
Proceedings of Machine Learning Research vol 120:1–10, 2020 2nd Annual Conference on Learning for Dynamics and Control

LSTM Neural Networks: Input to State Stability and Probabilistic
Safety Verification

Fabio Bonassi FABIO.BONASSI@POLIMI.IT

Enrico Terzi ENRICO.TERZI@POLIMI.IT

Marcello Farina MARCELLO.FARINA@POLIMI.IT

Riccardo Scattolini RICCARDO.SCATTOLINI@POLIMI.IT

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, via Ponzio 34/5, 20133
Milano, Italy

Editors: A. Bayen, A. Jadbabaie, G. J. Pappas, P. Parrilo, B. Recht, C. Tomlin, M. Zeilinger

Abstract
The goal of this paper is to analyze Long Short Term Memory (LSTM) neural networks from a
dynamical system perspective. The classical recursive equations describing the evolution of LSTM
can be recast in state space form, resulting in a time-invariant nonlinear dynamical system. A
sufficient condition guaranteeing the Input-to-State (ISS) stability property of this class of systems
is provided. The ISS property entails the boundedness of the output reachable set of the LSTM. In
light of this result, a novel approach for the safety verification of the network, based on the Scenario
Approach, is devised. The proposed method is eventually tested on a pH neutralization process.
Keywords: LSTM, Input to State Stability, Safety Verification, Scenario Approach.

1. Introduction

In recent years Neural Networks (NN) have spread as a powerful tool for multiple purposes in
several fields of science and engineering (Haykin, 1994), such as system diagnosis (Filippetti et al.,
1995) and time series forecasting (Azoff, 1994). As discussed in (Mandic and Chambers, 2001),
among the variants proposed in the literature, Recurrent Neural Networks (RNNs) are of particular
interest in’ systems identification and control, owing to their ability to describe dynamical systems.

This flexibility, however, comes at the cost of more complex training algorithms (Pascanu et al.,
2013), which usually suffer of the vanishing or exploding gradient problems (Hochreiter, 1998).
To overcome this issue, novel recurrent architectures have been recently proposed. Among them,
Echo State Networks (ESNs) (Jaeger, 2002; Bugliari Armenio et al., 2019), and Long-Short Term
Memory (LSTMs) networks (Hochreiter and Schmidhuber, 1997) are considered to be the most
promising ones. More specifically, the latter have gained a great success and are considered to be
the state-of-the-art for many tasks entailing long-term sequential learning (Greff et al., 2016).

Despite the wide popularity of LSTMs, their use in the context of analysis and control of dy-
namical systems is still limited, and the associated properties, such as the stability of the equilibria,
have not yet been analyzed in depth. Indeed, only a limited number of contributions is nowadays
available concerning stability (Stipanović et al., 2018; Deka et al., 2019; Barabanov and Prokhorov,
2002; Miller and Hardt, 2018), equilibria computation (Amrouche et al., 2018), and industrial ap-
plications (Lanzetti et al., 2019). In the mentioned works, however, the focus is on autonomous
LSTMs, i.e. in absence of exogenous inputs, and the stability analyses conducted – being based on
linearization methods – are only local. This essential lack of results needs to be filled in order to
provide a solid ground for developing sound control techniques tailored for LSTM.
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A further requirement is the ability of LSTMs, and more in general of RNNs, to properly gen-
eralize the behavior of the real system out of a limited training set. It is advisable to exploit the
available knowledge of the system to certify that the output produced by the trained neural network
is always coherent with the output of the real system, at least for a class of inputs of interest. This is
known as safety verification of the network, and it is usually done by proving that the output reach-
able set lays in a defined safe region (Maler, 2008). The computation of reachable sets for generic
discrete-time nonlinear systems has been discussed in (Bravo et al., 2006). Techniques to estimate
the reachable output set of NNs have been proposed in (Fazlyab et al., 2019a) and (Fazlyab et al.,
2019b), but they are limited to feed-forward NNs and cannot be applied to LSTMs.

In light of these motivations, the purpose of this paper is twofold. First, a sufficient condition
guaranteeing the Input-to-State Stability (ISS) property (Sontag, 1995; Jiang and Wang, 2001) of
LSTMs is derived. ISS is important here to guarantee consistency when we identify models of
plants that display stability-like properties. Also, ISS implies that the state trajectories generated by
bounded inputs remain bounded, which is the main assumption that provides a ground to the safety
verification approach considered here, based on output reachable sets. The latter sets are estimated,
in this paper, using the Scenario Approach introduced by Campi et al. (2009). While a similar
idea has been proposed by Hewing and Zeilinger (2019), where it is used to estimate the reachable
set of a linear system affected by stochastic disturbances, in this paper the Scenario Approach is
used in a non-linear deterministic framework, where analytical approaches could not be applied.
In a different context, the use of the Scenario Approach for optimization of ESNs has also been
proposed by Bugliari Armenio et al. (2020).

Notation: Given a vector v, we denote with |v|2 the 2-norm of v and with |v|1 its 1-norm. More-
over, we denote with vT its transpose, with vi its i-th component, and with diag(v) the diagonal ma-
trix with vector v on the main diagonal. With reference to a sequence of vectors v = v(0), v(1), ...,
we define its infinity norm as ‖v‖∞ = supk∈N |v(k)|2. Given a real matrix A we denote with |A|p
its induced norm, p = 1, 2,∞. At any discrete time-step k, we indicate by x+ the value of x at the
next step, i.e. x+ = x(k + 1). The Hadamard product between two vectors v and w is indicated by
v ◦ w. For compactness, the sigmoidal and hyperbolic tangent activation functions are denoted as
σg(x) = 1

1+e−x and σc(x) = tanh(x). These functions are bounded, i.e.

σg(t) ∈ (0, 1) ∀t ∈ R, (1a)

σc(t) ∈ (−1, 1) ∀t ∈ R, (1b)

and Lipschitz continuous (Sohrab, 2003), with constants Lg = 0.25 and Lc = 1, respectively.

2. LSTM networks

2.1. LSTM state space form

Let us consider a single-layer LSTM network described by the following equations, obtained en-
forcing the original equations from (Gers and Schmidhuber, 2001) to be strictly proper:

x+ = σg(Wfu+ Ufξ + bf ) ◦ x+ σg(Wiu+ Uiξ + bi) ◦ σc(Wcu+ Ucξ + bc) (2a)

ξ+ = σg(Wou+ Uoξ + bo) ◦ σc(x+), (2b)

y = Cξ + by, (2c)
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where u ∈ Rnu is the input, x ∈ Rnx is the so-called hidden state, ξ ∈ Rnx is the so-called
cell state, and y ∈ Rny is the system output. The tuning parameters, suitably selected during
network’s training procedure, are the weight matrices Wf ,Wi,Wc,Wo ∈ Rnx×nu , C ∈ Rnu,2nx ,
Uf , Ui, Uc, Uo ∈ Rnx×nx , and the bias vectors bf , bi, bc, bo, by of proper dimensions. In this paper,
without loss of generality, inputs are assumed to be bounded by

u ∈ U = [−1, 1]nu . (3a)

Indeed, the inputs are usually subject to saturation, and can therefore be normalized according to
standard un-biasing and normalization procedures. In light of (1), from (2b) it is possible to notice
that the vector of cell states is also bounded by

ξ ∈ Ξ = (−1, 1)nx . (3b)

At this stage, let us consider the bias vector bc as a constant input to system (2). This is merely
required for the sake of consistency with the existing theory, and indeed the bias bc is commonly
identified during the training of the network. Letting χ =

[
xT ξT

]T , it is possible to re-write (2)
in the standard form of a discrete-time, invariant, and nonlinear dynamical system:

χ+ = fLSTM(χ, u, bc),

y = gLSTM(χ).
(4)

2.2. Stability analysis

The goal of this section is to investigate the stability properties of the LSTM network (4). More
specifically, we provide a sufficient condition to guarantee the ISS property of the network. Let us
firstly recall some notions from (Bayer et al., 2013), required for the statement of the theoretical
results of this paper. For the definitions of K, K∞ and KL functions, the reader is addressed to
(Jiang and Wang, 2001). Considering the sequence u = u(0), u(1), . . . and an initial state χ0, we
denote by χ (k, χo,u, bc) the state, at time k, of system (4), fed by the input sequence u. The
following definitions can hence be stated.

Definition 1 (ISS (Jiang and Wang, 2001)) The system (4) is Input-to-state stable with respect
to inputs u ∈ U and bc if there exist functions β ∈ KL, and γu, γb ∈ K∞ such that, for any k ∈ Z≥0,
any initial condition χ0, any value of bc, and any input sequence u ∈ U , it holds that:

|χ(k, χ0,u, bc)|2 ≤ β(|χ0|2, k) + γu(‖u‖∞) + γb(|bc|2) (5)

Definition 2 (ISS Lyapunov function (Jiang and Wang, 2001)) A continuous function V : Rn →
R+ is called an ISS-Lyapunov function for (4) if there exist functions ψ1, ψ2, ψ ∈ K∞ and σu, σb ∈
K such that, for all χ ∈ R2nx , for all bc ∈ Rnx , and u ∈ Rnu , it holds that:

ψ1(|χ|2) ≤ V (χ) ≤ ψ2(|χ|2) (6a)

V (fLSTM(χ, u, bc))−V (χ) ≤ −ψ(|χ|2) + σu(|u|2) + σb(|bc|2) (6b)

Theorem 3 (Jiang and Wang (2001)) If system (4) admits a time invariant ISS Lyapunov func-
tion such that (6a) and (6b) hold, then it is ISS in the sense specified by Definition 1.

Based on the previous results, Theorem 4 is formulated. The proof is reported in Appendix A.
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Theorem 4 Given the LSTM network (2), if

(1 + σg(|
[
Wo Uo bo

]
|∞))σg(|

[
Wf Uf bf

]
|∞) < 1,

(1 + σg(|
[
Wo Uo bo

]
|∞))σg(|

[
Wi Ui bi

]
|∞) |Uc|1 < 1,

(7)

then (2) is Input-to-State stable with respect to u ∈ U and to bc.

Remark 5 Condition (7) involves the LSTM’s weight matrices and bias vectors. Therefore, it can be
employed to check a-posteriori the ISS of a trained LSTM network, or it can be used as a constraint
during the training procedure of the network to enforce the ISS property.

Remark 6 If multi-layer LSTMs are considered, it should be noted that the cell state ξ of the i-th
layer becomes the input of the next layer. Since ξ satisfies the same properties input u, namely (3a),
it follows that a sufficient condition for the ISS of the network is that each layer satisfies (7).

3. Safety verification

As discussed, training the LSTM network with constraints (7) explicitly enforced, allows one to
obtain the ISS property. This property is extremely relevant in the context of systems control, as
it guarantees the boundedness network’s reachable set, and that the effect of initialization on net-
work’s output asymptotically vanishes. Nonetheless, the reliability of the network could be harmed
by the limited size of the training set usually adopted, either due to data unavailability or to com-
putational complexity reasons. Overfitting phenomena and limitations of the available numerical
training procedures could, as well, undermine LSTMs’ generalization capabilities. This entails the
necessity to perform a safety verification of the network, in order to certify – at least for a given class
of input signals – that it does not exhibit meaningless or non-physical outputs. This task is usually
accomplished computing the output reachable set, and assessing that it entirely lays within a known
safe set. While for feed-forward NNs some methods for the estimation of the output reachable set
have been proposed, see (Fazlyab et al., 2019b), for RNNs this still represents an open problem.

First remark that, in view of Definition 1, the ISS property allows to retrieve an explicit bound
on the reachable set of the network. In particular, for any initial state χ0, and any bounded input
sequence ν(0), ν(1), . . ., the future state trajectories are guaranteed to be bounded by (5), where the
functions β(·, ·), γu(·), and γb(·) can be computed from the ISS-Lyapunov function, as described in
(Jiang and Wang, 2001). The output reachable set can then be computed applying the linear output
transformation gLSTM . Nonetheless, such bound may suffer from an excessive conservativeness.
The tightening of ISS-based reachable set bound will be object of future research work.

In place of the ISS-based analytic (but possibly conservative) computation of the output reach-
able set, a probabilistic method is here proposed, based on the Scenario Approach developed in
(Campi et al., 2009). Let the initial state of the LSTM network χ0 be a random variable extracted
from a setX0, characterized by some probability measure Pχ. Consider a time horizon τ , and a class
Uτ of input signals u(0), . . . , u(τ), such that u(k) ∈ U for all k = 0, . . . , τ . Assume that Uτ is
characterized by some – possibly unknown – probability measure Pu. To ensure the validity of the
results, the class of inputs Uτ shall be compliant with the policy by which the system is operated.

The goal is to find the smallest ball Y containing the output reachable set, i.e. the set where the
output trajectories produced by any input sequences extracted from Uτ and starting from any initial
state drawn from X0 lie. The radius ρ∗y of set Y is defined as the solution of
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ρ∗y = min
ρy

ρy, (8a)

s.t. ‖y(χ0,u)‖∞ ≤ ρy ∀χ0 ∈ X0, ∀u ∈ Uτ, (8b)

where y(χ0,u) is the output sequence obtained feeding the trained LSTM (4) with the input se-
quence u and initial state χ0. Notably, this problem cannot be solved directly, due to infinite cardi-
nality of constraint (8b). Nonetheless, owing to the convexity of (8) with respect to the optimization
variable ρy, the Scenario Approach proposed by Campi et al. (2009) can be exploited to recast the
optimization problem as a finite-dimensional linear program, that allows to compute ρ∗y(ε, β) such
that

Pχ,u
{
‖y(χ0,u)‖∞ > ρ∗y(ε, β)

}
≤ ε (9)

with confidence 1 − β. In this way, the deterministic problem (8b) is relaxed into a chance-
constrained one. To do so, it is necessary to generate a number N of scenarios, each corresponding
to a sample of the uncertain variables χ0 and u, drawn from the respective sets according to the asso-
ciated probability density functions. We define with χ(i)

0 ,u(i) the i-th scenario, where i = 1, . . . , N .
Theorem 1 of (Campi et al., 2009) allows to compute ρ∗y(ε, β) as

ρ∗y(ε, β) = min
ρy

ρy,

s.t. ‖y(χ
(i)
0 ,u(i))‖∞ ≤ ρy for all i = 1, ..., N,

(10)

provided that a sufficient number N of scenarios is adopted. In particular, being d = 1 the number
of optimization variables, it is sufficient thatN fulfills the following inequality (Campi et al., 2009).

N ≥ 2

ε

(
ln

1

β
+ d

)
(11)

It is worth remarking that (10) is linear and convex, since y(χ
(i)
0 ,u(i)) does not depend on any

optimization variable. To conclude, defining Y(ε, β) = {y ∈ Rny : |y|2 ≤ ρ∗y(ε, β)}, if Y is
contained in the safe output set, then one can assess - with the mentioned probability levels - the
safety of the identified LSTM network, as long as the inputs belong to the considered class.

4. Simulation example

The considered benchmark example is the pH neutralization process described in (Hall and Seborg,
1989) and used in (Bugliari Armenio et al., 2019) for the analysis of ESNs. The plant, depicted
in Figure 1, is composed of two tanks. Tank 2 is fed by an acid stream q1 and, as output, has the
flowrate q1e. Being the hydraulic dynamics faster than the others involved, we assume q1 = q1e.
The reactor Tank 1 is fed by three flowrates, namely q1, a buffer flowrate q2 and an alkaline flowrate
q3. q1 and q2 are not manipulated variables, and represent disturbances, while a controlled valve
modulates q3. The output flowrate of the tank is q4, where the pH is measured.

The simplified third-order model, see (Bugliari Armenio et al., 2019) for equations, has one
input (q3), and one output (the pH value). The simulator of this plant has been implemented in
MATLAB, and it has been fed with a Multilevel Pseudo-Random Signal (MPRS), so as to properly
excite the system, adopting a sampling time Ts = 10s. White noise has been added, both to input
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Figure 1: Schematic layout of the plant
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Figure 2: Performances of the LSTM on the validation dataset.

and to measured output data, to mitigate overfitting phenomena. The training and validation sets
consist of 4400 and 2250 (u, y) samples, respectively. Samples have been normalized using the
mean and the maximum deviation across the entire dataset.

A single-layer LSTM neural network (2) with nx = 5 cells has then been trained using the
MATLAB function fmincon to minimize the mean-square prediction error. In order to ensure net-
work’s ISS, conditions (7) have been enforced as explicit constraints during the training procedure.
The modeling performances over the validation dataset are reported in Figure 2, where a simulation
of the trained network, starting from a random initial state and forced by the input u, is shown.
Notice that, in Figure 2, the denormalized output is depicted for the sake of clarity.

A quantitative performance index is the FIT [%] value, computed as

FIT = 100

(
1− |yval − yLSTM |2

|yval|2

)
, (12)

where yval is the real system output trajectory and yLSTM is the output of the trained LSTM network,
fed by the same input. The trained network scores, after an initial transient due to the wrong initial
state, FIT = 98% , confirming remarkable modeling properties.

The probabilistic safety verification proposed in Section 3 has then been tested on the LSTM
network. In particular, the input class Uτ selected for this test is the set of MPRS, with amplitude ρu
and with a total duration of τ = 2000 time-steps, i.e. 20000 seconds. Since nu = 1, any sequence
u(i) sampled from Uτ is composed by steps with an amplitude uniformly extracted from [−ρu, ρu],
and with a random duration uniformly drawn in the range [300, 2000] seconds. In Figure 3(a) some
examples of input sequences thus generated have been depicted, for ρu = 0.7.

The initial state χ0 has been extracted from a uniform distribution over X0 = [−0.1, 0.1]2nx .
Notice that, owing to LSTM’s ISS, the effect of the initial state asymptotically vanishes.
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Figure 3: (a) Some examples of input sequence scenarios for ρu = 0.7; (b) Bounds ρ∗y on the LSTM
normalized output reachable set for different input bounds ρu, compared to those of the real system.

In light of condition (11), to have a violation probability ε = 10−2 with confidence β = 10−6,
N = 2964 scenarios must be generated. Problem (10) is hence evaluated for different values of ρu,
namely for ρu = {0.1, 0.2, ..., 1}, both for the LSTM network and the real system. Remarkably, the
results reported in Figure 3(b) witness that the LSTM is guaranteed to operate almost in the same
region of the real system, i.e. a ball with radius ρy ≈ 1.

5. Conclusions

In this work, the stability properties of LSTM neural networks have been investigated. In particular,
a condition on LSTM’s parameters to guarantee the Input-to-State Stability property of the network
has been derived, which can be possibly enforced during the training procedure. A probabilistic
method for the safety verification of the trained network has then been formulated, which allows
– for any class of input signals – to retrieve a tight bound on network’s output reachable set, up
to a desired confidence level. The proposed algorithm has been eventually tested on a well-known
benchmark system, the pH neutralization process, showing satisfactory performances.

Appendix A. Proof of Theorem 4

Let us define the following variables, for the sake of conciseness:

f(u, ξ) = Wfu+ Ufξ + bf , i(u, ξ) = Wiu+ Uiξ + bi,

c(u, ξ) = Wcu+ Ucξ + bc, o(u, ξ) = Wou+ Uoξ + bo.
(13)

By means of these definitions, the state equations (2a) and (2b) can be written as

x+ =σg(f(u, ξ)) ◦ x+ σg(i(u, ξ)) ◦ σc(c(u, ξ)), (14a)

ξ+ =σg(o(u, ξ)) ◦ σc(x+). (14b)

Lettingαf(u, ξ)=diag (σg(f(u, ξ))), αo(u, ξ)=diag (σg(o(u, ξ))), andαi(u, ξ)=diag (σg(i(u, ξ))),
it is possible to re-write (14) as[

x+

ξ+

]
=

[
αf(u, ξ)x+ αi(u, ξ)σc(c(u, ξ))

αo(u, ξ)σc
(
αf(u, ξ)x+ αi(u, ξ)σc(c(u, ξ))

)] . (15)
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In light of Theorem 3, consider the following candidate ISS-Lyapunov function:

V (χ) = |χ|1 = |x|1 + |ξ|1. (16)

By definition V (χ) ≥ 0,∀χ 6= 0. Condition (6a) follows trivially, since for a generic vector v ∈ Rnv

it holds that |v|2 ≤ |v|1 ≤
√
nv |v|2. Therefore, condition (6a) is fulfilled taking

ψ1(|χ|2) = |χ|2,
ψ2(|χ|2) =

√
2nx|χ|2.

We now compute V (χ+)−V (χ), showing that there exist functions ψ(|χ|2), σu(|u|2) and σb(|bc|2)
fulfilling condition (6b). Using (15) one obtains

V (χ+)− V (χ) = |αf(u, ξ )x+ αi(u, ξ)σc(c(u, ξ))|1+
+ |αo(u, ξ) σc

(
αf(u, ξ)x+ αi(u, ξ)σc(c(u, ξ))

)
|1 − |x|1 − |ξ|1.

In view of the Lipschitzianity of the activation function σc(·), it holds that σc(|v|1) ≤ |v|1, thus

V (χ+)−V (χ)≤
[
1 + |αo(u, ξ)|1

]
|αf(u, ξ)|1|x|1+

[
1 + |αo(u, ξ)|1

]
|αi(u, ξ)|1|c(u, ξ)|1−|x|1−|ξ|1.

Recalling the definition of c(u, ξ) in (13), it holds that

V (χ+)−V (χ)≤
{

[1+|αo(u, ξ)|1] |αf(u, ξ)|1−1
}
|x|1+

{
[1+|αo(u, ξ)|1] |αi(u, ξ)|1 |Uc|1−1

}
|ξ|1

+
{

[1+|αo(u, ξ)|1] |αi(u, ξ)|1|Wc|1
}
|u|1 +

{
[1+|αo(u, ξ)|1] |αi(u, ξ)|1

}
|bc|1.

(17)
Let ζ = [uT , ξT ,1Tnx

]T , where 1nx is the unitary column vector with length nx. From (3), it follows
that ζ ∈ [−1, 1]2nx+nu . By means of this, we can provide an upper bound for |αf(u, ξ)|1:

|αf(u, ξ)|1≤ max
ζ
|diag (σg([Wf Uf bf ] ζ))|1 =max

ζ
|σg([Wf Uf bf ] ζ)|∞=σg(| [Wf Uf bf ]|∞) .

Similarly,
|αo(u, ξ)|1 ≤σg (| [Wo Uo bo] |∞) ,

|αi(u, ξ)|1 ≤σg (| [Wi Ui bi] |∞) .

In view of these bounds, conditions (7) ensure the existence of a strictly positive scalar δ such that

(1 + |αo(u, ξ)|1) |αf(u, ξ)|1 − 1 ≤ −δ,
(1 + |αo(u, ξ)|1) |αi(u, ξ)|1 |Uc|1 − 1 ≤ −δ,

(18)

for any ξ ∈ Ξ. Moreover, in light of (1a), it follows that |αf(u, ξ)|1, |αo(u, ξ)|1 and |αi(u, ξ)|1 are
upper-bounded by 1. Combining (17) and (18), and since [1+|αo(u, ξ)|1]|αi(u, ξ)|1 |Wc|1 ≤ 2|Wc|1
and [1 + |αo(u, ξ)|1]|αi(u, ξ)|1 |bc|1 ≤ 2|bc|1, it is possible to derive that

V (χ+)− V (χ) ≤ −δ|x|1 − δ|ξ|1 + 2|Wc|1|u|1 + 2|bc|1 ≤ −δ|χ|2 + 2|Wc|1
√
nu|u|2 + 2

√
nx|bc|2.

In view of these results, it is possible to conclude that conditions (6b) are satisfied with

−ψ(|χ|2) = −δ |χ|2,
σu(|u|2) = 2|Wc|1

√
nu |u|2,

σb(|bc|2) = 2
√
nx |bc|2.

System (15) admits a time invariant ISS-Lyapunov function and, in view of Theorem 3, it is ISS. �
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