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Abstract 

Background. Clinical registries are powerful tools for collecting uniform data 

longitudinally, thus making it possible to evaluate the outcome of patients affected by a 

specific pathology. In the context of total joint arthroplasty, registries serve also as post-

market surveillance. Adoption of registries is a heavy burden for clinical settings in terms 

of resources and infrastructures. Excessive workload leads to incomplete data collection 

which undermines the effectiveness of a registry and consequently the workload needs to 

be optimised. 

Methods. Starting from the use case of the Istituto Ortopedico Galeazzi, the time and 

personnel dedicated to the registry was estimated. Analysis of the data collected in the 

first years enabled us to propose a methodology for workload reduction. Different 

Machine Learning models were leveraged to predict patients with excellent satisfaction 

to reduce the number of assessments in their clinical post-operative follow-up. Moreover, 

feature selection was used to identify any unnecessary clinical scale to collect. 

Results. Given an acceptance rate of 3,500 patients per year, 22 doctors and 6 non-

medical employees were required to adopt a registry properly. Among the tested models, 

the Naïve Bayes gave the best performance (AUPRC=0.81) in predicting patient 

satisfaction at six months. Moreover, we found that the 12-item Short Form was poorly 

informative in predicting satisfaction at six-months. 

Conclusions. In this study machine learning was leveraged to provide a methodology to 

reduce workload in the use of pathology registries. Such workload reduction can have a 

considerable impact at a larger scale, and improve registry feasibility in high-volume 

hospitals. 
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Introduction 

Progressive ageing of the population in developed countries has led to an increase in the 

incidence of chronic diseases [1]. Arthritis represents one of the most common 

degenerative pathologies [2] and it is one of the major causes of pain and functional 

disability, thus constituting a heavy burden for Health Systems [3]. Total joint 

arthroplasty is a safe and efficient procedure to ease the pain and improve articular 

function in patients with a severe grade of arthritis [4]. Quality of life expectations after 

total joint replacement are very high [5]. Nonetheless, this clinical procedure is linked 

with the occurrence of both short- and long-term adverse events, such as, 

thromboembolism, infections, articular stiffness, instability, implant mobilisation and 

failure [6]. Therefore, a careful short- and long-term monitoring of patients undergoing 

total joint arthroplasty becomes a necessity [6,7]. Indeed, stakeholders such as insurance 

companies, medical staff, and manufacturers have great interest in collecting clinical data 

on total joint arthroplasty outcome and follow up [8]. Moreover, the newly released EU 

Medical Device Regulation (article 108) [9] strongly encourages the adoption of registries 

for implantable devices, to collect comparable information on long-term safety of 

implantable devices. Registries are pathology-specific databases, where a large number 

of patients’ clinical outcomes are collected, also in a long-term follow-up perspective. 

Thus they are a keystone in clinical practice as they provide the so-called “real world” 
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therapeutic situation [9,10]. Indeed, registries represent a valid tool to address the need 

for proactive post-market surveillance, not only in the orthopaedic field but in many other 

specialty areas [11]. 

Registry adoption presents some challenges. It requires an increase in manpower 

allocation to comply with operational aspects mostly related to patient contact and data 

collection. This resource requirement is not always compatible and feasible for hospitals 

or health systems. When insufficient personnel are dedicated, the large-scale registries 

are incomplete and totally lose their effectiveness and reliability in the longitudinal 

monitoring of patients. 

To overcome this difficulty and comply with the new regulation, there is a need for 

workload quantification and optimisation. Clinical workload optimisation can be seen as 

a classical customer segmentation optimisation problem, using patient outcomes as an 

evaluation metric. These optimisation difficulties are typically overcome using Machine 

Learning (ML) methodologies. ML applied to registry data is gaining interest in the 

medical field and it has been applied in different situations such as the prediction of 

patient outcomes [12,13], mortality, and complications [14]. Huber and colleagues [12] 

predicted patient-reported improvement (based on minimal important difference) after 

hip or knee replacement from two years of data collection. They achieved their best Area 

Under the Receiving Characteristic curve (AUROC) predicting the Visual Analogue 

Scale of pain (VAS) and the Oxford Hip and Knee Score (Q score) with Extreme Gradient 

Boosting (XGBoost) [15], with results between 0.70 and 0.87. Zupan and colleagues [13] 

predicted long-term outcome after hip prosthesis implantation. They proposed a Naïve 

Bayes classifier [16] paired with a hierarchical decision model, where expert knowledge 

injection was possible. They evaluated the model using the accuracy metric (56.3%). 
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Harris and colleagues [14] leveraged large scale registries to build risk-prediction models 

for 30-days mortality and complications after total joint arthroplasty. They used Lasso 

Regression [17] on demographic and clinical variables, and evaluated the performance 

using the C-statistic. They achieved their best results in predicting renal complication 

(0.78), cardiac complication (0.73), and death (0.73). To this extent, ML is very 

promising, as it provides performant computational methods as a guide towards a better 

standard of care. 

In this study, we focus on the experience of the Istituto Ortopedico Galeazzi (IOG). At 

IOG, a registry has been adopted by the Ortopedia Ricostruttiva Articolare della Clinica 

Ortopedica (Joint Reconstruction Orthopaedics, ORACO) division since 2013. This 

electronic registry monitors patients undergoing joint arthroplasty. In fact, it is a single 

collector of information related to surgical operations, such as type of implanted device, 

collected pre- and post-operative diagnostic imaging (e.g., X-rays, CT and RMN, as well 

as any other imaging technique). Moreover, it stores Patient Reported Outcomes 

Measures (PROMs) and clinical scales, and helps in their collection. 

This study has two main objectives: first, to assess overall time needed for collection of 

data with the registry, with Istituto Ortopedico Galeazzi as a reference; second, to provide 

methods to reduce the workload, by means of Machine Learning techniques. 

Methods 

In this section, we address workload estimation and optimisation. The term “workload” 

refers to the amount of time that people of the ORACO division devoted to the use of the 

registry. In our specific context, we refer to the number of visits performed by medical 

staff, which includes Clinical-Based Outcome Measures (CBOMs) administration, and to 

about:blank
about:blank
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the amount of time dedicated to Patient-Reported Outcome Measures (PROMs) 

completion by non-medical staff. 

The described analyses were performed on data collected after both Ethical Committee 

approval and the collection of written informed consent by all the participants involved. 

To be included into the registry, patients must be 18 years old or more and in need of a 

hip or knee arthroplasty. The only exclusion criterion was to present severe comorbidities 

which might prevent patients from returning to the hospital for follow-up visits. 

Workload estimation 

Table 1 summarises the monitoring procedure adopted at IOG for patients undergoing hip 

and knee surgery. The procedure included seven visits, covering ten-year time span. Each 

visit was scheduled at the given time, indicating also a tolerance interval acceptable for 

each of them. 

FOLLOW-UP STEP TOLERANCE 

Pre-op phase - 

Three months 15 days 

Six months 15 days 

One year 30 days 

Two years 30 days 

Five years One year 

Ten years One year 

Table 1: Protocol structure 

Regarding the visits, each one was conducted by two residents. One of them actually 

visited the patient while the other completed the CBOMs. We estimated that it is possible 
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to visit four patients per hour, but residents can spend only half of their working day on 

this activity. Thus, we considered four hours per day, five days per week, forty-six weeks 

per year.  

The registry was personalised to collect data from the IOG hospital. Two CBOMs were 

chosen: the Harris Hip Score (HHS) [18], and the Knee Society Score (KSS) [19]. Such 

CBOMs were intended to assess the dysfunction of patients who underwent hip or knee 

surgery respectively. They were administered by a qualified healthcare professional, i.e., 

the resident. Concerning the PROMs, all patients completed the Visual Analogue Scale 

for Pain (VAS) [20], and the 12-item Short Form (SF-12) [21]. In addition, hip patients 

completed the Hip disability and Osteoarthritis Outcome Score (HOOS-PS) [22], and 

knee patients completed the Knee injury and Osteoarthritis Outcome Score (KOOS-PS) 

[23]. From the first follow-up on, the Satisfaction rate for the patient was added. As these 

questionnaires are PROMs, intended to be representative of the patients’ voices without 

doctor mediation [24], they were usually collected before the visit. An automatic alert 

was sent to those patients who provided an e-mail address when they entered the registry 

but when this method was ineffective (e.g., the elderlies) completion of the PROMs was 

aided by IOG operators. They helped patients in loco, providing tablets with digital forms 

and supporting the completion of the tests, or they interviewed patients through a phone 

call. Collecting time for all the PROMs, considering technical needs and time for calls 

and recalls, was fifteen minutes (four patients per hour). The operators could devote all 

their working time to this task (eight hours), five days per week, forty-six weeks per year.  

For a very practical estimation of the hospital-level effort needed to manage all the 

follow-up visits, a projection was made based on the described protocol and patient 

volume. The projection started from the assumption that 3,500 new patients are admitted 
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each year on the basis of historical data from the IOG. Due to the old age of the population 

that undergoes total joint replacement, we also adjusted the projection by a censoring 

factor of 2% at the five-year follow-up, and 5% at ten years [25]. To further approximate 

a realistic effort, we considered the real-life dropout experienced by the ORACO division 

of the IOG, as reference sample. Their data were stored in the registry, and they included 

longitudinal assessment of patients undergoing hip and knee surgery since 2013. We 

fitted their form completion rate to the IOG workload, to build a data-driven description 

of a realistic number of visits. 

On these bases, we computed the number of required visits and interviews necessary to 

fulfil the protocol, considering both the per protocol effort and the real-life dropout-

adjusted effort. 

Workload optimisation 

To achieve workload reduction, two approaches can be adopted: delete a whole follow-

up visit or delete just some assessments in each visit. In the first approach, prediction 

models were used to forecast each patient’s need for further examination, with the aim of 

decreasing the number of required follow-ups. In the second approach, feature selection 

was performed to identify whether some questionnaires can be removed from follow-up 

visits, without any impact on the general assessment. 

Regardless of the approach, the first step was to select the subgroup of patients that 

potentially can avoid some assessments, from among the largest homogeneous groups in 

the database. The Satisfaction questionnaire was used to stratify the population. 

Specifically, the question “How do you describe the result of your surgical operation?” 

was used to dichotomise the population into the “excellent group” (answers Excellent) 
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and “non excellent” group (Very good, Good, Quite good, and Bad answers). The 

excellent group was considered as the sample that does not need to be visited in the follow 

up. 

Descriptive statistics was used to select the candidate time point to be deleted from the 

“excellent” patients’ follow-up programme. The time point that significantly overcame 

the threshold for an excellent result (90 points [26], for the Harris Hip score) in terms of 

clinical-based outcome measure was selected. Rather than PROMs, we considered the 

CBOMs as they closely reflect the real clinical situation, rather than patient perceptions. 

To test the potentiality of Machine Learning in predicting patient satisfaction at the 

selected time point given the previous assessments we investigated the following ML 

techniques: Logistic classifier, Support Vector Machines (SVM), Random Forest (RF), 

and Naïve Bayes (NB) [27]. Model predictors were: demographic variables, such as age 

at the operation, gender, BMI (pre-operatory, at three months, and its change); variables 

related to the operation, such as the season of the year (a categorical variable with four 

levels), and the length in minutes of the operation; the PROMs scores (i.e., the VAS, the 

SF-12, Mental and Physical components, the Hoos-ps), in the pre-operatory phase, their 

corresponding scores at three months, and their differences; the Satisfaction rate at three 

months; and the clinical questionnaire, again in the pre-operatory phase, at three months 

and its difference. The total number of available features was 38. Categorical variables 

with more than two levels (i.e., Satisfaction rate at three months) were replaced by dummy 

variables, with the One-Hot Encoding technique [27]. All the other variables were treated 

as continuous. We checked for collinearity between variables through a Spearman 

correlation, considering 0.95 as deletion threshold, which ensures a Variance Inflation 

Factor less than 10 [28]. To avoid data imputation, which may lead to spurious 
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information, we excluded patients without a complete predictors set. We stratified the 

dataset into training and test set with a proportion of 80:20, and we kept the proportions 

of the two classes as in the original dataset both in the training and test sets. The 

continuous variables were standardised considering training set statistics, to avoid data 

leakage [29]. A ten-fold cross-validation was used to train the models, as internal 

verification. Then, to achieve external verification, we tested the trained model on the 

previously held out test set. This procedure was repeated five times, with random 

training/test splits, to better approximate the real performance of the models. As the class 

of interest was under-represented, the evaluation metric for our predictions was the Area 

Under the Precision-Recall Curve (AUPRC) [30].  

Concerning feature selection, we chose the Correlation-based Feature Subset selection 

[31], with a Best First search method and ten-fold cross-validation. The attributes 

regarded as important by the algorithm at least in one of the ten folds were selected and 

we repeated the training on the new set of features on the most performing model. To 

determine whether the predictive power of the reduced set of features could be compared 

to that of the complete set of features, we performed a Wilcoxon matched paired test on 

the model AUPRC.  

Feature engineering was performed in R 3.3.3, feature selection and the predictions were 

made in Weka 3.8. 

Results 

Workload estimation 

Figure 1 reports the number of hip and knee patients enrolled in the registry by the 

ORACO division from January 2013 to July 2019. The number of patients is decreasing 



14 

 

as some of them have not reached each time point yet. In absolute terms (Figure 1 – Panel 

A), 1,386 ORACO patients started the follow-up programme (the pre-operatory column 

in the graph). At the operation, ORACO hip and knee patients have a mean age of 71 ± 

10 years old. 1,239 reached the three-month follow-up step, 1,177 the six-month step, 

1,076 the twelve-month step, 893 the two-year step, and 450 the five-year step. Given 

these figures, Figure 1 – Panel B reports the dropout percentages, based on the number of 

forms collected by the ORACO division. The completion rate follows an exponential 

decay, with an average of 71% the first year (mediated on 3, 6, and 12 months), 43% at 

24 months, and 34% at 5 years. Given this trend, we considered a completion rate of 30% 

at 10 years, for the projection. 

 

Figure 1: ORACO patients follow-up situation. Panel A: number of patients per follow-up step 

for the ORACO division from 2013 to 2019, divided by specialty (hip and knee, first operation 

and revision). Panel B: forms completion rate for the ORACO division, normalised by the number 

of patients in each time point. 

Considering the whole hospital effort of 3,500 patients, i.e., the entire hip and knee IOG 

workload, Figure 2, Panel A, shows the per protocol projection of the number of visits 

per year. It starts from the very beginning of a registry (year one) and ends when patients 

who entered the follow-up at year one successfully complete all the steps (year eleven). 
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Solid bars represent the actual visits required. According to the protocol structure reported 

in Table 1, in year one the expected visits are: pre-operatory, 3 months, and 6 months, 

which brings the total to 10,500 visits. One year after the beginning of the registry (year 

two), in addition to the new patients 10,500 visits, the previous year’s patients reach the 

12-month follow-up, so that the total number of required visits becomes 14,000. They 

reach a plateau after ten years of registry activity (year eleven). Even adjusting for the 

censoring, we reach the impressive number of 24,255 visits per year. Given that the 

proposed protocol offers the opportunity to anticipate or delay a visit within a specified 

tolerance time interval (see Table 1), we also estimated the maximum workload generated 

by the worst case tolerance effect. Indeed, if all the visits of the following year are 

anticipated and all the visits of the previous year are delayed, we reach the excessive 

maximum of 39,000 follow-up visits in one year (dashed bars in Figure 1). Given this 

estimation of the number of visits, Figure 2, Panels B and C, represents the number of 

workers who must be devoted to this apparatus, suggesting the great amount of resources 

needed, both in terms of people and  infrastructures (dedicated rooms, phones, etc.). When 

the registry is at regime, from 7 to 11 pairs of residents (i.e., from 14 to 21 students) must 

spend half of their working day administering questionnaires and follow-up visits. On the 

other hand, from 4 to 6 full-time employees must be dedicated to in loco completion and 

calls and recalls. Nonetheless, the ORACO division’s experience confirmed that there is 

a substantial real-life dropout (see Figure 1, Panel B). Figure 2, Panel D-F, reports the 

same projection corrected by the dropout observed in the ORACO division. Given this 

fact, the maximum number of patients is 23,523, which corresponds to 5 to 7 pairs of 

doctors and 3 to 4 operators. 
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Figure 2: Workload and personnel involvement estimation. Panel A: Estimation of the required 

visits from the start up to the regime phase. Panel B: Estimation of the required pairs of doctors 

to carry out the expected visits and CBOMs. Panel C: Estimation of the operators required to 

complete the PROMs. Panel D, E and F: Estimation of the required visits, pairs of doctors, and 

operators, projecting ORACO’s real-life dropout on the whole hospital workload. In all panels 
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the solid bars represent the follow-up executed at the due time, the dashed bars introduce the 

tolerance effect. 

Workload optimisation 

To predict the outcomes and optimise the workload, we considered the largest 

homogeneous group in our database: hip replacements, first operation. Figure 3, Panel A, 

shows a trend with improvement on the HHS scale for all hip patients. From six months 

on a plateau is reached and the score is significantly above the 90-point threshold, as the 

95% confidence interval of the median (the notch in the box-and-whiskers plot) is 

completely above this threshold. Thus, we selected six months as the candidate time point 

to be discarded from the assessment. To further confirm this choice, we dichotomized the 

HHS score using the six months Satisfaction score. The number of hip patients who 

reached the six-month time point and satisfied the condition of a complete predictors set 

was 213. More specifically, the dataset comprised 129 non-excellent patients (84 females, 

45 males, 69.5 ± 11.8 years old) and 84 excellent patients (45 females, 39 males, 71.2 ± 

11.0 years old). As shown in Figure 3, Panel B, at three months only the “non-excellent” 

group did not significantly reach the HHS-based excellent result (the 95% confidence 

interval of the median is below the 90 points threshold). 
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Figure 3: Harris Hip Score trend. Panel A: all ORACO patients considered for the prediction. 

Panel B: stratification based on the six-month Satisfaction. Y-axis: Harris Hip Score. X-axis: 

follow-up step. The score is reported with box-and-whiskers plot, where the box is the inter-

quartile range, the horizontal line is the median and the notch is its 95% confidence interval. The 

horizontal lines are the poor (red, dotted line), good (orange, dashed line) and excellent (green, 

solid line) score thresholds, as in Nilsdotter et al [25].  

We now report the results of the predictions on the selected patients group, to suggest 

those who do not need to be visited at six months. In the feature engineering phase, none 

of the predictors was deleted for collinearity. The first step of model selection was 

performed on a Logistic classifier with a Ridge correction of 0.1; on a Support Vector 
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Machine with a one-degree polynomial kernel and a complexity parameter equal to 2; on 

a Random Forest with trees of three attributes and depth equal to five; and on a Naïve 

Bayes without kernel estimation. The weighted AUPRC for the training and test set are 

reported in Table 2, rows 1 to 4, with their median and inter quartile range on five 

repetitions. The results are presented as class performance, and the weighted average. 

Given these results, we proceeded with the Naïve Bayes classifier. 

 Internal verification (cross-

validation training) 

External verification (hold out 

testing) 

Non-

excellent 

Excellent Weighted 

average 

Non-

excellent 

Excellent Weighted 

average 

Logistic 0.77 (0.05) 0.60 (0.06) 0.70 (0.04) 0.82 (0.07) 0.74 (0.23) 0.78 (0.07) 

SVM 0.70 (0.02) 0.51 (0.04) 0.62 (0.01) 0.62 (0.18) 0.52 (0.32) 0.63 (0.14) 

RF 0.80 (0.03) 0.61 (0.06) 0.72 (0.03) 0.81 (0.09) 0.69 (0.25) 0.75 (0.15) 

NB 0.84 (0.02) 0.68 (0.10) 0.76 (0.04) 0.86 (0.11) 0.74 (0.31) 0.81 (0.11) 

NB 

(feature 

selection) 

0.84 (0.02) 0.69 (0.06) 0.77 (0.02) 0.83 (0.12) 0.79 (0.21) 0.81 (0.12) 

 

Table 2: Training and test set performance, in terms of median Area Under the Precision-Recall 

Curve and its inter quartile range. Columns: single class and weighted average performance. 

Rows: models. The last line reports the performance of the Naïve Bayes with a subset of features. 

Figure 4 reports the results of feature selection. The most important feature, selected in 

each of the ten repetitions of the algorithm, was the three months “excellent” answer to 

the Satisfaction questionnaire. Other important features were: gender, Hoos-ps at three 

months and its increment, VAS at three months and its increment, surgery length, HHS 
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total and sub-scores increment, and the “quite good” Satisfaction answer at three months. 

The SF-12 score never appears in the feature selection, nor does the BMI. The other scores 

appeared both as three-month scores and as delta scores, thus it is not possible to eliminate 

their collection in one of the two steps. The Wilcoxon matched pairs test on the test set 

AUPRC (five repetitions) revealed that there was not any difference (p = 1) between the 

model trained on the complete set of attributes or on the selected attributes only. This 

result is reported in the last row of Table 2.  

 

Figure 4: Feature importance. The x-axis reports the feature selected by the algorithm, the y-axis 

the percentage of folds each feature was selected. 

Considering that the “excellent patients” represented 39% of our dataset, the workload 

was recomputed to estimate the achieved reduction. Each year we can exclude 1,365 

patients from the six-month visit. This action would be translated into a maximum number 

of visits of 32,000, instead of 39,000. Concerning the two doctors needed to perform each 

of such visits, they decrease from a maximum of 11 to a maximum of 9 pairs. As for non-
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medical operators, we additionally consider that it would be possible to interview one 

patient more per hour (from 4 to 5) because of the SF-12 removal from the protocol, thus 

resulting in a maximum number of 4 operators needed at registry regime, instead of 6. 

Discussion 

In this work, we analysed the feasibility of maintaining a total joint arthroplasty high-

volume registry. The importance of registries to collect information about the operation 

and the follow-up is ubiquitously recognized [9]. Nonetheless, the excessive medical and 

non-medical workload might reduce their application, and undermine their effectiveness. 

To address this problem, we presented a projection of the effort needed to maintain a total 

joint arthroplasty registry, starting from the real case of the ORACO division of the 

Istituto Ortopedico Galeazzi experience. Moreover, we provided methods to reduce such 

workload, with the final aim of improving feasibility, effectiveness, and associated costs. 

Our projection of a full-operative registry shows that the great number of new incoming 

patients and previously operated follow-ups prevent protocol adherence. Such a workload 

does not consist only of medical examinations. In fact, collecting Patient Reported 

Outcome Measures also requires dedicated non-clinical personnel and infrastructures, 

such as rooms, tablets, and phones. The most relevant consequence of the excessive 

workload is the high number of dropouts. Electronic registries may aid in PROMs 

collection by sending automatic email alerts in the due follow-up time. However, in total 

joint arthroplasty, this feature is still ineffective, considering the old age of the patients 

(71 ± 10 years old). Nonetheless, the help of the electronic platform alone might smooth 
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the data collection process and enable analytics, but cannot avoid the need for visits, 

PROMs and clinical scales collection. 

To improve feasibility operatively we proposed a workload optimisation. We focused 

both on reducing the need for one of the follow-up steps for non-critical patients and on 

reducing the number of PROMs collected for each step. For this purpose we built a 

machine learning model to predict which patients can avoid the six-month follow-up as 

they would report excellent satisfaction. The performance of our model can be compared 

to the State of the Art of hip surgery outcome prediction. For instance, Zupan and 

colleagues [13] reached their best performance in predicting long-term outcome with a 

Naïve Bayes classifier at 56.3% of accuracy; Huber et al. reached an area under the ROC 

curve of 0.87, when classifying patients who surpassed the minimal important difference 

for the VAS scale [12]. Given the precision and recall in estimating patient satisfaction at 

six months, we suggest reducing the number of control visits at this time point, and devote 

them only to those patients who are predicted to achieve "non-excellent” satisfaction. 

Additionally, we found that the SF-12 questionnaire was poorly informative in predicting 

six-month satisfaction. Therefore, we suggest reducing the number of PROMs collected, 

eliminating the SF-12. This methodology has the potential of creating a big impact at 

scale, as they reduce the number of visits and shorten the evaluation. Indeed, applying the 

proposed workload reduction to the IOG use case would produce an 18% reduction of 

control visits and pairs of doctors, and a 33% reduction of operators needed to comply 

with the protocol. 

Besides the reported use case, the main value of our work is to provide a general method 

to achieve workload optimisation in the context of pathology registries. In fact, in other 

clinical settings we may wish to collect different outcome measures, or perform periodic 
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evaluation at different time points. Notwithstanding this, preliminary data collected in the 

registry setting up phase should be used to perform a custom optimisation before the 

workload becomes excessive. 

A limit of these analyses is that we cannot include in the model those patients who did 

not complete all the follow-up steps. In particular, we could not access the health status 

of those who did not answer the six-month follow-up. Thus, these results are affected by 

Non-Response bias by design [32]. Nonetheless, we can assume that the workload 

reduction proposed will make it possible to visit and collect scales from more patients, 

thus progressively reducing Non-Response influence. 

Conclusions  

In conclusion, in this work we quantified the difficulties of a total joint replacement 

registry maintenance, and we propose two actions to optimise the workload: first, to 

reduce the number of control visits, and devote them only to patients who will not achieve 

an “excellent” satisfaction predicted by a machine learning model; second, to reduce the 

number of collected PROMs, eliminating the less informative in such prediction. We 

believe that these actions have the potential to improve the feasibility, effectiveness, and 

costs associated with a total joint replacements high-volume hospital registry. 

Conflict of interest statement 

Linda Greta Dui was previously employed in the company who developed the electronic 

registry. None of other authors have conflicts of interest to disclose. 



14 

 

Authors’ contribution 

MU: Patients enrolment, patient treatment, study conceptualization, supervision of the 

methodology, paper drafting, revision. 

VM: Patients enrolment, patient treatment, data collection, paper drafting. 

LO: Patients enrolment, patient treatment, paper drafting, revision. 

LP: Data collection, paper drafting. 

NR: Data collection, paper drafting. 

GMP: Study conceptualisation, supervision of the methodology, paper drafting, revision. 

LGD: Data analysis and statistics, machine learning models, paper drafting. 

SF: Study conceptualisation, supervision of the methodology used, paper drafting and 

revision. 

LM: Study conceptualisation, supervision of the methodology, paper drafting, revision. 

All authors have approved the final article. 

Funding sources 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. 

References 

[1] World Health Organization, Facing the facts: The impact of chronic disease in 

Canada., Prev. Chronic Dis. A Vital Investment. (2005). 

https://doi.org/10.1017/CBO9781107415324.004. 

[2] M. Cross, E. Smith, D. Hoy, S. Nolte, I. Ackerman, M. Fransen, L. Bridgett, S. 

Williams, F. Guillemin, C.L. Hill, L.L. Laslett, G. Jones, F. Cicuttini, R. Osborne, 



14 

 

T. Vos, R. Buchbinder, A. Woolf, L. March, The global burden of hip and knee 

osteoarthritis: Estimates from the Global Burden of Disease 2010 study, Ann. 

Rheum. Dis. (2014). https://doi.org/10.1136/annrheumdis-2013-204763. 

[3] C.J.L. Murray, T. Vos, R. Lozano, M. Naghavi, A.D. Flaxman, C. Michaud, M. 

Ezzati, K. Shibuya, J.A. Salomon, S. Abdalla, V. Aboyans, J. Abraham, I. 

Ackerman, R. Aggarwal, S.Y. Ahn, M.K. Ali, M.A. AlMazroa, M. Alvarado, H.R. 

Anderson, L.M. Anderson, K.G. Andrews, C. Atkinson, L.M. Baddour, A.N. 

Bahalim, S. Barker-Collo, L.H. Barrero, D.H. Bartels, M.G. Basáñez, A. Baxter, 

M.L. Bell, E.J. Benjamin, D. Bennett, E. Bernabé, K. Bhalla, B. Bhandari, B. 

Bikbov, A. Bin Abdulhak, G. Birbeck, J.A. Black, H. Blencowe, J.D. Blore, F. 

Blyth, I. Bolliger, A. Bonaventure, S. Boufous, R. Bourne, M. Boussinesq, T. 

Braithwaite, C. Brayne, L. Bridgett, S. Brooker, P. Brooks, T.S. Brugha, C. Bryan-

Hancock, C. Bucello, R. Buchbinder, G. Buckle, C.M. Budke, M. Burch, P. 

Burney, R. Burstein, B. Calabria, B. Campbell, C.E. Canter, H. Carabin, J. 

Carapetis, L. Carmona, C. Cella, F. Charlson, H. Chen, A.T.A. Cheng, D. Chou, 

S.S. Chugh, L.E. Coffeng, S.D. Colan, S. Colquhoun, K.E. Colson, J. Condon, 

M.D. Connor, L.T. Cooper, M. Corriere, M. Cortinovis, K. Courville De Vaccaro, 

W. Couser, B.C. Cowie, M.H. Criqui, M. Cross, K.C. Dabhadkar, M. Dahiya, N. 

Dahodwala, J. Damsere-Derry, G. Danaei, A. Davis, D. De Leo, L. Degenhardt, R. 

Dellavalle, A. Delossantos, J. Denenberg, S. Derrett, D.C. Des Jarlais, S.D. 

Dharmaratne, M. Dherani, C. Diaz-Torne, H. Dolk, E.R. Dorsey, T. Driscoll, H. 

Duber, B. Ebel, K. Edmond, A. Elbaz, S. Eltahir Ali, H. Erskine, P.J. Erwin, P. 

Espindola, S.E. Ewoigbokhan, F. Farzadfar, V. Feigin, D.T. Felson, A. Ferrari, 

C.P. Ferri, E.M. Fèvre, M.M. Finucane, S. Flaxman, L. Flood, K. Foreman, M.H. 



14 

 

Forouzanfar, F.G.R. Fowkes, M. Fransen, M.K. Freeman, B.J. Gabbe, S.E. 

Gabriel, E. Gakidou, H.A. Ganatra, B. Garcia, F. Gaspari, R.F. Gillum, G. Gmel, 

D. Gonzalez-Medina, R. Gosselin, R. Grainger, B. Grant, J. Groeger, F. Guillemin, 

D. Gunnell, R. Gupta, J. Haagsma, H. Hagan, Y.A. Halasa, W. Hall, D. Haring, 

J.M. Haro, J.E. Harrison, R. Havmoeller, R.J. Hay, H. Higashi, C. Hill, B. Hoen, 

H. Hoffman, P.J. Hotez, D. Hoy, J.J. Huang, S.E. Ibeanusi, K.H. Jacobsen, S.L. 

James, D. Jarvis, R. Jasrasaria, S. Jayaraman, N. Johns, J.B. Jonas, G. Karthikeyan, 

N. Kassebaum, N. Kawakami, A. Keren, J.P. Khoo, C.H. King, L.M. Knowlton, 

O. Kobusingye, A. Koranteng, R. Krishnamurthi, F. Laden, R. Lalloo, L.L. Laslett, 

T. Lathlean, J.L. Leasher, Y.Y. Lee, J. Leigh, D. Levinson, S.S. Lim, E. Limb, J.K. 

Lin, M. Lipnick, S.E. Lipshultz, W. Liu, M. Loane, S. Lockett Ohno, R. Lyons, J. 

Mabweijano, M.F. MacIntyre, R. Malekzadeh, L. Mallinger, S. Manivannan, W. 

Marcenes, L. March, D.J. Margolis, G.B. Marks, R. Marks, A. Matsumori, R. 

Matzopoulos, B.M. Mayosi, J.H. McAnulty, M.M. McDermott, N. McGill, J. 

McGrath, M.E. Medina-Mora, M. Meltzer, Z.A. Memish, G.A. Mensah, T.R. 

Merriman, A.C. Meyer, V. Miglioli, M. Miller, T.R. Miller, P.B. Mitchell, C. 

Mock, A.O. Mocumbi, T.E. Moffitt, A.A. Mokdad, L. Monasta, M. Montico, M. 

Moradi-Lakeh, A. Moran, L. Morawska, R. Mori, M.E. Murdoch, M.K. Mwaniki, 

K. Naidoo, M.N. Nair, L. Naldi, K.M.V. Narayan, P.K. Nelson, R.G. Nelson, M.C. 

Nevitt, C.R. Newton, S. Nolte, P. Norman, R. Norman, M. O’Donnell, S. 

O’Hanlon, C. Olives, S.B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, A. Page, B. 

Pahari, J.D. Pandian, A. Panozo Rivero, S.B. Patten, N. Pearce, R. Perez Padilla, 

F. Perez-Ruiz, N. Perico, K. Pesudovs, D. Phillips, M.R. Phillips, K. Pierce, S. 

Pion, G. V. Polanczyk, S. Polinder, C.A. Pope, S. Popova, E. Porrini, F. 



14 

 

Pourmalek, M. Prince, R.L. Pullan, K.D. Ramaiah, D. Ranganathan, H. Razavi, M. 

Regan, J.T. Rehm, D.B. Rein, G. Remuzzi, K. Richardson, F.P. Rivara, T. Roberts, 

C. Robinson, F. Rodriguez De Leòn, L. Ronfani, R. Room, L.C. Rosenfeld, L. 

Rushton, R.L. Sacco, S. Saha, U. Sampson, L. Sanchez-Riera, E. Sanman, D.C. 

Schwebel, J.G. Scott, M. Segui-Gomez, S. Shahraz, D.S. Shepard, H. Shin, R. 

Shivakoti, D. Silberberg, D. Singh, G.M. Singh, J.A. Singh, J. Singleton, D.A. 

Sleet, K. Sliwa, E. Smith, J.L. Smith, N.J.C. Stapelberg, A. Steer, T. Steiner, W.A. 

Stolk, L.J. Stovner, C. Sudfeld, S. Syed, G. Tamburlini, M. Tavakkoli, H.R. 

Taylor, J.A. Taylor, W.J. Taylor, B. Thomas, W.M. Thomson, G.D. Thurston, I.M. 

Tleyjeh, M. Tonelli, J.A. Towbin, T. Truelsen, M.K. Tsilimbaris, C. Ubeda, E.A. 

Undurraga, M.J. Van Der Werf, J. Van Os, M.S. Vavilala, N. Venketasubramanian, 

M. Wang, W. Wang, K. Watt, D.J. Weatherall, M.A. Weinstock, R. Weintraub, 

M.G. Weisskopf, M.M. Weissman, R.A. White, H. Whiteford, N. Wiebe, S.T. 

Wiersma, J.D. Wilkinson, H.C. Williams, S.R.M. Williams, E. Witt, F. Wolfe, 

A.D. Woolf, S. Wulf, P.H. Yeh, A.K.M. Zaidi, Z.J. Zheng, D. Zonies, A.D. Lopez, 

Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 

1990-2010: A systematic analysis for the Global Burden of Disease Study 2010, 

Lancet. (2012). https://doi.org/10.1016/S0140-6736(12)61689-4. 

[4] L. Busija, L. Bridgett, S.R.M. Williams, R.H. Osborne, R. Buchbinder, L. March, 

M. Fransen, Osteoarthritis, Best Pract. Res. Clin. Rheumatol. (2010). 

https://doi.org/10.1016/j.berh.2010.11.001. 

[5] A. Garratt, L. Schmidt, A. Mackintosh, R. Fitzpatrick, Quality of life 

measurement: Bibliographic study of patient assessed health outcome measures, 

Br. Med. J. (2002). https://doi.org/10.1136/bmj.324.7351.1417. 



14 

 

[6] R. Sharma, C. Vannabouathong, S. Bains, A. Marshall, S.J. MacDonald, J. Parvizi, 

M. Bhandari, Meta-analyses in joint arthroplasty: A review of quantity, quality, 

and impact, J. Bone Jt. Surg. - Ser. A. (2011). 

https://doi.org/10.2106/JBJS.J.01289. 

[7] P. Deshpande, Bl. Sudeepthi, S. Rajan, C. Abdul Nazir, Patient-reported outcomes: 

A new era in clinical research, Perspect. Clin. Res. (2011). 

https://doi.org/10.4103/2229-3485.86879. 

[8] M. Ulivi, L.C. Orlandini, V. Meroni, M.D.M. Lombardo, G.M. Peretti, Clinical 

Performance, Patient Reported Outcome, and Radiological Results of a Short, 

Tapered, Porous, Proximally Coated Cementless Femoral Stem: Results up to 

Seven Years of Follow-Up, J. Arthroplasty. (2018). 

https://doi.org/10.1016/j.arth.2017.11.046. 

[9] E. Parliament, Regulation (EU) 2017/745 of the European Parliament and of the 

Council of 5 April 2017 on medical devices, (2017). 

[10] D.J. Berry, M. Kessler, B.F. Morrey, Maintaining a hip registry for 25 years: Mayo 

clinic experience, in: Clin. Orthop. Relat. Res., 1997. 

https://doi.org/10.1097/00003086-199711000-00007. 

[11] H. Malchau, G. Garellick, D. Berry, W.H. Harris, O. Robertson, J. Kärrlholm, D. 

Lewallen, C.R. Bragdon, L. Lidgren, P. Herberts, Arthroplasty implant registries 

over the past five decades: Development, current, and future impact, J. Orthop. 

Res. (2018). https://doi.org/10.1002/jor.24014. 

[12] M. Huber, C. Kurz, R. Leidl, Predicting patient-reported outcomes following hip 

and knee replacement surgery using supervised machine learning, BMC Med. 



14 

 

Inform. Decis. Mak. (2019). https://doi.org/10.1186/s12911-018-0731-6. 

[13] B. Zupan, J. Demšar, D. Smrke, K. Božikov, V. Stankovski, I. Bratko, J.R. Beck, 

Predicting patient’s long-term clinical status after hip arthroplasty using 

hierarchical decision modelling and data mining, Methods Inf. Med. (2001). 

https://doi.org/10.1055/s-0038-1634460. 

[14] A.H.S. Harris, A.C. Kuo, Y. Weng, A.W. Trickey, T. Bowe, N.J. Giori, Can 

Machine Learning Methods Produce Accurate and Easy-to-use Prediction Models 

of 30-day Complications and Mortality after Knee or Hip Arthroplasty?, Clin. 

Orthop. Relat. Res. (2019). https://doi.org/10.1097/CORR.0000000000000601. 

[15] T. Chen, T. He, xgboost : eXtreme Gradient Boosting, R Packag. Version 0.4-2. 

(2015). 

[16] H. Zhang, The optimality of Naive Bayes, in: Proc. Seventeenth Int. Florida Artif. 

Intell. Res. Soc. Conf. FLAIRS 2004, 2004. 

[17] R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc. 

Ser. B. (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. 

[18] W.H. HARRIS, Traumatic Arthritis of the Hip after Dislocation and Acetabular 

Fractures, J. Bone Jt. Surg. (1969). https://doi.org/10.2106/00004623-196951040-

00012. 

[19] N. Caplan, D.F. Kader, Rationale of the knee society clinical rating system, in: 

Class. Pap. Orthop., 2014. https://doi.org/10.1007/978-1-4471-5451-8_48. 

[20] D.D. Price, P.A. McGrath, A. Rafii, B. Buckingham, The validation of visual 

analogue scales as ratio scale measures for chronic and experimental pain, Pain. 



14 

 

(1983). https://doi.org/10.1016/0304-3959(83)90126-4. 

[21] B. Gandek, J.E. Ware, N.K. Aaronson, G. Apolone, J.B. Bjorner, J.E. Brazier, M. 

Bullinger, S. Kaasa, A. Leplege, L. Prieto, M. Sullivan, Cross-validation of item 

selection and scoring for the SF-12 Health Survey in nine countries: Results from 

the IQOLA Project, J. Clin. Epidemiol. (1998). https://doi.org/10.1016/S0895-

4356(98)00109-7. 

[22] M. Klässbo, E. Larsson, E. Mannevik, Hip disability and osteoarthritis outcome 

score: An extension of the Western Ontario and McMaster Universities 

Osteoarthritis Index, Scand. J. Rheumatol. (2003). 

https://doi.org/10.1080/03009740310000409. 

[23] E.M. Roos, H.P. Roos, L.S. Lohmander, C. Ekdahl, B.D. Beynnon, Knee Injury 

and Osteoarthritis Outcome Score (KOOS) - Development of a self-administered 

outcome measure, J. Orthop. Sports Phys. Ther. (1998). 

https://doi.org/10.2519/jospt.1998.28.2.88. 

[24] A.D.L. Patrick, G.H. Guyatt, C. Acquadro, Chapter 17 : Patient-reported 

outcomes, Heal. (San Fr. (2008). 

[25] N. Balakrishnan, Progressive censoring methodology: an appraisal, Test. (2007). 

https://doi.org/10.1007/s11749-007-0061-y. 

[26] A. Nilsdotter, A. Bremander, Measures of hip function and symptoms: Harris Hip 

Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), Oxford 

Hip Score (OHS), Lequesne Index of Severity for Osteoarthritis of the Hip 

(LISOH), and American Academy of Orthopedic Surgeons (AAOS) Hip and Knee 

Questionnaire, Arthritis Care Res. (2011). https://doi.org/10.1002/acr.20549. 



14 

 

[27] A. Ghatak, Machine Learning with R, 2017. https://doi.org/10.1007/978-981-10-

6808-9. 

[28] J.F. Hair, R.E. Anderson, R.L. Tatham, W.C. Black, Multivariate data analysis, 5th 

ed., 1998. https://doi.org/10.14267/CJSSP.2016.02.04. 

[29] S. Kaufman, S. Rosset, C. Perlich, Leakage in data mining: Formulation, detection, 

and avoidance, in: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 

2011. https://doi.org/10.1145/2020408.2020496. 

[30] J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, 

in: ACM Int. Conf. Proceeding Ser., 2006. 

https://doi.org/10.1145/1143844.1143874. 

[31] M. a. Hall, L. a. Smith, Practical feature subset selection for machine learning, 

Comput. Sci. (1998). 

[32] F. Cabitza, L.G. Dui, G. Banfi, PROs in the wild: Assessing the validity of patient 

reported outcomes in an electronic registry, Comput. Methods Programs Biomed. 

(2019). https://doi.org/10.1016/j.cmpb.2019.01.009. 

 


