described in Section 2, the paper analyses the impact of different extreme events, i.e., 

wind storms, associated electrical lines failures and energy demand and prices peaks, on 

microgrid performance using two different optimization approaches: (i) optimization based on 

the expected values of the uncertain quantities (i.e., deterministic optimization) and (ii) RO based 

on PIs. The detailed formulation of the microgrid optimization problem and its solution by the 

two approaches is presented in Appendix A.1. 

Figure 1 a,b illustrates the structure of the management scheme and operation procedure of the 

microgrid. The outputs from the models of the individual components are used to forecast the 

energy demands of the TS and D, i.e., 	��� and 	��, the energy outputs of the WPP and PV, i.e.,

��><< and ��<=, and the electricity prices &��. These forecasted quantities feed the optimization

models of the different decision-makers to determine their optimal decision variables, e.g., the 

battery scheduling and the energy portion to exchange between the agents and the upstream grid. 

In order to set up the price for the energy trading, the agents use 24-hours ahead predictions of 

the reference prices ( &�� ). Note that these predictions may not account for unexpected price

variations. 
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a)
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b) 

Figure 1. Integrated framework: a) Structure of the management scheme; b) Operation procedure 
[39]. 

The decision-making strategy for each agent is obtained by an optimization approach so that the 

expenses are minimized for the D and the TS, while the revenues are maximized for the WPP. 

These goals are achieved through strategic battery scheduling and the optimal selection of energy 

exchanges between the microgrid agents and the upstream electricity grid. Thus, the consumer 

aims to optimize its strategy considering a time horizon of 24 time steps, each of one hour 

duration. Similarly, at each time t, the microgrid energy producers (WPP and TS) and consumer 

(D) have the possibility to negotiate bilateral contracts of energy exchanges to achieve their

goals. Note that in this paper demand-response mechanisms for the energy management are not 

considered. 

4. Simulation of uncertain scenarios

In order to analyse the RO framework developed in [39], we have adopted the framework 

illustrated in Figure 2 that allows integrating uncertain events. 
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Figure 2. Procedure for construction and test of scenarios with uncertain events. 

The step-by-step procedure is described in the following. The available statistical data of the 

parameters, such as wind power output of WPP or electricity demand for D and TS, is divided 

into two data sets: the first data set feeds a GA – trained NN for the estimation of the PIs; this 

provides a Pareto front of prediction solutions in terms of PIs with lower and upper prediction 

bounds between which the uncertain parameters are expected to lie with a given confidence level 

[27]. The second data set is used to simulate the nominal variations of the considered parameter. 

From the Pareto front of the available solutions, one solution of PIs can be selected according to 

two characteristics, i.e., Coverage Probability (CP) and Prediction Interval Width (PIW), and be 

used to characterize the uncertainty feasible region in the RO (eqs. (A.22) – (A.55)). In parallel, 

the second data set representing the nominal profile of the considered parameter is updated with 

uncertain events. Note that the reference to the nominal profile of the parameter indicates that it 

is based on historical data and does not account for any uncertain events which can arise in the 

future. Finally, the updated nominal profile is tested to explore the effects that the level of 

uncertain events may have on the microgrid performance. This is done by comparing the two 

management strategies for the microgrid described in Section 3, i.e., optimization based on the 

expected values and RO based on PIs.  

The procedure for simulation of the uncertain events is briefly described in this section. 
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4.1. Failures correlation with environmental conditions 

This section provides a brief analysis of failures of energy production installations, PV panels 

and wind turbines, as well as electrical lines correlated with environmental conditions in Section 

4.1.1. Based on this analysis, Section 4.1.2 presents the mathematical model of electrical line 

failures correlation with the wind speed intensity. 

4.1.1. Failures analysis 

This section analyses the failures of energy production installations and electrical lines, 

correlated with intense environmental conditions and discusses the corresponding reliability 

models. 

Various tests and experiments have been conducted to determine the major causes of PV panels 

failures, and the associated failure rates [40], [41]. Among these are thermal cycling test, 

humidity freeze test, damp heat test, and hot spot test, with failure rates of 15%, 14%, 10%, and 

10%, respectively [40]. The effect of temperature on PV panels components, and their safety 

margin, have been explored in detail by taking into account different parameters, e.g., ambient 

temperature, irradiance, wind speed, bias conditions (open -circuit, short-circuit, maximum-

power point and shading), and installation configurations (e.g., air gap between module and roof 

surface) [1]. Other experimentations analyse the PV panels efficiency degradation correlated 

with the panels temperature [42], and the application of diagnostics methods for these types of 

problems [43]. 

In reality, even if the major failure causes are known and their effects on PV panels can be 

diagnosed, the mathematical formulation of their correlation with temperature has not been 

undisputedly determined yet. Indeed, PV modules are complex multi-material energy production 

systems for which electrical system conditions and installation configuration play an important 

role. Furthermore, additional parameters, e.g., wind speed and its directions, could significantly 

attenuate (or change) the temperature effect on the PV panel degradation and failure behaviour, 

rendering them non uniform across modules of same construction and type, and with differences 

between test and real conditions [41]. 

Similarly, for wind turbines there are several statistical studies that provide information about the 

annual downtime and failure frequencies of wind turbine components [44]–[46]. However, the 



15 

reliability models then used, rarely address the dependence of their failure rate of wind turbines 

components on wind speed and other characteristics. Only few examples exist, that treat the 

influence of wind turbulence on rotor and pitch mechanism [45], and demonstrate that the wind 

turbine failure rates can be learnt by monitoring the wind characteristics [46].  

Based on the above analysis, we can conclude that the definition of reliability models for multi 

components systems, such as those employed in energy production installation is still an open 

challenge. In this view, for the present research, only wind speed-correlated failures in the 

electrical lines have been considered. The mathematical correlations introduced allow accounting 

for the increase of failure frequency and repair duration times in presence of extreme 

environmental conditions [47]. 

4.1.2. Wind storms and associated failures of the electrical lines 

We consider failures/repairs of the electrical lines, which are correlated with the wind speed 

intensity. In order to generate different profiles of wind speed, the procedure of Figure 2 is used: 

1) The initial profile of wind speed is used to sample storms with different probabilities of

occurrence. The continuous increase of the storms probability allows generating wind

speed profiles representing different levels of uncertain conditions.

2) Each wind speed profile is analysed and the total expected failure rate and restoration

time are computed.

3) The obtained failure/restoration rates are used to simulate different scenarios of uncertain

events.

As described in [47], our work focuses on the simulation of wind speed-correlated failures in the 

overhead lines. This allows accounting for the increase of failures frequency and repair durations 

in presence of extreme environmental conditions [47]. The following equation defines the 

expected total failure rate 	?9(��)@:

	?9(��)@ = �BC
�DED ∙ 9 7!8 (��) + �H

�DED ∙ 9 8��"
(1) 

where $�7 and $8 are constants which denote the average annual duration (h) of high and 

normal wind conditions, respectively, $��� is the total duration of the simulation period (h), 
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9 7!8 (��) and 9 8��"
 are the failure rates (occur./y) at high and normal wind conditions,

respectively, and % is a scaling parameter. Note that contrary to [47], we do not consider possible 

failures due to lightning events: therefore, eq. (1) accounts only for the increase of wind speed 

above a critical value. To describe the failure rate at high wind conditions, we use an exponential 

relationship between the failure rates of lines and wind speed: 

97!8 (��) = ((� ∙ IJK�D − (L) ∙ 9 8��"
(2) 

where �� is the wind speed (m/s) at time t,  %, (M, (L are scaling parameters and 9 8��"
 is the

constant failure rate during normal weather conditions. The restoration time for the overhead 

lines is defined as follows: 

.� = ;�(��) ∙ ;� ∙ ;�� ∙ . 8��"
(3) 

where ;�(��) is a weighting factor caused by the severe weather, ;�  and ;�� are weighting factors

for hourly and daily variations, respectively, and . 8��"
 is the reference restoration time during

normal weather conditions modelled as a random variable with a lognormal distribution:  

;�(��) = N1,   P; �� < ��!�
1 + Q∙(�D��RSTD)

�̅HESV ,  P; �� ≥ ��!� (4) 

For this model, the scaling parameters and weight factors were defined through the analysis of 

real data in [47]. 

The drastic increase of the wind-caused failure rate is simulated and validated with real data for 

wind speeds higher than the critical one [48]. According to different studies, the critical wind 

speed above which the expected failure rate of the electrical lines increases is around 8 m/s [47], 

[48]. Based on this indication, Figure 3 a, b illustrates the occurrence and duration rates of 

discretized wind speeds for the nominal profile. The grey bars indicate normal wind speed 

conditions, while the black ones are related to severe wind speeds (storms) conditions.  
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a) b) 

Figure 3. Analysis of nominal wind speed profile: a) occurrence rate and b) duration rate of 
discretized wind speeds. 

To analyse the influence of the wind speed intensity on the failures of electrical lines, the 

occurrence rate of maximum wind speed in the nominal profile is artificially raised from 0.001 to 

10 occurrences per time period. To simulate the wind ‘peaks’, we focus on the maximum wind 

speed magnitude of the profile of Figure 3 a, i.e., 15 m/s. The initial occurrence rate of such wind 

speed magnitude has been progressively increased, as reported in Table 1. The exponential 

distribution is used to model the time between storms occurrence, which are considered 

statistically independent events [49].  

Table 1. Failure and repair rates of overhead lines for different wind speed conditions. 
# of wind speed 
profile 

Wind storms Overhead line failures 
Occurrence rate, 
occur./time period 

Duration rate, 
occur./time period 

Total expected 
failure rate (MTTF, 
h), occur./time 
period 

MTTR, h 

a. Initial wind speed
profile 0.001 

0.5 

0.5619 (3097) 2.15 

b. 0.01 0.8369 (2086) 2.31 
c. 0.1 3.4982 (499) 3.95 
d. 1 10.3420 (168) 8.18 
e. 10 11.6372 (154) 9.01 

At the same time, the mean duration rate of maximum wind speed magnitude was kept 

unchanged and equal to 0.5 occurrences per simulation time period. This can be explained by the 

fact that the duration of high wind speed periods was kept as small as possible to decrease their 

effect on the results. Indeed, the artificial increase of wind speed raises the total energy output 

generated by the WPP for the considered time period. This increase of total energy output 
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attenuates and, in some cases, veils the effect of wind speed-correlated failures of electrical lines 

regarding parts of negative and positive surpluses for the long-term period. 

As seen in Table 1, the increase of the wind storms occurrence rate generates the decrease of the 

MTTF and the increase of the MTTR of overhead line failures.  

4.2. Energy demand and price peaks 

4.2.1. Energy demand peaks 

The importance to forecast the energy demand peaks and evaluate their impact on the 

performance and reliability of energy systems was initially emphasized in [50], and explored in 

other reports and scientific works for various reasons, i.e., (i) the increasing concern about 

electric system reliability and growing trend towards energy efficiency as a resource [51]; (ii) 

emergence of new market structures and opportunities for monetary compensation of  sources of 

system reliability [51], [52]; and (iii) increased adoption of advanced metering and 

communication technologies that make it easier and less costly to evaluate peak demand impacts 

[53].  

Energy demand is primarily influenced by weather conditions, i.e., temperature and hours of 

daylight, as well as other consumption patterns such as number of business hours and school 

holidays. In this view, the temperature typically drives electric demand especially among 

residential consumers, who can use more than half of the electricity during the peak hours of the 

coldest or hottest days (regulation of household temperature). However, the consumption peak 

can also be influenced by other parameters, e.g., special calendar events and demographics. 

Moreover, peaks’ shifting during the day is possible during the day due to the adoption of smart 

grid technologies, e.g., massive plug-in of the electrical cars. Therefore, the prediction of the 

energy consumption patterns remains an important challenge, mainly because of the absence of 

sufficient amount of statistical data. For these reasons, the increase of the consumption peak 

occurrence and intensity are difficult to forecast with statistical models. Different works develop 

numerical tools to forecast the increase in energy demand peaks, e.g., statistical tools capable to 

capture unexpected extreme intraday increases by using available statistical records of energy 

demand [54], parametric models to predict long-term peaks correlated with weather, economic 

and demographic parameters of a particular area [55] or Bayesian estimation techniques to 

predict energy consumption peaks in transportation systems [56].The statistical forecast 
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approaches are based on the so-called normal profiles of the statistical parameter, e.g., energy 

consumption or temperature, which do not account for a possible increase of the peak occurrence 

and magnitude in the future [57]. Moreover, the multi-parameters time series models accounting 

for weather-induced effects, daily/weekly/yearly seasonality, special calendar events and in some 

cases, the variation of GDP and demographics of the geographical areas, provide a more accurate 

forecast for peak occurrence and magnitude [58]–[60]. Different research papers and reports 

[61], [62] situate the main energy demand peak timing period from noon to 6 p.m. Off-peak 

occurs from 9:30 p.m. to 8:30 a.m. and the rest of hours are considered to be the partial peak. 

In our case, the prediction of electricity demand, which is done by using the nominal profile of 

the consumption, does not allow using the forecast model to simulate the increase of energy 

consumption peaks. The uncertainty in variations of the energy demand is, thus, artificially 

simulated by increasing the daily peaks during the peak hours. For this purpose, we assign the 

probability of peak occurrence to each day during a week by using the probabilistic approach 

described in [58]. According to this approach, which is validated with real statistical data, the 

working days, i.e., from Monday to Thursday, hold the highest probability of peak occurrence, 

which can vary from 0.05 to 0.15 depending on the season (Figure 1 a). It also provides the pdfs 

of the magnitude of peak electricity demand (Figure 4 b).  

a)
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b) 

Figure 4. Example of the probabilistic forecast of the load peak year 2000 [58]: a) Occurrence 
probability on various dates in December; b)pdf for forecasted values of load peak.  

Based on the conclusions presented in [58], we account for the possibility of peak occurrence 

only from Monday to Thursday. To generate scenarios with different levels of uncertainty in 

energy demand, we assign arbitrary constant values of probability of peak occurrence from 

Monday to Thursday, which we progressively increase, i.e., the scenarios tested here have 0.1, 

0.2, 0.4, 0.6 and 0.8 probability of peak occurrence.  Given the particular characteristics of the 

presented distribution, we assume that the peaking values of energy demand are normally 

distributed. In this view, the nominal value of each peak is calculated by assuming the same 

proportional standard deviation and a maximum value for the load peak of about 4% [58]. 

4.2.2. Energy price 

The analysis of recent trends related to household energy bills shows a significant increase of 

electricity prices. For example, in the UK the increase of the energy bill is estimated to be around 

20% since 2007 [63]. Moreover, the particular geographical location, implying sometimes 

particular microclimate conditions, as well as different electricity network configurations or 

energy generation portfolios, are able to generate important variations on the energy prices as it 

is already the case of the different UK regions [64]. In addition, the further development of  

Smart grids is regarded to be a main driver of the increase of the household energy bills [63]. 

However, even in countries with strong electricity markets, where producers, consumers and 

transmission companies are involved in the price formulation, the correlation between energy 

demand and price remains important (e.g., 0.58 for UK). Indeed, important investments, that are 
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directed to upgrade the existing infrastructure to help the network support demand during peak 

times and to avoid power outages, are one of the causes of the increase of electricity prices. 

Therefore, in this paper the increase of the energy demand peaks is explored jointly with the 

increase of the electricity market price especially when the variations in market electricity prices 

allow following the trend of the energy demand curve, i.e., during working days rather than 

during weekends. 

This increase of the energy demand peaks is assumed to be followed by an increase in the 

electricity price from the upstream grid. The electricity tariff from the external grid adopted for 

this case study is a tariff structure for commercial utilization, which is made up of a basic charge, 

a daytime unit rate, a night unit rate and a peak charge. This tariff is introduced in [61] and 

adopted in [65]. By assuming that the energy demand of the district 	�� follows the same trend

than the energy demand profile in the upstream grid, we can adopt a similar assumption 

regarding the proportional correlation between the daily electricity market price and the daily 

energy demand [61], [65], [66].This is done to simulate the variations in the upstream market 

price. However, it is important to highlight that during the peaks of electricity demand, the 

electricity price can be no longer proportional to demand, but rise drastically. This Critical Peak 

Price (CPP) represents a dynamic rate that is dispatched for the utilities based on real-time 

capacity conditions. The value of the critical peak price is several times higher than the usual 

price applied during the off-peak periods, e.g., CPP rate is 6 - 7 for [67], [68]. The objective of 

this price increase can be to reduce the electricity consumption during critical times [67], [69]. 

In this paper, we are not focussing on demand-response management techniques, but on 

evaluating the expenses paid by the consumers in case of an inaccurate prediction of the energy 

consumption. For this, we have tested different values of the critical peak price, applied during 

the peak period from noon to 6 p.m. 

5. Output indicators
In this section we present the indicators used to evaluate microgrid performance and reliability. 

5.1.Microgrid reliability 

The overall microgrid performance is evaluated in terms of classical adequacy assessment 

metrics, which characterize the ability of the DG system energy capacity to meet system demand 

in presence of uncertainty [70]. Specifically, Loss of Load Expectation (LOLE) is used to 
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characterize the probability of unsatisfied electricity demand and Loss of Expected Energy 

(LOEE) to quantify the expected amount of energy losses for Ns time steps of one hour: 

�X�	 = Y �.�(�� < 	�)Z�
�[\

(5) 

�X		 = Y �.�(�� < 	�) ∙ (	� − ��)Z�
�[\  

(6) 

where �.�(�� < 	�) is the probability of loss of load at time step t, �� (kWh) is the available 

capacity at time period t, 	� (kWh) is the energy demand at time step t, in our case defined as 

follows: 

�� = ��� + ���� + ���� + ����� + ���, !� ∙ ��,���� + ����, !� ∙ ���,����  ∀� (7) 

	� = 	�� + 	��� + ���,� ∙ ��,���� + ����,� ∙ ���,����                             ∀� (8) 

The available power capacity of the microgrid �� (eq. 7) represents the sum of the electricity 

produced by all generation units at time step t. In our case, �� accounts for the amount of energy 

purchased from the external grid (i.e., ��� and ����), produced by the local generators (i.e., ����
and �����) and discharged from the batteries (i.e., ���, !� ∙ ��,����and ����, !� ∙ ���,����).

5.2. Microgrid imbalance 

The renewable generators installed in the microgrid, i.e., WPP and PV power production in TS, 

are committed to provide  ����� and ����to the D, and ����� and ����to the upstream grid. The

non-supplied energy can generate reliability problems for the microgrid and the upstream grid. 

By taking into account the prediction errors and/or the mechanical failures of the renewable 

generators, their common revenues for time step t are formulated as: 

%�̂ ,< = (�����, + ����,) ∙ &�� + (�����, + ����,) ∙ &�� + $�̂ ,<                            ∀� (9)

where �����,, ����,, �����, and ����, (kWh) are the contracted amounts of energy provided by

the WPP and PV to the external grid and microgrid, respectively, $�̂ ,< (€)  is the imbalance cost

of the renewable generators defined as follows: 

$�̂ ,< = (4�_D̀ aa,∗ + 4�_Dab,∗) ∙ &��,5/� + (4��D̀ aa,∗ + 4��Dab,∗) ∙ &��,5/� (10) 

where 4��D̀ aa,∗
, 4��Dab,∗

, 4�_D̀ aa,∗
and 4�_Dab,∗

 (kWh) are the imbalances for time step t calculated as 

the difference between the actual amount of energy (kWh) that the renewable generator can 
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supply and the level of contracted energy (kWh). The prices &��,5/� and &��,5/� (€/kWh) are the

imbalance prices for positive and negative imbalances, respectively, at time step t. 

Note that the expenses of D are defined similar to the revenues of the renewable generators: 

%�̂ ,d = ���, ∙ &�� + (�����, + ����,) ∙ &�� + $�̂ ,d                            ∀� (11)

where ���,, �����, and ����, (kWh) are the contracted amounts of energy from the external grid

and local renewable generators, respectively, and $�̂ ,d (€)  is the cost paid to supply the peak

electricity demand. 

Again, note that the formulation of revenues accounting for the imbalance cost is done for 

contract durations of one hour. 

To define the formulation of the imbalance prices, we have reviewed the existing imbalance 

tariff structures and regulation mechanism of European countries [71] such as Belgium, 

Netherland, France and Spain. Among the existing formulations, the definition of imbalance 

price in Spain is taken as example because of its simplicity, whereby the imbalance price is equal 

to a certain proportion of the spot price [72], [73]. In the numerical application that follows 

(Section 6), we have tested different imbalance prices to analyse the influence on the 

performance. 

To evaluate the impact of the imbalance cost on the renewable generators revenues, we introduce 

the performance ratio (� (eq. 12), which is calculated over a simulation period of Ns hours. Note 

that (� is computed by normalizing the total imbalance cost generated by the renewable 

generators by the revenues that would be obtained in the case of a perfect forecast [72]. To 

evaluate the impact of the load and price peaks, the coefficient (6  (eq. 13) is calculated similar to 

(�, i.e., normalizing the imbalance cost generated during the peaking periods by the expenses 

that D would pay in case of a perfect forecast: 

(� = e1 − ∑ g$�̂ ,<gZ��[\∑ h(�����, + ����,) ∙ &�� + (�����, + ����,) ∙ &��iZ��[\
j ∙ 100% 

(12) 

(6 = e1 − ∑ g$�̂ ,dgZ��[\∑ h���, ∙ &�� + (�����, + ����,) ∙ &��iZ��[\
j ∙ 100% 

(13)
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The proposed performance ratios are expressed in percentage, i.e., (� , (6  ∈ (0,100n. For perfect 

predictions, i.e., when deviations from committed energy are null, performance ratios are 100%. 

In general, microgrids can operated in two modes: the grid-connected mode and the islanded 

mode. In the grid-connected mode, the microgrid can trade power with the upstream power grid 

to solve the power imbalance. On the other hand, power imbalances in the islanded mode can be 

solved by decreasing the total output of the distributed generators (DGs), or by load-shedding, 

which is an intentional load reduction [74]. In our paper, we focus on the grid-connected mode. 

Therefore, the power imbalances are accounted inside the microgrid and between the microgrid 

power producers and the upstream external grid.  

6. Numerical case study

As discussed in Subsection 3.3, the PIs of the available wind energy output �����, and energy

demands 	��� and 	�� are estimated by a NN trained by a NSGA-II with respect to two

objectives: the coverage of the prediction interval (to be maximized) and their width (to be 

minimized) [27]. This optimization gives rise to the Pareto fronts depicted in Figure 5, from 

which different solutions can be selected and used in the energy management by RO. Note that 

these solutions differs on the interval widths and on their corresponding coverage probability and 

were also used in paper [39]. 

a) b) 
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c) 

Figure 5. Pareto fronts of PIs: a) �����, b) 	��� and c) 	��.

The comparison of the optimization results obtained with the RO based on PIs with (i) CP = 96% 

and (ii) CP = 56.3% shows that PIs with high CP decrease drastically the amount of committed 

energy [39]. This is due to the large width of the PIs characterized by high CP, i.e., 96%, which 

forces the RO to provide a very conservative solution. As a consequence, the producer plans its 

energy scheduling strategy based on the worst possible realization of the available power 

production and thus commits less energy for sale; at the opposite, the consumer anticipates the 

worst possible realization of its uncertain consumption and, thus, it purchases more energy than 

it will probably be required in the future. As a consequence the performance ratio of the RO 

based on the PIs with high CP = 96% is very low. On the contrary, the optimization based on the 

PIs with low CP = 56.3% considers “less extreme” worst realizations and, thus, provides 

adequate results in terms of performance ratio, comparable with results of other optimization 

techniques [72], and achieves satisfactory values of the reliability indicators, i.e., LOLE and 

LOEE, in comparison with these achieved by the optimization based on expected values.  

In this view, for the following we consider and analyse the performance of the RO based on the 

PIs with moderate CP in the range of 50 – 60%. The PIs used for the prediction of the electricity 

power output are selected from the Pareto front (Figure 5 a) of the available solutions, with 

prediction interval width (PIW) and coverage probability (CP) equal to 0.0535 and 56%, 

respectively. The PIs used for the electricity demand prediction are selected from the Pareto front 

(Figure 5 c) of the available solutions with similar characteristics than the PIs used for the wind 

power output prediction, i.e., PIW = 0.0518 and CP = 50.5%. 
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To account for the variations of the electricity prices &��, &�� and &��, the lower and upper bounds

of their associated PIs have been assumed to be the ±10% of their expected values. Similarly, the 

variations of ���� have been accounted for by setting the lower and upper bounds of the PIs to

±5% of their expected values. Note that these  PIs widths have been fixed based on the accuracy 

of a 24-hours ahead prediction  for the electricity prices [75] and the PV energy output [76]. 

The optimization based on the expected values has been performed also; as it was discussed in 

Appendix A.1, by considering the mean of the prediction interval as a point estimate of the 

uncertain quantity of interest. Note that the effect of the electrical lines failures and the increase 

of the energy demand and prices peaks will be explored separately from each other. 

6.1. Impact of wind storms and associated lines failures 

Based on Table 1, five case studies are considered under the following assumptions: 

• Failures of the electrical lines are considered to occur within the microgrid.

• The same initial wind speed profile was used for the sampling of overhead line failures

with different MTTF and MTTR. Indeed, the use of the wind speed profiles with the

artificially increased wind speeds for the different case studies, renders a higher wind

power output and, consequently, the performance ratio over the simulation period is

increased. This disturbs the output indicators, such as the performance ratio, by hiding the

effect of the overhead lines failures.

• The failures/repair rates of the generation units inside the microgrid, i.e., PV and WPP,

are considered constant and of the same values as in [39].

For the point estimation of the wind energy output ����� , which is used for the optimization

based on the expected values, we use the mean of the considered prediction interval with CP = 

56.3%. The results obtained by the simulation of the agents dynamics on a period of 1680hτ =  

have been calculated as the average over Ns = 20 simulations, which is a sufficiently large 

number of simulations to efficiently determine the convergence of the different indicators. The 

convergence is evaluated by considering the difference between two successive values of the 

indicators moving average where a threshold value of 2% is used. 
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Figure 6 a,b shows the variations of the shortage and surplus in percentage of the total amount of 

committed energy under different conditions of failures and repairs using the RO and the 

optimization based on expected values.  

a) b) 

Figure 6. Variations of shortage and surplus proportions in percentage of the total amount of committed 
energy using RO based on the PIs and deterministic optimization based on the expected values: a) Shortage; 
b) Surplus.

As it can be observed in Figure 6 a,b, the increase of the MTTF associated to the electrical lines 

increases the number of shortages in the grid, and this is common to both optimization 

approaches. With the increase of the probability of electrical lines failure, i.e., of the ratio 

MTTF/MTTR, the proportions of shortage tend to the values 9.59% and 10.54% for RO based on 

the PIs and optimization based on the expected values, respectively. This indicates that the RO 

based on the PIs with moderate CP efficiently account for shortage up to a certain level of the 

probability of the uncertain events occurrence. Note that the energy shortage due to large failure 

rates of the electrical lines optimized by RO based on PIs tends to the results provided by the 

optimization based on expected values. In order to increase the robustness to failures, PIs with 

higher CP would have to be used. 

At the same time, the surplus caused by the low available wind power used by the RO remains 

almost the same, with a minor increase of about 1% between a MTTF/MTTR of 3097/2 and 

154/9, respectively. This increase is due to the increase of the electrical line failures between D 

and the other microgrid players, which results in the rise of the energy surplus in the microgrid. 
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It is important to highlight that the RO based on the PIs is generally characterized by smaller 

shortages and a higher surpluses than the optimization based on the expected values. 

Due to the particular characteristics and data of the case study considered in this paper, the 

negative imbalance is smaller than the positive imbalance. In this view, the variations in the 

negative imbalance generate a small impact on the performance ratios (12) and (13), which show 

a decrease of 0.66 and 1.02% between a MTTF/MTTR of 3097/2 and 154/9, for the RO based on 

the PIs and the optimization based on the expected values, respectively. Note that the surplus and 

shortage values depend on different microgrid parameters, i.e., the microgrid structure and 

characteristics, strategy of the agents, optimization constraints, etc. In this view, the higher the 

shortage the higher impact on the performance ratios, especially for the optimization based on 

the expected values, which is more sensible to the negative imbalances. 

Table 2. Performance ratios (� of the RO based on PIs and the optimization based on the 
expected values. 

% 10 20 40 60 80 100 120 140 160 180 200 220 240 

30
9
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2

 

RO 97 96.6 95.7 94.9 94.1 93.2 92.4 91.6 90.7 89.9 89.0 88.2 87.4 

D 97.5 96.7 95.2 93.6 92 90.4 88.8 87.2 85.6 84 82.4 80.8 79.2 

15
4/

9
 

RO 96.4 95.2 93.3 91.2 89.2 87.1 85 83 80.9 78.9 76.8 74.7 73.1 

D 97.1 95.7 93.7 91.4 89.1 86.8 84.6 82.3 80 77.7 75.4 73.2 70.9 

Table 2 provides the information about the values of the performance ratios (� of the RO based 

on the PIs and the optimization based on the expected values obtained for the two extreme 

scenarios presented in Table 2, i.e., MTTF/MTTR of 3097/2 and 154/9, respectively. As it can be 

observed, both optimization approaches provide good performance, which is comparable to the 

performances of different approaches tested in [72]. The RO based on the PIs becomes more 

advantageous with the increase of the negative imbalance price (bold values). 

Based on the results in Table 2, the variation of the performance ratio (� depends not only on the 

energy shortage and surplus, but also on the spot and upstream electricity prices. Figure 7 

illustrates the variation of the difference between the performance ratios obtained for the RO 

based on the PIs and the optimization based on the expected value for two extreme scenarios, 

i.e., MTTF/MTTR of 3097/2 and 154/9, respectively. Note that in Figure 7 the percentage of the

price for the positive imbalance is considered to be 5% of the spot price. The Standard Deviation 
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(SD) is used to quantify the uncertainty of the performance ratios in the Ns = 20 scenarios 

summarized in Table 1. 

Figure 7. Performance ratio (� differences for RO based on PIs and optimization based on the 
expected values.  

It can be observed that with the increase of the negative imbalance price, the network optimized 

by RO based on the PIs gains in profitability in terms of performance ratio. This profitability is 

even more evident for the case of MTTF/MTTR = 3097/2. For the case of MTTF/MTTR = 

154/9, the performance ratio of the RO based on the PIs shows a small increase and remains 

close to the performance ratio obtained with the optimization based on the expected values. 

According to the reliability indicators, shown for the two considered scenarios in the right part of 

Figure 7, the RO based on the PIs holds the lowest LOLE and LOEE for both scenarios. The 

increase of MTTF from 3097 to 154 h decreases the reliability indicators for both optimization 

approaches. However, the RO based on the PIs is more reliable in comparison with the 

optimization based on the expected values. 

Figure 8 a-d shows the variation of the performance ratio in a three-dimensional coordinate 

system defined by the following axes: percentage of the negative imbalance price (%), 

MTTF/MTTR (h) and the difference between the performance ratio values calculated for the RO 

based on the PIs and the optimization based on the expected values (%). The performance ratio 
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difference provides a visual illustration of the profitability for the two approaches: the white bars 

(negative values) show the advantage to use the optimization based on the expected values over 

the RO based on the PIs and the grey bars (positive values) indicates a better performance of the 

RO based on the PIs. Each figure plots different values for the positive imbalance prices.  

a) 
b) 

c) d) 

Figure 8. Performance ratio differences for RO based on PIs and the optimization based on the expected 
values depending on the negative imbalance price and MTTF/MTTR for different percentages of spot 
price for the positive imbalance: a) 5%; b) 10%; c) 20%; d) 30%.  

As it can be observed in Figure 8 a, the increase of the negative imbalance price makes the use of 

the RO based on the PIs more profitable in terms of the performance ratio (starting with 40% of 

average spot price for the negative imbalance). This profitability becomes significant as the rates 

of failures occurrence are lower, i.e., MTTF/MTTR = 3097/2 h. Note that the advantage of RO 

slightly decreases with the increase of the MTTF of the electrical lines due to the increase of the 

negative imbalance part (cf. Figure 8 a). The increase of the positive imbalance price 
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compensates progressively the penalty paid for the negative imbalance and reduces the 

advantage of the RO based on the PIs.  

We have to underline once again that the performance ratio characterizes the microgrid revenues 

in presence of negative and positive imbalances. However, these results highly depend on the 

election on the model parameters, i.e., the microgrid structure and characteristics, strategy of the 

agents, optimization constraints, etc. 

6.2. Impact of energy demand and prices peaks 

We tested different values of the peak price applied during the peak periods, i.e., from noon to 6 

p.m. Table 3 recalls the performance ratios (6  of the RO based on the PIs and the optimization

based on expected values obtained for two extreme peak occurrence probability scenarios: 0.1

and 0.8.

Table 3. Performance ratios and reliability indicators for the RO based on PIs and the 
optimization based on expected values. 

%/ CPP rate 1 2 4 6 8 
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0.1 
RO 94.56 94.35 93.94 93.54 93.16 

D 95.74 95.23 94.29 93.44 92.66 

0.8 
RO 92.3 90.33 87.7 86.02 84.85 

D 92.51 89.87 86.57 84.58 83.25 

As it can the observed, the increase of the probability of peak occurrence generates a decrease of 

the performance ratio (6. Additionally, the increase of the CPP rate degrades the performance 

ratio for both RO based on the PIs and the optimization based on the expected values. It can be 

noticed that the RO based on the PIs becomes more advantageous with the increase of the CPP 

rate (bold values). 

Figure 9 illustrates the influence of the progressive increase of the probability of the load peak 

occurrence on the output indicators. 
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Figure 9. Performance ratio (6 differences for RO based on PIs and optimization based on the 
expected value.  

It can be observed, that with the increase of the probability of peak occurrence, the RO based on 

the PIs performs better in terms of the performance ratio (6. This profitability is even more 

evident for the case of a maximum CPP rate. Moreover, the peak of profitability for the RO is 

situated at a probability of peak occurrence of 0.6. The progressive increase of the probability of 

peak occurrence will decrease the performance ratio (6  obtained with the RO. According to the 

reliability indicators, shown for two extreme scenarios of 0.1 and 0.8 of probability of peak 

occurrence, the RO based on the PIs holds the lowest LOLE and LOEE for both scenarios. The 

increase of probability of peak occurrence from 0.1 to 0.8 degrades the reliability indicators for 

both optimization approaches. However, the RO based on the PIs is more reliable in comparison 

with the optimization based on the expected values. 

7. Conclusions

The present paper provides an extended analysis of microgrid energy management under two 

optimization frameworks: Robust Optimization (RO) based on Prediction Intervals (PIs) and 

optimization based on expected values. The considered frameworks are exemplified on a 

microgrid including the following stakeholders: a middle-size train station (TS) with integrated 
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photovoltaic power production system (PV), a urban wind power plant (WPP), and a surrounding 

residential district (D). The system is described by Agent-Based Modelling (ABM), in which 

each stakeholder, modelled as an individual agent, aims at a particular goal, i.e., decreasing its 

expenses from power purchases or increasing its revenues from power selling. 

The proposed analysis allows evaluating the impact of different levels of uncertainty on the agent 

expense and revenue functions, as well as on the overall microgrid reliability. Furthermore, the 

imbalance cost has been introduced to quantify the effect of prediction errors and failure 

occurrences. The analysis shows how the probability of occurrence of some specific uncertain 

events, e.g. failures of electrical lines and electricity demand and price peaks, highly conditions 

the reliability and the performance indicators of the microgrid under the two optimization 

approaches: RO based on the PIs and optimization based on expected values. 

In particular, the proposed methodology allows identifying the level of uncertainty in the 

operational and environmental conditions upon which RO performs better than an optimization 

based on expected values.  

This analysis is intended to assist decision-makers to select microgrid energy management 

actions that provide an adequate trade-off between system reliability and economic performance. 

Regarding the results obtained in the numerical case study considered, the following conclusions 

are in order: 

• The reliability analysis performed for different levels of wind power output uncertainty

shows a strong improvement on the reliability indicators if RO based on the PIs is used

• As it was expected, the increase of the probabilities of uncertain events, i.e., failure of

electrical lines, frequency of electricity peaks and increase of electricity price during

peak-hours, shows the advantage of RO based on the PIs in comparison with an

optimization based on the expected values.

• The price variations play a significant role in the system’s performance. In particular,

with an increase of either the price for the negative imbalance or the peak-hours price, the

RO shows a clear advantage in comparison with the optimization based on expected

values. Thus, there is a threshold probability of uncertain events occurrence above which

RO based on PIs performs better, which strongly depends on the price variations.
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• In addition, there is a second threshold probability that indicates some limitations of the

RO based on the PIs. In particular, the PIs considered in this paper, which are obtained

from a CP of about 50% , efficient up to certain level of the probability of the uncertain

events occurrence.

The adoption of RO based on the PIs or optimization based on expected values must be guided 

by the knowledge on the environmental and operational conditions of the microgrid under study. 

Future research will consider the development of hybrid optimization frameworks, for switching 

between different optimization techniques by considering the different environmental and 

operational conditions of the microgrid that may be expected at different times. 
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Appendix A 

A.1. Optimization framework

For completeness of the paper, we present the optimization problem as considered in [22] and 

here taken for our analysis. The decision-making strategy for each agent, identified by the use of 

robust optimization, is based on the expenses minimization for the district (D) and train station 

(TS) and the revenues maximization for the wind power plant (WPP). For the purpose of better 

understanding here below the deterministic and the RO problems are presented. 

A.1.1. Deterministic optimization problem

The optimization of energy scheduling for the TS, WPP and D, where the objective functions to 

be optimized are formulated in terms of expenses for the TS (eq.A.2) and D (eq.A.11), and 

revenues for the WPP (eq.A.19), are posed as follows. 

Optimization problem - TS 

Minimize opq 
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s.t.

	��� + ���� + ����,� ∙ ���,���� − ����, !� ∙ ���,����+���� ≤ ����+����  ∀� (A.1) 

∑ (&�� ∙ ���� − &�� ∙ ���� − &�� ∙ ������[\ ) ≤ %�� (A.2) 

���� + ���� ≤ ����                                                                         ∀� (A.3) 

���� ≥ 0, ���� ≥ 0, ���� ≥ 0                            ∀� (A.4) 

s' ∙ 	)�� ≤ ����,     P; ���� ≥ ' ∙ 	)�� 0 ≤ ���� ,  t�ℎI.vP�I   ∀� (A.5) 

���� ≤ ������ + ����,� ∙ ���,���� − ����, !� ∙ ���,����  ∀� (A.6) 

����,� + ����, !� ≤ 1                        ∀� (A.7) 

0 ≤ ����,� ≤ 1, 0 ≤ ����, !� ≤ 1  ∀� (A.8) 

0 ≤ ���� ≤ ���,"�#                         ∀� (A.9) 

Optimization problem - D  

Minimize ow 

s.t.

	�� ≤ ��� + ���� + ����� − (���,� ∙ ��,���� − ���, !� ∙ ��,����)  ∀� (A.10) 

∑ (&�� ∙ ��� + &�� ∙ ����� + &�� ∙ ����)��[\ ≤ %� (A.11) 

��� ≤ ����� + ���,� ∙ ��,���� − ���, !� ∙ ��,����  ∀� (A.12) 

���,� + ���, !� ≤ 1                       ∀� (A.13) 

0 ≤ ���,� ≤ 1, 0 ≤ ���, !� ≤ 1  ∀� (A.14) 

0 ≤ ��� ≤ ��,"�#          ∀� (A.15) 

��� ≥ 0          ∀� (A.16) 

���� = �)���, ����� = �)����        ∀� (A.17) 

Optimization problem - WPP 

Maximize oxyy 
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s.t.

����� + ����� ≤ �����  ∀� (A.18) 

∑ (&�� ∙ ����� + &�� ∙ �����)��[\ ≥ %��� (A.19) 

s( ∙ 	)�� ≤ �����,   P; ����� ≥ ( ∙ 	)�� 0 ≤ ����� ,  t�ℎI.vP�I  ∀� (A.20) 

����� ≥ 0, ����� ≥ 0  ∀� (A.21) 

where ���� and ����� (kWh) are the portions of energy sold to the external grid by the TS and

WPP, respectively, ���� and ��� (kWh) are the portions of energy purchased from the external grid

by the TS and D, respectively,  ���� and ����� (kWh) are the portions sold to the district and

generated by the PV panels of the TS and WPP, respectively, ' and ( are the coefficients 

defining the minimum amount of energy to be sold to D by TS and WPP, respectively, 	)�� (kWh) 

is the expected energy demand for D (for the moment, considered without uncertainty) at time 

step t, predicted by TS and WPP, �)��� and �)���� (kWh) are the energy portions, which TS and 

WPP are ready to sell to D at time step t. The variables ����,�, ����, !�,  ���,� and ���, !� are

binary variables, which take values 0 or 1 to indicate that the battery can either only be charged 

or discharged at time t. 

The coefficients β  and γ  in eqs. (A.5) and (A.20) allow regulating the energy exchanges 

between the microgrid agents, by imposing the minimum amount of energy that WPP and TS can 

supply to D under conditions of availability of wind and solar energy outputs, and promoting the 

local energy exchanges among the microgrid agents. 

 The optimization problems account for the energy balance at eqs. (A.1), (A.3), (A.10) and 

(A.18), and for the costs and revenues at eqs. (A.2), (A.11) and (A.19). The batteries charging 

and discharging dynamics is formulated with eqs. (A.6) – (A.9) for TS, and eqs. (A.12) – (A.15) 

for D. Eqs. (A.4), (A.16) and (A.21) are the decision variables constraints.  

A.1.2. RO problem

The approach adopted in this paper allows the linear formulation of the robust counterpart of an 

optimization problem [17].  

Train Station 
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Minimize opq 

s.t.

−���� + ���� + ����,� ∙ ���,���� − ����, !� ∙ ���,����+���� − ���� ∙ z�85� + 	��� ∙ z�85M
+ {���7�� ∙ Γ���7�� + }��Dab + }�~D�� ≤ 0  ∀� 

(A.22) 

{���7�� + }��Dab ≥ �*��� ∙ ���Dab ,  {���7�� + }�~D�� ≥ 	*��� ∙ ��~D��  ∀� (A.23) 

−���Dab ≤ z�85� ≤ ���Dab , −��~D�� ≤ z�85M ≤ ��~D��  ∀� (A.24) 

���� + ���� − ���� ∙ z�85� + {��!�� ∙ Γ��!�� + }��Dab ≤ 0  ∀� (A.25) 

{��!�� + }��Dab ≥ �*��� ∙ ���Dab  ∀� (A.26) 

Y (&�� ∙ ���� − &�� ∙ ���� − &�� ∙ �����
�[\ ) + Y �{�6��� ∙ Γ�6��� + }�D� + }�D� + }�D���

�[\≤ %�� 

(A.27) 

{�6��� + }�D� ≥ &̂�� ∙ ��D� , {�6��� + }�D� ≥ &̂�� ∙ ��D� , {�6��� + }�D� ≥ &̂�� ∙ ��D� ∀� (A.28)

−��D� ≤ ���� ≤ ��D� , −��D� ≤ ���� ≤ ��D� , −��D� ≤ ���� ≤ ��D�  ∀� (A.29) 

���� ≥ 0, ���� ≥ 0, ���� ≥ 0  ∀� (A.30) 

s' ∙ 	)�� ≤ ����,     P; ���� ≥ ' ∙ 	)�� 0 ≤ ����,  t�ℎI.vP�I  ∀� 
(A.31) 

���� ≤ ������ + ����,� ∙ ���,���� − ����, !� ∙ ���,����  ∀� (A.32) 

����,� + ����, !� ≤ 1                        ∀� (A.33) 

0 ≤ ����,� ≤ 1, 0 ≤ ����, !� ≤ 1  ∀� (A.34) 

0 ≤ ���� ≤ ���,"�# ,                         ∀� (A.35) 

District 

Minimize    ow 

s.t.

−��� − ���� − ����� + (��� − ����� ) + 	�� ∙ z�85� + {���7�� ∙ Γ���7�� + }�~D� ≤ 0     ∀� (A.36)

{���7�� + }�~D� ≥ 	*�� ∙ ��~D�  ∀� (A.37) 

−��~D� ≤ z�85� ≤ ��~D�  ∀� (A.38) 
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Y ?&�� ∙ ��� + &�� ∙ ����� + &�� ∙ ����@�
�[\ + Y �{�6��� ∙ Γ�6��� + }�D� + }�D���

�[\ ≤ %� 
(A.39) 

{�6��� + }�D� ≥ &̂�� ∙ ��D� , {�6��� + }�D� ≥ &̂�� ∙ ��D�  ∀� (A.40) 

−��D� ≤ ��� ≤ ��D� , −��D� ≤ ����� + ���� ≤ ��D�  ∀� (A.41) 

��� ≤ ����� + ���,� ∙ ��,���� − ���, !� ∙ ��,����  ∀� (A.42) 

���,� + ���, !� ≤ 1                          ∀� (A.43) 

0 ≤ ���,� ≤ 1, 0 ≤ ���, !� ≤ 1  ∀� (A.44) 

0 ≤ ��� ≤ ��,"�#  ∀� (A.45) 

��� ≥ 0          ∀� (A.46) 

���� = �)���, ����� = �)����  ∀� (A.47) 

Wind Power Plant 

Maximize    oxyy 
s.t.

����� + ����� − ����� ∙ z�85� + {���7�� ∙ Γ���7�� + }��D̀ aa ≤ 0  ∀� (A.48) 

{���7�� + }��D̀ aa ≥ �*���� ∙ ���D̀ aa  ∀� (A.49) 

−���D̀ aa ≤ z�85� ≤ ���D̀ aa  ∀� (A.50) 

Y (&�� ∙ ����� + &�� ∙ �����)�
�[\ − Y �{�6��� ∙ Γ�6��� + }�D� + }�D���

�[\ ≥ %��� 
(A.51) 

{�6��� + }�D� ≥ &̂�� ∙ ��D� , {�6��� + }�D� ≥ &̂�� ∙ ��D�  ∀� (A.52) 

−��D� ≤ ����� ≤ ��D� , −��D� ≤ ����� ≤ ��D�  ∀� (A.53) 

s( ∙ 	)�� ≤ ����� ,   P; ����� ≥ ( ∙ 	)�� 0 ≤ ����� ,  t�ℎI.vP�I  ∀� 
(A.54) 

����� ≥ 0, ����� ≥ 0  ∀� (A.55) 

where the variables {���7��, {�6���, {��!�� }��D̀ aa
, }��Dab

, }�~D�, }�~D��
, }�D�, }�D�, }�D�, ���D̀ aa

, ���Dab
, 

��~D�, ��~D��
, ��D�, ��D� and ��D� are dual or auxiliary variables needed to formulate  the linear
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counterpart of the robust optimization problem [17].  These are forced to be greater than or equal 

to zero, similarly,  z�85� and z�85M are auxiliary variables that are forced to be equal to one.

Γ���7�� and Γ�6��� define the level of uncertainty considered in each optimization model (a zero

value corresponds to the deterministic problem) and are such that 0 ≤ Γ���7�� ≤ 1 and 0 ≤
Γ�6��� ≤ 2 for the D and WPP, and 0 ≤ Γ���7�� ≤ 2 and 0 ≤ Γ�6��� ≤ 3 for the TS. The upper

limits of Γ���7�� and Γ�6��� indicate the maximum number of uncertain parameters handled by the

RO formulated here above. The value of the uncertainty levels can be fixed and adjusted 

independently by each agent depending on the uncertainty related to different numerical case 

studies, i.e., ����7�� = 1 for the D and TS to account for the uncertainty in wind and PV power

output in case of wind storms and associated lines failures, and ��6��� = 2 for D and WPP and

����7�� = 3 for TS to account for the uncertainty in energy demands and electricity prices.

Note that the RO has the advantage that it represents the uncertainty related to the variations of 

the operational or environmental conditions in terms of PI without making any assumption about 

the probabilistic distribution on the PI. For example, for the WPP in the robust formulation the 

level of uncertainty �*���� can be defined as �*���� = (�����,+, − �����,
,)/2, where �����,+,
and �����,
, (kWh) are the upper and lower prediction bounds at time t, respectively. In this

work, we take the mean of the prediction interval as point estimate of the wind energy output 

����� in eq.A.48. The point estimates of the other uncertain variables are the values calculated

with the models of the individual components or other statistical data described in [22]. 

The robust optimization problems are solved by using the optimization package CPLEX, 

implemented in Java code, which guarantee global optimality for mixed integer linear 

programming (MIP) problems (the iterative process of optimization in CPLEX is not illustrated 

in the paper: the interested reader may refer to [77] for further details). After optimization, the 

decisions are shared among the agents through the communication process indicated in the paper. 

A.2. Communication framework

Figure. A1 depicts the communication interactions among the microgrid agents. It can be noted 

that the microgrid does not include an independent operator, responsible for coordinating, 

controlling and operating the electric power system or/and market, as in most of the actual power 

grids. Indeed, we assume that all coordination procedures are done in a decentralized manner 
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through direct negotiation among the agents, similar to [10], [11]. However, to facilitate the 

agents communications, an additional agent called Independent System Operator (ISO) is 

introduced in the model, similar to [78], assisting communication between microgrid agents. 

Figure. A1. Multi-layered interaction between agents [22]. 

The microgrid agents participate in the decision-making framework as illustrated in Figure. A2. 

For the sake of clarity, the hierarchy of decisions considered in this work gives priority to the 

energy producers, i.e., the TS and the WPP, to decide the renewable energy ���� and ����� that

is available to be sold to the D, and the energy quantities ���� and ����� that are sold to the

external grid at each time step t. These decisions are transmitted through the ISO agent to the D, 

which considers these decisions as constant parameters for its optimization problem (eqs.A.10 – 

A.17 and eqs.A.36 – A.47  for the deterministic problem and RO, respectively). After the

determination of other energy scheduling variables, such as ���   and ���, the D sets a bilateral

agreement with the TS and the WPP in order to purchase ���� and  �����, respectively. The

duration of the bilateral contract is assumed to be one hour.
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Figure. A2. Example of agents communication at time step t [22]. 

Table A gathers the previsions of the operational conditions (i) made by the agents themselves 

and (ii) received from other agents through the ISO and (iii) the decision variables. 

Table A1. Previsions and decision variables. 
Previsions of the operational conditions D WWP TS 

(i) agent personal previsions*  	��; &��; &�� �����; &��;&�� 
	���; ����;  &��; &��; &��

(ii) previsions received from other agents
through ISO ����;  ����� - - 

(iii) decision variables based on the above
previsions ���;  ��� �����; ����� ����; ����; ����;  ���� 

* Personal previsions of agents are represented by PIs for RO and point predictions for the deterministic optimization.

Note that the adopted hierarchical decision scheme allows, on the one hand, the TS and the WPP 

increasing their revenues by deciding which amount of energy to sell to the D or to the external 
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grid using the most profitable actions planning; on the other hand, it gives the possibility to the D 

to purchase the emissions-free and less expensive energy generated by the TS and WPP in the 

microgrid. 

A.3. Uncertainties in energy management

The expenses and revenues of each agent, and the global reliability of the microgrid are affected 

by uncertain parameters, such as the energy outputs from renewable generators ���� and �����,

the energy demands of the consumers 	��� and 	��, and the electricity prices &��, &�� and &��. This

section illustrates the procedure used to account for these uncertainties. 

A.3.1. Energy output of renewable energy generators

The energy outputs from the renewable generators are affected by the variability of the 

renewable sources of energy, i.e., wind for WPP and solar irradiation for PV. 

As discussed previously, the uncertainty related to the availability of the wind energy output 

����� is described by prediction intervals (PIs), estimated by a multi-perceptron neural network

(NN) [27]. The PIs are optimized in terms of maximum Coverage Probability (CP) and minimum 

Prediction Interval Width (PIW). A multi-objective genetic algorithm (namely, non-dominated 

sorting genetic algorithm–II (NSGA-II)) is used to find the optimal parameters (weights and 

biases) of the NN. Pareto-optimal solution sets of several non-dominated solutions with respect 

to the two objectives (CP and PIW), are generated. 

As presented in Section 3, the expected value of PV energy output ���� is simulated based on the

solar irradiation and technical specification of PV module [33], [34]. In absence of a prediction 

model for the PV energy output, the related uncertainty is described by intervals, whose lower 

and upper bounds are symmetric around the expected value of PV energy output. The width of 

the interval is selected to account for the variability of the PV energy output in the time period 

considered.  

The actual energy output of renewable generators is also affected by mechanical failures, which 

may lead to periods of production unavailability during the subsequent repairs. A description of 

this effect is given by the compound quantitative indicator called technical unavailability [79]. 

Mechanical failures of generation units of the same type are, for simplicity, assumed to be 

independent from each other: no common causes for failures are considered. Moreover, no 

particular reduction of energy production due to units degradation has been considered: only two 
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states are possible, i.e., 100% of technical availability and 0% during the repair upon a failure. 

Failure and repair times are assumed to follow exponential distributions, considering the useful 

life of the components. For the numerical application of this paper, the Mean Time To Failure 

(MTTF) and Mean Time To Repair (MTTR) of the wind energy generation units have been 

taken equal to 1920 h and 25 h, respectively [80]. The failures of the power electronics parts are 

major contributors to the reliability problem and represent about 40% of the annual failure 

frequency for the wind turbines, based on long-term feedback experience [44], which is almost 

two times higher than the annual frequency of other wind turbine components. For the sake of 

simplicity, in this research we used the term ‘mechanical failure’ to represent all types of failures 

of the wind turbines and the generators. 

Failure times and repair durations are simulated by sampling from the exponential distribution of 

failure and repair times for the given MTTF and MTTR values, with the inverse transform 

technique [81]. 

A.3.2. Energy demand

Similar to the wind energy output,  PIs accounting for the variability of the energy demands 	���
and 	��, are used as estimated a GA – trained Neural Network (NN) [27].

A.3.3. Electricity prices

Similar to the PV energy output, the uncertainty related to the variability of electricity prices &��,

&�� and &�� is accounted for in the form of intervals, whose lower and upper bounds are symmetric

around the expected value of each variable. The width of the intervals is selected to account for

the fluctuations of these variables in the time period considered.

Bibliography 

[1] J. C. Glenn, T. J. Gordon, and E. Florescu, “2009 State of the Future,” 2009.

[2] B. J. Owen, “The planet ’s future : Climate change ' will cause civilisation to collapse  ',”
The Independent, London, 2009.

[3] N. D. Hatziargyriou, European Transactions on Electrical Power. Special Issue:
Microgrids and Energy Management, no. December 2010. 2011.



44 

[4] A. G. De Muro, J. Jimeno, and J. Anduaga, “Architecture of a microgrid energy
management system,” Eur. Trans. Electr. Power, vol. 21, pp. 1142–1158, 2011.

[5] E. Kuznetsova, K. Culver, and E. Zio, “Complexity and vulnerability of Smartgrid
systems,” in European Safety and Reliability Conference (ESREL 2011), 2011, pp. 1–8.

[6] M. H. Colson, C. M. Nehrir, and R. W. Gunderson, “Multi-agent Microgrid Power
Management,” in 18th IFAC World Congress, 2011, pp. 3678–3683.

[7] P. P. Reddy and M. M. Veloso, “Strategy Learning for Autonomous Agents in Smart Grid
Markets,” in Twenty-Second International Joint Conference on Artificial Intelligence,
2005, pp. 1446–1451.

[8] T. Krause, E. Beck, R. Cherkaoui, A. Germond, G. Andersson, and D. Ernst, “A
comparison of Nash equilibria analysis and agent-based modelling for power markets,”
Int. J. Electr. Power Energy Syst., vol. 28, no. 9, pp. 599–607, Nov. 2006.

[9] A. Weidlich and D. Veit, “A critical survey of agent-based wholesale electricity market
models,” Energy Econ., vol. 30, no. 4, pp. 1728–1759, Jul. 2008.

[10] S. Yousefi, M. P. Moghaddam, and V. J. Majd, “Optimal real time pricing in an agent-
based retail market using a comprehensive demand response model,” Energy, vol. 36, no.
9, pp. 5716–5727, Sep. 2011.

[11] Z. Jun, L. Junfeng, W. Jie, and H. W. Ngan, “A multi-agent solution to energy
management in hybrid renewable energy generation system,” Renew. Energy, vol. 36, no.
5, pp. 1352–1363, May 2011.

[12] E. Kuznetsova, C. Ruiz, Y. F. Li, E. Zio, G. Ault, and K. Bell, “Reinforcement learning
for microgrid energy management,” Energy, vol. 59, pp. 133–146, 2013.

[13] Y. Zeng, Y. Cai, G. Huang, and J. Dai, “A Review on Optimization Modeling of Energy
Systems Planning and GHG Emission Mitigation under Uncertainty,” Energies, vol. 4, no.
12, pp. 1624–1656, Oct. 2011.

[14] J. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy
Management of Hybrid Systems,” Ind. Appl. IEEE Trans., vol. 45, no. 6, pp. 2123–2129,
2009.

[15] J. Solano Martínez, R. I. John, D. Hissel, and M.-C. Péra, “A survey-based type-2 fuzzy
logic system for energy management in hybrid electrical vehicles,” Inf. Sci. (Ny)., vol.
190, pp. 192–207, May 2012.

[16] A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain linear programs,” Oper.
Res. Lett., vol. 25, no. 1, pp. 1–13, Aug. 1999.



45 

[17] D. Bertsimas and M. Sim, “The Price of Robustness,” Oper. Res., vol. 52, no. 1, pp. 35–
53, 2004.

[18] V. Krey, D. Martinsen, and H.-J. Wagner, “Effects of stochastic energy prices on long-
term energy-economic scenarios,” Energy, vol. 32, no. 12, pp. 2340–2349, Dec. 2007.

[19] Y. P. Cai, G. H. Huang, Z. F. Yang, Q. G. Lin, and Q. Tan, “Community-scale renewable
energy systems planning under uncertainty—An interval chance-constrained
programming approach,” Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 721–735, May
2009.

[20] M. Liu, “An Interval-parameter Fuzzy Robust Nonlinear Programming Model for Water
Quality Management,” J. Water Resour. Prot., vol. 05, no. 01, pp. 12–16, 2013.

[21] Y. Li and G. Huang, “Robust interval quadratic programming and its application to waste
management under uncertainty,” Environ. Syst. Res., vol. 1, no. 1, p. 7, 2012.

[22] E. Kuznetsova, C. Ruiz, Y. F. Li, and E. Zio, “Reliable microgrid energy management
under environmental uncertainty and mechanical failures: an agent-based modeling and
robust optimization,” in Safety, Reliability and Risk Analysis: Beyond the Horizon (ESREL
2013), 2013, pp. 2873 – 2882.

[23] A. Parisio, C. Del Vecchio, and A. Vaccaro, “Electrical Power and Energy Systems A
robust optimization approach to energy hub management,” Int. J. Electr. Power Energy
Syst., vol. 42, no. 1, pp. 98–104, 2012.

[24] C. Chen, Y. P. Li, G. H. Huang, and Y. F. Li, “A robust optimization method for planning
regional-scale electric power systems and managing carbon dioxide,” Electr. Power
Energy Syst., vol. 40, pp. 70–84, 2012.

[25] C. Chen, Y. P. Li, G. H. Huang, and Y. Zhu, “An inexact robust nonlinear optimization
method for energy systems planning under uncertainty,” Renew. Energy, vol. 47, pp. 55–
66, 2012.

[26] A. Khosravi, S. Nahavandi, D. Creighton, and F. A. Amir, “A Comprehensive Review of
Neural Network-based Prediction Intervals and New Advances,” IEEE Trans. Neural Net.,
vol. 22, no. 9, pp. 1341–1356, 2011.

[27] R. Ak, Y. F. Li, V. Vitelli, and E. Zio, “Multi-objective Generic Algorithm Optimization
of a Neural Network for Estimating Wind Speed Prediction Intervals,” Submitt. to Appl.
Soft Comput., 2013.

[28] European Commission, “Photovoltaic Solar Energy Best Practice Stroies,” 2002.

[29] E. Fischer and C. Lo, “Back to the future : Top trends in railway station design,” railway-
technology.com, 2011. [Online]. Available: http://www.railway-



46 

technology.com/features/featureback-to-the-future-top-trends-in-railway-station-design. 
[Accessed: 24-Sep-2013]. 

[30] RTE, “Bilan électrique 2012,” 2012.

[31] L. Al-Sharif, “Modelling of escalator energy consumption,” Energy Build., vol. 43, no. 6,
pp. 1382–1391, Jun. 2011.

[32] Ademe, “Eclairage public: routier, urban, grands espaces, illuminations et cadre de vie,”
2002.

[33] F. A. Mohamed and H. N. Koivo, “System modelling and online optimal management of
MicroGrid using mesh adaptive direct search,” Int. J. Electr. Power Energy Syst., vol. 32,
no. 5, pp. 398–407, 2010.

[34] Y. M. Atwa, M. M. A. Salama, and R. Seethapathy, “Optimal renewable resources mix for
distribution system energy loss minimization,” IEEE Trans. Power Syst., vol. 25, no. 1,
pp. 360–370, 2010.

[35] D. C. Hill, D. Mcmillan, K. R. W. Bell, and D. Infield, “Application of auto-regressive
models to UK wind speed data for power system impact studies,” IEEE Trans. Sustain.
Energy, vol. 3, no. 1, 2012.

[36] E. N. Dialynas and A. V. Machias, “Reliability modelling interactive techniques of power
systems including wind generating units,” Arch. fur Elektrotechnik, vol. 72, pp. 33 – 41,
1989.

[37] C. Fong, S. Haddad, and D. Patton, “The IEEE reliability test system - 1996,” IEEE
Trans. Power Syst., vol. 14, no. 3, 1999.

[38] EEX, “Hour Contracts - France,” European Energy Exchange, 2013. [Online]. Available:
http://www.eex.com/en/Market Data/Trading Data/Power/Hour Contracts | Spot Hourly
Auction/spot-hours-table/2013-02-14/FRANCE. [Accessed: 13-Feb-2013].

[39] E. Kuznetsova, Y.-F. Li, C. Ruiz, and E. Zio, “An integrated framework of agent-based
modelling and robust optimization for microgrid energy management,” Appl. Energy, vol.
129, pp. 70 – 88, 2014.

[40] G. Tamizhmani, “Testing the reliability and safety of photovoltaic modules: failure rates
and temperature effects,” Photovoltaics Int. J., pp. 146 – 152, 2009.

[41] U. Jahn and T. Ü. V Rheinland, “PV Module Reliability Issues Including Testing and
Certification,” Frankfurt, Germany, 2012.

[42] B. R. G. Lucas, “Lessons Learned and Challenges for Implementing Infrared
Thermography and Systems Analysis in Large PV Solar Plant Arrays,” 2013.



47 

[43] F. Ancuta and C. Cepisca, “Failure Analysis Capabilities for PV Systems,” Recent Res.
Energy, Environ. Entrep. Innov., pp. 109–115, 2011.

[44] B. Hahn, M. Durstewitz, and K. Rohrig, “Reliability of Wind Turbines Break down of
Wind Turbines,” in Wind Energy, Springer B., 2007, pp. 329–332.

[45] P. Tavner, Y. Qiu, A. Korogiannos, and Y. Feng, “The correlation between wind turbine
turbulence and pitch failure,” UK, 2010.

[46] C. Su, Q. Jin, and Y. Fu, “Correlation analysis for wind speed and failure rate of wind
turbines using time series approach,” J. Renew. Sustain. Energy, vol. 4, no. 3, p. 032301,
2012.

[47] K. Alvehag and L. Söder, “A Reliability Model for Distribution Systems Incorporating
Seasonal Variations in Severe Weather,” IEEE Trans. Power Deliv., vol. 26, no. 2, pp.
910–919, 2011.

[48] C. Lallemand, “Methodology for a Risk Based Asset Management,” Royal Institute of
Technology, 2008.

[49] B. B. Brabson and J. P. Palutikof, “Tests of the Generalized Pareto Distribution for
Predicting Extreme Wind Speeds,” J. Appl. Meteorol. Climatol., vol. 39, no. 9, pp. 1627–
1640, 2000.

[50] D. York, M. Kushler, and P. Witte, “Examining the Peak Demand Impacts of Energy
Efficiency: A Review of Program Experience and Industry Practices,” Washington, USA,
2007.

[51] F. Stern, “Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-
Cutting Protocols,” in The Uniform Methods Project: Methods for Determining Energy
Efficiency Savings for Specific Measures, no. April, 2013, pp. 1 – 13.

[52] J. Protasiewicz and P. S. Czczepaniak, “Neural Models of Demands for Electricity -
Prediction and Risk Assessment,” Electr. Rev., vol. 88, no. 6, pp. 272–279, 2012.

[53] S. Heiken, D. Elzinga, S.-K. Kim, and Y. Ikeda, “Impact of Smart Grid Technologies on
Peak Load to 2050,” Paris, France, 2011.

[54] C. Sigauke, A. Verster, and D. Chikobvu, “Tail Quantile Estimation of Heteroskedastic
Intraday Increases in Peak Electricity Demand,” Open J. Stat., vol. 02, no. 04, pp. 435–
442, 2012.

[55] R. J. Hyndman and S. Fan, “Forecasting long-term electricity demand for,” Melbourne,
Australia, 2009.



48 

[56] E. Chiodo and D. Lauria, “Probabilistic description and prediction of electric peak power
demand,” Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012.
pp. 1–7, 2012.

[57] ERCOT, “2013 ERCOT Planning Long-Term Hourly Peak Demand and Energy
Forecast,” 2013.

[58] P. E. McSharry, S. Bouwman, and G. Bloemhof, “Probabilistic Forecasts of the
Magnitude and Timing of Peak Electricity Demand,” IEEE Trans. Power Syst., vol. 20,
no. 2, pp. 1166–1172, May 2005.

[59] C. J. Ziser, Z. Y. Dong, and T. Saha, “Investigation of Weather Dependency and Load
Diversity on Queensland Electricity Demand,” in Australasian Universities Power
Engineering Conference, 2005, pp. 25–28.

[60] Y. Yu and L. Zhang, “An empirical study on seasonal fluctuations in electricity demand in
China,” J. Renew. Sustain. Energy, vol. 4, no. 3, p. 031803, 2012.

[61] H. Ren and W. Gao, “A MILP model for integrated plan and evaluation of distributed
energy systems,” Appl. Energy, vol. 87, no. 3, pp. 1001–1014, 2010.

[62] W. Saman and E. Halawa, “NATHERS - Peak Load Performance Module Research,”
Canberra, Australia, 2009.

[63] DECC, “Estimated impacts of energy and climate change policies on energy prices and
bills,” London, England, 2013.

[64] J. Faith, “Regional variations in energy prices revealed,” YourMoney.com, 2013. .

[65] R. Mena, M. Hennebel, Y.-F. Li, C. Ruiz, and E. Zio, “A Risk-Based Simulation and
Multi-Objective Optimization Framework for the Integration of Distributed Renewable
Generation and Storage,” Renew. Sustain. Energy Rev., vol. 37, pp. 778–793, 2014.

[66] H. Falaghi, C. Singh, M.-R. Haghifam, and M. Ramezani, “DG integrated multistage
distribution system expansion planning,” Int. J. Electr. Power Energy Syst., vol. 33, no. 8,
pp. 1489–1497, Oct. 2011.

[67] Smartgrid.gouv, “Critical Peak Pricing Lowers Peak Demands and Electric Bills in South
Dakota and Minnesota,” 2013. [Online]. Available:
http://www.smartgrid.gov/case_study/news/critical_peak_pricing_lowers_peak_demands_
and_electric_bills_south_dakota_and_minnesota. [Accessed: 29-Nov-2013].

[68] K. Herter, P. McAuliffe, and A. Rosenfeld, “An exploratory analysis of California
residential customer response to critical peak pricing of electricity,” Energy, vol. 32, no. 1,
pp. 25–34, Jan. 2007.



49 

[69] A. Bego, L. Li, and Z. Sun, “Identification of reservation capacity in critical peak pricing
electricity demand response program for sustainable manufacturing systems,” Int. J.
Energy Res., p. n/a–n/a, 2013.

[70] Y. G. Hegazy, M. M. A. Salama, and A. Y. Chikhani, “Adequacy assessment of
distributed generation systems using Monte Carlo simulation,” IEEE Trans. Power Syst.,
vol. 18, no. 1, pp. 48–52, 2003.

[71] P. J. Luickx, P. S. Pérez, J. Driesen, and W. D. D’haeseleer, “Imbalance Tariff Systems In
European Countries And The Cost Effect Of Wind Power,” WP EN2009-002, 2009.

[72] P. Pinson, C. Chevallier, and G. N. Kariniotakis, “Trading Wind Generation From Short-
Term Probabilistic Forecasts of Wind Power,” IEEE Trans. Power Syst., pp. 1–9, 2007.

[73] J. Usaola, O. Ravelo, G. González, F. Soto, M. C. Dávila, and B. Díaz-Guerra, “Benefits
for Wind Energy in Electricity Markets from Using Short Term Wind Power Prediction
Tools - a Simulation Study,” Wind Eng., vol. 28, no. 1, pp. 119–127, Jan. 2004.

[74] H.-M. Kim, Y. Lim, and T. Kinoshita, “An Intelligent Multiagent System for Autonomous
Microgrid Operation,” Energies, vol. 5, no. 12, pp. 3347–3362, Sep. 2012.

[75] R. C. Garcia, J. Contreras, M. Van Akkeren, and J. B. C. Garcia, “A GARCH Forecasting
Model to Predict Day-Ahead Electricity Prices,” IEEE Trans. Power Syst., vol. 20, no. 2,
pp. 867–874, 2005.

[76] M. Cococcioni, E. D’Andrea, and B. Lazzerini, “24-hour-ahead forecasting of energy
production in solar PV systems,” in Intelligent Systems Design and Applications (ISDA),
2011 11th International Conference on, 2011, pp. 1276–1281.

[77] IBM, “IBM ILOG CPLEX Optimization Studio, CPLEX User’s Manual,” 2011.

[78] Z. Zhi, C. Wai Kin, and C. Joe H, “Agent-based simulation of electricity markets : a
survey of tools,” Artif. Intell. Rev., vol. 28, pp. 305–342, 2009.

[79] G. M. J. Herbert, S. Iniyan, and R. Goic, “Performance , reliability and failure analysis of
wind farm in a developing country,” Renew. Energy, vol. 35, no. 12, pp. 2739–2751,
2010.

[80] R. Karki and R. Billinton, “Reliability/cost implications of PV and wind energy utilization
in small isolated power systems,” IEEE Trans. Energy Convers., vol. 16, no. 4, pp. 368–
373, 2001.

[81] E. Zio, The Monte Carlo Simulation Method for System Reliability and Risk Analysis.
Springer, 2013.



50 

View publication statsView publication stats

https://www.researchgate.net/publication/264052763



