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Abstract

Current control approaches for solar sail station-keeping on libration point orbits

have not considered the degradation of the sail’s optical properties. However,

significant optical degradation could lead to poor station-keeping performance

or even complete failure. This paper presents an integrated guidance and con-

trol strategy to address this problem by updating the reference orbit based on

in-situ estimation. An exponential optical degradation model is incorporated

into the solar radiation acceleration model, and an on-line reference orbit up-

date approach is incorporated into the station-keeping, coupled with an active

disturbance rejection controller. The reflection coefficient is estimated on-line

and the reference orbit is updated discretely when the optical properties have

degraded by a prescribed amount. This strategy provides discrete updates to

the reference orbits such that the perturbation due to the optical degradation

is maintained within a small range. These smaller perturbations can be dealt

with by the controller’s robustness and station-keeping can be sustained for long

durations even in the presence of large optical degradation.
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1. Introduction

A solar sail is a type of spacecraft which uses solar radiation pressure (SRP)

to generate continuous and unlimited propulsion. In addition, solar sails have

the potential to enable completely new orbits that are different from the orbits

found in the classical two-body problem and restricted three-body problem.

These orbits can enable completely new mission applications such as polar ob-

servation (Gong and Li, 2014; Macdonald et al., 2006; Ceriotti and McInnes,

2012; Heiligers et al., 2019; Grebow et al., 2010), displaced geostationary orbits

(Heiligers et al., 2012) and early solar storm warnings (McInnes, 1999; Yen,

2004; Heiligers et al., 2014). Each of these applications requires station-keeping

to maintain the unstable reference orbits (Biggs et al., 2009; Lawrence and Pig-

gott, 2004; Baoyin and McInnes, 2005; Waters and McInnes, 2008). Critically,

the reference orbits in these solar sail applications have been designed based on

an assumption that the optical properties are known and constant or by using

a perfectly reflecting SRP model. However, in reality, the optical properties

cannot be modelled accurately. Moreover, the optical properties degrade with

time due to the erosive effects of the harsh space environment (Dachwald et al.,

2006, 2007). These errors in the optical properties can yield poor station-keeping

performance (or even complete failure of the spacecraft to track the reference

trajectory).

A solar sail using only the sail angles as the control variables for station-

keeping cannot adequately compensate for the errors in the optical properties

(Huang et al., 2019). Moreover, the errors in the optical properties mainly

affect the magnitude of the SRP acceleration, while this cannot be controlled

effectively by varying the sail angles only. The controllability of the magnitude

of SRP acceleration can be improved by introducing reflectivity control devices

(RCDs) (Funase et al., 2011; Gong et al., 2014; Biggs and Negri, 2019; Negri

and Biggs, 2019). This technology has been demonstrated as an attitude control

actuation system for JAXA’s small solar power sail demonstrator “IKAROS”.
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RCDs are able to control the magnitude of SRP acceleration by switching the

optical properties between two states (Funase et al., 2011), for example, be-

tween specular reflection and diffusion. Therefore, RCDs can compensate for

the perturbed acceleration induced by the errors in the optical properties to

some extent. In other words, RCDs can improve the robustness to the errors

in the optical properties. However, the available control acceleration of RCDs

is highly constrained since RCDs usually account for only a small ratio of the

whole sail surface (since RCDs are far heavier than typical sail materials). For

example, the RCDs of “IKAROS” only account for 9.2% of the whole sail sur-

face (Funase et al., 2011). Therefore, an RCD solar sail is only able to provide

robustness to optical degradation over short duration missions. With large op-

tical degradation in long duration missions it may not be possible to maintain

the reference orbit.

To address this problem, this paper presents an integrated guidance and

control strategy for the long duration station-keeping of an RCD solar sail in

the presence of optical degradation. This strategy is inspired by the idea in

Biggs and Ciccarelli (2019), where the SRP acceleration is estimated as a dis-

turbance using an extended state observer (ESO) based on a perfectly reflecting

SRP model, and then the artificial equilibrium point (the reference orbit) is up-

dated. In this paper, instead of estimating the SRP acceleration, the reflection

coefficient is estimated on-line based on a non-perfectly reflecting SRP model

using a direct algorithm, which is significantly faster and avoids the slow con-

vergence which occurs with large initial estimation errors when using an ESO.

The reference orbit will be updated using numerical continuation (Howell, 1984;

Heiligers et al., 2016) when the optical properties have degraded by a prescribed

amount. These discrete corrections to the reference orbit are able to keep the

perturbation due to the errors in the optical properties in a small range, such

that the requirement for the robustness of station-keeping to the errors in the

optical properties is significantly reduced.

To demonstrate this approach, station-keeping simulations for halo orbits in

the Sun-Earth circular restricted three-body problem (CRTBP) are performed.
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An exponential optical degradation model taking into account solar radiation

dose (Dachwald et al., 2006, 2007) is incorporated into the SRP model. A non-

linear active disturbance rejection control (ADRC) (Han, 2008, 2009) is used

for the station-keeping control, coupled with the on-line reference orbit up-

date algorithm. The results show that this approach is able to maintain the

station-keeping performance in the presence of large optical degradation, and

significantly extend the mission time compared to the station-keeping without

reference orbit update.

2. Solar sail dynamics with optical degradation

The equations of motion in the Sun-Earth CRTBP for a non-perfectly re-

flecting solar sail covered, in part, with RCDs is presented. In addition, the

exponential optical degradation model proposed by Dachwald et al. (2006, 2007)

is incorporated into the SRP acceleration model.

2.1. Equations of motion

The equations of motion are expressed in a rotating frame as shown in Fig. 1,

where the origin is at the Sun-Earth barycenter, the x -axis points in the direction

of the Earth, the z -axis is the axis of the rotation of the Sun-Earth system, and

the y-axis completes the triad. In addition, the Sun-Earth distance, the frame’s

angular velocity, and the mass of the Sun-Earth system are normalized to unity.

EarthSun

Ecliptic planey

x

z

r

μ 1-μ

Figure 1: The rotating reference frame
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The vectorial form of the equations of motion is given by

r̈ + 2ω × ṙ = ∇U + a (1)

where r = [x, y, z]T is the non-dimensionalized solar sail position vector, ω =

[0, 0, 1]T is the non-dimensionalized angular velocity of the rotating frame, and

a is the non-dimensionalized SRP acceleration. The potential function U is

given by

U =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
(2)

where µ is the ratio of the smaller primary mass to the total mass of the two

primaries, which for the Sun-Earth system is µ = 3.04 × 10−6. Finally, r1 and

r2 are the non-dimensionalized distances from the solar sail to the first and the

second primary, respectively.

The non-dimensionalized SRP acceleration model of a non-perfectly reflect-

ing solar sail is given by Eq. (3), which takes into account the specular re-

flection, diffuse reflection, absorption, and emission (McInnes, 1999; Dachwald

et al., 2006), that is

a = β
1− µ
2r2

1

(s · n)

[
(1− sρ)s+

(
2sρ (s · n) + (1− s)ρBf + (1− ρ)

εfBf − εbBb
εf + εb

)
n

]
(3)

where n is the unit vector normal to the sail, s = [x+ µ, y, z]T /r1 is the unit

vector of the Sun-sail line, β is the lightness number, ρ is the reflection coef-

ficient, s denotes the ratio of the specular reflection to the total reflection, εf

and εb are the front and back emissivities, and Bf and Bb are the front and

back non-Lambertian coefficients. Therefore, the SRP acceleration model is pa-

rameterized by six optical coefficients, that is, Θ = {ρ, s, εf , εb, Bf , Bb}. In this

paper, two values for β are considered. One is 0.056, which is a typical value of

β for early solar storm warnings (McInnes, 1999), and it is equivalent to 0.05

in the case of a perfectly reflecting sail, a value typically used in the literature

(Biggs et al., 2011, 2009; Biggs and McInnes, 2009). In addition, β = 0.028 is
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also considered as an additional case to compare the results. This is a nearer

term value, which is closer to the current technology readiness level.

The unit vector n can be expressed using two sail angles (a pitch angle γ

and an azimuth angle δ), which are two control variables for station-keeping,

that is

n = [cos γ cos δ, cos γ sin δ, sin γ]T (4)

The RCDs considered in this paper can switch between a specular state, in

which most of the photons are specularly reflected, and a diffuse state, in which

most of the photons are diffusely reflected. For the diffuse state, it is assumed

that all the specular reflection transforms to diffuse reflection, i.e. s = 0. The

optical properties of the sail surface without RCDs are assumed to be the same

as those of the RCDs in the specular state. We define the RCD ratio σ (another

control variable for station-keeping) as the ratio of the area of the RCDs in

the diffusive state to the total sail area. Therefore, according to the different

optical properties, the total SRP acceleration can be divided into the following

two parts:

a = a1 + a2 (5)

a1 = (1− σ)β
1− µ
2r2

1

(s · n)

[
(1− sρ)s+

(
2sρ (s · n) + (1− s)ρBf + (1− ρ)

εfBf − εbBb
εf + εb

)
n

]
(6)

a2 = σβ
1− µ
2r2

1

(s · n)

[
s+

(
ρBf + (1− ρ)

εfBf − εbBb
εf + εb

)
n

]
(7)

where a1 is the SRP acceleration generated by the RCDs in the specular state

and the sail surface without RCDs, while a2 is the SRP acceleration generated

by the RCDs in the diffusive state.

In this paper, we consider a class of reference orbits such that the sail normal

is directed along the Sun-sail line, that is, s = n. Therefore, when designing a
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reference orbit, Eqs. (5–7) can be expressed in the corresponding reduced form:

a = βK
1− µ
r2
1

n (8)

K(Θ , σ) =
1

2

[
(1− ρ)

εfBf − εbBb
εf + εb

+ sρ (1− σ) (1−Bf ) + 1 + ρBf

]
(9)

where K can be considered as an efficiency factor that depends on the optical

coefficients Θ and the RCD ratio σ.

The parameters for the reference orbit are called nominal parameters, and

are denoted by a subscript e, such asKe = K(Θe, σe). The values of Θe are taken

from Heaton et al. (2017), that is, Θe = {ρ = 0.91, s = 0.89, εf = 0.025, εb =

0.27, Bf = 0.79, Bb = 0.67}. The maximum σ equates to the proportion of

area covered by RCDs to the area of the whole sail surface. In theory, the

larger the maximum value of σ, the more control authority there is to vary the

acceleration of the sail. However, from the view of real applications, since RCDs

are far heavier than typical sail materials, the maximum σ should be as small

as possible while maintaining the necessary control authority. In this paper,

σmax = 0.2 is assumed, which is proved to be a moderate value for station-

keeping according to the simulation results. Furthermore, the nominal value for

σ is set to 0.1, i.e., half of the RCDs are in the specular state for the nominal

state of the solar sail, and the maximum deviation of σ is ±0.1.

2.2. Optical degradation model

In this paper, the exponential optical degradation model, which takes into

account the solar radiation dose (SRD) (Dachwald et al., 2006, 2007), is consid-

ered, that is

p(t)

p0
=


(1 + de−λΣ(t))/(1 + d) for p ∈ {ρ, s}

1 + d(1− e−λΣ(t)) for p = εf

1 for p ∈ {εb, Bf , Bb}

(10)
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where p denotes a generic optical coefficient. The parameter d is a degrada-

tion factor parameterizing the maximum variation in p, and λ = ln 2/Σ̂ is a

degradation constant parameterizing the rate of degradation, where Σ̂ is the

relative SRD when p = (p0 + p∞)/2, where the subscripts 0 and ∞ denote the

initial time and the moment after infinite time, respectively. Finally, Σ(t) is the

relative SRD, which can be computed by

Σ̇(t) = r2
0 cosα/r2 (11)

where r0 = 1 AU is the distance between the Sun and the Earth, r is the distance

between the Sun and the sail, and α is the angle between the sail normal and

the Sun-sail line.

In this paper, d is set to 0.05, and Σ̂ is set to 5. It should be noted that the

systematic measurement data for the optical degradation of solar sails is not

known. Therefore, the chosen values for the degradation parameters are only

used to illustrate the presented integrated guidance and control strategy as an

example. If the real degradation is slower than that in this paper, the presented

strategy will still be effective, while if the real degradation is faster, additional

simulations should be performed.

Equation (10) implies that ρ and s decrease with time, while εf increases

with time, with all the other coefficients being constant. Figure 2 shows the

variation of the three optical coefficients with time. Although the variation rates

of the three coefficients are of the same order of magnitude, the impacts of them

on the SRP acceleration are different. Since the reflection usually accounts for a

vast majority of the SRP acceleration, the degradation of ρ is the major factor

affecting the SRP acceleration. This can be indicated by the partial derivatives

of K with respect to the three coefficients. For example, ∂K/∂ρ|K=Ke
≈ 1.2,

∂K/∂s|K=Ke
≈ 0.17, and ∂K/∂εf |K=Ke

≈ 0.12 in this paper. Therefore, the

influence of the variation of ρ is one order of magnitude larger than those of the

variations of s and εf .
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Figure 2: Variation of the optical coefficients with time

3. On-line reference orbit update

The key concept of the presented integrated guidance and control strategy

is to estimate the reflection coefficient ρ on-line and, then, update the reference

orbit when the optical properties have degraded to a significant extent. We as-

sume that the sail can effectively track the reference orbit when the errors in the

optical properties are within an acceptable range. This assumption is reasonable

since the controller has a certain degree of robustness to overcome small errors.

Therefore, when the sail is effectively tracking the current reference orbit, the

orbit states and the SRP acceleration can be considered to be approximately

equal to their nominal values for the current reference orbit. Thus, from Eq.

(8), the real K will be approximately equal to its nominal value, that is

K(Θ , σ) = Ke (12)

In Eq. (12), Ke and σ are known, while Θ , which includes six coefficients,

is unknown. Recall that in Section 2 it was demonstrated that a variation in ρ

has a considerably larger effect on K than the other coefficients. Therefore, it is

reasonable to neglect the influence of the errors in the other optical coefficients

in order to develop a simple estimation procedure. With such an assumption ρ

can be estimated by solving Eq. (12), to give

ρ̂ =

(
2Ke −

εfBf − εbBb
εf + εb

− 1

)/(
s (1− σ) (1−Bf ) +Bf −

εfBf − εbBb
εf + εb

)
(13)

9



where ρ̂ is the estimated value for ρ. Although the errors in the other optical

coefficients will lead to an estimation error in ρ̂, this error is small enough to

be compensated for by the closed-loop control. When ρ̂ is obtained, Ke can be

updated by substituting ρ̂ and σe into Eq. (9), and then the reference orbit can

be updated using numerical continuation (Howell, 1984; Heiligers et al., 2016)

with Ke as the continuation parameter.

Since Ke is constant, and Θ and σ are the two time-varying parameters

in Eq. (12), it follows that σ always changes with changes in Θ , that is, the

degradation of Θ can be characterized by σ. In Section 5 it will be shown

that σ decreases with the degradation of Θ . Within the integrated guidance

and control strategy, an update to the reference trajectory is performed after

a significant amount of optical degradation, explicitly when σ reduces below a

prescribed value σ∗, i.e. σ < σ∗. However, the specific value for σ∗ depends on

several factors which will be analyzed in the following sections.

Figure 3 shows the flow chart of the integrated guidance and control strategy,

where Xe is the reference orbit state. When σ < σ∗, the reference orbit will be

updated, otherwise, the station-keeping still uses the current reference orbit.



̂

eK

Estimate ρ Update Ke

Update 

reference 

orbit

eK eX Station-

keeping

Model of 

motion

yes



*if  

no

Figure 3: Flow chart of the integrated guidance and control strategy

It should be noted that the numerical continuation with Ke can generate

three different families of orbits by keeping the initial x, z, or vy constant, where

vy is the velocity in the y-direction. Taking the case of β = 0.056 as an example,

the three families of orbit are shown in Figs. 4–6.

In Fig. 4, as Ke decreases, the amplitude of the orbits increases significantly

(the maximum variation of amplitude is 0.0068 AU in the z -direction, see the

3rd subfigure in Fig. 4), whereas the variation of the amplitude of the orbits in
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Figure 6: Family of orbits with fixed initial z

Fig. 6 is much smaller. Specifically, the maximum variation of the amplitude

is 8.5× 10−4 AU in the y-direction (see the 3rd subfigure in Fig. 6), while the

orbits move towards the Earth by 0.002 AU (see the 2nd subfigure in Fig. 6).

The maximum variation of the orbits in Fig. 5 is 0.0015 AU in the z -direction,

which is between those in Fig. 4 and Fig. 6. Therefore, the orbits in Fig. 4

are the most sensitive to Ke, while the orbits in Fig. 6 are the least sensitive to

Ke, that is, with the same variation in Ke, the orbits in Fig. 6 will vary least
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among the three families.

A problem encountered when updating the reference orbit in-situ is that the

new reference orbit may be far from the current reference orbit, and thus a

large orbit error will arise when maneuvering between reference orbits. In this

case, the station-keeping may fail due to this large error. Therefore, the family

of orbits whose amplitude variation is less sensitive to Ke are more suitable as

reference orbits. Thus, in this paper the family of orbits in Fig. 6 are used as

the reference orbits.

4. Nonlinear active disturbance rejection station-keeping control

Theoretically, the presented integrated guidance and control strategy does

not rely on a particular type of control law. Indeed, this strategy could utilize

either a simple proportional or an LQR controller. However, as mentioned in

Section 3, a large orbit error can arise when the reference orbit is updated.

Moreover, the estimation of the reflection coefficient relies on the assumption

that the steady-state orbit error is approximately equal to zero. Therefore,

it is critical that the selected control law should: i) be robust to large orbit

errors, and ii) have a high precision tracking capability such that the steady-

state error is as small as possible. However, there is usually a trade-off between

these two objectives when using linear control laws. In this paper, a nonlinear

active disturbance rejection control (ADRC) law (Han, 2008, 2009) is used for

the station-keeping, which can achieve both these objectives without the need

to trade one off against the other.

4.1. System model for ADRC station-keeping control

The equations of motion in Eq. (1) can be transformed into the following

form

ṙ = v

v̇ = f(r,v) + a
(14)
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where v = [vx, vy, vz]
T is the velocity vector and f = ∇U − 2ω × v is the

nonlinear dynamics.

The deviation equations of motion relative to the reference orbit are used as

the system model for control design, that is

∆ṙ = ∆v

∆v̇ = ∆f(r,v) + d + ∆a
(15)

where ∆r = r− re, ∆v = v− ve, ∆f = f(r, v)− f(re, ve), and ∆a = a−ae

are the deviations from the reference orbit, whereas d is the disturbance due to

the error in optical properties.

The total disturbance w is given by ∆f and d, i.e. w = ∆f + d, so that

Eq. (15) can be written as

∆ṙ = ∆v

∆v̇ = w + ∆a
(16)

where ∆r and ∆v are the states, ∆a is the control variable, and w is the

disturbance.

For the control to be feasible, the magnitude of the disturbance |w| =

|∆f + d| must be smaller than the maximum available control acceleration de-

viation ∆amax, while ∆f is proportional to the orbit error. As mentioned, a

large orbit error will arise when the reference orbit is updated, and this orbit

error is proportional to the degradation of the optical properties. Therefore,

both ∆f and d are proportional to the degradation of the optical properties.

Thus, the update rate of the algorithm for the generation of a new reference

orbit must be selected appropriately to guarantee that the control is feasible.

4.2. Nonlinear ADRC control law

This ADRC control law consists of a nonlinear extended state observer

(ESO), a nonlinear time-optimal feedback law, and an iterative algorithm for

solving nonlinear equations. The control laws for the three channels (x, y, and z )

are designed independently, and the coupled items are viewed as a disturbance.
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Taking the x channel as an example, the nonlinear ESO is given in a discrete

form

ek = ∆x̂k −∆xk

∆x̂k+1 = ∆x̂k + h(∆v̂x,k − β1ek)

∆v̂x,k+1 = ∆v̂x,k + h (∆ŵx,k − β2fal (ek, 1/2, h) + ∆ax)

∆ŵx,k+1 = ∆ŵx,k + h (−β3fal (ek, 1/4, h))

(17)

where, h is the control period, ∆x̂ and ∆v̂x are the estimated deviations of

position and velocity relative to the reference orbit in the x -direction, ŵx is

the estimated total disturbance in the x -direction, and βi (i=1, 2, 3) are the

observer gains. The function fal() is defined in Han (2008, 2009), that is

fal(ε, τ, η) =


ε

η1−τ , |ε| ≤ η

|ε|τ sign(ε), |ε| > η
(18)

where ε, τ , and η are real numbers.

The required SRP acceleration deviation is given by

∆ax = ∆a1,x − ŵx (19)

with

∆a1,x = fhan(∆x̂, cx∆v̂x, r̄x, h̄x) (20)

where r̄x is the maximum control acceleration, and cx and h̄x are two control

parameters. The function fhan() is a nonlinear time-optimal feedback law, which

is defined in Han (2008, 2009), that is



D = r̄h̄2, A0 = h̄x2, Y = x1 +A0

A1 =
√
D(D + 8 |Y |), A2 = A0 + sign(Y )(A1 −D)/2

sy = [sign(Y +D)− sign(Y −D)]/2

A = (A0 + Y −A2)sy +A2

sa = [sign(A+D)− sign(A−D)]/2

fhan(x1, x2, r̄, h̄) = −r̄ [A/D − sign(A)] sa − r̄sign(A)

(21)
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where x1, x2, r̄, h̄, A,A0, A1, A2, D, and Y are real numbers, while sy and sa are

integers.

The required SRP acceleration can be obtained by a = ae + ∆a. However,

the real control vector for an RCD solar sail is u = [γ, δ, σ]T , i.e. the two sail

angles and the RCD ratio. Therefore, the Newton’s method is used for mapping

a to u, i.e., solving the nonlinear system of Eqs. (5–7) for u iteratively with

the nominal value ue as the initial guess.

Figure 7 shows the flow chart of the control loop of the ADRC station-

keeping.

Reference orbit
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e e

e e e e
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v = f r v d a

+

-

Deviation model

 

  

r = v

v = w a
ESO

r
Nonlinear 

feedback 

law

ˆ ˆ, r  v

+

+

ea

nonlinear 

mapping 

aa

,  ,    

ŵ
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Figure 7: Control loop of the ADRC station-keeping

5. Numerical simulation

In this section, simulations are undertaken in two cases. In the first case,

β = 0.056 and the initial reference orbit with Az ≈ 0.002 AU is considered,

where Az is the orbit amplitude in the z -direction. In the second case, β = 0.028

and the initial reference orbit with Az ≈ 0.004 AU is considered. The two initial

reference orbits, designed using the nominal sail parameters, are shown in Fig.

8, where Fig. 8a is an orbit in the family of orbits shown in Fig. 6. The

initial states of the two initial reference orbit are given by Eqs. (22) and (23),
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respectively.



x0 = 0.975240874297760,

z0 = −0.00213808168231298,

vy0 = 0.0135800625909357,

y0 = 0,z0 = 0,vx0 = 0,vz0 = 0

(22)



x0 = 0.983337296060662,

z0 = −0.00407306209564273,

vy0 = 0.0118999914581784,

y0 = 0,z0 = 0,vx0 = 0,vz0 = 0

(23)
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Figure 8: Initial reference orbits

The control period h is closely related to the performance of ADRC control.

Smaller h can lead to better control accuracy (Han, 2008). However, smaller h

also results in the requirements for high-frequency sensors and attitude control,

and more power consumption. Therefore, with the precondition of ensuring

enough control accuracy, h is chosen as large as possible. For the two cases of

simulation in this section, h is set to 0.001 (1.4 hours).

The damping factor ci and the filter factor h̄i are the two control parameters

whose default values are 1 and h, respectively, which are used in the initial

configuration. Increasing ci can suppress overshoot, while increasing h̄i can

suppress high-frequency oscillation. For the two cases of simulation in this
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section, these two parameters are tuned to be ci = 1 and h̄i = 5h = 0.005

(i = x, y, z).

Figure 9 shows the simulation results in the first case without updating

the reference orbit in the presence of optical degradation. It can be seen that

when the degradation is small the orbit errors and the sail angle deviations

remain in the vicinity of zero, while the RCD ratio deviation ∆σ decreases from

its nominal value with time to compensate for the degradation of the optical

properties. When ∆σ decreases close to its minimum value ∆σmin = −0.1, the

position and velocity errors in the x -direction start to diverge. In this simulation,

∆σ decreases to its minimum value after 2.1 years, during which the reflection

coefficient ρ is degraded to 0.988ρ0. The simulation results in the second case

without updating the reference orbit have a similar feature, and are therefore

not presented.

The reference orbit is updated when the steady-state ∆σ reaches the min-

imum prescribed value ∆σ∗. The selected value for ∆σ∗ depends on several

factors: i) the variation of the reference orbit should be small enough to guar-

antee an effective control; ii) the errors in the optical properties should be small

enough to guarantee an effective control; iii) the steady-state ∆σ should not

be close to its minimum value. According to the simulation results, the control

is effective when ∆σ∗ is no smaller than -0.03 in the first case, while in the

second case, ∆σ∗ must be no smaller than -0.025, where the lightness number

is smaller, and thus, less control acceleration is available to compensate for the

degradation. In order to make the time interval between two subsequent up-

dates as long as possible, ∆σ∗ is set to -0.03 in the first case, and -0.025 in the

second case.

The simulation results are demonstrated over a period of five years in both

cases, and during this time, ρ is degraded to 0.975ρ0 and 0.976ρ0, respectively.

The control errors and control variables in the two cases are shown in Figs. 10

and 11, respectively. The results in the two cases have similar features. Figures

10a and 11a show that when the reference orbits are updated, large position

errors (maximum of 7860 km in the first case, and maximum of 2800 km in the
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Figure 9: Simulation results without reference orbit update

second case) arise and then converge to zero, and the steady-state errors are

close to zero (less than 30 m in the first case, and less than 60 m in the second

case). This implies that the ADRC station-keeping control possesses robustness

to large orbit errors and high station-keeping accuracy, both requirements of

the proposed guidance method.

Figures 10b and 11b show that, when the steady-state ∆σ decrease to ∆σ∗,

the reference orbits are updated, after which, the steady-state ∆σ jump to a

larger value. Therefore, the steady-state ∆σ is always in its available range and
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the station-keeping control is always feasible. The simulation orbits in the two

cases are shown in Figs. 12 and 13, respectively, which illustrate that the orbits

move away from the Sun with time.

(a) Position errors and velocity errors

(b) Control variables

Figure 10: Control results with reference orbit update (the first case)

6. Conclusion

This paper has presented an integrated guidance and control strategy for

station-keeping of solar sails equipped with reflectivity control devices (RCDs) in

the presence of optical degradation. An exponential optical degradation model

taking into account the solar radiation dose has been incorporated into the

solar radiation acceleration model. In this case, station-keeping without refer-

ence orbit updates will fail once the optical properties have degraded by a large

amount. To this end, a discrete on-line reference orbit update approach has

been incorporated into the station-keeping. The reflection coefficient, which is

the major factor affecting the solar radiation acceleration, is estimated on-line,
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(a) Position errors and velocity errors

(b) Control variables

Figure 11: Control results with reference orbit update (the second case)

and then the reference orbit is updated using on-line numerical continuation

when the optical properties have degraded by a prescribed amount. An active

disturbance rejection station-keeping controller has been designed and coupled

with the on-line reference orbit update algorithm. Two cases of station-keeping

simulations using halo orbits in the Sun-Earth circular restricted three body

problem have been performed. The results show that the presented strategy en-

ables a long-term effective station-keeping even in the presence of a large optical

degradation. Therefore, the mission time is significantly extended compared to

station-keeping that does not utilize guidance-in-the-loop.

Acknowledgments

The authors acknowledge the financial support from the State Administra-

tion of Foreign Experts Affairs P. R. China (Grant Number: P180590003).

20



start

end

(a) Projection in x-y plane (b) Projection in x-z plane

-0.01 -0.005 0 0.005 0.01

y (AU)

-2

-1

0

1

z
 (

A
U

)

×10
-3

(c) Projection in y-z plane

y (AU)
x (AU)

-2

0.01

-1

0

×10
-3

z
 (

A
U

)
0.984

1

0 0.982
0.98

0.978-0.01 0.976

(d) 3-D orbit

Figure 12: Simulation orbit with reference orbit update (the first case)

start

end

(a) Projection in x-y plane (b) Projection in x-z plane

-5 0 5

y (AU) ×10
-3

-4

-2

0

2

z
 (

A
U

)

×10
-3

(c) Projection in y-z plane

y (AU) x (AU)

-4

-2

5

0

×10
-3

z
 (

A
U

)

×10
-3 0 0.988

2

0.986-5
0.984

(d) 3-D orbit

Figure 13: Simulation orbit with reference orbit update (the second case)

21



References

Baoyin, H., McInnes, C.R., 2005. Solar sail orbits at artificial sun-earth libration

points. J. Guid. Control Dyn. 28, 1328–1331. doi:https://doi.org/10.

2514/1.14598.

Biggs, J.D., Ciccarelli, E., 2019. In-situ tracking of a solar sail’s characteristic

acceleration using a robust active disturbance estimator. Presented at the 5th

International Symposium on Solar Sailing, Aachen, Germany.

Biggs, J.D., McInnes, C.R., 2009. Solar sail formation flying for deep-space

remote sensing. J. Spacecraft Rockets 46, 670–678. doi:https://doi.org/

10.2514/1.42404.

Biggs, J.D., McInnes, C.R., Waters, T., 2009. Control of solar sail periodic

orbits in the elliptic three-body problem. J. Guid. Control Dyn. 32, 318–320.

doi:https://doi.org/10.2514/1.38362.

Biggs, J.D., McInnes, C.R., Waters, T., 2011. New periodic orbits in

the solar sail three-body problem, in: Nonlinear Science and Complex-

ity. Springer, Dordrecht, pp. 131–138. doi:https://doi.org/10.1007/

978-90-481-9884-9_17.

Biggs, J.D., Negri, A., 2019. Orbit-attitude control in a circular restricted three-

body problem using distributed reflectivity devices. J. Guid. Control Dyn.

doi:https://doi.org/10.2514/1.G004493. (in press).

Ceriotti, M., McInnes, C.R., 2012. Natural and sail-displaced doubly-symmetric

lagrange point orbits for polar coverage. Celest. Mech. Dyn. Astr. 114, 151–

180. doi:https://doi.org/10.1007/s10569-012-9422-2.

Dachwald, B., Macdonald, M., McInnes, C.R., Mengali, G., Quarta, A.A., 2007.

Impact of optical degradation on solar sail mission performance. J. Spacecraft

Rockets 44, 740–749. doi:https://doi.org/10.2514/1.21432.

22

http://dx.doi.org/https://doi.org/10.2514/1.14598
http://dx.doi.org/https://doi.org/10.2514/1.14598
http://dx.doi.org/https://doi.org/10.2514/1.42404
http://dx.doi.org/https://doi.org/10.2514/1.42404
http://dx.doi.org/https://doi.org/10.2514/1.38362
http://dx.doi.org/https://doi.org/10.1007/978-90-481-9884-9_17
http://dx.doi.org/https://doi.org/10.1007/978-90-481-9884-9_17
http://dx.doi.org/https://doi.org/10.2514/1.G004493
http://dx.doi.org/https://doi.org/10.1007/s10569-012-9422-2
http://dx.doi.org/https://doi.org/10.2514/1.21432


Dachwald, B., Mengali, G., Quarta, A.A., Macdonald, M., 2006. Parametric

model and optimal control of solar sails with optical degradation. J. Guid.

Control Dyn. 29, 1170–1178. doi:https://doi.org/10.2514/1.20313.

Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T.,

Kawaguchi, J., 2011. On-orbit verification of fuel-free attitude control system

for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. 48,

1740–1746. doi:https://doi.org/10.1016/j.asr.2011.02.022.

Gong, S., Li, J., 2014. Solar sail heliocentric elliptic displaced orbits. J. Guid.

Control Dyn. 37, 2021–2026. doi:https://doi.org/10.2514/1.G000660.

Gong, S., Li, J., Simo, J., 2014. Orbital motions of a solar sail around the L2

earth–moon libration point. J. Guid. Control Dyn. 37, 1349–1356. doi:https:

//doi.org/10.2514/1.G000063.

Grebow, D.J., Ozimek, M.T., Howell, K.C., 2010. Advanced modeling of opti-

mal low-thrust lunar pole-sitter trajectories. Acta Astronaut. 67, 991–1001.

doi:https://doi.org/10.1016/j.actaastro.2010.04.024.

Han, J., 2008. Active Disturbance Rejection Control Technique: the Technique

for Estimating and Compensating the Uncertainties. National Defense Indus-

try Press, Beijing, China. (in Chinese).

Han, J., 2009. From PID to active disturbance rejection control. IEEE T. Ind.

Electron. 56, 900–906. doi:https://doi.org/10.1109/TIE.2008.2011621.

Heaton, A., Ahmad, N., Miller, K., 2017. Near earth asteroid scout solar sail

thrust and torque model, in: Proceedings of the 4th International Symposium

on Solar Sailing, Kyoto, Japan. p. 17055. URL: http://www.jsforum.or.

jp/ISSS2017/papers/.

Heiligers, J., Diedrich, B., Derbes, B., McInnes, C., 2014. Sunjammer: pre-

liminary end-to-end mission design, in: Proceedings of the AIAA/AAS As-

trodynamics Specialist Conference, AIAA 2014-4127, San Diego, CA, USA.

doi:https://doi.org/10.2514/6.2014-4127.

23

http://dx.doi.org/https://doi.org/10.2514/1.20313
http://dx.doi.org/https://doi.org/10.1016/j.asr.2011.02.022
http://dx.doi.org/https://doi.org/10.2514/1.G000660
http://dx.doi.org/https://doi.org/10.2514/1.G000063
http://dx.doi.org/https://doi.org/10.2514/1.G000063
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2010.04.024
http://dx.doi.org/https://doi.org/10.1109/TIE.2008.2011621
http://www.jsforum.or.jp/ISSS2017/papers/
http://www.jsforum.or.jp/ISSS2017/papers/
http://dx.doi.org/https://doi.org/10.2514/6.2014-4127


Heiligers, J., Macdonald, M., Parker, J.S., 2016. Extension of earth-moon libra-

tion point orbits with solar sail propulsion. Astrophys. Space Sci. 361, 241.

doi:https://doi.org/10.1007/s10509-016-2783-3.

Heiligers, J., McInnes, C.R., Biggs, J.D., Ceriotti, M., 2012. Displaced geosta-

tionary orbits using hybrid low-thrust propulsion. Acta Astronaut. 71, 51–67.

doi:https://doi.org/10.1016/j.actaastro.2011.08.012.

Heiligers, J., Vergaaij, M., Ceriotti, M., 2019. End-to-end trajectory design for

a solar-sail-only pole-sitter at Venus, Earth, and Mars. Presented at the 5th

International Symposium on Solar Sailing, Aachen, Germany.

Howell, K.C., 1984. Three-dimensional, periodic,’halo’ orbits. Celestial Mech.

32, 53–71. doi:https://doi.org/10.1007/BF01358403.

Huang, J., Biggs, J.D., Cui, N., 2019. Families of halo orbits in the elliptic

restricted three-body problem for a solar sail with reflectivity control de-

vices. Adv. Space Res. doi:https://doi.org/10.1016/j.asr.2019.10.010.

(in press).

Lawrence, D., Piggott, S., 2004. Solar sailing trajectory control for sub-L1 sta-

tionkeeping, in: Proceedings of the AIAA Guidance, Navigation, and Con-

trol Conference and Exhibit, AIAA-2004-5014, Providence, Rhode Island.

doi:https://doi.org/10.2514/6.2004-5014.

Macdonald, M., Hughes, G., McInnes, C., Lyngvi, A., Falkner, P., Atzei, A.,

2006. Solar polar orbiter: a solar sail technology reference study. J. Spacecraft

Rockets 43, 960–972. doi:https://doi.org/10.2514/1.16408.

McInnes, C.R., 1999. Solar sailing: technology, dynamics and mission applica-

tions. Springer and Praxis, Chichester, UK.

Negri, A., Biggs, J.D., 2019. Attitude tracking of a solar sail using pixelated

reflectivity control devices. Presented at the 5th International Symposium on

Solar Sailing, Aachen, Germany.

24

http://dx.doi.org/https://doi.org/10.1007/s10509-016-2783-3
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2011.08.012
http://dx.doi.org/https://doi.org/10.1007/BF01358403
http://dx.doi.org/https://doi.org/10.1016/j.asr.2019.10.010
http://dx.doi.org/https://doi.org/10.2514/6.2004-5014
http://dx.doi.org/https://doi.org/10.2514/1.16408


Waters, T.J., McInnes, C.R., 2008. Invariant manifolds and orbit control in the

solar sail three-body problem. J. Guid. Control Dyn. 31, 554–562. doi:https:

//doi.org/10.2514/1.32292.

Yen, C.L., 2004. Solar sail geostorm warning mission design, in: Proceedings

of the 14th AAS/AIAA Space Flight Mechanics Conference, AAS 04-107,

Hawaii.

25

http://dx.doi.org/https://doi.org/10.2514/1.32292
http://dx.doi.org/https://doi.org/10.2514/1.32292

	Introduction
	Solar sail dynamics with optical degradation
	Equations of motion
	Optical degradation model

	On-line reference orbit update
	Nonlinear active disturbance rejection station-keeping control
	System model for ADRC station-keeping control
	Nonlinear ADRC control law

	Numerical simulation
	Conclusion

