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Abstract. The interaction between wakes and rotors is typically detrimental in terms of
the overall power production of a wind farm. The recently studied wind farm controllers
represent a promising way to increase the energy harvested through the mitigation of the
effects induced by wake impingement. Recently, a novel methodology, based on a dynamic
variation of induction, has been proposed as an alternative to steady induction and wake
redirection controls. According to this new technology, a periodic collective motion of blade
pitch generates a dynamic induction, associated with a stronger flow mixing and therefore a
faster wake recovery. Although this technique proved to be effective in terms of power increase,
both in numerical simulations and in wind tunnel experiments, much is to be done in order to
demonstrate its feasibility. In particular, the impact of dynamic induction control in terms of
downstream turbine dynamics has not been yet analyzed in detail. This paper presents a CFD-
based analysis aimed at describing the response of a downstream rotor inside the wake of an
upstream machine performing dynamic induction control. Specifically, the periodic induction
entails a pulsating flow downstream which interacts significantly with the aero-servo-elastic
dynamics of the downstream turbines. For low wind speeds, such an oscillating flow may trigger
a shut-down/start-up sequence any time the velocity results lower than the cut-in speed.

1. Introduction
Wind farm control represents a promising way to increase the energy harvested by a wind farm.
According to this technology, the operative conditions of the upstream turbines are modified
so as to reduce the interaction between their wakes and the downstream machines. A wind
farm control can be based on static induction control (SIC), which consists in reducing the
power of the machine so as to increase in-wake flow velocity [1], and on wake redirection (WR),
which promotes a redirection of the wake out of the downstream rotors by yawing the upstream
machines [2].

Recently, a novel promising method, called dynamic induction control (DIC), has been
proposed as an alternative to the aforementioned techniques. DIC method is based on a
dynamic periodic variation of the axial induction, obtained by a rotor thrust modulation. Such a
modulation can be effectively generated by a periodic collective motion (PCM) of the pitch of the
blades. Through a complex interaction among blade tip vortices, in-wake flow and undisturbed
wind, the PCM technique realizes an increased level of air mixing inside the wake. The wake
itself eventually recovers faster. Potentially, a wind turbine, which finds itself inside such wake,
experiences a higher mean flow velocity.
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Dynamic induction control was firstly proposed and studied in [3] and [4] through CFD
simulations based on actuator disk model. The first wind tunnel verification of DIC was
presented in [5] along with a first analysis of the related impact in terms of fatigue of the
upstream turbine, i.e. the one which generates the dynamic induction. Finally, in [6], the
impact of this control at turbine level was analyzed through a rotor redesign process, including
an analysis of the ultimate loads and of the maximum blade tip deflection.

From the studies conducted in [5, 4, 3], it was possible to assess that PCM is a valuable
technique to increase the overall power production of a wind farm. Moreover, its effectiveness
resulted significantly dependent on the amplitude and frequency of the pitch oscillation. In
general, the frequency range in which one should find the optimal performance is associated
to a Strouhal number between 0.15 and 0.5, being the Strouhal number a dimensionless
value obtained multiplying the oscillation frequency by the ratio between rotor diameter and
undisturbed wind speed.

Additionally, through multibody simulations [6], it was possible to evaluate the impact of
PCM on the loading of the upstream turbine, which turned out to limited and comparable to
the one related to wake-redirection-based control, for small amplitude of the pitch oscillation,
e.g. about 2 deg.

What is however missing in the current status of the literature is a thorough analysis of the
dynamic behavior of downstream turbines, i.e. the ones which feel the effect of DIC. In fact,
varying periodically the induction of an upstream turbine also entails a periodic variation of
in-wake velocity, along with an increase in its mean value. Hence, the downstream flow results
pulsating and characterized by a velocity which significantly oscillates at the PCM frequency.
Such a pulsating wake may first increase the fatigue loading of downstream machines, and, since
farm controls are typically active in the below rated-speed region, may trigger a shut-down/start-
up sequence any time the flow velocity results lower than the cut-in speed.

An analysis of the turbine and farm steady performances (e.g. mean total power) may
therefore overlook some undesired effects due to the particular dynamical characteristics of
resulting flow.

2. Objectives
The present paper aims at studying the effects of DIC based on PCM on the aero-servo-elastic
response of a downstream turbine, which is located within a pulsating wake. Such a study
requires high fidelity CFD-based simulations coupled with an aero-servo-elastic model of the
wind turbines, in order to suitably evaluate the downstream turbine performance.

To the best Authors’ knowledge, this work represents the first attempt to analyze dynamic
induction control in terms of the aeroelastic response of a downstream turbine in a CFD
environment.

To do so, after an explanation of the employed methodology in Sec 3, the paper deals with
two sets of CFD-based analyses, in Sec. 4. In the first set, a study of the wake shed by a rotor
operating with PCM is conducted, providing the evidence of the pulsating behavior of the wake
itself. In the second set, several CFD simulations of a two-turbine farm subject to steady wind
at 6.5 m/s and 9 m/s has been performed with the goal of evaluating the aero-servo-elastic
behavior of the downstream turbine.

3. Methodology
The CFD-based tool chosen in this work is SOWFA (Simulator fOr Wind Farm Applications)
[7], a software based on the incompressible solver of OpenFOAM, which implements a Large Eddy
Simulation scheme (LES). SOWFA is linked with the aero-servo-elastic solver FAST [8], to model the
presence of the flexible turbines. Both tools have been installed on the MARCONI high performance
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computer, managed by the SCAI (SuperComputing Applications and Innovation) department of
the Italian inter-university consortium CINECA.

The analyses of this work have been conducted on the well-known 5MW NREL reference
wind turbine [9], whose FAST model was included in the CFD environment. The wind turbine
model has a diameter D equal to 126 m and a rated wind speed equal to 11.4 m/s. A pretty
wide region I-1/2 extends from the cut-in speed equal to 3 m/s to about 8 m/s. This model has
been chosen here because it is representative of modern onshore wind turbines.

The reference control system of the 5MW NREL turbine, which is a standard pitch/torque
controller based on PID, has been modified to include the sinusoidal PCM blade motion as

βcoll = βtrim + βPCM sin(2π fPCM t+ φPCM), (1)

where βcoll is the blade collective pitch setting, βtrim is the pitch angle imposed by the trimmer
(i.e. the standard pitch-torque turbine regulator), t is the simulation time, whereas βPCM and
fPCM are, respectively, the amplitude and the frequency set for PCM. Finally, φPCM is the phase
of PCM oscillation, used to avoid discontinuity in blade pitch demand at the instant of PCM
activation.

The PCM frequency is typically expressed through the dimensionless Strouhal number defined
as

St =
fPCMD

U∞
, (2)

where U∞ is the undisturbed wind speed.

4. Results
In this section, the results of two series of CFD simulations will be shown. At first, the flow
downstream a rotor operating with and without PCM will be analyzed with the main goal of
comprehending the characteristics of the flow itself and the impact it would have on a possible
downstream machine, in the case of a stationary wind at 6.5 m/s. Then, in the second set
of simulations, a simple two-turbine farm subject to a stationary wind at 6.5 and 9 m/s will
be considered, with the final aim of evaluating the aero-servo-elastic dynamic response of the
downstream machine. The 6.5 and 9 m/s values have been chosen as they are in the middle of
region I-1/2 and II, respectively. This also makes it possible to assess the impact of PCM in the
different regions of operation ([9]).

Clearly, the analyses are all performed for stationary winds in order to ease, in a preliminary
stage of this research, the evaluation of the effects of PCM, which in turbulent conditions would
result masked under turbulence-induced flow fluctuation. Moreover, even though the turbulence
may affect the results significantly, the analysis present in this paper can be viewed also as an
approximation for very low turbulence intensity cases. The more complex case with a realistic
atmospheric boundary layer is, hence, out of the scope of this paper, and is being currently
analyzed by the Authors and the results will be made available in future publications.

4.1. Effect of PCM on the flow downstream a single turbine
For this first sets of simulations, which consider only a single wind turbine, a cuboid domain
with dimensions equal to 10 × 10 × 15D has been considered. The wind blows towards the
longest dimension whereas the turbine is located in the center-line at a distance of 5D from the
inlet face. The separation between the turbine and the domain faces allows the wake to develop
avoiding numerical problems that could arise closed to the domain boundaries.

Four levels of circular refinements around the rotor center have been considered to have a
better modeling of the flow where rotor and wakes are present. The final mesh has 6’237’760
hexahedral and 116’576 polyhedral cells, with a size of about 2 m in the most refined parts and
31.5 m in the outer regions.
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A Dirichlet condition, corresponding to a constant wind at 6.5 m/s, is set to the inlet and
the outlet boundaries, while standard periodic conditions are considered for the other domain
faces.

The constant time step of SOWFA simulation was set equal to 0.048 seconds, whereas a step of
0.048/3=0.016 seconds was used for FAST, meaning that three substeps of the aeroelastic solver
take place within a single step of CFD time marching. After a study on the impact of time step
reduction on wake development, not shown here for the sake of brevity, the selected time steps
resulted to be adequate to capture the relevant behavior of both aeroservoelasticity and fluid
dynamics. With these settings, on CINECA - MARCONI platform, a simulation running for 800
seconds takes about 12 hours with 272 cores.

Four 800-second SOWFA simulations have been performed to evaluate the impact of the PCM
on the wake. The first one was conducted without the wind farm controller, in order to define a
reference case. In the other cases, the PCM was active and three different PCM frequencies has
been considered. In particular, based on previous works presented in literature (see [4], [5] and
[6]), we have considered Strouhal numbers of St = 0.1, 0.3 and 0.5, which correspond, for this
case, to frequency values fPCM equal to 0.0324, 0.0975 and 0.1625 rad/s, respectively. Again,
from the literature cases (see [5, 6]), the amplitude βPCM was fixed to 2.5 deg, a medium-
high value which allows us to better highlight the PCM effects. The amplitude chosen for
βPCM represents a reasonable value within the range where optimal performance is expected,
as suggested in [5].

Figure 1 shows the average flow velocity at a cross section located at 5D downstream. The
four subplots refer to the reference case, i.e. without PCM, at up-left, and the cases with PCM
for St = 0.1, 0.3 and 0.5, respectively at up-right, bottom-left and bottom-right. Since the PCM
entails a periodic variation of the downstream flow velocity, the mean value of the flow speed Ū
has been computed by averaging over a window equal to one PCM period, as

Ū(x, y) =
1

TPCM

∫
TPCM

U(x, y; t)dt, (3)

where x and y are the horizontal and vertical coordinates defining a cross-sectional plane, t is
the time, U is the streamwise flow velocity and TPCM is the PCM period corresponding to about
194, 64 and 39 seconds respectively for St =0.1, 0.3 and 0.5.

An increase of the in-wake flow velocity with respect to the reference case is clearly visible
as a demonstration of the capability of PCM to promote a faster wake recovery.

In order to quantify this increment and try to infer its potential impact on the power produced
by another downstream turbine, if it were inside the wake at 5D, two different mean value
definitions have been introduced. The standard arithmetic average as

Ūarithmetic =
1

Arotor

∫
Arotor

Ū(x, y) dArotor, (4)

and the cubic one, inspired by the fact that the power is proportional to the cube of the velocity,
as

Ūcubic =

(
1

Arotor

∫
Arotor

Ū3(x, y) dArotor

)1/3

, (5)

being Arotor the rotor area and Ū(x, y) the averaged streamwise velocity computed as in (3).
Table 1 displays the increment of the mean streamwise velocity with respect to the case

without PCM in terms of arithmetic and cubic averages for the three analyzed Strouhal numbers.
From the obtained results, it is possible to see, for all analyzed cases, an increase of about

30% of the in-wake flow velocity induced by PCM. This increment would entail a higher power
extracted in a downstream turbine.
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(a) Without PCM (b) St = 0.1

(c) St = 0.3 (d) St = 0.5

Figure 1: Averaged streamwise flow velocity Ū at 5D downstream. The black circle represents
the position of the rotor.

Table 1: Arithmetic and cubic averaged flow velocities, in m/s, for different PCM Strouhal
numbers at 5D downstream the rotor

Arithmetic Cubic
m/s (%) m/s (%)

Reference 3.31 3.67
St = 0.1 4.31 (+30%) 4.39 (+20%)
St = 0.3 4.25 (+28%) 4.36 (+19%)
St = 0.5 4.45 (+34%) 4.53 (+23%)
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This result is not surprising and, in one sense, represents a demonstration of the potential
effectiveness of PCM already reported in literature. In fact, the Strouhal numbers considered in
this investigation were selected in the range in which one may expect the best performance of
PCM[5, 4].

However, beside its mean velocity, it is important to also analyze the time variability of the
flow, which may impact on the dynamic response of a turbine inside the wake.

To this end, the mean flow velocity within the rotor disk, Urotor(t), has been computed for
different sections downstream at each time step of the simulations as

Urotor(t) =
1

Arotor

∫
Arotor

U(x, y; t) dArotor. (6)

Figure 2 shows, for the case of St = 0.1 and uniform wind speed equal to 6.5 m/s, the time
history of Urotor at 4D, 5D, 6D and 7D, which represent examples of possible turbine spacing
of interest for present and future closely-spaced wind farms. The plot displays only the last two
PCM periods of the simulations.

Figure 2: Averaged flow velocity as function of time at different downstream section. Uniform
wind speed 6.5 m/s, PCM Strouhal 0.1.

Some comments can be done by looking at this plot. First of all, it is possible to note that the
flow actually appears as if it were produced by a pulsating wake, as suggested by the oscillations
at the PCM frequency, observed for all downstream distances. This behavior is expected to
impact the closed-loop dynamic response of the downstream wind turbine operating in that
pulsating wake. The time shift in the velocity peaks and holes at different downstream distances
is due to the delay in the wake propagation. Moreover, the strength of wake pulsations decreases
slightly, but still persists by moving away from the rotor. Finally, the mean value of the velocity
increases with the distance as an effect of the standard wake recovery. These time histories
show the particular characteristic of the wake induced by the PCM, which has inspired the
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development of this work: the in-wake flow velocity, besides being higher on average, oscillates
significantly at the PCM frequency and may drops to values lower than the cut-in speed (3 m/s).
To this end, the dynamic response of a downstream turbine (in this case the aero-servo-elastic
model) inside such a pulsating represents an interesting topic of investigation.

4.2. Analysis of two-turbine wind farm at 6.5 and 9 m/s
In order to asses the aero-servo-elastic behavior of a turbine inside a wake generated by an
upstream machine operating with the PCM, a simple two-turbine wind farm has been considered.
A second 5MW NREL reference wind turbine model [9] has been included 5D downstream. The
computational domain has been coherently increased to a cuboid of dimensions 1260×1260×2646
m, corresponding to 10× 10× 21D. The two rotors are aligned to the wind direction and to the
longest domain size.

As in the single turbine case, four local refinements ensure a mesh of good quality in the
region where the turbines are located and where their wakes develop. The total number of cell is
now grown to 9’062’504 of hexahedral and 167’528 of polyhedral types. Sizes of cells are similar
to those obtained for the single turbine case presented in the previous Sec. 4.1.

On CINECA - MARCONI architecture, a simulation running for 800 seconds takes about 17
hours with 272 cores.

At first, the same stationary wind condition at 6.5 m/s, in the region I-1/2 for this machine,
has been considered. Similarly to the case analyzed in Sec. 4.1, the first turbine generates a
PCM with the same amplitude βPCM = 2.5 deg and three frequencies corresponding to Strouhal
numbers equal to St = 0.1, 0.3 and 0.5.

Figure 3 shows, on the top, the time history of the flow velocity at the location of downstream
turbine hub, and, on the bottom, the related power. As one can see, for the lowest Strouhal
St = 0.1, red solid curve, the wind fluctuations in the wake are so high that the turbine shuts
down for speeds lower than cut-in and starts up once the flow velocity gets higher. In fact, looking
again at the same curve, after standard working condition (seconds 400–520), the turbine shuts
down (seconds 520-540) and then starts up again (seconds 540-600). The succession of these
three phases generates an undesired response of the downstream turbine. This has an important
effect on the total wind farm power output and on its quality that must be included in the cost-
benefit analysis related to the wind farm control synthesis. Of course, this issue could be, at
least in part, mitigated with an ad hoc optimization of the start-up procedure, not considered
here.

In Tab. 2, the mean power outputs associated to this farm configuration are reported. Increase
of total power with respect to the case without PCM is up to 20%. Table 2 suggests also that
significant gains can be achieved also for higher Strouhal numbers. However, the range St > 0.5
was intentionally not considered in the present investigation as it is also associated to higher
impact on loads [6].

Another set of simulations has been conducted at 9 m/s, which belongs to the region II.
Figure 4 shows the time histories of power outputs of the downstream machine for the reference
case and three Strouhal numbers. Differently from what happened at 6.5 m/s, the downstream
turbine does not shut down even for very low PCM Strouhal number. This behavior is simply
explainable as the undisturbed wind speed is higher and, in turn, the in-wake velocity results
higher as well. Nevertheless, the power quality becomes worse due to strong fluctuations. Finally,
Tab. 3 reports the mean power produced by the entire wind farm. In this case, an increase up
to the 15% can be observed.

5. Conclusions
This work presents a CFD-based study of the performances of a downstream turbine operating
in a pulsating wake induced by an upstream machine performing a dynamic induction control
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(a) Flow velocity at hub height of downstream turbine.
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(b) Power generated by downstream turbine.

Figure 3: Effect of pulsating wake induced by DIC on the performance of a downstream turbine.
Upper plot: flow velocity at hub height. Bottom plot: generated power.
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Table 2: Power outputs, in kW, for the two-turbine wind farm without (“Reference”) and with
PCM at 6.5 m/s.

Turbine #1 Turbine #2 Farm Gain
kW kW kW [%]

Reference 1053 87 1140 -
St = 0.1 1034 314 1348 18.2
St = 0.3 1061 290 1351 18.6
St = 0.5 1074 294 1367 20.0
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Figure 4: Power generated by downstream turbine. Undisturbed wind speed 9.0 m/s.

Table 3: Power outputs, in kW, for the two-turbine wind farm without (reference) and with
PCM at 9.0 m/s.

Turbine #1 Turbine #2 Farm Gain
kW kW kW [%]

Reference 2775 313 3088 -
St = 0.072 2780 721 3429 11.0
St = 0.217 2751 821 3573 15.7
St = 0.362 2774 797 3572 15.7
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(DIC), through a periodic collective motion of pitch angle (PCM). At first, it has been
demonstrated that the wake generated by a turbine operating with a PCM is pulsating, and
hence is characterized by a higher mean value but also by important oscillations of flow velocity
at the PCM frequency. Then, it has been shown that the pulsating wake may have detrimental
effects on the downstream turbine dynamic response. In particular, for a wind of 6.5 m/s, it has
been observed that the downstream machine may undergo shut-down/start-up sequences for very
low wind velocity and low PCM frequency, with potential detrimental impact on the degradation
of the turbine sub-components and on the power output quality. A similar analysis conducted
for a uniform wind speed equal to 9 m/s showed that such shut-down/start-up sequences are
not present.

Clearly, this work is only a preliminary step for a complete evaluation of the downstream
turbine performance operating within a pulsating wake generated by the dynamic induction
strategy. Many aspects are to be still investigated. For example, turbulence intensity may
play a significant role in this scenario and deserves a special attention. In general, higher
turbulence levels are associated to faster wake dissipation. Hence, we expect the impact of
the dynamic induction control to decrease as the turbulence increases, as in the case with
other wind farm control techniques, such as the wake redirection. A preliminary investigation
in wind tunnel suggests that the dynamic induction control provides an increase in the total
wind farm production even with non-negligible turbulence intensity [5]. Finally, also tower and
nacelle modeling within the CFD environment should also be considered to have a more accurate
assessment of the wake development.

All these important aspects are currently under investigation by the authors.
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