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Abstract

The present paper provides an extended analysis of a microgrid energy management framework
based on Robust Optimization (RO). Uncertainties in wind power generation and energy
consumption are described in the form of Prediction Intervals (PIs), estimated by a Genetic
Algorithm (GA) — trained Neural Network (NN). The framework is tested and exemplified in a
microgrid formed by a middle-size train station (TS) with integrated photovoltaic power
production system (PV), an urban wind power plant (WPP) and a surrounding residential district
(D). The system is described by Agent-Based Modelling (ABM): each stakeholder is modelled as
an individual agent, which aims at a specific goal, either of decreasing its expenses from power
purchasing or increasing its revenues from power selling. The aim of this paper is to identify
which is the uncertainty level associated to the “extreme” conditions upon which robust
management decisions perform better than a microgrid management based on expected values.
This work shows how the probability of occurrence of some specific uncertain events, e.g.,
failures of electrical lines and electricity demand and price peaks, highly conditions the

reliability and performance indicators of the microgrid under the two optimization approaches:

(i) RO based on the Pls of the uncertain parameters and (ii) optimization based on expected

values.

Keywords: microgrid, agent-based model, uncertain scenarios, robust optimization, power
imbalance, reliability.
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1. Introduction

Renewable energies are promising solutions to the energetic and environmental challenges of the
21st century [1], [2]. Their integration into the existing grids generates technical and social

challenges related to their efficient and secure management.

From this point of view, a closer location of generation and consumption sources in
decentralized microgrids is expected to increase service quality for the consumers by decreasing
transmission losses and the time needed to manage fault restoration and congestions. However,
energy management can become critical in the microgrid, due to possible conflicting
requirements or poor communication between the different microgrids elements [3]. Therefore,

there is a need of frameworks for efficient microgrid energy management.

A way to model microgrids and the related individual goal-oriented decision-making of the
microgrid elements is that of Agent-Based Modeling (ABM) [4]-[6], which allows analyzing by
simulating the interactions among individual intelligent decision makers (the agents). The most
widespread application of this modeling approach concerns the bidding strategies among
individual agents, who want to increase their immediate profits through mutual negotiations and
by participating in a dynamic energy market [7]-[10]. Recent studies show the extension of the
ABM approach to more complex interactions in the energy management of hybrid renewable
energy generation systems [6], [11], [12]. In these works, the long-term goals are focused on the
efficient use of electricity within microgrids, e.g., the planning of battery scheduling to locally
store the electricity generated by renewable sources and reuse it during periods of high electricity
demand [11]. However, the decision framework is commonly developed under deterministic

conditions, e.g., those of a typical day in summer.

To account for the variability and randomness of the operational and environmental parameters
of the energy systems, several optimization techniques have been progressively introduced for
handling uncertainty [13]. Fuzzy mathematical programming models and their extensions have
been developed for optimal management of hybrid energy systems [14], [15]. Stochastic
programming models, where the uncertain parameters are described by probability distributions,
and interval programming models, where the uncertainty is described by intervals [16], [17],

have been used to deal with different sources of uncertainty in optimization problems, like



economic-energy scenarios planning [18], design of renewable systems for community energy
management [19], and water quality and waste management [20], [21].

In this paper, we propose an analysis of a microgrid energy management framework based on
Robust Optimization (RO) previously proposed by the authors [22]. The analysis is intended to
identify the conditions required for an optimal microgrid operation in presence of several sources
of uncertainty, affecting the power output from renewable generators [23], the production costs
[24], the electricity demand [25]. The uncertainty in the parameters is represented by Prediction
Intervals (PIs), which are estimated by a Neural Network (NN), Genetic Algorithm (GA)-trained
to provide lower and upper prediction bounds between which the uncertain values of the

parameters are expected to lie for a given confidence level [26], [27].

The RO framework improves the reliability of the microgrid operation by selecting energy
management actions that are optimal under the worst realization of the uncertainty conditions.
However, this is done at the cost of possible lower revenues for the energy generators and higher
expenses for the energy consumers than those that could be obtained by optimizing over the
expected values of the uncertain parameters. The proposed analysis investigates the influence of
uncertain events on the microgrid performance and identifies the conditions under which the

application of RO or optimization based on expected values is most advantageous.

The paper is organized as follows. Section 2 motivates for the analysis carried out. Section 3
describes the models of the individual agents in the microgrid and the way that the uncertainties
in the energy management parameters are accounted for. The procedure for the simulation of the
uncertain scenarios and the definitions of the output quantities are discussed in Section 4 and
Section 5, respectively. Section 6 applies the presented methodology to a reference microgrid

system. Finally, the last section draws conclusions and gives an outlook on future research.
2. Motivation

Two optimization approaches are considered: (i) optimization based on the expected values of
the uncertain quantities (also called “deterministic” optimization) and (ii) Robust Optimization

(RO) based on Prediction Intervals (PIs) with a given Coverage Probability (CP).

In a previous work [22], the authors have shown that the proposed framework of RO based on

Pls leads to high system reliability, but at the expense of conservative results regarding system



revenues or expenses. In fact, the proposed framework leads the decision maker to anticipate the
worst possible realization of the uncertain parameters and choose the best solution with respect
to such a case. By so doing, the producer plans its energy scheduling strategy by committing less

energy for sale while the consumer purchases more energy than it is likely required.

The analysis proposed in this paper, aims at evaluating the system performance for different
levels of uncertainty affecting both operational and environmental conditions. These

uncertainties can be broadly classified in two types: (i) uncertainty related to fluctuations of the
operational and environmental conditions within expected and acceptable limits. These are
typical conditions for the microgrid operation, and (ii) uncertainty related to extreme events. In

the first case, the fluctuations of the operational and environmental conditions can be managed
by optimization based on expected parameters values without particular performance degradation
[22]. In the second case RO is expected to lead to management actions that guarantee the
operation within safety margins. This paper proposes methodology to simulate the uncertainty
related to extreme events and to evaluate microgrid reliability and performance under different

optimization approaches.

To evaluate the performance of the proposed methodology, we adopt classical reliability
indicators and the so called performance ratio to quantify negative / positive imbalances caused
by the prediction errors. This analysis allows showing how the probability of occurrence of an
uncertain event can influence the microgrid performance indicators. Thus, this analysis provides
a way of identifying the level of uncertainty in the system upon which RO performs better versus

an optimization based on expected values.
3. Microgrid energy management: the practical setting

The reference system considered in this paper is the same as in [22]. It includes a middle-size
train station (TS), which can play the role of power producer and consumer, the surrounding
district (D) with residences and small businesses, and a small urban wind power plant (WPP).
The goal of TS is to decrease its electricity expenses while satisfying its demand. To achieve
this, the TS strategy includes the integration of renewable generators and energy exchanges with
the local community to increase the power flexibility of the microgrid. Photovoltaic panels (PV)
have been shown to be an adapted and efficient technology for its implementation on large

commercial, public buildings and transportation hubs [28], [29]. For the energy exchanges with
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local community, we consider only the possibility of exchange between the TS and the D. This is
done to keep the model simple but also complete in order to properly illustrate the optimization
analysis. Future work includes the modelling of the energy exchanges between the TS and the
WPP.

The goal of WPP is to increase its revenues from selling the electricity to the external grid and to
the D. The latter is considered only as an energy consumer, with the goal of decreasing its
electricity purchase from the external grid by prioritizing the purchase of electricity from local
sources, i.e., the TS and the WPP. In addition, we assume that the TS and the D have the

capacity to store electricity in batteries.

For our current D model, we assume that the effect of locally installed renewable generators, in
our case PV panels, can be neglected. The energy generated with PV panels is around 0.8% of

the annual energy consumption in 2012 for the considered area [30].

Only a synthetic description of the models of the individual agents of the microgrid is presented

below; for more detailed information, the interested author can refer to [22].

TS: The energy consumptidiy S (kwh)in the main passengers building is divided into a

variable consumption, i.e. lighting and lifting depending on the solar irradiation and passengers
flow, respectively, and a fixed consumption represented by plug-in electronic devices. The
power required by the lifting equipment is calculated by using the methodology in [31], which is
based on in-situ real time records of passengers flow. The electrical energy consumed by the
lighting equipment is calculated based on the inside and outside luminosity (e.g., EN13272:2001
UK) [32]. The total energy produced by ¥V (kwh)is calculated based on the solar

irradiation and technical specification of PV module [33], [34].

WPP: The total energy produced by the WP¥F? (kwh)is calculated based on the wind speed

data from [35], by using the cubic correlation described in [36].

D: To simulate the energy consumption of the D, we use a top-down approach based on

available statistical collections of electricity consumptions [37].

Models for the batteries charging/discharging are presented in Appendix A, i.e., egs. (A.6) —
(A.8) and egs. (A.12) — (A.15) for the TS and D, respectively.



In this work, the market electricity prieg (€/kwh) is assumed to vary following a similar trend
to the wholesale market price in France [38]. Moreover, we assume that the grid offers an
electricity pricec; (€/kWh)to purchase the energy from the agents. Finally, the electricity price
cP (€/kwh)is the one offered by the D to purchase the energy from the other microgrid energy

producers.

As it is described in Section 2, the paper analyses the impact of different extreme events, i.e.,
wind storms, associated electrical lines failures and energy demand and prices peaks, on
microgrid performance using two different optimization approaches: (i) optimization based on

the expected values of the uncertain quantities (i.e., deterministic optimization) and (ii) RO based
on Pls. The detailed formulation of the microgrid optimization problem and its solution by the

two approaches is presented in Appendix A.1.

Figure l1a,b illustrates the structure of the management scheme and operation procedure of the
microgrid. The outputs from the models of the individual components are used to forecast the
energy demands of the TS and D, &5 andE?, the energy outputs of the WPP and PV, i.e.,

PYYPP andPEV, and the electricity pricad . These forecasted quantities feed the optimization

models of the different decision-makers to determine their optimal decision variables, e.g., the
battery scheduling and the energy portion to exchange between the agents and the upstream grid.
In order to set up the price for the energy trading, the agents use 24-hours ahead predictions of
the reference pricescf ). Note that these predictions may not account for unexpected price

variations.
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Figure 1. Integrated framework: a) Structure of the management scheme; b) Operation procedure
[39].

The decision-making strategy for each agent is obtained by an optimization approach so that the
expenses are minimized for the D and the TS, while the revenues are maximized for the WPP.
These goals are achieved through strategic battery scheduling and the optimal selection of energy
exchanges between the microgrid agents and the upstream electricity grid. Thus, the consumer
aims to optimize its strategy considering a time horizon of 24 time steps, each of one hour
duration. Similarly, at each timethe microgrid energy producers (WPP and TS) and consumer

(D) have the possibility to negotiate bilateral contracts of energy exchanges to achieve their

goals. Note that in this paper demand-response mechanisms for the energy management are not

considered.
4. Simulation of uncertain scenarios

In order to analyse the RO framework developed in [39], we have adopted the framework

illustrated in Figure 2hat allows integrating uncertain events.
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Figure 2. Procedure for construction and test of scenarios with uncertain events.

The step-by-step procedure is described in the following. The available statistical data of the
parameters, such as wind power output of WPP or electricity demand for D and TS, is divided
into two data sets: the first data set feeds a GA — trained NN for the estimation of the Pls; this
provides a Pareto front of prediction solutions in terms of Pls with lower and upper prediction
bounds between which the uncertain parameters are expected to lie with a given confidence level
[27]. The second data set is used to simulate the nominal variations of the considered parameter.
From the Pareto front of the available solutions, one solution of Pls can be selected according to
two characteristics, i.e., Coverage Probability (CP) and Prediction Interval Width (PIW), and be
used to characterize the uncertainty feasible region in the RO (egs. (A.22) — (A.55)). In parallel,
the second data set representing the nominal profile of the considered parameter is updated with
uncertain events. Note that the reference to the nominal profile of the parameter indicates that it
is based on historical data and does not account for any uncertain events which can arise in the
future. Finally, the updated nominal profile is tested to explore the effects that the level of
uncertain events may have on the microgrid performance. This is done by comparing the two
management strategies for the microgrid described in Section 3, i.e., optimization based on the

expected values and RO based on Pls.

The procedure for simulation of the uncertain events is briefly described in this section.

13



4.1. Failures correlation with environmental conditions

This section provides a brief analysis of failures of energy production installations, PV panels
and wind turbines, as well as electrical lines correlated with environmental conditions in Section
4.1.1. Based on this analysis, Section 4.1.2 presents the mathematical model of electrical line

failures correlation with the wind speed intensity.

4.1.1. Failuresanalysis
This section analyses the failures of energy production installations and electrical lines,
correlated with intense environmental conditions and discusses the corresponding reliability

models.

Various tests and experiments have been conducted to determine the major causes of PV panels
failures, and the associated failure rates [40], [41]. Among these are thermal cycling test,
humidity freeze test, damp heat test, and hot spot test, with failure rates of 15%, 14%, 10%, and
10%, respectively [40]. The effect of temperature on PV panels components, and their safety
margin, have been explored in detail by taking into account different parameters, e.g., ambient
temperature, irradiance, wind speed, bias conditions (open -circuit, short-circuit, maximum-
power point and shading), and installation configurations (e.g., air gap between module and roof
surface) [1]. Other experimentations analyse the PV panels efficiency degradation correlated
with the panels temperature [42], and the application of diagnostics methods for these types of

problems [43].

In reality, even if the major failure causes are known and their effects on PV panels can be
diagnosed, the mathematical formulation of their correlation with temperature has not been
undisputedly determined yet. Indeed, PV modules are complex multi-material energy production
systems for which electrical system conditions and installation configuration play an important
role. Furthermore, additional parameters, e.g., wind speed and its directions, could significantly
attenuate (or change) the temperature effect on the PV panel degradation and failure behaviour,
rendering them non uniform across modules of same construction and type, and with differences

between test and real conditions [41].

Similarly, for wind turbines there are several statistical studies that provide information about the

annual downtime and failure frequencies of wind turbine components [44]-[46]. However, the
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reliability models then used, rarely address the dependence of their failure rate of wind turbines
components on wind speed and other characteristics. Only few examples exist, that treat the
influence of wind turbulence on rotor and pitch mechanism [45], and demonstrate that the wind

turbine failure rates can be learnt by monitoring the wind characteristics [46].

Based on the above analysis, we can conclude that the definition of reliability models for multi
components systems, such as those employed in energy production installation is still an open
challenge. In this view, for the present research, only wind speed-correlated failures in the
electrical lines have been considered. The mathematical correlations introduced allow accounting
for the increase of failure frequency and repair duration times in presence of extreme

environmental conditions [47].

4.1.2. Wind storms and associated failures of the electrical lines
We consider failures/repairs of the electrical lines, which are correlated with the wind speed

intensity. In order to generate different profiles of wind speed, the procedure of Figure 2 is used:

1) The initial profile of wind speed is used to sample storms with different probabilities of
occurrence. The continuous increase of the storms probability allows generating wind
speed profiles representing different levels of uncertain conditions.

2) Each wind speed profile is analysed and the total expected failure rate and restoration
time are computed.

3) The obtained failure/restoration rates are used to simulate different scenarios of uncertain

events.

As described in [47], our work focuses on the simulation of wind speed-correlated failures in the
overhead lines. This allows accounting for the increase of failures frequency and repair durations
in presence of extreme environmental conditions [47]. The following equation defines the

expected total failure ra@(A(v,)):

Thw wind norm

E(Aw) =g 2" (0e) + 7+ A @)

whereT™ andT™ are constants which denote the average annual duration (h) of high and

normal wind conditions, respectivelf:°¢ is the total duration of the simulation period (h),
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Awmd(vt) and1””"" are the failure rates (occur.ly) at high and normal wind conditions,
respectively, and is a scaling parameter. Note that contrary to [47], we do not consider possible
failures due to lightning events: therefore, eq. (1) accounts only for the increase of wind speed
above a critical value. To describe the failure rate at high wind conditions, we use an exponential

relationship between the failure rates of lines and wind speed:

nd(y) = (py - er—ys) AT 2
wherev;, is the wind speed (m/s) at timeq, y,, y3 are scaling parameters abd” " is the
constant failure rate during normal weather conditions. The restoration time for the overhead

lines is defined as follows:

norm

re=fo) fEfler 3)

wheref, (v,) is a weighting factor caused by the severe weaflfeandf;* are weighting factors

for hourly and daily variations, respectively, and " is the reference restoration time during
normal weather conditions modelled as a random variable with a lognormal distribution:
1 if v, < vTH

fv(vt) = 14 k- (vp—vCTit)

—. )
rnorm

. 4
if vy > perit ( )
For this model, the scaling parameters and weight factors were defined through the analysis of
real data in [47].

The drastic increase of the wind-caused failure rate is simulated and validated with real data for
wind speeds higher than the critical one [48]. According to different studies, the critical wind
speed above which the expected failure rate of the electrical lines increases is around 8 m/s [47],
[48]. Based on this indication, Figurea3billustrates the occurrence and duration rates of
discretized wind speeds for the nominal profile. The grey bars indicate normal wind speed

conditions, while the black ones are related to severe wind speeds (storms) conditions.

16



0.120

0.100 -

0.080 -
Z 0.060 -

pel

0.040
0.020 -
0.000

Oceurence rate, occur./time

e
[
T s

8 BT

] Q_W

]
2 o

ky |

4

0 [
1
5

Wind speed,

I crit
L

v <v

v =V crit

Duration rate, occur./time

e T

/s

a)

period

1.000

0.800

0.600

0.400

0.200

0.000

S — &~ " T VO

Wind speed, m/s

b)

Figure 3. Analysis of nominal wind speed profile: a) occurrence rate and b) duration rate of
discretized wind speeds.

To analyse the influence of the wind speed intensity on the failures of electrical lines, the

occurrence rate of maximum wind speed in the nominal profile is artificially raised from 0.001 to

10 occurrences per time period. To simulate the wind ‘peaks’, we focus on the maximum wind

speed magnitude of the profile of Figure 3 a, i.e., 15 m/s. The initial occurrence rate of such wind

speed magnitude has been progressively increased, as reported in Table 1. The exponential

distribution is used to model the time between storms occurrence, which are considered

statistically independent events [49].

Table 1. Failure and repair rates of overhead lines for different wind speed conditions.

# of wind speed Wind storms Overhead line failures
profile Occurrence rate, Duration rate, Total expected MTTR, h
occur./time period  occur./time period | failure rate (MTTF,

h), occur./time

period
a. Initial wind speed
profile 0.001 0.5619 (3097) 2.15
b. 0.01 05 0.8369 (2086) 2.31
C. 0.1 ’ 3.4982 (499) 3.95
d. 1 10.3420 (168) 8.18
e 10 11.6372 (154) 9.01

At the same time, the mean duration rate of maximum wind speed magnitude was kept

unchanged and equal to 0.5 occurrences per simulation time period. This can be explained by the

fact that the duration of high wind speed periods was kept as small as possible to decrease their

effect on the results. Indeed, the artificial increase of wind speed raises the total energy output

generated by the WPP for the considered time period. This increase of total energy output
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attenuates and, in some cases, veils the effect of wind speed-correlated failures of electrical lines

regarding parts of negative and positive surpluses for the long-term period.

As seen inrable ] the increase of the wind storms occurrence rate generates the decrease of the

MTTF and the increase of the MTTR of overhead line failures.
4.2. Energy demand and price peaks

4.2.1. Energy demand peaks
The importance to forecast the energy demand peaks and evaluate their impact on the
performance and reliability of energy systems was initially emphasized in [50], and explored in
other reports and scientific works for various reasons, i.e., (i) the increasing concern about
electric system reliability and growing trend towards energy efficiency as a resource [51]; (ii)
emergence of new market structures and opportunities for monetary compensation of sources of
system reliability [51], [52]; and (iii)) increased adoption of advanced metering and
communication technologies that make it easier and less costly to evaluate peak demand impacts
[53].

Energy demand is primarily influenced by weather conditions, i.e., temperature and hours of
daylight, as well as other consumption patterns such as number of business hours and school
holidays. In this view, the temperature typically drives electric demand especially among
residential consumers, who can use more than half of the electricity during the peak hours of the
coldest or hottest days (regulation of household temperature). However, the consumption peak
can also be influenced by other parameters, e.g., special calendar events and demographics.
Moreover, peaks’ shifting during the day is possible during the day due to the adoption of smart
grid technologies, e.g., massive plug-in of the electrical cars. Therefore, the prediction of the
energy consumption patterns remains an important challenge, mainly because of the absence of
sufficient amount of statistical data. For these reasons, the increase of the consumption peak
occurrence and intensity are difficult to forecast with statistical models. Different works develop
numerical tools to forecast the increase in energy demand peaks, e.g., statistical tools capable to
capture unexpected extreme intraday increases by using available statistical records of energy
demand [54], parametric models to predict long-term peaks correlated with weather, economic
and demographic parameters of a particular area [55] or Bayesian estimation techniques to

predict energy consumption peaks in transportation systems [56].The statistical forecast
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approaches are based on the so-called normal profiles of the statistical parameter, e.g., energy
consumption or temperature, which do not account for a possible increase of the peak occurrence
and magnitude in the future [57]. Moreover, the multi-parameters time series models accounting
for weather-induced effects, daily/weekly/yearly seasonality, special calendar events and in some
cases, the variation of GDP and demographics of the geographical areas, provide a more accurate
forecast for peak occurrence and magnitude [58]-[60]. Different research papers and reports

[61], [62] situate the main energy demand peak timing period from noon to 6 p.m. Off-peak

occurs from 9:30 p.m. to 8:30 a.m. and the rest of hours are considered to be the partial peak.

In our case, the prediction of electricity demand, which is done by using the nominal profile of
the consumption, does not allow using the forecast model to simulate the increase of energy
consumption peaks. The uncertainty in variations of the energy demand is, thus, artificially
simulated by increasing the daily peaks during the peak hours. For this purpose, we assign the
probability of peak occurrence to each day during a week by using the probabilistic approach
described in [58]. According to this approach, which is validated with real statistical data, the
working days, i.e., from Monday to Thursday, hold the highest probability of peak occurrence,
which can vary from 0.05 to 0.15 depending on the season (Figyrdt Also provides the pdfs

of the magnitude of peak electricity demand (Figulg. 4
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Figure4. Example of the probabilistic forecast of the load peak year [58]: a) Occurrence
probability on various dates in December; b)pdf for forecasted values of load peak.

Based on the conclusions presented in [58], we account for the possibility of peak occurrence
only from Monday to Thursday.o generate scenarios with different levels of uncertainty in
energy demand, we assign arbitrary constant values of probability of peak occurrence from
Monday to Thursday, which we progressively increase, i.e., the scenarios tested here have 0.1,
0.2, 0.4, 0.6 and 0.8 probability of peak occurrence. Given the particular characteristics of the
presented distribution, we assume that the peaking values of energy demand are normally
distributed. In this view, the nominal value of each peak is calculated by assuming the same

proportional standard deviation and a maximum value for the load peak of about 4% [58].

4.2.2. Energy price
The analysis of recent trends related to household energy bills shows a significant increase of
electricity prices. For example, in the UK the increase of the energy bill is estimated to be around
20% since 2007 [63]. Moreover, the particular geographical location, implying sometimes
particular microclimate conditions, as well as different electricity network configurations or
energy generation portfolios, are able to generate important variations on the energy prices as it
is already the case of the different UK regions [64]. In addition, the further development of

Smart grids is regarded to be a main driver of the increase of the household energy bills [63].

However, even in countries with strong electricity markets, where producers, consumers and
transmission companies are involved in the price formulation, the correlation between energy

demand and price remains important (e.g., 0.58 for UK). Indeed, important investments, that are

20



directed to upgrade the existing infrastructure to help the network support demand during peak
times and to avoid power outages, are one of the causes of the increase of electricity prices.
Therefore, in this paper the increase of the energy demand peaks is explored jointly with the
increase of the electricity market price especially when the variations in market electricity prices
allow following the trend of the energy demand curve, i.e., during working days rather than

during weekends.

This increase of the energy demand peaks is assumed to be followed by an increase in the
electricity price from the upstream grid. The electricity tariff from the external grid adopted for
this case study is a tariff structure for commercial utilization, which is made up of a basic charge,
a daytime unit rate, a night unit rate and a peak charge. This tariff is introduced in [61] and
adopted in [65]. By assuming that the energy demand of the di&friclows the same trend

than the energy demand profile in the upstream grid, we can adopt a similar assumption
regarding the proportional correlation between the daily electricity market price and the daily
energy demand [61], [65], [66].This is done to simulate the variations in the upstream market
price. However, it is important to highlight that during the peaks of electricity demand, the
electricity price can be no longer proportional to demand, but rise drastically. This Critical Peak
Price (CPP) represents a dynamic rate that is dispatched for the utilities based on real-time
capacity conditions. The value of the critical peak price is several times higher than the usual
price applied during the off-peak periods, e.g., CPP rate is 6 - 7 for [67], [68]. The objective of
this price increase can be to reduce the electricity consumption during critical times [67], [69].

In this paper, we are not focussing on demand-response management techniques, but on
evaluating the expenses paid by the consumers in case of an inaccurate prediction of the energy
consumption. For this, we have tested different values of the critical peak price, applied during

the peak period from noon to 6 p.m.

5. Output indicators
In this section we present the indicators used to evaluate microgrid performance and reliability.

5.1.Microgrid reliability
The overall microgrid performance is evaluated in terms of classical adequacy assessment
metrics, which characterize the ability of the DG system energy capacity to meet system demand

in presence of uncertainty [70]. Specifically, Loss of Load Expectation (LOLE) is used to
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characterize the probability of unsatisfied electricity demand and Loss of Expected Energy

(LOEE) to quantify the expected amount of energy lossdddtime steps of one hour:

Ns 5
t=0
Ns (6)
LOEE = PT‘t(Pt <Et)'(Et_Pt)
t=0

wherePr,(P; < E,) is the probability of loss of load at time step, (kWh)is the available

capacity at time periot] E; (kWh)is the energy demand at time stejm our case defined as

follows:
P = SP + SIS + VIV + VPP 4 5045 . RDstor 4 g[S:dis . pTSistor ve (1)
E, = EP + E[S + 80" - RPsstor 4 §[S:ch . RTSsstor vt (8)

The available power capacity of the microgfid(eq. 7) represents the sum of the electricity
produced by all generation units at time dtdp our caseP, accounts for the amount of energy

purchased from the external grid (.82, andS?*), produced by the local generators (il&.Y

and V*PP) and discharged from the batteries (i85 - RPStoTand 5754 - RTSstor),

5.2. Microgrid imbalance
The renewable generators installed in the microgrid, i.e., WPP and PV power production in TS,
are committed to provid&”*? andV/Vto the D, and.¥*? andLf"to the upstream grid. The
non-supplied energy can generate reliability problems for the microgrid and the upstream grid.
By taking into account the prediction errors and/or the mechanical failures of the renewable

generators, their common revenues for time stp formulated as:

C{E'P — (L‘;VPP'C + Li’V.c) . Ci? + (VtWPP'C + VtPV'C) . CtD + TtE,P Vi (9)
whereL! "7, 1FV-¢ Y VPP andy,”" ¢ (kwh)are the contracted amounts of energy provided by

the WPP and PV to the external grid and microgrid, respectmtﬁry(@ is the imbalance cost

of the renewable generators defined as follows:

WPP * PV WPP,x PV,
2P =, +d ) @ +d )t (10)
VWPP,* VPV.* LWPP,* LPV,* . i
whered, ,d, ,d,* andd,* (kWh)are the imbalances for time stegalculated as

the difference between the actual amount of en@dggh)that the renewable generator can
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supply and the level of contracted enefigWwh).The pricescf /- andc;,” /= (E/kWh)are the

imbalance prices for positive and negative imbalances, respectively, at tinhe step

Note that the expenses of D are defined similar to the revenues of the renewable generators:

arC = 8Pe P + PP+ Py e+ TRC vt (11)
wheres?, V,PP¢ andV,"V¢ (kWh)are the contracted amounts of energy from the external grid

and local renewable generators, respectively,T%fT‘fd(€) is the cost paid to supply the peak

electricity demand.

Again, note that the formulation of revenues accounting for the imbalance cost is done for

contract durations of one hour.

To define the formulation of the imbalance prices, we have reviewed the existing imbalance

tariff structures and regulation mechanism of European countries [71] such as Belgium,
Netherland, France and Spain. Among the existing formulations, the definition of imbalance

price in Spain is taken as example because of its simplicity, whereby the imbalance price is equal
to a certain proportion of the spot price [72], [73]. In the numerical application that follows
(Section 6), we have tested different imbalance prices to analyse the influence on the

performance.

To evaluate the impact of the imbalance cost on the renewable generators revenues, we introduce
the performance ratip” (eq. 12), which is calculated over a simulation perioNsifiours. Note

thaty” is computed by normalizing the total imbalance cost generated by the renewable
generators by the revenues that would be obtained in the case of a perfect forecast [72]. To
evaluate the impact of the load and price peaks, the coeffidigfey. 13) is calculated similar to

v, i.e., normalizing the imbalance cost generated during the peaking periods by the expenses

that D would pay in case of a perfect forecast:

yP = <1 - o7 ) -100% (12)
évio[(LI;I/PP,C + LIZV.C) . C? + (VtWPPC PVC) Ct]
y¢ = <1 - ol ) -100% 13
{“V=SO[S1,P'C . Cf + (VtWPPC PV C) Ct ]
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The proposed performance ratios are expressed in percentagé, y..,€ (0,100]. For perfect

predictions, i.e., when deviations from committed energy are null, performance ratio§%&e 1

In general, microgrids can operated in two modes: the grid-connected mode and the islanded
mode. In the grid-connected mode, the microgrid can trade power with the upstream power grid
to solve the power imbalance. On the other hand, power imbalances in the islanded mode can be
solved by decreasing the total output of the distributed generators (DGs), or by load-shedding,
which is an intentional load reduction [74]. In our paper, we focus on the grid-connected mode.
Therefore, the power imbalances are accounted inside the microgrid and between the microgrid
power producers and the upstream external grid.

6. Numerical case study

As discussed in Subsection 3.3, the Pls of the available wind energy Blitguytand energy
demand<!S andEP are estimated by a NN trained by a NSGA-II with respect to two

objectives: the coverage of the prediction interval (to be maximized) and their width (to be
minimized) [27]. This optimization gives rise to the Pareto fronts depicted in Figure 5, from
which different solutions can be selected and used in the energy management by RO. Note that
these solutions differs on the interval widths and on their corresponding coverage probability and

were also used in paper [39].
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Figure 5 Pareto fronts of Pls: ap!’*?, b) EIS and c)EP.

The comparison of the optimization results obtained with the RO based on Pls with (i) CP = 96%
and (ii) CP = 56.3% shows that Pls with high CP decrease drastically the amount of committed
energy [39]. This is due to the large width of the Pls characterized by high CP, i.e., 96%, which
forces the RO to provide a very conservative solution. As a consequence, the producer plans its
energy scheduling strategy based on the worst possible realization of the available power
production and thus commits less energy for sale; at the opposite, the consumer anticipates the
worst possible realization of its uncertain consumption and, thus, it purchases more energy than
it will probably be required in the future. As a consequence the performance ratio of the RO
based on the Pls with high CP = 96% is very low. On the contrary, the optimization based on the
Pls with low CP = 56.3% considers “less extreme” worst realizations and, thus, provides
adequate results in terms of performance ratio, comparable with results of other optimization
techniques [72], and achieves satisfactory values of the reliability indicators, i.e., LOLE and

LOEE, in comparison with these achieved by the optimization based on expected values.

In this view, for the following we consider and analyse the performance of the RO based on the
Pls with moderate CP in the range of 50 — 60%. The PIs used for the prediction of the electricity
power output are selected from the Pareto front (Figaeoh the available solutions, with

prediction interval width (PIW) and coverage probability (CP) equal to 0.0535 and 56%,
respectively. The Pls used for the electricity demand prediction are selected from the Pareto front
(Figure 5c¢) of the available solutions with similar characteristics than the Pls used for the wind
power output prediction, i.e., PIW = 0.0518 and CP = 50.5%.
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To account for the variations of the electricity pricBsc; andc?, the lower and upper bounds

of their associated PlIs have been assumed to be the £10% of their expected values. Similarly, the
variations ofPfV have been accounted for by setting the lower and upper bounds of the Pls to
+5% of their expected values. Note that these Pls widths have been fixed based on the accuracy
of a 24-hours ahead prediction for the electricity prices [75] and the PV energy output [76].

The optimization based on the expected values has been performed also; as it was discussed in
Appendix A.1, by considering the mean of the prediction interval as a point estimate of the
uncertain quantity of interest. Note that the effect of the electrical lines failures and the increase

of the energy demand and prices peaks will be explored separately from each other.

6.1. Impact of wind storms and associated lines failures

Based on Table 1, five case studies are considered under the following assumptions:

» Failures of the electrical lines are considered to occur within the microgrid.

» The same initial wind speed profile was used for the sampling of overhead line failures
with different MTTF and MTTR. Indeed, the use of the wind speed profiles with the
artificially increased wind speeds for the different case studies, renders a higher wind
power output and, consequently, the performance ratio over the simulation period is
increased. This disturbs the output indicators, such as the performance ratio, by hiding the
effect of the overhead lines failures.

* The failures/repair rates of the generation units inside the microgrid, i.e., PV and WPP,

are considered constant and of the same values as in [39].

For the point estimation of the wind energy outBf” , which is used for the optimization

based on the expected values, we use the mean of the considered prediction interval with CP =
56.3%. The results obtained by the simulation of the agents dynamics on a perietiG80h

have been calculated as the average Nger 20simulations, which is a sufficiently large

number of simulations to efficiently determine the convergence of the different indicators. The
convergence is evaluated by considering the difference between two successive values of the

indicators moving average where a threshold value of 2% is used.
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Figure 6a,bshows the variations of the shortage and surplus in percentage of the total amount of
committed energy under different conditions of failures and repairs using the RO and the

optimization based on expected values.
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Figure 6.Variations of shortage and surplus proportions in percentage of the total amount of committed
energy using RO based on the Pls and deterministic optimization based on the expected values: a) Shortag
b) Surplus.

As it can be observed in Figureafl, the increase of the MTTF associated to the electrical lines
increases the number of shortages in the grid, and this is common to both optimization
approaches. With the increase of the probability of electrical lines failure, i.e., of the ratio
MTTF/MTTR, the proportions of shortage tend to the values 9.59% and 10.54% for RO based on
the PIs and optimization based on the expected values, respectively. This indicates that the RO
based on the Pls with moderate CP efficiently account for shortage up to a certain level of the
probability of the uncertain events occurrence. Note that the energy shortage due to large failure
rates of the electrical lines optimized by RO based on Pls tends to the results provided by the
optimization based on expected values. In order to increase the robustness to failures, Pls with

higher CP would have to be used.

At the same time, the surplus caused by the low available wind power used by the RO remains
almost the same, with a minor increase of about 1% between a MTTF/MTTR of 3097/2 and
154/9, respectively. This increase is due to the increase of the electrical line failures between D

and the other microgrid players, which results in the rise of the energy surplus in the microgrid.
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It is important to highlight that the RO based on the Pls is generally characterized by smaller

shortages and a higher surpluses than the optimization based on the expected values.

Due to the particular characteristics and data of the case study considered in this paper, the
negative imbalance is smaller than the positive imbalance. In this view, the variations in the
negative imbalance generate a small impact on the performance ratios (12) and (13), which show
a decrease of 0.66 and 1.02% between a MTTF/MTTR of 3097/2 and 154/9, for the RO based on
the Pls and the optimization based on the expected values, respectively. Note that the surplus and
shortage values depend on different microgrid parameters, i.e., the microgrid structure and
characteristics, strategy of the agents, optimization constraints, etc. In this view, the higher the
shortage the higher impact on the performance ratios, especially for the optimization based on

the expected values, which is more sensible to the negative imbalances.

Table 2 Performance ratiog” of the RO based on Pls and the optimization based on the
expected values.

% 10 20 40 60 80 100 120 14D 160 180 200 220 40
S RO 97 96.6| 957 | 949 | 941 | 932 | 924 | 916 | 90.7 | 899 | 89.0 | 88.2 | 874
% D 97.5| 96.7| 9521 93.6 92 904 888 8712 856 34 8§2.4 808 |[79.2
g RO | 96.4| 95.2| 933 912892 | 871 | 85 83 | 809 | 789 | 76.8 | 747 | 73.1
3 D 97.1| 95.7| 93.7 914 891 86/8 846 823 EFO 7.7 154 [3.2 |70.9

Table 2 provides the information about the values of the performancepatidthe RO based

on the Pls and the optimization based on the expected values obtained for the two extreme
scenarios presented in Table 2, i.e., MTTF/MTTR of 3097/2 and 154/9, respectively. As it can be
observed, both optimization approaches provide good performance, which is comparable to the
performances of different approaches tested in [72]. The RO based on the Pls becomes more
advantageous with the increase of the negative imbalance price (bold values).

Based on the results in Table 2, the variation of the performance fadiepends not only on the
energy shortage and surplus, but also on the spot and upstream electricity prices. Figure 7
illustrates the variation of the difference between the performance ratios obtained for the RO
based on the PIs and the optimization based on the expected value for two extreme scenarios,
i.e., MTTF/MTTR of 3097/2 and 154/9, respectively. Note that in Figure 7 the percentage of the

price for the positive imbalance is considered to be 5% of the spot price. The Standard Deviation
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(SD) is used to quantify the uncertainty of the performance ratios Mstke20scenarios
summarized in Table 1.
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Figure 7 Performance ratig'” differences for RO based on Pls and optimization based on the
expected values.

It can be observed that with the increase of the negative imbalance price, the network optimized
by RO based on the Pls gains in profitability in terms of performance ratio. This profitability is
even more evident for the case of MTTF/MTTR = 3097/2. For the case of MTTF/MTTR =

154/9, the performance ratio of the RO based on the PIs shows a small increase and remains
close to the performance ratio obtained with the optimization based on the expected values.
According to the reliability indicators, shown for the two considered scenarios in the right part of
Figure 7, the RO based on the Pls holds the lowest LOLE and LOEE for both scenarios. The
increase of MTTF from 3097 to 154 h decreases the reliability indicators for both optimization
approaches. However, the RO based on the Pls is more reliable in comparison with the

optimization based on the expected values.

Figure 8a-dshows the variation of the performance ratio in a three-dimensional coordinate
system defined by the following axes: percentage of the negative imbalance price (%),
MTTF/MTTR (h) and the difference between the performance ratio values calculated for the RO

based on the Pls and the optimization based on the expected values (%). The performance ratio
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difference provides a visual illustration of the profitability for the two approaches: the white bars
(negative values) show the advantage to use the optimization based on the expected values over
the RO based on the Pls and the grey bars (positive values) indicates a better performance of the
RO based on the PIs. Each figure plots different values for the positive imbalance prices.

5% of spot price for the positive imbalance

10% of spot price for the positive imbalance

9.00 7
700
500 4

3.00

1.00
100
300 7 °
s.00 L

Performance ratio(RO - D
Performance ratio(RO - D), %

a) b)

20% of spot price for the positive imbalance
— 30% of spot price for the positive imbalance

700 v T —— I —
) _ - 500 1
5.00

3.00 3.00

1.00 1.00
m

-1.00 12

A e
-1.00 44
-3.00 4

-3.00 17 H |

Performance ratifRO - D), %

500 A

Performance ratio{ RO - D), %

-5.00 =

d)

Figure 8 Performance ratio differences for RO based on PIs and the optimization based on the expected
values depending on the negative imbalance price and MTTF/MTTR for different percentages of spot
price for the positive imbalance: a) 5%; b) 10%,; c) 20%; d) 30%.

As it can be observed in Figureagthe increase of the negative imbalance price makes the use of
the RO based on the Pls more profitable in terms of the performance ratio (starting with 40% of
average spot price for the negative imbalance). This profitability becomes significant as the rates
of failures occurrence are lower, i.e., MTTF/MTTR = 3097/2 h. Note that the advantage of RO
slightly decreases with the increase of the MTTF of the electrical lines due to the increase of the
negative imbalance part (cf. Figure@B The increase of the positive imbalance price
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compensates progressively the penalty paid for the negative imbalance and reduces the

advantage of the RO based on the PIs.

We have to underline once again that the performance ratio characterizes the microgrid revenues
in presence of negative and positive imbalances. However, these results highly depend on the
election on the model parameters, i.e., the microgrid structure and characteristics, strategy of the

agents, optimization constraints, etc.

6.2. Impact of energy demand and prices peaks

We tested different values of the peak price applied during the peak periods, i.e., from noon to 6
p.m. Table 3 recalls the performance rajibsof the RO based on the Pls and the optimization
based on expected values obtained for two extreme peak occurrence probability scenarios: 0.1
and 0.8.

Table 3 Performance ratios and reliability indicators for the RO based on Pls and the
optimization based on expected values.

%] CPP rate 1 2 4 6 8
X
5 RO 94.56 94.35 93.94 93.54 93.16
2y 01
5 D 95.74 95.23 94.29 93.44 92.66
=5
55 RO 92.3 90.33 87.7 86.02 84.85
5°| 08
T D 92.51 89.87 86.57 84.58 83.25

As it can the observed, the increase of the probability of peak occurrence generates a decrease of

the performance ratip®. Additionally, the increase of the CPP rate degrades the performance

ratio for both RO based on the Pls and the optimization based on the expected values. It can be

noticed that the RO based on the PIs becomes more advantageous with the increase of the CPP

rate (bold values).

Figure 9illustrates the influence of the progressive increase of the probability of the load peak

occurrence on the output indicators.
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Figure 9 Performance ratig ¢ differences for RO based on Pls and optimization based on the
expected value.

It can be observed, that with the increase of the probability of peak occurrence, the RO based on
the Pls performs better in terms of the performance yatid his profitability is even more

evident for the case of a maximum CPP rate. Moreover, the peak of profitability for the RO is
situated at a probability of peak occurrence of 0.6. The progressive increase of the probability of
peak occurrence will decrease the performance yatibtained with the RO. According to the
reliability indicators, shown for two extreme scenarios of 0.1 and 0.8 of probability of peak
occurrence, the RO based on the PlIs holds the lowest LOLE and LOEE for both scenarios. The
increase of probability of peak occurrence from 0.1 to 0.8 degrades the reliability indicators for

both optimization approaches. However, the RO based on the PlIs is more reliable in comparison
with the optimization based on the expected values.

7. Conclusions

The present paper provides an extended analysis of microgrid energy management under two
optimization frameworks: Robust Optimization (RO) based on Prediction Intervals (PlIs) and
optimization based on expected values. The considered frameworks are exemplified on a

microgrid including the following stakeholders: a middle-size train station (TS) with integrated
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photovoltaic power production system (PV), a urban wind power plant (WPP), and a surrounding
residential district (D). The system is described by Agent-Based Modelling (ABM), in which
each stakeholder, modelled as an individual agent, aims at a particular goal, i.e., decreasing its

expenses from power purchases or increasing its revenues from power selling.

The proposed analysis allows evaluating the impact of different levels of uncertainty on the agent
expense and revenue functions, as well as on the overall microgrid reliability. Furthermore, the
imbalance cost has been introduced to quantify the effect of prediction errors and failure
occurrences. The analysis shows how the probability of occurrence of some specific uncertain
events, e.g. failures of electrical lines and electricity demand and price peaks, highly conditions
the reliability and the performance indicators of the microgrid under the two optimization

approaches: RO based on the Pls and optimization based on expected values.

In particular, the proposed methodology allows identifying the level of uncertainty in the
operational and environmental conditions upon which RO performs better than an optimization

based on expected values.

This analysis is intended to assist decision-makers to select microgrid energy management

actions that provide an adequate trade-off between system reliability and economic performance.

Regarding the results obtained in the numerical case study considered, the following conclusions
are in order:

» The reliability analysis performed for different levels of wind power output uncertainty
shows a strong improvement on the reliability indicators if RO based on the Pls is used

* As it was expected, the increase of the probabilities of uncertain events, i.e., failure of
electrical lines, frequency of electricity peaks and increase of electricity price during
peak-hours, shows the advantage of RO based on the Pls in comparison with an
optimization based on the expected values.

» The price variations play a significant role in the system’s performance. In particular,
with an increase of either the price for the negative imbalance or the peak-hours price, the
RO shows a clear advantage in comparison with the optimization based on expected
values. Thus, there is a threshold probability of uncertain events occurrence above which

RO based on PIs performs better, which strongly depends on the price variations.
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* In addition, there is a second threshold probability that indicates some limitations of the
RO based on the PIs. In particular, the Pls considered in this paper, which are obtained
from a CP of about 50% , efficient up to certain level of the probability of the uncertain

events occurrence.

The adoption of RO based on the PIs or optimization based on expected values must be guided
by the knowledge on the environmental and operational conditions of the microgrid under study.
Future research will consider the development of hybrid optimization frameworks, for switching
between different optimization techniques by considering the different environmental and
operational conditions of the microgrid that may be expected at different times.
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Appendix A

A.1. Optimization framework

For completeness of the paper, we present the optimization problem as considered in [22] and
here taken for our analysis. The decision-making strategy for each agent, identified by the use of
robust optimization, is based on the expenses minimization for the district (D) and train station
(TS) and the revenues maximization for the wind power plant (WPP). For the purpose of better
understanding here below the deterministic and the RO problems are presented.

A.1.1. Deterministic optimization problem

The optimization of energy scheduling for the TS, WPP and D, where the objective functions to
be optimized are formulated in terms of expenses for the TS (eq.A.2) and D (eq.A.11), and
revenues for the WPP (eq.A.19), are posed as follows.

Optimization problem - TS
Minimize a’s
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S.t.

Eth + Lgs + 5tTS.ch . RTS.stor _ 5tTS.dis ] RTs,stor_l_VtPV < PfV+StTS Vi

T P.cTS _ .s.yTS _ D .\/PV TS
t=o(Ct * St ¢t - Lt ¢ Vi) <a

LIS +VEY < PPV vt

SIS =0, =0,V >0 vt

{ﬁ EP <V, if PV 2B EP v
0<VvtY, otherwise

Rth < Rg‘_s1 + 5tTS.ch . RTS.stor _ 5tTS.dis . RTSstor Vi

6th,ch n Strs,dis <1 vt

0<6IM"<1,0<65% <1 vt

0 < R]® < RTSmax vt

Optimization problem - D

Minimize a?

s.t.

EtD < Sr_p + VtPV + VtWPP _ (5f.ch . RD.stor _ 55.111'5 . RD,stor) Vi

T o(cl - SP+cP-VWPP 4+ P -VPY) < aP

RP < RP, + 8D . gpstor _ 5:),011'5 . pD:stor vt
5"+ 8 <1 vt
0<6P"<1,0<680% <1 Vi

0 < RP < RPmax vt

5P =0 vt

VPV = JFV yWPP = jWPP Vi

Optimization problem - WPP

Maximize  a"PP

(A.1)
(A.2)
(A.3)

(A.4)

(A.5)

(A.6)
(A7)
(A.8)

(A.9)

(A.10)
(A.11)
(A.12)
(A.13)

(A.14)
(A.15)
(A.16)

(A.17)
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S.t.

LYPP + yVPP < pVPP vt (A.18)

t=o(ci " LYPP + ¢ - V{"PP) = aWPP (A.19)
\ED < YWPP  jf pWPP > . D

Y Et VI_/PPt if P = 4 ‘ t vt (A.20)
0V , otherwise

LYPP > 0,V¥PP > 0 vt (A.21)

whereLlS andLY"?F (kwh)are the portions of energy sold to the external grid by the TS and
WPP, respectivel\§7> andS? (kwh)are the portions of energy purchased from the external grid
by the TS and D, respectively”” andV¥F? (kwh)are the portions sold to the district and
generated by the PV panels of the TS and WPP, respecfivahdy are the coefficients

defining the minimum amount of energy to be sold to D by TS and WPP, respedf¢kyvh

is the expected energy demand for D (for the moment, considered without uncertainty) at time
stept, predicted by TS and WPPFY andV?*P (kwh are the energy portions, which TS and

WPP are ready to sell to D at time stephe variables!>", 5754 §>" ands>* are

binary variables, which take values 0 or 1 to indicate that the battery can either only be charged

or discharged at time t.

The coefficientsff and y in egs. (A.5) and (A.20) allow regulating the energy exchanges

between the microgrid agents, by imposing the minimum amount of energy that WPP and TS can
supply to D under conditions of availability of wind and solar energy outputs, and promoting the

local energy exchanges among the microgrid agents.

The optimization problems account for the energy balance at egs. (A.1), (A.3), (A.10) and
(A.18), and for the costs and revenues at egs. (A.2), (A.11) and (A.19). The batteries charging
and discharging dynamics is formulated with egs. (A.6) — (A.9) for TS, and egs. (A.12) — (A.15)
for D. Egs. (A.4), (A.16) and (A.21) are the decision variables constraints.

A.1.2. RO problem

The approach adopted in this paper allows the linear formulation of the robust counterpart of an
optimization problem [17].

Train Station
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Minimize a’s

s.t.
_StTS + LIS + 5tTS,ch . RTS:stor _ atTS.dls ] RTS,stor+VtPV _ PtPV ] x{”’l + Eth -x;""z
pPV ]S
P P
+zt°W"-1“t°W”+pt +p <0 Vvt
Power PfY 5pv . PEY_power EfS ST, EfS
Zt +p.° =Py 7 +p; ZEt yt Vvt
784 n+1 784 EfS n+2 EfS
_yt <x <yt ,_yt <x <yt vVt
. . pPV
LIS + VtPV _ P,_FV . x%l+1 + Zé\/llcro . Fg\/llcro + ptt <0 Vvt
Micro 74 spv . PLY
Zt +p. =Py, vt
T b TS 5. TS PV Cost . pCost cf ct cf
D @Sy (4 ¢ +p )
< aTS
Cost Cf > AP . Cf ost > ¢ Cost cf > ¢
Zt +pt —Ct yt yZ +pt = yt JZt +p yt

14 14 D D
Ct TS Ct ct TS Ct PV Ct
=yt <857 <y -y <L <y Yy SV Sy,

SIS >0,L5 >0,V >0 vt
{ﬁ EP <VvFV, if PPV >p-EP e
0 <V, otherwise
Rth < RZ";S‘I + StTS'Ch . RTS.stor _ 5tTS.dis . RTS.stor Vi
SIS 4 g7 < 1 vt
0<6M"<1,0<6 <1 vt
0 < RTS < RTSMmax, vt

District
Minimize aP

S.t.

—S? _ VtPV _ VtWPP + (R? _ R?—l) + Eé) ) n+1 + ZPower ) FPower + pEt <0 Vt

EP ~ ED
Power_l_p t >E1,P'ytt Vit
EP ED
-y, b <xftt <yt vt

Vvt

(A.22)

(A.23)
(A.24)
(A.25)
(A.26)

(A.27)

(A.28)
(A.29)

(A.30)
(A.31)

(A.32)
(A.33)
(A.34)
(A.35)

(A.36)
(A.37)

(A.38)
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T T p D A.39
Zt_o(c‘? . SLP + c? ) VtWPP + c? . VtPV) + zt_o (ZtCost . FtCost + ptct + p:t ) < P ( )
Cost +ptt > ¢ yt ,ZtCOSt + pftD > (',‘\? _thtD Vvt (A.40)
P D D
<P < yff YT S VPP L VPV <yt vt (A41)
RP < RP, + 87" - RPsstor — §P:dIs . gDistor vt (A-42)
6tD,Ch + 5tD,diS S 1 VvVt (A43)
0<6PM<1,0<62™ <1 vt (A.44)
0 < RP < RPmax vt (A.45)
Sg’ >0 vt (A.46)
VFV = PPV, yWPP = jWPP vt (A.47)
Wind Power Plant
Maximize a"PP
s.t.
[WPP 4 yVPP _ pWPP . yn+1 4 jPower  pPower | p p'PP <0 vt (A.48)
wpP R
zPower 4 pft > pWPP. ytPt Vit (A.49)
R e g e (A.50)
T T s D A51
Zt_o(cg [WPP 4 D .yWPP) _ Zt_o (ZtCost . [fost + ptct + ptct ) > WPP ( )
Cost + p > yt »Zt Cost + D, t > ¢ yt Vit (A52)
_th? < [WPP < yc ytct < VPP <y cf vt (A.53)
y-EP <VWPP if PWPP >y . ED v (A.54)
0 < yWwep otherwise ‘
> V¢ )
LYPP > 0,VPP >0 vt (A.55)
wWPP PV TS D WPP PV
where the variableg’ower, z£ost, zMicro pft ,pft ,pft ,pft D, ,pft, p;t ,ytpt ,ytpt :

ED ETS p
N/ A ,ytcf , J’t andyt are dual or auxiliary variables needed to formulate the linear
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counterpart of the robust optimization problem [17]. These are forced to be greater than or equal
to zero, similarly,x?*1 andx/**2 are auxiliary variables that are forced to be equal to one.

rPower androst define the level of uncertainty considered in each optimization model (a zero
value corresponds to the deterministic problem) and are sudh thaf°"*" < 1 and0 <

[fost < 2 for the D and WPP, arti< I7°%¢" < 2 and0 < I£°st < 3 for the TS. The upper

limits of [Fove andl¥°st indicate the maximum number of uncertain parameters handled by the
RO formulated here above. The value of the uncertainty levels can be fixed and adjusted
independently by each agent depending on the uncertainty related to different numerical case
studies, i.e.[;F°"¢" = 1 for the D and TS to account for the uncertainty in wind and PV power
output in case of wind storms and associated lines failures;4ffd= 2 for D and WPP and

r,Fower = 3 for TS to account for the uncertainty in energy demands and electricity prices.

Note that the RO has the advantage that it represents the uncertainty related to the variations of
the operational or environmental conditions in terms of PI without making any assumption about
the probabilistic distribution on the PI. For example, for the WPP in the robust formulation the

level of uncertainty?’’?? can be defined a&V?? = (p*P0 — pWPPIDy 15 wherep!’ PPuP

and PVPP™* (kwh) are the upper and lower prediction bounds at time t, respectively. In this
work, we take the mean of the prediction interval as point estimate of the wind energy output
P/"P? in eq.A.48. The point estimates of the other uncertain variables are the values calculated

with the models of the individual components or other statistical data described in [22].

The robust optimization problems are solved by using the optimization package CPLEX,
implemented in Java code, which guarantee global optimality for mixed integer linear
programming (MIP) problems (the iterative process of optimization in CPLEX is not illustrated
in the paper: the interested reader may refer to [77] for further details). After optimization, the

decisions are shared among the agents through the communication process indicated in the paper.

A.2. Communication framework

Figure. Al depicts the communication interactions among the microgrid agents. It can be noted
that the microgrid does not include an independent operator, responsible for coordinating,
controlling and operating the electric power system or/and market, as in most of the actual power

grids. Indeed, we assume that all coordination procedures are done in a decentralized manner
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through direct negotiation among the agents, similar to [10], [11]. However, to facilitate the
agents communications, an additional agent called Independent System Operator (ISO) is

introduced in the model, similar to [78], assisting communication between microgrid agents.

Power producers
agents

WIND POWER
PLANT

Power Flow

Bilateral TRAIN

DISTRICT I‘ Contract ’l STATION
,J_/ External power grid

Figure. Al. Multi-layered interaction between agents [22].

Power consumers
agents

)

The microgrid agents participate in the decision-making framework as illustrated in Figure. A2.
For the sake of clarity, the hierarchy of decisions considered in this work gives priority to the
energy producers, i.e., the TS and the WPP, to decide the renewablel&ifeaggV,” ** that

is available to be sold to the D, and the energy quantiffeandL¥*? that are sold to the

external grid at each time steprhese decisions are transmitted through the 1ISO agent to the D,
which considers these decisions as constant parameters for its optimization problem (eqs.A.10 —
A.17 and eqs.A.36 — A.47 for the deterministic problem and RO, respectively). After the
determination of other energy scheduling variables, susf aandR?, the D sets a bilateral
agreement with the TS and the WPP in order to purdi@sand VP, respectively. The

duration of the bilateral contract is assumed to be one hour.
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ISO

Time stept ==

DISTRICT

WIND POWER
PLANT

TRAIN
STATION

T
'
1
|

(i) WPP & TS perform robust optimization for goal-oriented

actions planning to determine VPP and VFV*

1
1

‘
Conversation ID} Info-request

'
I
1
1
|
I
]
1
I
L

(1.1) : E

PROPOSE o~
(1.2) : l 3 - :
(2.1) i Conversation 1D: l:nfo-Transmit i ;
(2.2) WO | ‘

(ii) D proceeds with robust optimization for goal-oriented

actions planning to determine SP and R **

Time step |

t+1

Conversation ID: i"ower-Request

L
r
]
]

3.2)

PROPOSE OR REFUSE

Figure. A2. Example of agents communication at time step t [22].

Table A gathers the previsions of the operational conditions (i) made by the agents themselves

and (ii) received from other agents through the ISO and (iii) the decision variables.

Table Al. Previsions and decision variables.

Previsions of the operational cotions D WWE TS

(i) agent personal previsions EP; cP; P ’;fflpp‘ ct; ETS; PEV; cF; cP; ¢f
(ii) previsions received from other age VPV. ywPP _t -

throughlSO t 7t

glrlt)a\(/jigi%?lgn variables based the above SP; RD YWPP, [WPP | PV, [TS, GTS, pTS

* Personal previsions of agents are represented by Pls for RO and point predictions for the deterministic optimization.

Note that the adopted hierarchical decision scheme allows, on the one hand, the TS and the WPP

increasing their revenues by deciding which amount of energy to sell to the D or to the external
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grid using the most profitable actions planning; on the other hand, it gives the possibility to the D
to purchase the emissions-free and less expensive energy generated by the TS and WPP in the

microgrid.

A.3. Uncertaintiesin energy management

The expenses and revenues of each agent, and the global reliability of the microgrid are affected
by uncertain parameters, such as the energy outputs from renewable geREfaamaPV F?,

the energy demands of the consunigisandE?, and the electricity priceg, c§ andc?. This

section illustrates the procedure used to account for these uncertainties.

A.3.1. Energy output of renewable energy generators

The energy outputs from the renewable generators are affected by the variability of the
renewable sources of energy, i.e., wind for WPP and solar irradiation for PV.

As discussed previously, the uncertainty related to the availability of the wind energy output
PYPP is described by prediction intervals (Pls), estimated by a multi-perceptron neural network
(NN) [27]. The PlIs are optimized in terms of maximum Coverage Probability (CP) and minimum
Prediction Interval Width (PIW). A multi-objective genetic algorithm (hamely, non-dominated
sorting genetic algorithm—Il1 (NSGA-I11)) is used to find the optimal parameters (weights and
biases) of the NN. Pareto-optimal solution sets of several non-dominated solutions with respect
to the two objectives (CP and PIW), are generated.

As presented in Section 3, the expected value of PV energy &\itpig simulated based on the
solar irradiation and technical specification of PV module [33], [34]. In absence of a prediction
model for the PV energy output, the related uncertainty is described by intervals, whose lower
and upper bounds are symmetric around the expected value of PV energy output. The width of
the interval is selected to account for the variability of the PV energy output in the time period
considered.

The actual energy output of renewable generators is also affected by mechanical failures, which
may lead to periods of production unavailability during the subsequent repairs. A description of
this effect is given by the compound quantitative indicator called technical unavailability [79].
Mechanical failures of generation units of the same type are, for simplicity, assumed to be
independent from each other: no common causes for failures are considered. Moreover, no

particular reduction of energy production due to units degradation has been considered: only two
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states are possible, i.e., 100% of technical availability and 0% during the repair upon a failure.
Failure and repair times are assumed to follow exponential distributions, considering the useful
life of the components. For the numerical application of this paper, the Mean Time To Failure
(MTTF) and Mean Time To Repair (MTTR) of the wind energy generation units have been
taken equal to 1920and 25, respectively [80]. The failures of the power electronics parts are
major contributors to the reliability problem and represent about 40% of the annual failure
frequency for the wind turbines, based on long-term feedback experience [44], which is almost
two times higher than the annual frequency of other wind turbine components. For the sake of
simplicity, in this research we used the term ‘mechanical failure’ to represent all types of failures
of the wind turbines and the generators.

Failure times and repair durations are simulated by sampling from the exponential distribution of
failure and repair times for the given MTTF and MTTR values, with the inverse transform
technique [81].

A.3.2. Energy demand

Similar to the wind energy output, Pls accounting for the variability of the energy deRfands

and EP, are used as estimated a GA — trained Neural Network (NN) [27].

A.3.3. Electricity prices
Similar to the PV energy output, the uncertaintgted to the variability of electricity price§,
cf andc? is accounted for in the form of intervals, whose lower and upper bounds are symmetric

around the expected value of each variable. The width of the intervals is selected to account for

the fluctuations of these variables in the time period considered.
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