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Abstract

Modern Recurrent Neural Networks (RNN) are being extensively exploited

in industry to address complex predictive tasks by leveraging on the increased

availability of data from processes. However, the rationale behind model re-

sponse is encoded in an implicit way, which is difficult to be explained by prac-

titioners. If revealed, such mechanisms could provide deeper insights into RNN

execution, enhancing conventional performance evaluations. In this work, we

propose a new approach based on the introduction of a model-based cluster-

ing layer, constraining the network to operate on a discrete latent state repre-

sentation. Then, by processing context-input conditioned transitions between

clusters, we extract the Moore Machine characterizing the RNN computations.

We demonstrate the proposed approach on both synthetic experiments from an

open benchmark problem and via the application to a pilot industrial plant, by

the behavior cloning of the flexible conveyor of a Remanufacturing process. In

particular, the finite-state RNN reached the prediction accuracy of RNN with

continuous state while providing a more interpretable structure.
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1. Introduction

Deep learning has demonstrated impressive performance across a wide range

of applications in the computer science field, such as vision, speech recognition,

and language processing. Leveraging on the extensive digitalization of produc-

tion systems towards Industry4.0, and on the availability of innovative technolo-

gies for big data management (see, e.g., [1], [2]) deep learning is being widely

considered also in the industrial field to address challenging tasks, from mon-

itoring and anomaly detection [3], [4], to system identification and simulation

[5], [6], up to advanced control and process mining [7], [8].

However, understanding the embedded knowledge acquired by the network

during training - e.g., in terms of representations, policies, rules - can result

a kind of numerical enigma [9]. Indeed, information is typically structured

in a continuous and distributed way across the weighted synaptic connections

between neurons, thus resulting difficult to be interpreted, analyzed, and veri-

fied [10]. Practitioners often have limited insights into the mechanisms learned

by the network, which could limit trust and consequent adoption in industrial

applications requiring further comprehension before deployment [11]. Indeed,

achieving more explainable machine learning systems is considered as one of the

major challenges in artificial intelligence nowadays [12],[13]. This issue results

even more critical when dealing with recurrent neural networks (RNNs). RNNs

predictions are performed by context dependent mappings, encoding input fea-

tures observed during time in an implicit and holistic way [14],[15].

Despite the effectiveness of the continuous representation learned by RNNs,

several challenging industrial applications are inherently characterized by dis-

crete concepts, from text processing to mining of process events, from planning

to logical control, just to cite a few. In the Computer Science field, a lot of

research effort has been dedicated to the exploration of discrete latent repre-

sentations within trained networks [16],[17]. In this context, several techniques

extract symbolic rules encoded in a feed-forward architecture as the multi-layer

perceptron [18],[19]. RNNs instead process symbolic information in a state-
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ful manner by encapsulating the dynamics of a system through iterated trans-

formations, following embedded transition rules [20]. This temporal symbolic

knowledge can be extracted ex-post in form of Finite State Machines (FSM) by

methods known as Rule Extraction (see e.g., review in [21]). However, it re-

sults challenging to determine whether the extracted FSM effectively character-

izes the behavior of the continuous-state RNN employed to perform predictions

[11]. Moreover, the vast majority of research results in this field focus on gram-

matical inference, thus addressing Finite State Automata (FSA) with boolean

output (i.e., accept/reject decisions) over finite input sequences (i.e. traces)

including start/end-tokens [21]. Such requirements are usually not applicable

within manufacturing applications characterized by cyclic behaviors and con-

catenated multi-input multi-output (MIMO) data sequences. To the best of our

knowledge, the integration of rule extraction and finite state representations for

achieving more interpretable RNN models is still lacking within the industrial

research literature.

1.1. Literature review

Major developments in the RNN rule extraction research field date back to

early nineties [22], leveraging on the observations that the orbits of internal ac-

tivations tend to cluster when the network learns to emulate a FSA [23]. In [24],

the state space is equally quantized in hypercubes followed by a breadth-first

exploration of partitions. Vector quantization techniques tackle the exponential

grows of partitions resulting from the increasing latent space size. To cluster the

latent space several techniques are proposed, including K-means [25],[26],[27],

Hierarchical-Clustering [28] and Self-Organizing-Maps [29],[30].

To address the conformance issue of ex-post rule extraction [22], several stud-

ies investigate the integration of an inductive bias within the training mechanism

to enforce the creation of clusters in activation space. Authors in [25] propose

to map the neurons activation to the nearest corner of an hypercube, by means

of a threshold function, thus stimulating clusters around vertices.

A dynamic on-line clustering method is proposed in [31], stating the acti-
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vation orbits to be Gaussian distributed around true discrete states, assuming

neurons activity to be corrupted by noise caused by weights inaccuracy. Then,

the clustering is performed during training, including the entropy of the prior

distribution as a complexity cost to minimize the number of clusters found.

Authors of [32] propose to inject prior knowledge on critical values of neuron

activation parameters fostering a stable RNN behavior, exploiting a Bayesian

learning framework. While in [33] an extension of the real-time recurrent learn-

ing algorithm is investigated, including adaptive weights update based on the

decoupled extended Kalman filter and teacher forcing.

Leveraging on the seminal developments from the nineties, the connection

between formal models of computations and RNN is regaining research momen-

tum nowadays to achieve more interpretable RNN models by discrete represen-

tations. In particular, authors in [11] introduce a stochastic transition mech-

anisms between RNN cells. Discrete probability distributions from recurrent

units output to stochastic centroids are computed at training time, employing

normalized dot product or Euclidean distance and setting the hidden state to

be the mixture of centroids. Authors in [34] develop a method to improve FSM

extraction from simple RNNs by including an error term in RNN training en-

couraging backpropagation to learn a more separated encoding over the hidden

layer. Authors in [35] investigate FSA extraction to verify RNN resistance to

adversarial perturbations, proposing an average distance metric for measuring

the scale of perturbations on strings from regular grammars.

For the best of our knowledge, the work in [29] is the first one targeting

domains with more than two output symbols, by proposing a method to extract

initial Mealy machines, but still in a grammatical inference framework. More

recently, authors in [15] propose the insertion of a quantized bottleneck within

RNNs, achieving recurrent policies represented as Moore Machine Networks

with quantized memory and observations. The method is validated on both

synthetic environments and Atari games. Authors in [36] exploit the idea of

causal states, characterizing the coarsest partition of histories into classes that

are maximally predictive of the future, providing a theoretical framework to the
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algorithms of [15].

1.2. Contribution and organization of the paper

The scope of this work is to foster the development of more interpretable

RNN models for industrial applications, targeting systems characterized by la-

tent finite state behavior. Specifically, the major contributions of our work are

summarized as follows:

• A hierarchical network architecture is developed, including a clustering

layer aimed to extract finite state representations from the continuous

state space;

• A model-based clustering mechanism is introduced, supporting soft mem-

bership by a probabilistic framework and the identification of cluster-

specific full covariance matrices;

• A multi-step learning approach is exploited, fitting Gaussian mixture pa-

rameters on a pre-trained network followed by fine-tuning of the state-

output layer.

We focus here on systems characterized by discrete time discrete state dynamics,

processing discrete MIMO signals, representing a general class of problems. The

feasibility of the approach is demonstrated by addressing the behavior cloning of

deterministic control policies with discrete time execution, as it is common for

manufacturing automation and supervisory systems. Nonetheless, the method

is applicable to a broader spectrum of industrial problems with analogous char-

acteristics, e.g., identification of predictive models of machines/processes from

MIMO signals/events sequences.

The proposed method is illustrated on both a general purpose benchmark

and on a pilot industrial application showing the capability of the network to

achieve accurate predictions, while providing deeper insights on the representa-

tion embedded within the latent space. To the best of our knowledge, this study

represent the first attempt to apply discrete representation and rule extraction

on a realistic industrial case study from the manufacturing field.

5



The rest of the paper is structured as follows: Section 2 formalizes RNNs and

behavior cloning in the broader framework of Industrial Cyber Physical Systems

(ICPS), and links it to the Moore machines from the theory of computation.

Section 3 details the developed method, starting from latent state clustering,

to network architecture, up to training and Moore machine extraction. Then,

Section 4 introduces the case studies, reports performed experiments and results

achieved.

2. Behavior cloning in Industry

Data-driven behavioral models of Industrial Cyber Physical Systems (ICPS)

are being widely considered, to tackle the challenging and expensive update of

traditional hand-coded representation throughout industrial processes lifecycle,

and to virtualize existing plant (i.e., brownfield) implementing traditional au-

tomation systems [2],[37]. Specifically, virtualization targets the identification

from data of the logic behind system operation and translation into digital en-

tities, enabling e.g., advanced simulations and optimization strategies [1]. In

this work, we focus on the identification of the behavioral models of low-level

controllers (i.e. Programmable Logic Controllers-PLC) from run-time data, to

foster the realization of enhanced CPS-based architectures [38] in brownfield

conditions. Besides, embedding the low-level control based on the state-of-

the-art PLC provides a practical way to ensure real-time responsiveness while

integrating Multi-Agent-Systems based ICPS architectures [39].

The extraction of the policy implemented by a controller (being human or

automatic) is often referred to as behavior cloning within the machine learning

community, and we inherit here the same terminology. Specifically, the scope of

behavior cloning is to learn a policy by imitation, i.e., the action to be performed

in a given system state by extrapolating experience from a set of observation-

action sequences [40]. With reference to system identification, the target is to

imitate the behavior performed by an instructor (e.g., an automated control

system or advanced logics on supervisory systems) by observing it operating in
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closed-loop over the controlled system (e.g., a device, a machine or a process).

Therefore, the input data set is constituted by the observations (e.g., measure-

ments acquired by sensors, set-point from higher level controllers, etc.), whereas

the output includes the set of actions performed (e.g., from start and stop of

mechatronic devices and motors or events regarding the task execution towards

higher-level systems, etc.).

In most of the cases, the cloned control systems implement context depen-

dent decisions from temporally structured information. Indeed, the actions to

be performed depend on the current state of the controlled process, typically

inferred from sequences of observations.

From a discrete time dynamical system perspective, we can formalize the

behavior cloning problem as inferring an unknown dynamic system driven by

an external signal of the form:x(t) = f(x(t− 1), u(t))

y(t) = g(x(t))
(1)

where x(t) ∈ Xnx ⊂ Znx
+ represent the system state, constituting a finite subset

of positive integer with x(0) = s0, u(t) ∈ Bnu the size of the input set, y(t) ∈ Bny

the size of the output set, with B = {0, 1}. Note that time is discrete, t ∈ Z.

The nonlinear state-transition is f [·] : Xnx×Bnu → Xnx , while the state-output

relation is g[·] : Xnx → Bny . nx, nu and ny represents the number of states,

observation and action vectors size respectively.

In this work, we consider problems characterized by discrete input and out-

put variables, as it can be observed in several manufacturing applications. In-

deed, controllers usually include a set of discrete actions, e.g., activate/stop

actuators, motors, etc. Several sensors provide boolean signals (e.g., pres-

ence/absence). Moreover, the states can be constituted by a finite set, as e.g., in

a Sequential Functional Chart logic control policy, or when monitoring machine-

state related energy consumption patterns [2]. Extensions to further classes of

problems, e.g. including continuous observations by specific feature extraction

layers, are left to future developments.
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From the theory of computation perspective, we are focusing on the behavior

cloning of systems characterized as Moore machines, formally defined as a 6-

tuple {U,X, Y, δ, λ, x0} where U, X, Y denote the finite input, state and output

sets respectively and δ : U × X → X, λ : X → Y state transition and output

functions [41].

RNNs are widely exploited to learn black-box models of this class from data,

covering the identification continuous up to hybrid systems. Formally, an RNN

can be characterized as: h(t) = fθ(h(t− 1), u(t))

y(t) = gθ(h(t))
(2)

where h(t) ∈ Rnh represent the RNN hidden memory size, which might be

not equal to the shape of the latent state space of the original system. fθ[.] :

Rnh+nu → Rnh , gθ[.] : Rnh → Rny represent parametrized nonlinear functions

modified during training to minimize the prediction error, trying to fit the tar-

geted behavior: RNNs are a discrete time nonlinear dynamical systems [20].

Continuous activation functions are deployed in practice to achieve dif-

ferentiable objectives, thus enabling the exploitation of efficient gradient and

momentum-based training algorithms. For a conventional system identifica-

tion problem, i.e., behavior cloning over continuous variables and states, such

computational features often results reasonable to address the application re-

quirements. On the other hand, when dealing with discrete behavior cloning

problems - e.g., discrete actions, states - the continuous latent space is expected

to memorize and process a set of discrete concepts characterizing the system

of interest. In this latter case, RNNs tend to operate more as a finite state

machine with a large number of states than an automata with external memory

[11], trying to represent a discrete system using a continuous system [32]. To

address this issue, we constrain the network to operate on a discrete finite state

representation, as detailed in the following sections.
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3. Proposed method

3.1. Continuous latent space clustering

As introduced in Section 1, it has been observed how the latent space of

RNNs tends to form regions of activity resembling a continuous-space imple-

mentation of the latent finite state behavior, and clustering techniques can be

employed to reveal this structure. These regions of activity usually result spread

across the state space and are characterized by group-specific not-circular co-

variance, with possible partial overlap. To deal with such characteristics, we

employ a Gaussian Mixture Model (GMM) clustering technique; a GMM sup-

ports the identification of clusters-specific full covariance matrices, as opposed

to k-means based techniques [15]. Indeed, k-means represents a special sub-

case assuming identical isotropic covariances [42]. Contrarily, GMM is framed

on a probabilistic framework, representing cluster shapes and structure within a

multi-modal distribution. In addition to being a model-based clustering, GMMs

enable the semi-parametric approximation of general distribution functions [43].

Moreover, GMMs provide a soft cluster membership. Formally, the Mixture of

Gaussian model of the latent activations is defined over a set of K multivariate

Gaussian distributions N (x|µk,Σk) and discrete latent variables zk, represent-

ing the probability of a data point to appertain to each component, as follows:

p(x) =

K∑
k=1

πkN (x|µk,Σk) (3)

where π ≡ {π1, . . . , πK} represents the mixing coefficient and µ ≡ {µ1, . . . , µk}

and Σ ≡ {Σ1, . . . ,ΣK} the mean and covariance tensors.

The marginal density of the distribution of the activations then results:

p(x) =

K∑
k=1

p(zk)p(x|zk) (4)

constituted by a factorized composition of component-wise conditional proba-

bilities p(x|zk = 1) = N (x|µk,Σk) time the prior probability to sample each

k-th component p(zk = 1) = πk. Then, by applying the Bayes rule, we obtain
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the posterior probability p(zk = 1|x) = γ(zk), often referred to as responsibility,

as:

γ(zk) ≡ p(zk = 1|x) =
p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
πkN (x|µk,Σk)∑K
j=1 πjN (x|µj ,Σj)

(5)

which provides the soft assignment of each latent space activation point to the

clusters characterizing the discrete states of the FSM. To fit the parameters of

the distribution, we iteratively employ the Expectation Maximization algorithm

(i.e., a general purpose algorithm for maximum likelihood estimation with latent

variables) applying until convergence E-steps and M-steps:

E-step :

{
γ(znk) =

πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

M-step :



µ′k =
1

Nk

N∑
n=1

γ(znk)xn

Σ
′

k =
1

Nk

N∑
n=1

γ(znk)(xn − µ′k)(xn − µ′k)T

π′k =
Nk
N

Nk =

N∑
n=1

γ(znk)

(6)

To select the number of components, we exploit Information criteria (i.e.,

Bayesian information criterion), cross validation, and silhouette (i.e., compar-

ing in-cluster cohesion to separation from the other) so to gain complementary

insights regarding the learned RNN state discretization. Standard state mini-

mization techniques might be considered to investigate the potential existence

of equivalent minimal state machines [15].

3.2. Deployed network architecture

In this work, we develop a hierarchical network architecture including the

soft clustering layer to map regions in hidden activity space to the underlying

discrete states, as shown in Figure 1. In particular, we stack:

• A RNN fθ(h(t− 1), u(t)) to learn useful features from historical data and

infer the current state
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• A GMM layer pθ(h(t)) processing the neural activity on the upper layer

of the RNN, and providing the probability of the latent activity to attain

to a specific discrete state

• A feed-forward network gθ(s(t)) aimed to learn the state output function

mapping the discrete latent state to the predicted output (e.g., actions to

be performed).

Figure 1: Network architecture
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The investigation of alternative subcomponents is left to future developments.

The number of layers required on both state transition and output functions

represents hyperparameters that must be properly tuned on the specific ap-

plication, usually by cross-validation. Indeed, the integration of multiple layers

might be required to facilitate the extraction of time-scale specific patters across

the data sequences while learning complex nonlinearities. Similar issues must

be considered for the output function in case of articulated mappings from the

current state to the output actions. It is worth noting that the output actions

are not necessarily a one-to-one map to the active state in practical applications.

Several extensions of the basic RNN unit have been proposed to address the

vanishing gradient issue.

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) rep-

resent the most used in practical applications nowadays. Compared to LSTMs,

GRUs employ a single gating unit to control the state update and the forgetting

factor [44]. It has been shown that the former provides enhanced representation

power, operating as an automata with external memory, at the cost of higher

complexity in terms of parameters, whereas the latter behaves more as a finite

state machine [11]. In this work, we implement an RNN based on GRU cells

since well fitted with the characteristics of the problem at hand while computa-

tionally cheaper than LSTM. Considering single-layers in each sub-component

to simplify notations, the developed network architecture is formalized as:

zt =σ(Wzut + Uzht−1 + bz)

rt =σ(Wrut + Urht−1 + br)

ht =(1− zt)� tanh(Whut + Uh(rt � ht−1 + bh)) + zt � ht−1

st, c =
πcN (ht|µc,Σc)∑nc

j=1 πjN (ht|µj ,Σj)
with c = 1, . . . , nc

kt =σ(Wkst + bk)

yt =σ(Wykt + by)

(7)

where zt defines the update gate, rt the reset gate, � the Hadamard product,

Wz,Wr,Wh ∈ Rnh×nu , Uz, Ur, Uh ∈ Rnh×nh , Wk ∈ Rnk×nc , Wy ∈ Rny×nk the
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weight matrices and bz, br, bh ∈ Rnh , bk ∈ Rnk , by ∈ Rny the bias vectors.

The discrete state st, c is composed by the soft-assignments to the nc clusters.

The gates include an element-wise sigmoid activation, σ(z) = 1
1+e−z , while an

hyperbolic tangent activation tanh(x) = ez−e−z

ez+e−z , is used for the hidden state

equation. The output layer is defined as an element-wise sigmoid instead of the

conventional softmax since the network must be capable to deal with multiple

output actions independently activated at a certain time, thus representing a

kind of multi-label classification problem.

3.3. The multi-step learning algorithm

A multi-step training approach is implemented, following the bottleneck in-

sertion concept [15], to achieve a consistent finite state representation during

prediction. Our major aim is to provide a more interpretable network archi-

tecture and not to investigate the extrapolation of discrete features from initial

conditions. Besides, previous studies highlighted potential slower learning time

and convergence issues in on-line state clustering from scratch ([20],[15],[31]),

strictly related to the challenging tuning of the weights in monolithic objective

functions covering fitting, covariance shaping (i.e., to avoid fancy null-covariance

solutions), and clusters selection. Moreover, the proposed method is general and

it can be easily injected into already deployed network applications to investigate

potential discrete state space structures, or to compare representation achieved

while varying training runs and hyper-parameters tuning.

Considering the multi-label classification, represented by element-wise Bernoulli

distributions over the output vector, we employed a binary-cross entropy objec-

tive function across the target actions to be cloned, formally expressed as:

L = − 1

B

B∑
i=1

ny∑
j=1

[yi,j log(yi,j) + (1− yi,j)log(1− yi,j)] (8)

where B represents the size of the mini-batch and yt the target actions.

The training algorithm proceeds as reported in Algorithm 1. The procedure

is executed over a tunable number of iterations, while maintaining the network

architecture configuration, assessing eventual differences in prediction accuracy
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and acquired representations. The procedure is then repeated in cross-validation

(as detailed in Section 4) by varying the hyper-parameters and employing a

dedicated subpart of the available dataset.

4. Application and results

4.1. Gold Rush Sneak Environment

Gold Rush Environment (GRE) provides synthetic experiments across finite

state machine configurations defined to benchmark learning algorithms [45]. We

employ this dataset to compare the proposed method to the results achieved by

the Moore Machine Network developed in [15], which represents the most sim-

ilar work to ours, even if applied to Atari games. Within GRE, we choose the

most complex case, namely GoldRushSneak (GRS) shown in Figure, requiring

attention to both memory and observations. Notably, the action performed

(thus observed) does not represent a one-to-one map to the hidden machine

state (e.g., action=1 in S2, S3, S4). Such situation is common in the industrial

automation field (e.g., timed switches in logic control), thus representing an in-

teresting, even synthetic, use case to investigate the capabilities of the proposed

method when state-action mapping is lacking.

Figure 2: FSM of GoldRushSneak [15]
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Algorithm 1 Steps of the learning algorithm

1: Train the network by disabling the cluster layer and passing the RNN output

to the input of the state-output function (i.e., kt is calculated over ht instead

of st)

2: Run the network over the training set and register:

3: the latent activity before the updated input injection (i.e., ht−1)

4: the related input vector (i.e., ut)

5: the activity after input processing (i.e., ht)

6: the related network output (i.e., yt)

7: Train the cluster layer over the activity data-set.

8: Activate the cluster layer in the network and retrain the state-output func-

tion over the soft-assignments

9: Run the finally trained network over the data-set and register:

10: the discrete state before and after input processing (i.e., st−1, st)

11: the related input and output vectors (i.e., ut, yt)

12: Create new empty state-transition and state-output tensors

13: for all samples in the data-set created by Step 9 do

14: if the transition st−1,j → st,j is not registered then

15: add the transition st−1 → st

16: add related input vector ut

17: end if

18: if yt not tracked then

19: add output vector yt

20: else

21: register multiple output assignments warning

22: end if

23: end for

24: Construct the Moore Machine representation by passing through the state-

transition and state-output tensors

25: Save the Machine for consecutive analysis
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Figure 3: Conveyor system

4.2. Flexible conveyor of the PCB remanufacturing plant

As reported in Section 1, our study represents the first exploration of these

techniques within an industrial context. A pilot plant for mechatronic prod-

uct demanufacturing, Figure 3, has been developed to support a more sus-

tainable End-Of-Life treatment of printed circuit boards (PCB), from product

re-qualification, to sub-parts reuse up to material recovery [46]. The process

includes a robotized cell to de/re-assembly the board from/in the mechatronic

product, a flying-probe based circuit test machine, a robotized PCB rework sta-

tion and a material recovery cell including shredding and separation machines

[47]. A conveyor system aimed to automatically transport the heterogeneous

PCBs (mounted on pallets) through the operating stations. Each PCB requires

specific flows depending on the specific production requirements. Moreover,

multiple loops must be supported (e.g., in case of unsuccessful rework opera-

tions identified on the testing machine). An industrial remanufacturing plant

can include from single up to several instances of each operating station, depend-

16



Figure 4: Modular unit of the pallet conveyor system

ing on the specific production requirements. Therefore, the process is conceived

to be flexible (i.e., capable of dealing with small batches of highly heterogeneous

mixes of products) and agilely reconfigurable (e.g., by integration of further op-

erating units, following production needs during time). To address the reported

requirements, the conveyor is conceived as a modular Plug&Play architecture,

where modules can be linked to form the required layout (see Figure 4, Figure 5).

Each module includes a dedicated control cabinet with input and output devices,

Figure 6 and Figure 7, and an embedded industrial computer including a soft-

PLC. Moreover, each module includes an embedded OPC-UA server connected

to the soft-PLC to provide run-time data access and recording in databases

[48]. The control logic of each module is developed in both IEC61131-SFC and

IEC61499-ECC standard[49]. Here, we focus on IEC61331-PLCs, since still the

most implemented in industrial processes. A screenshot of a conveyor module

SFC from the ISaGRAF development environment is reported in Figure 8.

Our aim is to investigate the capability of the proposed method in cloning

the behavior of the controller by processing the data-sequences collected during

the execution of the different transport tasks. Notably, the dataset (labelled

FlexC hereafter) is constituted by a unique sequence of cycle-time data, thus

lacking any label indicating the beginning/end of the sequence, as common for
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Figure 5: Module control scheme

Figure 6: Observations

language inference applications. Indeed, the PLC runs a cyclic program (as

opposed to acyclic graphs often encountered in language inference) jumping
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Figure 7: Actions

Figure 8: Conveyor module SFC

to states depending on the run-time observations from the controlled system.

Therefore, the behavior cloning machine induces the discrete states across the

cyclic process constituting the data sequence.

4.3. Performed experiments and results

The neural network has been implemented by means of Tensorflow-2.0, in-

cluding TF-Probability library. In particular, we extended the Mixture distribu-

tion included within the tool by exposing the sample-wise posterior probabilities
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(i.e., responsabilities) and created a specific Keras model including customized

init, call and loss functions. For the GRS problem, we generated a sequence

of 100000 data point (with state-wise randomly sampled observations over a

uniform probability distribution) without a reset to the initial state, whereas

the FlexC dataset is constituted by a sequence of 10000 observations-actions

pairs. For training, we adopted the Adam algorithm. A grid-search cross-

validation strategy has been employed to set the hyperparameters. To this

end, both datasets are split in training, validation and test set, respectively

60%/30%/10%. We remark here that we did not perform an extensive hyperpa-

rameters analysis since our major aim was to investigate the effects achieved by

the integration of the clustering layer and not to find the best network set-up for

the applications at hand. A deeper analysis of hyperparameters tuning, even-

tually by exploiting advanced exploration methods, is left to future extensions.

The hyperparameters set includes the number of layers within the RNN and

feed-forward components, the number of units in each layer, backpropagation

through time window size, number of epochs, early stop patience and mini-batch

size. By cross-validation, 50 epochs (with a patience of 5) and a mini-batch size

of 64 samples are found to constitute a reasonable setup for both problems.

BPTT length has been chosen as 20 and 50 steps for GRS and FlexC respec-

tively. A network architecture composed of a single dense layer on top of an

RNN layer with 10 units provides a good setup for testing both applications.

The latent activations from the trained networks are investigated to identify

the potential clusters to be detected. Figure 9 and 10 provide an integrated

(i.e., normalized) view of the obtained results, leading to configurations of 10

and 14 components for GRS and FlexC respectively.

Table 1 and 2 report the achieved prediction accuracies of the networks

without clustering, after clustering insertion, and following retraining. On both

problems, we reach 100% score, which is expectable when cloning the behavior

of control systems implementing deterministic control logic, as in our case. In-

deed, the same results are obtained in [15] for GRS using a network of similar

shape. Nevertheless, it is worth noting that the behavior of the environment
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Figure 9: Normalized scores for GRE

Figure 10: Normalized scores for FlexC

Train Vali Test

Continuous representation 1.00 1.00 1.00

Discrete layer integration without retraining 0.96 0.94 0.94

Discrete representation 1.00 1.00 1.00

Table 1: GRE Score (%)

(controller system) is stochastic (e.g., lags between a pallet entering in a position

of the conveyor and arrival of an unload request towards a specific direction).
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Train Vali Test

Continuous representation 1.00 1.00 1.00

Discrete layer integration without retraining 0.82 0.83 0.83

Discrete representation 1.00 1.00 1.00

Table 2: FlexConveyor Score (%)

Therefore, the network is able to learn the correlations between input and out-

put data across variable time interval, then identifying the related finite state

of the latent machine.

The network reconstructs the currently active latent state of the FSM -

needed to predict the action to be performed - without start/end tokens.

Perhaps, the most interesting results are provided by Figure 11,12,13,14,15,16,

showing the cross-activation of latent neurons, post-processed by the clustering

layer, obtained after different trainings using the same hyperparameters.

Clearly, our method is able the learn clusters having different distributions,

partially overlapping, and characterized by specific non-isotropic covariances,

which resulted difficult to be achieved by previous approaches exploiting k-

means based quantization. Moreover, the execution of significant ex-post state

minimizations is not required, as opposed to previous studies [15]. Thanks to

the model-based clustering approach introduced, advanced analysis techniques

for components selection are enabled [42].

Apparently, the activations of GRS results more spread than the one of

FlexC. Possibly, such effect can be related to the one-to-one state-action map-

ping characterizing the behavior of the latter as compared to the former. In-

deed, previous papers [34],[31] dealing with similar issues in language inference

applications found similar results. We left a deeper investigation of such effect

to future extensions of the present work, e.g., while covering also further case

studies.

Despite the deeper insights provided by the labels on the latent activations,

the embedded discrete representation is still difficult to be understood by hu-
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man inspection, since it lives in a high dimensional continuous space, which

increases with the number of RNN latent units. Moreover, different runs of the

training algorithm having same hyperparameters, Figure 11 vs Figure12, re-

sult in different distributions, depending on the local minimum reached by the

learning algorithm. Perhaps, a more clear view of the finite state representa-

tion embedded by the networks is provided by Figure 17-18, showing the Moore

machines reconstructed by Graphviz using the activations records. Notably, the

extracted Moore Machine (MM) is equivalent to the original GRS, whereas for

FlexC the MM is constituted by the same states of the SFC but excluding the

initial state (shown in doubled square in the SFC). This is correct since that

state does not provide any effect on the output. It is also worth noting that

the MM includes more transitions than the SFC; this is due to the different

formalization of state machine behaviour between SFC and MM. Indeed, within

the SFC, the token remains in a certain state until the boolean condition re-

lated to a transition becomes active, whereas MM employs auto-transition on

the state. We found that equivalent Moore machines are extracted from differ-

ent runs – and thus from different latent activation distributions, as expected

by the method, see Figure 18. Such feature of the method can then support

enhanced analysis, for instance checking if the same representation is obtained

across different runs, when maintaining or changing the hyperparameters, thus

extending conventional methods mainly based on the assessment of prediction

accuracy.

5. Conclusions and Next developments

In this work, we presented a new method aimed to provide deeper insight

into the black-box knowledge structured by RNNs trained to perform predictive

tasks. To this end, we developed a hierarchical model including a Gaussian Mix-

ture based clustering layer to process RNN state activations before passing to

output layers. We focused on the embedded representations acquired by RNNs

cloning the behavior of finite state dynamical MIMO systems. By application
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to an open benchmark problem and to a pilot industrial process, we showed

the capability of the proposed method in extracting finite state patterns from

multi-dimensional continuous spaces, then exploited to map discrete-state spe-

cific actions. Thanks to the configurable full covariance support of GMM, we

addressed the partially overlapping, non-isotropic distributions of the regions

of activation. Afterwards, a human readable transition diagram is extracted in

form of a Moore Machine, representing the computational precess performed by

the RNN.

We envision our study as a first step towards the full exploration of discrete

representations of RNN in Industry, e.g for learning ICPS models from data,

which represents a primary target. Indeed, several future extensions are fore-

seen. The core method is conceived to be deployed on further RNN architectures

and application domains, considered as future extensions of the present work.

We plan to extend the method to processes characterized by hybrid dynamics,

e.g., by blending architectural components dedicated to continuous/discrete as-

pects. Symbolic dynamics represents a relevant field of future research, targeting

the extraction of the major dynamical features while abstracting the details of

the trajectories. We foresee the integration of adaptive mechanisms - aimed to

discover and map possible behavioral changes of the system under treatment -

and the development of generative models to address stochastic systems. Be-

sides, we plan to investigate further applications covering different industrial

fields.
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Figure 11: GRE activations after 5 epochs. Each subplot reports the concurrent activation of

two RNN state neurons processing samples from the validation set. Each color characterizes

a different cluster

31



Figure 12: GRE activations after 30 epochs - 1
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Figure 13: GRE activations after 30 epochs - 2

33



Figure 14: FlexC activations after 5 epochs
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Figure 15: FlexC activations after 30 epochs - 1
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Figure 16: FlexC activations after 30 epochs - 2
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Figure 17: Equivalent Moore Machines extracted from GRE during different training runs

Figure 18: Equivalent Moore Machines extracted from FlexC during different training runs
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