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Abstract

The nonlinear response of straight, constant cross section beams is investi-

gated by means of a two-level finite element solution procedure. The higher

level model is built starting from the Hellinger-Reissner principle, with the

normal stress resultant and moment resultant as additional unknowns field

beside the beam reference line position and orientation field. A lower-level

nonlinear cross-section problem is defined for each integration point. The

two-level models are linked together by the normal stress resultant and mo-

ment resultant, in one direction, and by the variation of the complementary

strain energy in the other: the cross-section level do deform in such a way

that the the normal stress resultant and moment resultant are equal to those

of the beam model, while the higher level beam model receives the gradient

and Hessian of the complementary strain energy with respect to the resul-

tants. The complementary strain energy gradient and Hessian are computed

by defining suitable first and second order adjoint problems.
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1. Introduction

When dealing with slender structures a beam model allows to drastically

reduce the number of unknowns with respect to those of a three dimensional

model. Most of the time a beam is designed in such a way that the material

response will be linear elastic, even if the overall structural response is nonlin-

ear. This allows to characterize the response of the beam cross-section once

for all by computing the cross-section stiffness matrix, a linear relationship

between resultant and moment resultant of the the normal stress vector and

the beam generalized strain measures. Countless papers deal with this char-

acterization problem. Among them, the Taylor expansion proposed by Ieşan

(1976) is worth mentioning, see also Ieşan (2008) and its application for the

characterization of functionally graded beam cross-sections by Bîrsan et al.

(2012); the first general numerical approach for the characterization of an ar-

bitrary beam cross-section was perhaps developed by Giavotto et al. (1983);

the early paper by Berdichevsky (1981) inspired the variational asymptotic

approach, extensively developed by Hodges (2006, and references therein)

and his co-workers; an Hamiltonian setting (cfr. Mielke, 1991; Druz et al.,

1996; Zubov, 2006; Romanova and Ustinov, 2008) is instead at the basis of

the approach developed by Morandini et al. (2010) and later on by Han and

Bauchau (2015). In some sense, a beam model is always a two-level model;

the lower level solution, however, is often computed once for all.

Whenever the material response departs from linear elasticity it is clearly

no more reasonable to compute the cross-section stiffness matrix once for

all. Jiang and Yu (2015) extended the variationally asymptotic method to

2



account for nonlinear material response when the beam is subject to con-

stant axial force, torsion and bending, but not for shear, that would entail

linearly varying bending moment. A similar approach, but not limited to

constant internal actions was recently proposed by Morandini (2019). Other

approaches are available as well, often based on simple kinematic assump-

tions for the cross section motion and/or on the assumption of an axial stress

state; in this regards, the works of Rigobello et al. (2013), Rezaiee-Pajand

and Gharaei-Moghaddam (2015) and Chiorean (2017) are worth mentioning.

Bilotta and Garcea (2019) proposed linking their version of the cross-

section characterization procedure (Genoese et al., 2014a,b) to a nonlinear

beam model, thus building a two-level nonlinear beam analysis framework;

the link is performed by transferring the increment of the generalized strains

of the beam model, evaluated at the beam element control points, to the

cross-section model, and searching for the increment of beam warping that

allows satisfying the local equilibrium equations at the cross-section level;

after this it is then possible to compute the resultant and moment resultant

of the cross-section normal stress vector, that are needed by the beam model.

Their proposal is limited to small strains, thought.

This paper proposes a two-level nonlinear beam analysis framework that

links the nonlinear cross-section analysis proposed by Morandini (2019) to a

nonlinear beam model. The link is built in a variationally sound way, with the

global beam response guaranteed to remain hyperelastic if the beam material

is hyperelastic. Typical FE2 multilevel approaches gives as input to the lower

level model the macroscale strain tensor, and get back from the lower level

model the average stress tensor. Here, instead, the resultant and moment
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resultant of the cross-section normal stress vector are passed as input from

the beam model to the lower-level cross-section model; the beam model,

in turn, gets back the generalized deformations and their derivatives with

respect to the normal stress resultant and moment resultant. A Hellinger-

Reissner two-field variational principle is used for the beam model; this allows

to have, among the higher level model unknowns, the resultants and moment

resultants of the normal stress vector. As an added bonus, this choice allows

to prevent shear locking.

The outline of the paper is as follows. Section 2 details the proposed

formulation. Section 3 is dedicated to few selected examples. The run time

requirements of the proposed two-level method are briefly discussed within

Section 4. The conclusions of Section 5 close the paper.

2. Formulation

The proposed formulation is the subject of this section, that is split into

four Subsections. The first Subsection 2.1 briefly reviews the intrinsic non-

linear beam model used within this work, and the corresponding Hellinger-

Reissner two-field variational principle; Subsection 2.2 summarizes the non-

linear cross-section analysis procedure proposed in Morandini (2019). Sub-

section 2.3 details how the models of Subsection 2.1 and 2.2 can be combined

into a two-level method. Subsection 2.4 provides the missing link from the

low-level cross-section model to the beam model, explaining how first and

second adjoint problems of the cross-section model allow to compute the

first and second variations of the cross-section complementary strain energy.
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2.1. Beam model

A beam intrinsic model is defined as a one-dimensional polar continuum;

in other words, a beam is represented by a line whose configuration is de-

scribed, in the deformed configuration, by the position vector x′(s) and by

the orientation tensor α′(s) at a point, with α′ a orthogonal unit tensor and

s the arc length in the reference configuration. At any given point the beam

is able to transmit an internal force T and an internal moment M . Vectors

T and M are understood to be the resultant and moment resultant, com-

puted over the cross section of a slender prismatic three dimensional solid,

of the normal stress vector. Following e.g. Pietraszkiewicz and Eremeyev

(2009); Cardona and Geradin (1988); Merlini and Morandini (2013) a pair

of generalized linear and angular strain measures ε̂ and β̂ can be defined as

ε̂ = α′Tx′,s −αTx,s (1)

β̂ = α′Tax(α′Tα′,s)−αTax(αTα,s)

where x(s) and α(s) are the position and orientation tensors in the reference

configuration and the ax() operator extracts the vector characterizing a skew-

symmetric tensor, so that ax(B)×c = Bc for any skew symmetric tensor B

and vector c. These strain measures are work-conjugated the back-rotated

resultant and moment resultant vectors

T̂ = α′TT (2)

M̂ = α′TM
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so that the internal virtual work per unit length of the beam model is equal

to (δε̂T̂ + δβ̂M̂ ), and the one-field principle of virtual work reads∫
l

(
δε̂T̂ + δβ̂M̂

)
ds− δLe = 0, (3)

with δLe the virtual work of the external loads. The force and moment

vectors T̂ and M̂ can be assumed to be function of the generalized strains ε̂

and β̂.

Assume the existence of a strain energy function w(ε̂, β̂) per unit of length

such that δw = T̂ δε̂ + M̂δβ̂, T̂ = w,ε̂ and M̂ = w,β̂. It is thus possible to

take its Legendre transform and define the complementary strain energy v,

function of T̂ and M̂ ,

v(T̂ ,M̂ ) = ε̂T̂ + β̂M̂ − w (4)

such that δv = ε̂δT̂ + β̂δM̂ and ε̂ = v,T̂ β̂ = v,M̂ . The Hellinger-Reissner

two-field variational principle can then be readily derived as

H(δε̂, δβ̂, δT̂ , δM̂ , ε̂, β̂, T̂ ,M̂ ) = (5)∫
l

(
δε̂T̂ + δβ̂M̂ + δT̂ ε̂+ δM̂β̂ − δv(T̂ ,M̂ )

)
ds− δLe = 0,

where x′, α′, T̂ and M̂ are independent unknowns and the linear form H

must be equal to zero for any compatible variation of the test functions.

Here the strains ε̂ and β̂, and their variations, are known functions of x′, α′

and their variations, cfr. Eq. 1. Traditional, intrinsic beam models do need

a constitutive law for computing the internal force and moment resultants

as a function of their work-conjugated deformations. This constitutive law

is almost always defined starting from the de Saint-Venant’s solutions of
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the three dimensional body, see e.g. Giavotto et al. (1983); Hodges (2006);

Morandini et al. (2010) and references therein.

2.2. Cross section model

In a recent paper Morandini (2019) has shown how to locally approximate,

at a given cross-section, the nonlinear three dimensional solution of a slender

prismatic body, loaded only at its extremities, as a function of the internal

force and moment resultants T̂ and M̂ . This can be accomplished without

the need to solve the boundary problem for the whole structure. The local

approximation is the basis of the lower lever model used in this work, and is

briefly summarized in the following.

Assume the cross-section to lie onto the x, y, plane, with i1, i2 and i3 the

unit vectors along the x, y and z axis, respectively. The principle of virtual

work reads∫
V

δF : ŜdV =

∫
A

δx̂′ (L) · f (L) dA+

∫
A

δx̂′ (0) · f (0) dA (6)

where F is the deformation gradient, Ŝ is the first Piola-Kirchhoff stress

tensor and the right hand side represents the virtual work of the loads applied

at the two beam extremities, located at z = 0 and z = L. The deformation

gradient F can be decomposed in its in-plane and out-of-plan components

F = gradS(x̂
′) + x̂′,z ⊗ i3, (7)

where x̂′ is the deformed position vector and gradS(x̂
′) = x̂′,x⊗ i1 + x̂

′
,y ⊗ i2.

Integration by part of the left hand side with respect to z leads to

−
∫
L

∫
A

δx̂′ ⊗ i3 : Ŝ,zdAdz +
∫
L

∫
A

δgradS(x̂
′) : ŜdAdz+

+

[∫
A

δx̂′ ·
(
Ŝ · n− f

)
dA
]
L

+

[∫
A

δx̂′ ·
(
Ŝ · n− f

)
dA
]
0

= 0. (8)
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where n if the outward-pointing unit normal (i.e. n = i3 for z = L and

n = −i3 for z = 0), the first two integral do represent the equilibrium

equations along the beam and the last two integrals are the weak form of

the Newmann boundary conditions at the two beam extremities z = 0 and

z = L. Thus, the equilibrium along the beam is satisfied if

−
∫
A

δx̂′ ⊗ i3 : Ŝ,zdA+

∫
A

δgradS(x̂
′) : ŜdA = 0. (9)

The objective here is to find a local polynomial approximation of the solution

at z = 0. To do so, the displacement û = x̂′ − x̂, with x̂ the position vector

in the reference configuration, is s approximated around z = 0 as

û(x, y, z) ≈
N∑
i=0

1

i!
ûi(x, y)z

i, (10)

where the unknown field ûi(x, y), a function of the cross section position

only, is the i-th displacement derivative of field û(x, y, z) wrt. z evaluated at

z = 0. Eq. 9, evaluated at z = 0 is not sufficient to close the problem; to do

so one needs to account for its derivatives, up to order N , with e.g. its first

derivative given by

−
∫
A

δx̂′,z ⊗ i3 : Ŝ,zdA−
∫
A

δx̂′ ⊗ i3 : Ŝ,zzdA+ (11)∫
A

δ
(
gradSx̂

′)
,z
: ŜdA+

∫
A

δgradSx̂
′ : Ŝ,zdA = 0.

Four additional constraints are required as well. The first two require that

the cross- section stress resultant and moment resultant, computed at z = 0,

should be equal to the sought values T̂ and M̂∫
A
Ŝ · i3dA = T̂ ,∫

A
x̂′ × Ŝ · i3dA = M̂ ;

(12)
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the last two set of equations constraint the average displacement and rotation

of the cross section ∫
A
û0dA = 0,∫

A
x̂× û0dA = 0.

(13)

Eqs. 12 and 13 are imposed by means of four Lagrange multiplier vectors λj,

j ∈ [1, 4]. The whole set of nonlinear equations will be referred to, in the

sequel, as

F(δûi, δλj, ûi,λj, {T̂ ,M̂}) = 0 (14)

where ui and λj are the unknowns, i ∈ [1, N ], j ∈ [1, 4], δui and δλj are the

test functions and {T̂ ,M̂}, the sought cross-section internal actions, are two

independent vector parameters forcing the system. The linear form F must

be equal to zero for any compatible variation of the test functions; further-

more, it is linear not only with respect to the test functions, but also with

respect to T̂ and M̂ . Different approximation schemes can, in principle, be

chosen for the unknown fields ûi(x, y). Among them, standard or isogeo-

metric finite elements. Standard finite elements and a Galerkin method were

chosen in Morandini (2019) to numerically solve the problem F = 0, with

the test function defined by δu =
∑N

i=0
1
i!
δui(x, y)z

i, and δui(x, y) resorting

to the same cross-section approximation adopted for the unknown fields ui.

The same choice is taken here.

It is worth noting that it would not be possible to find an equilibrium

configuration that solves the nonlinear cross-section problem of Eq. 14 should

the sought internal actions {T̂ ,M̂} exceed the cross-section limit load.
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2.3. Two-level scheme

The beam model of Section 2.1 can be used to solve any beam nonlinear

problem, but needs an inverse constitutive law, allowing to compute the

variation of the complementary strain energy per unit of reference length

v with respect to the variation of the cross section normal stress resultant

and moment resultant T̂ and M̂ ; these resultant vectors are among the

unknowns of the problem H = 0 defined with Eq. 5. Conversely, the local

approximation of Section 2.2 allows to approximate the nonlinear response of

the beam around a given cross section as a function of the the cross section

normal stress resultant and moment resultant vectors, T̂ and M̂ , that act

as forcing terms for the nonlinear cross-section model equations F = 0 of

Eq. 14. A two-level scheme can be built by resorting to both models and

feeding the resultant and moment resultant vectors T̂ and M̂ of the beam

model into the local model. By doing so the local model is used to predict

the cross-section response as a function of the cross section internal actions

of the beam model, and can feed back to the beam model the first and

second variation of the cross section complementary strain energy per unit

of reference length with respect to the internal actions themselves.

Note that the internal action vectors T̂ and M̂ of the beam model are

back-rotated into the cross-section reference system, cfr. Eq. 2. The initial

orientation α of the beam model should thus be defined in such a way that

the beam cross-section, back rotated by α, is brought into the cross section of

the local model. This allows to consistently match the back-rotated internal

actions T̂ and M̂ of Eq. 2 with the normal stress resultant and moment

resultant vectors of Eq. 12.
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This procedure is exemplified in Figure 1: a given, slender solid, solid,

a) in the Figure, is idealized by the beam model b), encompassing a refer-

ence line with a structure and, implicitly, a constitutive law derived from an

analysis performed at the cross-section level. This idealized model can be

approached at two levels. The first one, c), is global, and leads to a finite el-

ement approximation of the Hellinger-Reissner principle H = 0. The second

one, d) is at the cross-section level, and leads to a finite-element approxima-

tion of the nonlinear problem F = 0. Different local models are defined, one

for each integration point of the global model. For each integration point of

the global model the internal actions values can be fed, as forcing parame-

ters, to the corresponding local model, so that the local nonlinear problem

F = 0 can be solved for the sought values of the internal actions; after having

reached convergence with the cross-section local problem it is then possible

to compute the first derivative of the cross-section complementary strain en-

ergy dv/d{T̂ ,M̂} and, if required, its Hessian d2v/d{T̂ ,M̂}2 as well. These

two derivatives are what is required to assemble the residual vector H of the

global problem and its Jacobian matrix. The procedures for computing the

complementary strain energy derivatives are detailed in Section 2.4.

It is worth stressing once more that the complementary strain energy

derivatives of a given local cross-section model can be computed only after

having reached convergence, F = 0. This means that the local nonlinear

problem needs to be solved, up to convergence, for every iteration of the

higher level beam model solution procedure, because the unknown internal

action vectors T̂ and M̂ may keep changing. In other words, a local model

has not really reached a converged configuration, even if F = 0, unless the
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α′2

α′1

α′3

x′

F = 0

{T̂ ,M̂}

dv
d{T̂ ,M̂}

d2v
d{T̂ ,M̂}2

H = 0

a) b)

c) d)

Figure 1: Interaction between the global beam and local cross-section models.

beam model has converged as well. In practice, if the local model accounts

for plasticity (or for any other irreversible material behavior) then the state

from which the flow rules are integrated from can be changed only after

having reached the convergence of the both the local and the global model,

F = 0 and H = 0, and not when F = 0 but H 6= 0.

2.4. Cross-section complementary strain energy derivatives

Assume a material characterized by an internal energy per unit of ref-

erence volume at constant temperature ψ(ε,χ), where ε = 1
2
(F TF − I) is

the Green-Lagrange strain tensor, and χ stands for whatever internal hidden

variables may be required to describe possibly irreversible material behav-

iors. Let the Second Piola-Kirchhoff stress tensor S, that is work-conjugated

with ε, be given by S = ψ,ε. The integral over of the cross section of the

Legendre transform S : ε − ψ(F ,χ) allows to compute the complementary
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strain energy v per unit of beam length:

v =

∫
A

S : ε− ψ(ε,χ)dA (15)

For the local model the functional v, that can be computed as a function

of the unknown displacement functions ûi, is constrained by the equilibrium

equations F(δu,u, {T̂ ,M̂}) = 0 where u includes both the unknown func-

tions ûi and the Lagrangian multiplier vectors λj. This means that, after

having solved the cross-section problem F = 0 for for some given {T̂ ,M̂}

and having found the unknown functions ûi, the complementary strain en-

ergy can be considered as a pure function of vectors {T̂ ,M̂} themselves,

say v̂({T̂ ,M̂}) = v(ûi({T̂ ,M̂})). The local model need to compute the

first and second derivative of the complementary strain energy Eq. 15 with

respect to the internal actions {T̂ ,M̂}. To do so, it is possible to resort

to a well-known technique based on adjoint equations, see e.g. Hinze et al.

(2008). The actual implementation for the computation of the Hessian of v̂

was heavily inspired by code snippets found within the dolfin-adjoint library,

see Farrell et al. (2013) and Mitusch et al. (2019) for details. Here the for-

mulæ are particularized for the case at hand. Since ûi are understood to be

a function of {T̂ ,M̂} we have

dv̂
d{T̂ ,M̂}

= v,uu,{T̂ ,M̂} (16)

where

v,u =

∫
A

ε : S,ε : ε,u + S : ε,u − ψ,ε : ε,udA (17)

=

∫
A

ε : S,ε : ε,udA
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because ψ,ε = S. The derivative of u with respect to {T̂ ,M̂} can be com-

puted by deriving the cross-section equations F = 0:

dF
d{T̂ ,M̂}

= F,uu,{T̂ ,M̂} + F,{T̂ ,M̂} = 0 (18)

from which

u,{T̂ ,M̂} = −F
−1
,u F,{T̂ ,M̂} (19)

where the partial derivatives of F with respect to the components of {T̂ ,M̂},

F,{T̂ ,M̂}, are trivial to compute, since F is linear with respect to the forcing

parameters {T̂ ,M̂}, cfr. Eq. 12. Computing the derivatives of u with respect

to {T̂ ,M̂}, u,{T̂ ,M̂}, would however require the solution of six linear systems.

The solution of these linear system can be avoided, at least for computing

the first derivative of v̂. Replacing Eq. 19 into Eq. 16, leads to

dv̂
d{T̂ ,M̂}

= −v,uF−1,u F,{T̂ ,M̂}; (20)

it is now possible to define the vector of adjoint variables λA such that

λTA = v,uF−1,u . (21)

The adjoint variables can thus be computed as the solution of the linear

system

λTAF,u = v,u. (22)

Re-writing Eq. 20 as a function of the adjoint variables λA leads to the sough

result
dv̂

d{T̂ ,M̂}
= −λTAF,{T̂ ,M̂}. (23)

The overall computational cost is that of the solution of a single sparse linear

system, Eq. 22, with the same number of unknowns of the local problem

F = 0.
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The second derivative of v with respect to the k-th component of {T̂ ,M̂},

i.e. the k-th row of d2v̂

d{T̂ ,M̂}2 , can be computed by deriving Eq. 23:(
d2v̂

d{T̂ ,M̂}2

)
(k,:) = −

dλTA
d{T̂ ,M̂}(k)

F,{T̂ ,M̂} (24)

where dλT
A

d{T̂ ,M̂}(k)
is the derivative of λTA with respect to the k-th component

of {T̂ ,M̂} and the second derivative d(F,{T̂ ,M̂})/d{T̂ ,M̂}(k), that should

appear in Eq. 24, is null because F is linear with respect to {T̂ ,M̂} and its

derivative F,{T̂ ,M̂} is not function of u , cfr. Eq. 12. The derivative dλT
A

d{T̂ ,M̂}(k)

can be computed by deriving Eq. 22

dλTA
d{T̂ ,M̂}(k)

F,u + λTA(F,uuu,k) = v,uuu,k (25)

where u,k stands for the derivative of u with respect to the k-th component

of {T̂ ,M̂}, and can be computed from Eq. 19; the second partial derivative

F,uk of F with respect to u and to the k-th component of {T̂ ,M̂} does not

appear in Eq. 25 because the derivative of F with respect to {T̂ ,M̂} does not

depend on u, cfr. Eq. 12. Since u,k and λA can be computed independently

Eq. 25 is nothing but a linear system of equations with dλT
A

d{T̂ ,M̂}(k)
as unknown:

dλTA
d{T̂ ,M̂}(k)

F,u = v,uuu,k − λTA(F,uuu,k) (26)

After solving Eq. 26 for dλT
A

d{T̂ ,M̂}(k)
the k-th row of d2v̂

d{T̂ ,M̂}2 is readily given by

Eq. 24. The computation of d2v̂

d{T̂ ,M̂}2 requires the solution of twelve linear

systems: for each row of d2v̂

d{T̂ ,M̂}2 one needs to solve a linear system for

computing u,k from Eq. 19, and an additional linear system for computing
dλT

A

d{T̂ ,M̂}(k)
from Eq. 26. One also needs to compute the first order adjoint
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variables λA from Eq. 22, but this usually brings no additional cost, since

they are required in order to compute the first order derivative of v̂.

It is worth noting that the matrix of the cross-section complementary

strain energy second derivatives with respect to the stress resultant and mo-

ment resultant vectors, T̂ and M̂ , is nothing but the generalized cross-section

compliance matrix of an initially straight beam, with its inverse leading the

the cross-section tangent stiffness matrix. As such, it is a generalization of

the linear characterization procedures of e.g. Giavotto et al. (1983), Hodges

(2006) and Bîrsan et al. (2012).

3. Examples

Within all the examples the global beam model adopts a continuous lin-

ear interpolation for the displacement and rotation fields, and a piece-wise

constant discontinuous field for the unknown force and moment vectors T̂

and M̂ . This choice is known to prevent shear locking, see e.g. Saleeb and

Chang (1987) and Chapelle and Bathe (2011). As a consequence, only one

local model is required for each beam element. The local models are built

with cubic approximation along the beam axis, and linear triangular elements

on the cross section. The solid models are built with cubic tetrahedrons.

All the examples show a quadratic convergence rate both for the local

cross-section problem and the global beam problem. As an example, Table 1

shows, for two different time steps, the residual norm of the global problem

of Sec. 3.5.

All the simulations leverage the python interface of DOLFIN (Logg et al.,

2012), a library developed within the FEniCS project (Alnæs et al., 2015).
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Table 1: Global beam model convergence.

Residual norm

Iteration t = 0.2 t = 0.4

0 0.5 0.5

1 0.00317 0.04223

2 0.00939 0.00108

3 0.004111 3.17E-06

4 0.000060 –

Although the use of the automatic differentiation and code generation capa-

bilities of FEniCS simplified a lot the development of this proof-of-concept

code, it is worth noting that special care is needed for dealing with finite

rotations in DOLFIN, see Morandini (2017) for details. The already cited

dolfin-adjoint library is an extension of DOLFIN, and was of great help in

understanding how to actually implement the computation of the second

derivative of the cross- section complementary strain energy.

3.1. Elastic bent beam

A 10 mm long beam, with a 1 × 1 mm square cross section lying in the

global z− y plane is clamped at one extremity and loaded by a 10 N force in

the z direction at its other extremity. Two different materials are considered;

the first one is a Green-elastic material for which S = 2µε + λε : I ⊗ I,

with µ = E/(2(1 + ν)) and λ = Eν/((1 + ν)(1 − 2ν)); the second one is

a Neo-Hookean material with internal energy per unit of reference volume

w = µ
2
(I1−3)+K0

2
(J−1)2, where µ = E/(2(1+ν)), λ = Eν/((1+ν)(1−2ν)),

K0 = E/(3(1−2ν)), J = det(F ), I1 = J−2/3(F TF ) : I. The Elastic modulus
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and Poisson coefficient are E = 1MPa and ν = 0.33, respectively, so that for

infinitesimal deformations the material response is equal. Figure 2 compares

the loaded-point displacement components obtained by the present approach

(HR), a three dimensional model (3D) and an Abaqus beam model. The load

is linearly increased up to the final value for t = 1, and then decreased down

to zero for t = 2; this allows to verify that the models are free from any

spurious residual strain after a cycle of deformation. Both beam models are

built with ten elements, while the three dimensional model is built with a

10×10×20 mesh of second-order tetrahedral elements. The three models do

agree reasonably well, with the two-level beam a little bit less stiff. Figure 3

shows the deformed configuration reached at t = 1 by the 3D and HR beam

models.

Figure 4 allows to compare the loaded-point displacement components

obtained by the present approach with piece-wise constant discontinuous

fields for the unknown force and moment vectors T̂ and M̂ (HR) and by

the present approach but with piecewise linear discontinuous fields for the

unknown force and moment vectors T̂ and M̂ (HR 1). The linear unknown

force and moment vectors proves to be stiffer; furthermore, the computational

time is almost doubled, since this approach do require the definition of two

independent cross-section models for each beam element. Figure 5 shows the

deformed configuration reached at t = 1 by the HR and HR 1 models.

When considering the Neo-Hookean material the Abaqus beam model

seems unable to converge. Figure 6 compares the displacement obtained with

the Neo-Hookean and the Green-elastic materials. While the displacement

of the Green-elastic and Neo-Hookean beams is practically the same, the
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Figure 2: Green-elastic bent beam: loaded point displacement components as a function

of time (left) and corresponding load-displacement curve (right).

root cross-section deformation and normal stress do differ, as it is clear from

Figure 7.

3.2. Elasto-plastic bent beam

The beam of Sec. 3.1, 10 mm long and with a 1 × 1 mm square cross

section, is now assumed to be made with an elasto-plastic isotropic material.

The constitutive law is based on an additive decomposition of the Green-

Lagrange strain tensor is S = E : (ε−εp), where εp is the plastic deformation

tensor; a standard Von-Mises yield function f with isotropic hardening

f =

√
3

2
s : s− (S0 +K) = 0 (27)

is assumed, with s = S − 1
3
S : I, S0+K the equivalent yield stress. The

internal energy is

ψ(ε,χ) =
1

2
(ε− εp) : E : (ε− εp) +

1

2
Hεeffp εeffp
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Figure 3: Green-elastic bent beam: overall displacement of the 3D model (wireframe, with

only one quarter rendered as solid) and of the HR beam (colored line).
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Figure 4: Green-elastic bent beam: comparison between beam elements with internal

actions unknowns constant over each element (HR) and computed independently for the

two integration points (HR 1); loaded point displacement components as a function of

time (left) and corresponding load-displacement curve (right); .
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Figure 5: Green-elastic bent beam: overall displacement comparison between beam el-

ements with internal actions unknowns constant over each element (HR) and computed

independently for the two integration points (HR 1).
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Figure 6: Neo-Hookean bent beam: loaded point displacement components as a function

of time (left) and corresponding load-displacement curve (right).
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Figure 7: Green-elastic (left) and Neo-Hookean (right) root cross-section: deformed shape

and norm of the normal stress vector.

and as associated flow rule is assumed. The elastic modulus and Poisson

coefficient are E = 1200MPa and ν = 0.3, the yield stress is S0 = 12 MPa,

and the hardening parameter is H = Et/(1 − Et/E) where Et = 360MPa

is the tangent elasto-plastic modulus. The beam, clamped at one extremity,

is subject to a transverse force of 1 N in the z direction; after reaching its

maximum value for t = 1 the load is subsequently decreased to zero for

t = 2. The loaded point displacements is in agreement with those obtained

both using a three dimensional model and an Abaqus beam model with an

elasto-plastic constitutive law.

3.3. Elasto-plastic L-shaped beam

A 5×10 mm L-shaped beam, with the same cross-section and material

properties and Sec. 3.2 is clamped at one extremity and subject to a vertical

transverse force of 1 N at the other extremity. This test case allows to verify

the proposed approach soundness for bent and twisted beams, and leads to

the deformed shapes of Fig. 9. The loaded point displacements are again in
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Figure 8: Elasto-elastic bent beam: loaded point displacement components as a function

of time (left) and corresponding load-displacement curve (right).

good agreement with those of a three dimensional model and of an Abaqus

beam model, as shown in Fig. 10.

3.4. Bimetallic beam

A straight beam of length 10 mm has the bimetallic 1×1mm cross-section

of Fig. 11 and is loaded by a transverse force F=1 N at its extremity. Both

materials are defined by the elasto-plastic constitutive law of Sec. 3.2, with

E=1200 MPa, ν = 0.3 and Et = 360MPa; the two material yield stresses do

differ, and is equal to S0 = 2.4 MPa and S0 = 12 MPa for materials Mat. 1

and Mat. 2, respectively. Figure 12 compares the beam model loaded point

displacement with that o a three dimensional simulation. Figures 13 and 14

plot the root section equivalent plastic strain and the norm of the normal

stress vector, respectively. As expected, the left half of the beam, made with

Mat. 1, undergoes a significant plastic deformation, with the normal stress

vector limited to values that are smaller than those of the right half of the
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Figure 9: Elasto-plastic L-shaped beam deformed configurations.
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Figure 10: Elasto-plastic L-shaped beam: loaded point displacement components as a

function of time (left) and corresponding load-displacement curve (right).
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F

Figure 11: Bimetallic beam cross-section.

beam, that is made with Mat. 2.

3.5. Complex cross-section

A circular composite PVC wire of length l = 10 mm is discretized with 10

beam elements. It has a circular cross-section with a radius R = 0.5 mm and

19 smaller copper wires, each of radius r = 0.08mm, as shown in Fig. 15. The

PVC is assumed to be elastic, while the copper is elasto-plastic. The material

properties are reported in Table 2. The cross-section mesh is made of 2527

triangular linear elements, with 1326 vertices and an average element size of

0.03 mm.The beam, clamped at one end, is subject to a concentrated shear

force F = 5 N at the other extremity.The load is increased linearly from t = 0

to t = 1, and them brought to 0 for t = 2. This example requires a somewhat

refined cross-section mesh, with a typical element dimension much smaller

than what is required along the beam axis. A three dimensional mesh with

well-shaped constant stress tetrahedron would require about 450 thousand

nodes, for about 1.5 million unknowns, and is out of reach on the desktop

computer used for these computations.
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Figure 12: Dual material elasto-plastic beam: loaded point displacement components as

a function of time (left) and corresponding load-displacement curve (right).

Figure 13: Dual material elasto-plastic beam: equivalent plastic deformation at t = 1.
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Figure 14: Dual material elasto-plastic beam: norm of the normal stress vector at t = 1.

Figure 15: Mesh of the composite wire.

Table 2: Composite wire material properties.

Copper PVC

E 117 GPa 4.1 GPa

ν 0.3 0.41

S0 70 MPa /

Et 2.34 GPa /
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Figure 16: Elasto-plastic wire beam deformed configurations.

Figure 16 plots the deformed configuration taken by the beam when the

load reaches it maximum at t = 1 and after unloading the structure, at

t = 2. The corresponding beam tip displacement components are reported

in Fig. 17, where x is along the beam axis and the load is applied in the z

direction. Figures 18 plot the deformed root cross-section, with the colors

representing the cross-section out of plane displacement for the fully loaded

(t = 1, left) and unloaded (t = 2, right) configurations; it is worth noting

how the cross-section depart from its planar reference shape,especially in the

unloaded configuration. Figure 19 plots, instead, the equivalent plastic strain

εp eq of the copper wires; the wires far away from the neutral axis undergo a

significant plastic deformation, while the copper wires near the neutral axis

are free from plastic deformations, as expected.
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Figure 17: Elasto-plastic wire beam: loaded point displacement components as a function

of time (left) and corresponding load-displacement curve (right).

Figure 18: Composite wire out of plane warping, root element cross section: maximum

load (left, t = 1) and final unloaded state (right, t = 2); deformation scale factor: 300.
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Figure 19: Composite wire equivalent plastic strain, root element cross section: maximum

load (left, t = 1) and final unloaded state (right, t = 2); deformation scale factor: 300.

4. Run time

A few words about the run time requirements of the proposed two-level

method are on order. As shown in Morandini (2019) the nonlinear analy-

sis of a single cross-section easily outperforms a three dimensional analysis.

This should not be a surprise, since the cross-section analysis is performed

on a two-dimensional domain, thus with a drastically smaller number of un-

knowns wrt. that of a three dimensional model. Here, however, one needs

many independent cross-section models, one for each beam element. Fur-

thermore, at each and every iterations of the outer beam model one needs

not only to solve the underlying cross-section nonlinear problem, but also

to solve thirteen linear problems in order to compute the first and second

order derivatives of the complementary strain energy. As a result, the run

time of the three dimensional models and of the corresponding multi-level

beam models turned out to be comparable for all the examples excluding the
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Table 3: Timing comparison between the proposed approach and a fully three-dimensional

solution.

Section 10× 10 Section 20× 20 Section 40× 40

Beam 3D Ratio Beam 3D Ratio Beam 3D Ratio

B
ea
m

el
em

en
ts 10 1033 s 926 s 1.12 4112 s 5810 s 0.71 29540 s 51598 s 0.57

20 1985 s 1751 s 1.13 8146 s 12793 s 0.63 / / /

40 3741 s 3368 s 1.11 / / / / / /

example of Sec. 3.5. The proposed approach is faster than a fully three di-

mensional analysis only if the spatial resolution required on the cross section

is relatively high with respect the the resolution along the axis. A possible

cross-over point could be that of the composite wire example of Sec. 3.5, or

even that of more complex sections, for which a three dimensional model

would require a significant effort. Table 3 compares the run time required by

the Green-elastic bent beam of Sec. 3.1 for different cross-section and beam

axis meshes. The analyses are performed with twenty load steps; following

the benchmark results of Morandini (2019) a conjugated gradient with in-

complete LU factorization as a preconditioner is chosen as the more efficient

linear solver for the three-dimensional problem at hand. It is clear from the

table that, for the same discretization along the axis, the proposed two-level

approach becomes competitive only if the the cross-section mesh has a sig-

nificant number of elements, and that the potential saving increases together

with the number of the cross-section elements. The 40×20×20, 20×40×40

and 40× 40× 40 table entries are missing because of the limited memory of

the computer at hand.
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5. Conclusions

The proposed two-level analysis procedure is able to deal with the non-

linear response of non-homogeneous cross-sections, with arbitrary material

constitutive laws, be them either elastic, hyperelastic or elasto-plastic. The

proposed approach, with its somewhat high computational cost, is not com-

petitive with classic kinematic approaches whenever it is reasonable to as-

sume an axial stress state and it is possible to rephrase the constitutive law

for it. A typical example is the elasto-plastic response of a homogeneous

cross-section made with isotropic elasto-plastic material of Subsection 3.2,

for which ABAQUS’s standard beam elements give the same response at a

fraction of the computational time. Such standard beam finite elements,

however, fail to deal with hyperelastic constitutive laws, and are limited to

relatively simple cross-sections. Thus, the proposed approach can be one of

the few viable approaches for very specific beam problems.

The main theoretical advantage of the proposed method is that the link

between the beam and the cross-section model is not delegated to the cross-

section deformation modes, that could change throughout the analysis due

to the nonlinear material response, but to the resultant and moment re-

sultant of the cross-section normal stress vector. These quantities have a

clear definition and well-defined physical meaning. A consequence of this

approach is that the overall beam response is guaranteed to be hyperelastic

if the cross-section material is hyperelastic. This is because, for any given

state of normal stress resultant and moment resultant {T̂ ,M̂}, the solution

of the cross-section problem of Eq. 14 is independent from the deformation

history if the material is hyperelastic. The drawback of the proposed for-
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mulation clearly lies in its relatively high computational cost: not only the

second-order adjoint of Subsection 2.4 is particularly expensive, but for each

and every equilibrium iteration of the higher level model one needs to solve

a nonlinear cross-section problem. One thing to note, however, is that each

cross-section model is independent with respect to the others. Thus, it should

be possible to achieve significant speedups by solving in parallel, with a pro-

cess for each cross-section, first the nonlinear problem and then the first and

second order adjoint problems.
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