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Abstract
In this paper, we introduce a mortar-based approach to discretizing flow in fractured porous media, which we term the
mixed-dimensional flux coupling scheme. Our formulation is agnostic to the discretizations used to discretize the fluid flow
equations in the porous medium and in the fractures, and as such it represents a unified approach to integrated fractured
geometries into any existing discretization framework. In particular, several existing discretization approaches for fractured
porous media can be seen as special instances of the approach proposed herein. We provide an abstract stability theory for
our approach, which provides explicit guidance into the grids used to discretize the fractures and the porous medium, as
dependent on discretization methods chosen for the respective domains. The theoretical results are sustained by numerical
examples, wherein we utilize our framework to simulate flow in 2D and 3D fractured media using control volume methods
(both two- and multi-point flux), Lagrangian finite element methods, mixed finite element methods, and virtual element
methods. As expected, regardless of the ambient methods chosen, our approach leads to stable and convergent discretizations
for the fractured problems considered, within the limits of the discretization schemes.

Keywords Discretization methods · Mixed-dimensional · Flux mortars

1 Introduction

Flow in porous media with thin inclusions is an important
process both within subsurface and industrial materials. Our
main focus herein is on the subsurface, where the thin
inclusions represent fractures and the fracture space can be
either open or filled. We will thus simply refer to fractured
porous media in what follows. However, thin inclusions may
also be engineered in artificial porous media for the purpose
of fluid flow control.

Fluid flow in fractured porous media is a dominating
process in several subsurface applications, ranging from
geothermal energy production, shale gas recovery, and
nuclear waste deposits. As such, accurate and reliable
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numerical representations have been an important topic
of research, and Helmig has been a major contributor to
the field for more than three decades. Existing discrete
representations of fractured porous media fall in two major
categories, depending on whether the fractures conform
to the underlying discrete grid representing the porous
materials. The so-called unfitted discretizations, wherein the
fractures are allowed to be arbitrary with respect to the grid,
have seen significant research and developments in recent
years (see, e.g., [1, 2]). Our focus herein is in contrast on
discretizations where the discrete grid resolves the fractures,
which are conceptually simpler than unfitted discretizations.

Early research into numerical simulation and conforming
discretization of fractured porous media was spear headed
by, among others, Helmig and his collaborators [3].
This early work was centered around lowest-order finite
element discretizations. Later, it was understood that local
conservation properties were important for discretization
methods for flow in porous media, and conforming
discretizations of fractured porous media were developed
based on control volume approaches [4, 5], mixed finite
element methods [6, 7], mimetic finite differences [8], and
virtual element methods [9]. See also [10] for a comparison
study.
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A recent development in the mathematical represen-
tation of fractured porous media is the modeling and
interpretation of fractures as lower-dimensional mani-
folds [11, 12, 17]. This concept allows for the introduc-
tion of mixed-dimensional partial differential equations
(md-PDEs), wherein partial differential equations are
defined, in a coupled sense, both in the porous material,
lower-dimensional fractures, and yet lower-dimensional
intersections. In this abstraction, it can be shown that the
mathematical models for fractured porous media, can be
cast in a rich functional-analysis framework, ensuring well-
posedness, and thus existence and uniqueness, of solutions
[13].

In this manuscript, we revisit conforming discretizations
of fractured porous media within the context of md-PDEs.
We show, by introducing explicit coupling variables in the
spirit of mortar methods [7, 11, 14, 15], an abstract frame-
work for constructing a conforming fracture discretization
from any discretization of non-fractured porous media. We
term this approach the mixed-dimensional flux-coupling
(MDFC) method. Viewed from the discretization within
each dimension, the coupling between dimensions takes
the form of standard boundary value problems, thus any
implementation that can account for Dirichlet and Neu-
mann boundary data can be applied to fractured media with
minimal adaptations. Our approach thus unifies the various
previous developments reviewed above.

We concretize the abstract framework by applying it to
well-known discretizations from literature, establishing (in
some cases for the first time) that these discretizations are
well posed. To illustrate the versatility of the framework,
we provide numerical examples showing how five different
discretization methods for non-fractured porous media can
be applied as discretization methods for fractured porous
media. Of these discretizations, when using mixed finite
elements or standard finite elements for the non-fractured
media, we recover earlier methods referenced above. In the
case of finite volume (both two- and multi-point flux) and
virtual element methods, our approach effectively leads to a
discretization scheme not previously discussed in literature.
Our numerical examples, which include a two-dimensional
(2D) case where we use non-matching grids between the
dimensions and a relatively complex three-dimensional
(3D) case, highlight the convergence properties and stability
of MDFC even for degenerating parameters.

The remaining manuscript honors the following struc-
ture: In Section 2, we introduce our novel approach to unify-
ing discretization methods for fractured media. Thereafter,
in Section 3, we show the stability of the approach theoret-
ically, which emphasizes the conditions required between
the (in principle non-matching) grids discretizing the matrix
and fractures. Numerical examples and verification are
presented before concluding the paper.

2Modeling fractured porousmedia

In this section, we introduce our model for fractured media,
first by a single fracture, and then extended to general
fracture networks.

2.1 Domain with a single fracture

Flow in (fractured) porous media can lead to complex
and non-linear governing equations. However, at the heart
usually lies a second-order partial differential equation,
which upon linearization (i.e., within a Newton iteration)
thus takes the classical form for a pressure p3 and flux q3

∇ · q3 + ψ3 = 0 on �3 (2.1)

−κ∇p3 = q3 on �3 (2.2)

q3 · n3 = λ2+ on ∂�2+�3 (2.3)

q3 · n3 = λ2− on ∂�2−�3 (2.4)

q3 · n3 = g3 on ∂N�3 (2.5)

trp3 = 0 on ∂D�3 (2.6)

Here, we denote by �3 the (three-dimensional) porous
medium, and by ∂N and ∂D its Neumann and Dirichlet
boundaries, respectively. We denote by ∂�2±�3 the boundary

of �3 as seen from the positive (resp. negative) side of
�2, and the outer normal vector is always denoted n.
The Dirichlet boundary data is set to zero for notational
convenience. We emphasize the structure of the governing
equations as composed of a conservation law (2.1) and a
constitutive (Darcy) law (2.2). In Eqs. 2.1–2.6, we have
marked variables by a superscript “3” to emphasize that
they belong in three dimensions; the necessity of the
precision will be clear below. Note that the flux from
the (two-dimensional) Neumann boundary is denoted by a
superscript “2”. Throughout the manuscript, we will use
ψ to denote right-hand sides, which with the chosen sign
convention represents fluid extraction.

Similarly, we may consider a single fracture as a (two-
dimensional) manifold �2 (see Fig. 1), whereon the gover-
ning equations can in the linearized case be expressed as [16]

∇2 · q2 − (λ2+ + λ2−) + ψ2 = 0 on �2 (2.7)

−κ2||∇2p
2 = q2 on �2 (2.8)

q2 · n2 = g2 on ∂N�2 (2.9)

trp2 = 0 on ∂D�2 (2.10)
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Fig. 1 Illustration of a 3D domain with a single 2D fracture, see
Section 4 for more examples

In Eqs. 2.7 and 2.8, we denote by a double-strike the
tensor operating tangentially (parallel) to the manifold and
emphasized that the differential operators are 2D by a
subscript. We note that in Eq. 2.7, two extra terms arise.
These represent the outflow from the fracture into the
porous medium on the two sides of the fracture (denoted
+ and −). As above, fracture variables are indicated by a
superscript 2 for clarity.

Considering still the case of a single fracture, Eqs. 2.1–
2.10 lead to a system of equations where λ2 is a variable
internal to the system. We thus complete the model with
a constitutive law for λ2, which takes the Darcy-like form
(see, e.g., [7])

λ2± = −κ⊥(p2 − trp3±) (2.11)

Fig. 2 Illustration of a domain in 2D containing four fractures and an
intersection, and its logical representation with two 2D domains, seven
1D domains, and one 0D domain

We remark that the within-fracture permeability κ|| and the
transverse permeability κ⊥ may in practice scale with the
aperture and its inverse, respectively.

Equations 2.1–2.11 form a closed and well-posed system
of equations for a porous medium including a fracture (see,
e.g., [8]). More generally, we note that we write these
equations in a unified way, in that for d = {2, 3}
∇d · qd −

∑
j∈± λd

j + ψd = 0 on �d (2.12)

−κd||∇dpd = qd on �d (2.13)

qd · nd = λd−1 on ∂�d−1�
d (2.14)

λd
j = −κd⊥(pd − trpd+1

j ) on ∂�d−1�
d (2.15)

qd · nd = gd on ∂N�d (2.16)

pd = 0 on ∂D�d (2.17)

Equations 2.12–2.17 make sense with the convention that
since there is no four-dimensional domain in the model, the
terms λ3 = 0 and κ3|| = κ .

From physical considerations, it is customary to consider
all boundaries of the fracture as Neumann boundaries
with gd=0, except where the boundary coincides with
an outer boundary of the full domain. However, these
restrictions are not necessary from a mathematical or
numerical perspective, and we will retain the slightly more
general formulation in order to avoid extra notation for
distinguishing between internal and external boundaries of
fractures.

2.2 Extension to general fracture configurations

Equations 2.12–2.17 are written in a way that naturally
generalizes also to fracture intersections, both the one-
dimensional (1D) line intersections as well as the zero-
dimensional (0D) point intersections of three fractures [6,
17]. We introduce some extra notation to this end. Let
each domain (matrix, fracture, or intersection) be indexed
by number and dimension, i.e., �d

i is domain number
i ∈ I , having dimensionality d. We consider a total of m

subdomains of various dimensionality. This subdivision is
illustrated in Fig. 2.

Furthermore, let Ŝi be the set of neighbors of domain
i of dimension d+1, and conversely let Ši be the set of
neighbors of i with dimension d−1. Then we can write for
all d = {0, 1, 2, 3} and all i ∈ I the equations

∇d · qd
i −

∑
j∈Ŝi

λd
i,j + ψd

i = 0 on �d
i (2.18)

−κd
i,||∇dpd

i = qd
i on �d

i (2.19)
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qd
j · nd

j = λd−1
i,j on ∂i�

d
j (2.20)

λd
i,j = −κd

i,⊥(pd
i − trpd+1

j ) on ∂i�
d
j (2.21)

qd
i · nd

i = gd
i on ∂N�d

i (2.22)

pd
i = 0 on ∂D�d

i (2.23)

Note that for d = 0, the domain has no physical extent
and no boundary such that Eqs. 2.19, 2.20, 2.22, and
2.23 are void, and correspondingly q0

i is not a variable in
the system. Equations 2.18–2.23—with some variations—
are equivalent or generalize the standard equations used
to model fractured porous media (see [1, 6, 7] and
references therein). These equations have been identified
as a second-order system of mixed-dimensional partial
differential equations, for which existence and uniqueness
theory has been developed under fairly mild assumptions on
the geometry [13]. In this work, we will only consider planar
fractures, but with no restrictions on their intersections or
interaction with the boundary.

In order to simplify notation in the following, we
consider the dimension associated with each subdomain,
d = d(i), to be specified, and introduce the compound

variables p = [pd(1)
1 . . . p

d(m)
m ], q = [qd(1)

1 . . . q
d(m)
m ] and

similarly for . We also introduce corresponding

function spaces, thus we let and L2 =∏
i

∏
j∈Ŝi

L2(�d
i (i)). The Dirichlet boundary conditions

implied by the notation
◦
H 1 only applies to the part of the

boundary covered by Eq. 2.23.

2.3 Variational formulation

Before considering discretization of Eqs. 2.18–2.23, we
note that Eq. 2.21 is in a sense dual to the summation terms
in Eq. 2.18, thus the system can be written as a symmetric
saddle-point problem: Find such that for
all i ∈ I (from Eqs. 2.18–2.20):

(
κd
i,||∇dpd

i , ∇dwd
i

)

�d
i

+
∑

j∈Ši

(
λd−1

j,i , tr wd
i

)

∂j �d
i

−
∑

j∈Ŝd
i

(
λd

i,j , w
d
i

)

�d
i

= −(ψs
i w) −

(
gd

i , tr wd
i

)

∂N�d
i

for all w ∈ H1(�
d
i ) (2.24)

and (from Eq. 2.21):
∑

j∈Ŝd
i

(
pd

i , μd
i,j

)

�i

−
(
μd

i,j , trp
d+1
j

)

∂i�
d+1
j

+
((

κd
i,⊥

)−1
λd

i,j , μ
d
i,j

)

∂i�
d+1
j

= 0 for all μ ∈ L2(∂i�
d
j )

(2.25)

By shifting indexes on the trace term in Eq. 2.24, we identify
the symmetric and coupling terms as

(2.26)

b(p, μ)=
∑

i∈I

(
(μd

i,j , trp
d+1
j )

∂i�
d+1
j

−
∑

j∈Ŝd
i

(pd
i , μd

i,j )�d
i

)

(2.27)

For non-degenerate coefficients, Eqs. 2.24 and 2.25 are
well posed by standard saddle-point theory [18], and in
the remaining manuscript, we will only consider this case.
Nevertheless, we remark that, following similar arguments
as exposed in [6], it can be shown that significant
degeneracy of coefficients can be permitted, at the cost of
introducing weighted spaces. In particular, it is of interest
to also allow for blocking fractures, wherein the tangential
permeability is negligible. Equations 2.24 and 2.25 are well
posed in this sense, since for a given domain �d

i , the
permeability can degenerate in the sense of κd

i,|| → 0, as

long as κd
i,⊥ remains bounded from below for all j ∈ Ŝd

i .

However, now the pressure pd
i is only in L2 due to the inf-

sup condition for b(p, μ) [6]. This implies that this weakly
continuous formulation for fractured porous media is robust
both for arbitrarily thin fractures and can also be applied to
blocking fractures. We summarize the above discussion as
follows:

Let an L2-like norm on be defined as

||(p, λ)||2 =
∑

i∈I
||pd

i ||2
L2(�d

i )
+

∑
j∈Ŝi

||λd
i,j ||2L2(�d

i )

(2.28)

Furthermore, let the set of indexes be refined such that
i ∈ Ia if κd

i,|| > 0 and i ∈ Ib if κd
i,|| = 0. Then we introduce

space as

(2.29)

Note here that we use a circle above the function space to
indicate homogeneous Dirichlet boundary conditions. Then
the equations for flowing and blocking fractures can be
written as find such that

(2.30)

The solution of Eq. 2.30 is characterized by the following
Lemma.
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Lemma 2.1 Equation 2.30 has a unique solution
, satisfying

(2.31)

Provided that there exists constants κ0,⊥ and κ∞,⊥ for all i,
holds that 0 < κ0,⊥ ≤ κd

i,⊥ ≤ κ∞,⊥ < ∞, and that

a) There is a lower bound κ0,|| such that for all i ∈ Ia , it
holds that κd

i,|| ≥ κ0,|| > 0, while,

b) For all i ∈ Ib there it holds that j ∈ Ia for all j ∈ Ŝi .

Proof For the two cases in the proof for Ia and Ib,
respectively, we indicate variables in these domains by
similar subscripts. Then formally, Eq. 2.26 take the form

Here, �a represents the H1 bilinear forms on �d
i , κ⊥

represents the L2 bilinear forms om ∂j�
d
i , while � are the

duality pairings in Eq. 2.27. The upper-left 3×3 system is
coercive due to the conditions of the proof. Furthermore,
we obtain the well-posedness of the full system, since it is
easy to show that the � terms are inf-sup stable between L2

spaces, indeed

inf
pd

i ∈L2(�d
i )

i ∈Ib

sup
μd

i,j ∈L2(�d
i )

∑
j∈Ŝd

i
(pd

i , μd
i,j )�d

i

||pd
i ||

L2(�d
i )

||μd
i,j ||L2(�d

i )

≥ 1

Since one may simply choose μd
i,j = pd

i . The coercivity of
the upper left 3×3 system together with inf-sup for the �

terms is sufficient for stability of the full system by abstract
saddle-point theory [18].

Remark 2.2 Lemma 2.1 is not optimal in the sense that
it is fairly easy to extract H 1 regularities on all domains
i ∈ Ia , and the restrictions on κ⊥ can be somewhat relaxed.
However, as in this contribution, we are primarily interested
in the numerical implementation, we have chosen to keep
Lemma 2.1 as simple as possible. Readers interested in the
functional analysis for equations of this type are referred to
the papers referenced in the introduction.

It is important to note that the main objective of exposing
the equations for flow in fractured porous media on the
form (2.26)–(2.27), is that it highlights the specific domain-
decomposition like structure of the problem. Indeed, we
note that on each subdomain (be it porous media, fracture,
or fracture intersections), we have a fairly standard elliptic
partial-differential equation. These are coupled via interface
variables, λd

i,j . This structure is key to design general and
flexible discretization approaches, as introduced in the next
section.

3 Discretizations for fractured porousmedia

Our exposition of the mathematical model for fractured
porous media emphasizes two main aspects of the model,
namely the second-order elliptic PDE within each domain,
and the flux-coupling terms. Numerous discretization
methods have been constructed for second-order elliptic
differential equations—many of these are bespoke to
the particular challenges associated with flow in highly
heterogeneous porous media (for an introduction, see the
books [19–21]). Herein, we will prove that any stable
discretization for flow in (fixed-dimensional) porous media
can be applied to fractured porous media through the
framework introduced in the preceding section.

We subdivide this section in three parts, in order to
provide the MDFC discretization framework, its abstract
analysis, and a concrete example using finite elements.

To be precise, we consider each domain �d
i and its

Neumann boundary 	d
i = ∂N� ∪

j∈Š
∂j�

d
i as endowed

with a numerical discretization (note that 	d
i includes

all boundaries to lower-dimensional manifolds). We will
only consider linear discretizations; however, the approach
should be applicable also to non-linear discretizations
(for a recent contribution in this direction from Helmig’s
group, see [22]). We do not require that a discrete grid
be defined; however, we let the discrete representation of
L2(�d

i ) and L2(	d
i ) be denoted as Nh(�

d
i ) and Nh(	

d
i ),

respectively. For domains i ∈ Ia , i.e., where the fractures
are permeable with κd

i,|| ≥ κ0,||, the solution operator of
the numerical discretization of the heterogeneous elliptic
equation on a given domain i ∈ Ia can be stated as :
[Nh(�

d
i ), Nh(	

d
i )] → [Nh(�

d
i ), Nh(	

d
i )]. This solution

operator maps sinks and Neumann data to pressures and
pressure traces, as made precise below. Here, we recall that
we for notational simplicity only consider homogeneous
boundary conditions on the Dirichlet boundaries, and as
such suppress the Dirichlet boundary data. For domains i ∈
Ib, the solution operator is void, as there is no differential
equation on these domains.

We will use the natural requirement that the numerical
discretizations provided are consistent approximations in
the following sense: Let i ∈ Ia , and let ,
for (ψ, θ) ∈ Nh(�

d
i ) × Nh(	

d
i ), then this quadruplet

of variables approximates the solution to the elliptic
differential equation

∇d · (−κd
i,||∇dp) + ψ ≈ 0 on �d

i (3.1)

(−κd
i,||∇dp) · n − θ ≈ 0 on 	d

i (3.2)

t − trp ≈ 0 on 	d
i (3.3)

trp ≈ 0 on ∂D�d
i (3.4)



Comput Geosci

The precise interpretation of ≈ will depend on the chosen
numerical method. We note that standard methods such
as finite volume, finite element, mixed-finite element, and
spectral methods all fall within this framework, where
the approximation implied by the ≈ signs of Eqs. 3.1–
3.4 can for most numerical methods be characterized by
grid regularity, material parameters, grid resolution, etc. By
assumption, we consider only stable numerical methods,
in the sense of a negative eigenvalue-spectrum for the
numerical solution operators , with potentially a single
degenerate eigenvalue for subdomains where ∂D�d

i =
Ø, and we will denote the smallest (i.e., most negative)
nondegenerate eigenvalue of as −nd

i . Furthermore, the
system (3.1)–(3.4) is self-adjoint, so that in many cases the
numerical method will be symmetric (see Section 3.2
for the case of finite elements).

3.1 MDFC: a unified discretization of fractured
porous media

To provide a discretization for fractured systems, a grid
is introduced on the lower-dimensional manifolds �d

i

on which the boundary flux variables λd
i,j will be defined.

We emphasize that this mortar-like grid can be chosen
independently of any grid used by the numerical methods

and , thus we impose a minimum of restrictions on

the grids. Nevertheless, note that this construction ensures
that the flux variables on either side of a fracture (or either
sides of fracture intersections) are conforming with each
other. The precise relationships between the admissible
grids as implied by the numerical methods , will be
made clear below. For the sake of symmetry, we also define
grids for the Neumann data on ∂N�d

i .
To formulate discrete methods for fractured porous

media, we represent the flux variable as piecewise constant
on the mortar grid , thus λd

i,j ∈ and gd
i ∈

(higher-order approximations are also possible, but the
regularity of the problem does not seem to justify this). We
introduce projection operators in order to move between
the degrees of freedom of the numerical methods and
the mortar grids . We first define the compound operator
projecting from the coupling variables on the mortar grids
to the subdomain degrees of freedom

(3.5)

and conversely from the numerical variables to the coupling
variables

(3.6)

Now, our MDFC discretization framework for fractured
porous media takes the form: for given numerical discretiza-
tions : Find λd

i,j ∈ , for all i ∈ I and j ∈ Ŝi such
that

(3.7)

subject to the discrete constraints:

(3.8)

[ad
i , bd

i ]=�Nh(�d
i )

[
−

∑
j∈Ŝd

i

λd
i,j , λ

d−1
Ši ,i

, gd
i

]
for all i ∈ Ia

(3.9)

The dummy variables ad
i and bd

i have the interpretations of
sinks and fluxes due to the interactions with other domains,
respectively. In contrast, the variables pd

i and tdi are the
pressure and pressure traces after projection onto the grids

. The variable zd
i is the pressure trace projected onto the

Neumann boundaries, and is not used with the boundary
conditions considered herein (but would be relevant with
Robin boundary conditions).

This MDFC scheme has a particularly simple interpreta-
tion: For each subdomain i ∈ Ia , can be interpreted as
a generalized Neumann-Dirichlet map, in the sense that it
maps boundary fluxes (which also take the apparent form
of sources for neighboring domains of d−1) to Dirich-
let data (where conversely, for d<n, the internal values
are considered Dirichlet data for neighboring domains of
dimension d+1). As such, Eq. 3.8 resolves the internal
differential equations in each subdomain, Eq. 3.9 is the pro-
jection of variables from the flux grids to the numerical
boundary (and source) data, while Eq. 3.7 simply states
that the flux λi,j between a fracture and its surroundings
should satisfy a form of Darcy’s law, depending on the
difference in pressure p of the fracture and the pressure
t at the boundary of the surroundings. Equations 3.7–3.9
are thus a Schur-complement formulation of the discrete
problem.

3.2 Abstract analysis

Let the discretization methods corresponding to the solution
operators be collected in a linear system, i.e. we state
(3.8) on the form:

(3.10)

Similarly, we denote the compound projection operators
and . Furthermore, denote by D the discrete divergence
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operators from Eq. 3.9, which sums flux variables associated
with a fracture while retaining Neumann boundary data i.e.

(3.11)

Finally, let the diagonal mass matrix associated with

the inner product
(
(κd

i,⊥)
−1

λd
i , μ

)
appearing in Eq. 3.9

be denoted κ−1. Then we can eliminate the subdomain
variables from the discrete system (3.7)–(3.9) to obtain
a Schur-complement system only in terms of the flux
variables, i.e.

(3.12)

From the Schur complement form, we immediately obtain
the following result:

Lemma 3.1 Let all subdomain discretization methods
be negative definite for i ∈ Ia (i.e. ∂D�d

i �= Ø for all i ∈
Ia), and furthermore let the assumptions of Lemma 2.1 hold.
Then if the projection operators are negative transposes,
such that , the Schur-complement system (3.12)
is stable, with no degenerate eigenvalues.

Proof By the choice of λi,j ∈ , the κ−1 matrix
is diagonal, and has positive eigenvalues bounded below
by κ−1

∞,⊥. Thus, it is sufficient to show that the remaining
term has non-negative eigenvalues. But since is ne-
gative definite by the assumption of the lemma, then

will be non-nega-
tive definite. The result follows since the right-hand side
operator is bounded by the assumption of the Lemma. �

In order to allow for fractures (and intersections, etc.)
that do not have a Dirichlet boundary, the arguments of
Lemma 3.1 must be refined. To this end, let Īa be the
subset of Ia which do not have a Dirichlet boundary. For
these domains, we have a pure Neumann problem, and
Eqs. 3.8 are expected to constrain the solutions up to a
constant (pressure). For the analysis, we therefore introduce
an auxiliary constant pressure p̄d

i for each domain i ∈
Īa , and introduce the modified numerical methods :
[Nh(�

d
i ), Nh(	

d
i )] \ R → [Nh(�

d
i ), Nh(	

d
i )] \ R, i.e., the

solution corresponding to Eqs. 3.1–3.4 with a compatibility
condition (fluxes and sinks must sum to zero), and the
additional constraint that the pressure has mean value zero.
For i �= Ia\Īa , the solution operator is unaltered, .

Equation 3.10 is then restated as

(3.13)

Inserting

(3.14)

With the compatibility constraint that

(3.15)

Lemma 3.2 Let all subdomain discretization methods
be negative definite for i ∈ Ia , and furthermore, let the
assumptions of Lemma 2.1 hold. Furthermore, let Ia \ Īa

contain at least one domain. Then if the projection operators
are negative transposes, such that , the saddle-
point system (3.14) and (3.15) is stable, with no degenerate
eigenvalues.

Proof By the assumptions of Lemma 3.1,
. Moreover, by similar argument to Lemma 3.1,

it holds that is coercive. It remains
to show inf-sup for . I.e., we must show that

(3.16)

This result is obtained by considering (all) i such that
i ∈ Ia \ Īa . Construct a rooted tree(s) T from i spanning
all subdomains (this can always be done for connected
domains). Then for leaves (i.e. terminal nodes of the tree)
j we set λj,k = p̄j , where k is the parent of j (we use
the sign convention that λj,k = −λk,j if k is in Šj , and it
is sufficient to consider λj,k constant). Proceeding in this
manner recursively, let j be a node in the tree and let λj,l

be determined for all branches extending from j . Then set
λj,k = p̄j −∑

l λj,l . Proceeding until the root of the tree, we
see by construction that , and that ≤
c||p̄||, where c increases with the depth of the tree(s) . For
a finite geometry,C is therefore bounded by the geometry of
the fracture network, and independent of the discretization
methods. The solvability and bounded eigenvalues of Eqs.
3.14 and 3.15 then follow from standard theory [18].

In practice, it is of course also of interest to obtain
values for the discrete solutions pd

i , and not only the flux
exchanges . This result is slightly more subtle, in a similar
sense as Lemma 2.1. To prepare, we write Eq. 3.12 in the
same form as used in the proof of Lemma 2.1.

(3.17)

Here, the linear operators are the inverses of , and
represent the linear discretizations underlying the numerical
solution. Hence, Eq. 3.17 is also structurally similar to
the natural implementation of the methodology. It is
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also important to note that the form 3.17 is agnostic to
whether a domain is in Īa , thus from the perspective of
implementation, it will in many cases not be necessary to
introduce special treatment of these domains as in Lemma
3.2. We now obtain a similar result as for the continuous
case, in the sense that

Theorem 3.3 Equation 3.17 is well-posed, provided that
the assumptions of Lemma 2.1 and 3.1 (or 3.2) hold, and
that furthermore

c) The largest eigenvalues nd
i of the numerical methods

are bounded from above.
d) The discrete projection operators satisfy discrete

inf-sup conditions for all pairs i and j appearing in
condition b) of Lemma 2.1.

Proof The proof is identical to Lemma 2.1 in the continuous
case.

We make the following remarks regarding Theorem 3.3
and its implications for MDFC:

1. All standard numerical methods for elliptic partial
differential equations will satisfy condition c) in the
theorem, thus essentially any numerical method can be
applied to fractured porous media through the MDFC
approach given in Section 3.1.

2. There are no restrictions on the grids in relation
to the numerical methods as long as the fracture
permeabilities κd

i,|| do not degenerate. In particular,
for grid-based numerical methods , non-matching
grids, both coarser and finer, can be used between
the external domain and , and furthermore into the
internal domain.

3. In practice, conditions (c) and (d) of the theorem
state that for subdomains where κd

i,|| degenerates, the
discrete representation of pd

i must not be finer than λd
i,j .

This is similar to the typical conditions encountered in
traditional mortar methods [15].

4. In the special case where is chosen as the mixed-
finite element method, analysis shows that spatially
degenerating κd

i,|| can be allowed, thus circumventing
the binary structure of Lemma 2.1 and Theorem 3.3
[6].

3.3Worked example: finite element methods

In order to make the presentation more concrete, we
consider the finite element method with continuous linear
Lagrange elements in the framework presented above. Thus,
for each �d

i let be the corresponding grid, with nodal
degrees of freedom.

Then for i ∈ Ia , the elements of the submatrices Ad
i of

are simply given by the inner products of p,

(κd
i,||∇dpd

i , ∇dw)
�d
i

(3.18)

with Neumann data implemented as natural boundary
conditions through the duality pairing
∑

j∈Ši

〈λd−1
j,i , tr w〉∂j �d

i
(3.19)

The Neumann boundary conditions are exactly dual to
the evaluation of traces, and thus the operator will
be self-adjoint. Standard finite element theory further
guarantees that the required bound on the eigenvalues holds
independent of grid spacing with [23]

nd
i ≤ C(κd

i,||)
−1

(3.20)

Since the solution pd
i and its trace live in finite-dimensional

subspaces of L2, the projection operators become defined
in the standard way, i.e. for λi,j ∈ the projection

satisfies

(3.21)

It is therefore clear that . Thus, all the conditions
of Theorem 3.3 are satisfied, provided that the grids are
no finer than whenever κd

i,|| → 0.
We note that the finite element approximation could also

be obtained directly from Section 2 by simply using the
finite-dimensional spaces and the bilinear forms defined
in Eqs. 2.26–2.27. Thus, Eqs. 3.7–3.9 with the numerical
methods defined by Eqs. 3.14–3.15 and projection
operators defined by Eq. 3.15 is equivalent to the symmetric
and bilinear saddle-point problem: find (pd

i,h, λ
d
i,h) ∈

such that

(3.22)

This implies that the discretization is consistent, and
together with the stability of the method, it follows that
Eq. 3.21, and equivalently the MDFC scheme exposed in
Section 3.1 with P1 finite elements as subdomain solvers,
represents a convergent numerical discretization for Eqs.
2.18–2.23.

While the approach as stated above is sufficient, in the
sense of obtaining a stable and convergent discretization,
we also remark that an improved method would likely be
obtained by honoring the structure of from Section 2.3,
and thus using for i ∈ Ib. In particular, this
would eliminate the projection errors associated with the
low-permeable fractures. This highlights the flexibility of
the framework to accommodate different discretizations in
the different domains, bespoke to the physical processes.
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Fig. 3 The contour lines and color scale of the reference solution on
the domain given in Fig. 2. The different qualitative aspects of the
solution between the conductive and blocking fractures can be clearly
seen

4 Example calculations

To verify the theory derived above, we propose two syn-
thetic test cases in which the ambient space is two and three
dimensional, respectively. Out of the range of numerical
methods to which the MDFC applies, we consider five
discretization schemes, summarized below.

Two mixed methods are employed, namely the mixed
finite element (RT0), and the dual virtual element method
(VEM). The mixed finite element, considered in [6], is
given by Raviart-Thomas elements of lowest order for
the fluxes and piecewise constants for the pressure in all
dimensions. On the other hand, VEM [9] employs a single
degree of freedom per face for the fluxes without explicitly
specifying the basis functions and represents pressures as
piecewise constants. Thirdly, employing nodal-based, linear
Lagrange elements in all dimensions leads to the primal
formulation (P1) as presented in Section 3.2. This is the only
method considered in this work which does not respect local
mass conservation. Finally, two finite volume methods are
considered, the two-point flux approximation (TPFA) and
the multi-point flux approximation scheme (MPFA) [24].

In line with the spirit of the theory presented in this work,
the coupling between dimensions employs a flux mortar
variable, defined as piecewise constants on a separately
generated, lower-dimensional grid. All computations are
performed using the open-source simulation tool PorePy
[25, 26].

4.1 Two-dimensional fracture system

The first example, obtained from [6], consists of a unit
square with five one-dimensional fractures as given in

Fig. 2. Immersed in the top half of the domain are two inter-
secting, conductive fractures with permeability κ⊥ = 104

and κ|| = 1. Note that due to the dimensionless scaling,
this corresponds to fractures that are equally conductive in
the parallel direction (in terms of volume per unit pressure
drop) to the full porous unit square domain. Below are two
half-immersed blocking fractures (κ⊥ = 1, κ|| = 10−4) and
finally, a conductive fracture separates the lower right cor-
ner. The boundary conditions are chosen as a unit pressure
drop from top to bottom and no-flow conditions on the sides.
The matrix permeability is set to 1.

This example is designed to contain all the elements that
constitute challenges for numerical methods for fractured
porous media: The two intersecting fractures represent
both 1D and 0D domains which have no contact with the
boundary, thus the numerical methods on these domains
will contain a degenerate eigenvalue (i.e., the pressure
solutions are only defined up to a constant). Moreover, the
low-permeable and horizontal fractures are expected to lead
to singularities in the solution in the 2D domain. Finally, in
the lower corner there is a domain which intersects both a
Dirichlet and a Neumann boundary.

In terms of mesh generation, the one-dimensional
fracture grids match the trace of the adjacent two-
dimensional grids. The mortar grid is then constructed at
each fracture to have approximately 75% of the number of
elements compared with the inner, lower-dimensional mesh.

Qualitatively, all numerical methods produce the same
pressure distributions. Aside from artifacts due to the
coarseness of the grid, all methods produce solutions
which are visually indistinguishable from the Fig. 3. We
turn to a more quantitative measure in order to expose
differences between the discretizations. Since the only
common property between the methods is the mortar
variable, we compute its L2 error with respect to a fine-
scale solution obtained using the RT0 method. In case of
convergence, the rate will be limited to first order with
respect to the mesh size, since the mortar variable is
represented by piecewise constants.

The results of this convergence test are shown in Fig. 4.
For the one-dimensional mortar variables, very similar
behavior is observed for the methods RT0, VEM, and
MPFA, exhibiting stable and linear convergence. The two
remaining methods show lower than first-order convergence
on average. For P1, we speculate that this is due to its lack of
local mass conservation, since the error is measured in a flux
variable. For TPFA, this deviation is likely due to the lack of
consistency in the method (i.e., the approximation error to
Eqs. 3.1–3.4 does not necessarily go to zero with grid size).
We emphasize that all methods are robust and stable from a
linear algebra perspective on all grids.

The error in the mortar variables defined at the zero-
dimensional intersection is analyzed in Fig. 4 (right).
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Fig. 4 The L2 errors in the
mortar variable decrease with
the mesh size for this range of h
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These results are slightly more sporadic since an accumu-
lation of errors can occur from the higher dimensions, and
since this essentially represents a point evaluation of the
solution. Moreover, the grids used in the computations are
not nested and mesh sensitivities of the method may be the
cause of these effects. Nevertheless, the overall trend in all
methods is a decrease in error as the mesh becomes finer.
It is noteworthy that the finite element methods exhibit a
more monotone decay in comparison with the finite volume
methods.

4.2 Stability

It is of interest to verify the claims of Theorem 3.3.
In particular, we wish to address whether the discrete
representation leads to a linear system which has a lower
bound on condition numbers, which is independent of grid
resolutions for non-degenerate parameters, and allows for
degenerate parameters in the sense of conditions (a)–(d)
in the proof. We have chosen the condition number of the
Schur complement system (3.12) as a proxy for the stability
of the method, arguing (as in the preceding section) that
the condition number of the full system will depend on
the particular features of the numerical methods and grids
utilized outside of the fractures to an extent where it is
difficult to make a fair comparison.

In order to emphasize grids and parameters, we simplify the
example from Section 4.1 by omitting the fractures which do
not touch the boundary, and replacing the no-flow boundary
conditions on the sides of the domain by a linear pressure
variation. We can then consider Theorem 3.1 purely in terms
of the mortar variables λi,j . Furthermore, in order to
reduce the parameter space, we will let the remaining three
fractures have the same parameters κ⊥ and κ||.

We fix the grid in the 2D domain with a resolution
corresponding to the second-coarsest grid (approximately
4.5k triangles) in the convergence test of Section 4.1. Then
in addition to the two fracture parameters, we introduce two
grid parameters: The relative resolution of the outer grid to
the mortar grid, and the relative resolution from the mortar
grid to the fracture grid.

Our aim is to see how the lowest eigenvalue of the
discrete Schur-complement system (3.12) depends on the
fracture parameters and grid parameters. To this end, we
have conducted a suite of simulations for all methods,
exploring the full 4D parameter space. We observe that
the results are completely independent of κ|| and the ratio
of the mortar grid to the inner grid. When varying the
perpendicular permeability κ⊥, the results depend primarily
on whether the mortar grid is finer or coarser than the outer
grid, and weakly depends on the ratio. These results are
summarized in Fig. 5.

Fig. 5 The minimum eigenvalue
nmin of the Schur complement
(3.12) is plotted against κ⊥ for
all five ambient numerical
methods, in the case of both a
finer, conforming, and coarser
mortar grid (with respect to the
outer grid). In all cases, the
results are independent of the
coarsening/refinement ratio
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Fig. 6 On the left, a the
geometry of the example. On the
right, b the pressure computed
with RT0

From Theorem 3.3, the expected results are that the
minimum eigenvalue should scale linearly with κ−1

⊥ . Indeed,
this is what is observed for all methods in the case
of small values of κ⊥. Moreover, all methods are also
stable for coarse mortar grids for large values of κ⊥.
This result reflects the fact that for coarse mortar grids,
the Neumann-Dirichlet maps stabilize the system, and that
numerically there is an inf-sup condition on such that

has a lowest eigenvalue. We note however,
that this does not hold for the continuous system given in
Eq. 2.30, since the trace spaces for the pressure are not
rich enough to control the mortar space. This explains why
stability is lost on fine mortar grids for all methods. Thus, in
all cases and for all grids, the MDFC method is stable, with
eigenvalue bounded from below by the continuous problem.

In general, we thus conclude that for non-degenerate
parameters, all discretizations lead to stable systems for
the mortar variable, independent of grid resolution between
matrix, flux-variable, and the fractures. For degenerate
fracture flow κ||, all methods remain stable. Finally,

for degenerate fracture cross-flow κ⊥, the results are in
accordance with Theorem 3.3.

4.3 Three-dimensional example

Finally, we consider simulations in a 3D problem. The
computational domain is taken as the unit cube, and the
fracture network for this example is reported in Fig. 6a.
The latter consist of nine fractures with a structure similar
to the Benchmark 1 in Flemisch [10], extended to 3D. The
matrix permeability is the identity tensor. We introduce the
scaling factor ζ = 10−4(3−d), for each lower dimensional
object the normal permeability is given by κ⊥ = 104/ζ
and the tangential by κ|| = 104ζ . Flow is forced diagonally
across the domain by specifying a pressure value of 1 at
boundaries characterized by (x, y, z) < 0.4, and similarly
a pressure of −1 at boundaries with (x, y, z) > 0.8. On
all other boundaries, no-flow conditions are assigned. For
illustration, the numerical solution computed using RT0 is
reported in Fig. 6b.
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Fig. 7 Error decay in the mortar variable for the 3D simulation reported in Section 4.3
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To compare the numerical schemes, we investigate
numerical convergence of the mortar variables in the same
way as in Section 4.1. Three simplex grids are considered,
with cell counts of about 3.5k, 4.5k and 10k tetrahedrals,
together with a suitable number of triangles, line elements,
and points. For simplicity, we consider only matching grids
in this case. Errors in the mortar variables are computed
relative to a reference solution obtained with RT0 on a grid
with about 37k tetrahedral cells. The resulting error decay is
depicted in Fig. 7. The simulation confirms the findings in
Section 4.1: MPFA, RT0, and VEM all exhibit at least first-
order convergence for all dimensions, while TPFA again
suffers from lack of consistency on the ambient grid, thus
the low accuracy of the numerical method pollutes the flux
variable.

5 Conclusions

We have developed a new, unified, approach to discretizing
fractured porous media, termed Mixed-Dimensional Flux
Coupling. The MDFC approach allows for arbitrary numer-
ical discretizations to be used both for the porous media and
the fractures. We have supported the development by both
theoretical analysis, as well as numerical examples using
five different numerical methods.

Several of the limitations included in this work appear
to be possible to overcome. In particular, we expect that
extension to non-linear discretizations [22] to be straight-
forward in practice. Moreover, due to being agnostic of
the numerical methods used, our theoretical results are not
optimal nor exhaustive, and a more explicit treatment of the
precise characteristics of the numerical methods chosen for
the various components of the problem is known to provide
more nuanced results [6].

In applications, coupled problems are of particular
interest. In particular, the fluid flow is often coupled to
transport of either mass or energy. Preliminary work in
this direction is ongoing, and we expect that the MDFC
framework proposed herein will accommodate such coupled
problems.

We conclude by noting the importance of open-source
code availability. The methods developed herein have been
implemented in PorePy, and both methods and the scripts
used to generate the presented results are available in the
public domain at time of publication.
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