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Abstract Memristive devices, such as resistive switching memory (RRAM) and
phase change memory (PCM), show variable resistance which can mimic the synap-
tic plasticity in the human brain. This fascinating analogy has provided the inspira-
tion for many recent research advances, involving memristive devices and their use
as artificial electronics synapses in neuromorphic circuits with learning capability.
In particular, RRAM-based artificial synapses are extremely promising in terms of
area efficiency, low power consumption, and flexibility of design which pave the
way for spiking neural networks that perform and behave like the human brain. This
chapter will review the state of the art about the design and development of mem-
ristive neural networks for unsupervised learning. First, the optimization of RRAM
devices for synaptic applications will be discussed, and a novel RRAM device with
improved resistance window and controllability of resistance will be introduced.
Then, a hybrid CMOS/memristive synaptic circuit will be shown to carry out learn-
ing tasks via the spike-timing dependent plasticity (STDP), which is one of the
learning rules in biological synapses. Finally, the neural networks based on RRAM
synapses will be reviewed, covering both feed-forward networks and recurrent net-
works. In both cases, the network displays unsupervised learning of input patterns,
which can be stored, recognized, or even reconstructed by the network, thus high-
lighting the wealth of potential promising applications for memristive networks with
synaptic plasticity.
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1 Introduction

Resistive switching memory (RRAM) is a 2-terminal element which can change
its resistance R, or conductance G = 1/R, via the application of a voltage signal
[1, 2, 3, 4, 5]. Resistive switching effects in metal oxides were originally discov-
ered in the 1960s [6, 7, 8], then later studied for potential application in nonvolatile
memory devices [9, 10, 11, 12]. Today, the research on RRAM for electronic stor-
age has been mostly transferred to industrial development of storage-class mem-
ory [13] and embedded memory for Internet of Things (IoT) [14]. On the other
hand, RRAM devices have stimulated an increasing interest for the development of
artificial synapses in neural networks. In fact, a RRAM device shows controllable
conductance change in both binary (digital) and multilevel (analog) mode, thus be-
ing possibly implemented as a plastic neuromorphic synapse similar to biological
synapses in the human brain. In this frame, RRAM can be viewed as a memristive
device, i.e., a variable resistive element which can change its conductance in re-
sponse to the applied voltage [15, 16]. Engineering RRAM synapses with tunable
weight has become a grand challenge toward the development of neuromorphic cir-
cuits capable of learning via synaptic plasticity.
The current focus of the research on memristive synapses includes 2 types of neural
networks. First, deep neural networks (DNNs) with multi-layer perceptron (MLP)
structure show promising properties of inference after supervised training [17]. Typ-
ically, DNNs rely on non-spiking neurons and weight update based on supervised
learning algorithms such as the backpropagation scheme [18]. In backpropagation,
the MLP output is compared with the ideal solution, which is carried by labels, and
the resulting difference, i.e., the error, is back-propagated to proportionally update
all synapses in the network, until the recognition accuracy is improved above a cer-
tain threshold. DNNs have been demonstrated for supervised learning with various
types of memristive synapses including PCM [19] and RRAM [20, 21]. In a DNN,
memristive devices offer the possibility to store a multilevel weight in a nanoscale
element, thus allowing to reduce the circuit area of the synaptic array. Most impor-
tantly, the matrix-vector multiplication (MVM) is carried out physically within the
memristor array thanks to the Kirchhoff’s law and the Ohm’s law, instead of rely-
ing on extensive multiply-accumulate (MAC) operations [22]. The acceleration of
MVM is however contrasted by inevitable approximation related to the imperfect
programming of memristive devices and the time-dependent fluctuations arising af-
ter programming, e.g., related to drift in PCM [23] and noise in RRAM [24]. Finally,
the non-linearity of the resistance change process in RRAM and PCM is an addi-
tional challenge that severely degrades the learning accuracy of DNNs [25, 26, 27].
On the other hand, the spiking neural network (SNN) is viewed as a suitable solution
for event-driven processing, similar to the human brain, thus potentially resulting in
higher energy efficiency, larger density of information, and higher computing func-
tionality [28, 29]. SNNs are also more suitable to achieve unsupervised learning,
where patterns are received and stored in the network without labels, which is one
of the most general learning mode of the human brain. To achieve unsupervised
learning in absence of labels, the delay between spikes is used as feedback informa-
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tion across the SNN layers, through the spike-timing dependent plasticity (STDP)
rule [30, 31, 32, 33, 34]. Designing memristive synapses capable of STDP, and de-
signing SNN architectures able to replicate computation primitives of the brain is
among the greatest challenges for memristive neuromorphic engineering.
This chapter provides an overview of memristive SNNs capable of unsupervised
learning, focusing on RRAM-based synapses at the level of device, synaptic circuit,
and memristive SNNs. First, the device optimization strategy for synaptic appli-
cation will be discussed, with reference to a novel RRAM technology based on
SiOx for improved on/off ratio. Then, a circuit proposal for STDP synapses using
RRAMs and PCMs will be described, showing experimental demonstration of in-
dividual synaptic circuit blocks and their characteristics. Finally, the SNN architec-
tures will be analyzed, covering both feed-forward and recurrent networks for unsu-
pervised learning of patterns. Pattern learning, storage, recognition, reconstruction
and association will be demonstrated in SNNs by circuit simulation and experimen-
tal demonstration with physical memristive RRAM synapses. The results pave the
way for brain-inspired SNNs capable of unsupervised learning, inference and plan-
ning.

2 RRAM devices

To develop SNNs capable of learning with RRAM synapses, the RRAM device
must be optimized to fit the specifications of both nonvolatile storage and in-memory
computing. This challenging task is accomplished by a detailed understanding, mod-
eling, and engineering of RRAM materials with emphasis on programming per-
formances (energy consumption, programming voltage, set/reset speed), reliability
characteristics (retention time, endurance, variability and noise) and scaling. To en-
able such a broad landscape of device properties, materials must be carefully se-
lected and combined in the RRAM stack.
A RRAM device is operated by the formation and disconnection of a conduc-

Fig. 1 RRAM device states. (a) The device features a dielectric layer, such as a binary metal oxide
MeOx. (b) After forming, the device is left in a set state, or LRS, due to the presence of a CF
shunting the TE and BE. (c) The application of a reset pulse leads to the disconnection of the CF
thus resulting in the reset state, or HRS. Transition back to the LRS is possible via the application
of a set pulse. Reprinted with permission from [35]. Copyright 2014 Wiley and Sons.
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tive filament (CF), or percolation path, along an insulating material, as depicted
in Fig. 1 [35]. Initially, the device features a dielectric layer, e.g., a metal oxide
MeOx in Fig. 1a. The switching operation in the dielectric is initiated by a forming
operation, where a dielectric breakdown is first induced across MeOx to generate
a sufficient amount of defects, such as oxygen vacancies, or excess metallic impu-
rities of the constituent metal Me or originating from the electrodes. The oxygen
concentration x in the metal oxide is usually kept below the stoichiometric value,
e.g., x is generally lower than 2 in HfOx, to allow a certain concentration of defects
to be present in the pristine oxide layer and facilitate oxide breakdown at relatively
low voltage. After forming (Fig. 1b), the device is in the so-called set state, or low
resistance state (LRS), due to the CF shunting the top electrode (TE) and the bottom
electrode (BE). The application of a reset operation leads to the disconnection of the
CF, and the corresponding transition to the so-called reset state, or high resistance
state (HRS), as shown in Fig. 1c. The CF is then recovered by a set operation which
leads back to the LRS. In bipolar switching RRAM technology, which constitutes
the large majority of RRAM devices currently studied by academic and industrial
research, the set and reset operations consist of the application of voltage sweeps or
pulses with opposite polarities, e.g., positive voltage for the set transition and neg-
ative voltage for the reset transition, where the voltage is assumed to be applied to
the TE.
RRAM devices can be generally distinguished in 2 technologies, namely RRAM
relying on the resistive switching of metal oxides, such as HfOx [36, 37, 38, 39],
TiOx [40, 41] and TaOx [42, 43], and RRAM based on the electrochemical reac-
tion and migration of cations from an active electrode, also known as conductive
bridge memory (CBRAM) [44, 45, 46]. In the latter case, the dielectric material
can be either a metal oxide, or another insulating layer, also referred to as elec-
trolyte, such as GeSe [44], GdOx [45], GeS2 [46, 47], ZrOx [48] and Al2O3 [49].
The active electrode generally consists of Ag [47], Cu [13, 44, 50], or their com-
pounds, such as CuTe [45]. The resistance window between HRS and LRS is gen-
erally larger in CBRAM-type devices compared to oxide-based RRAM [51], which
enables a higher immunity to switching variations [52, 53] and current fluctua-
tions [24, 54, 55], constituting a significant concern for nanoscale RRAM reliability.
On the other hand, CBRAM suffers from a relatively short retention time, as demon-
strated by several reports of volatile CBRAM where the retention time is well below
1 s [47, 56, 57, 58, 59, 60, 61].
To achieve a good device stability and a high resistance window, the promising
properties of oxide- and CBRAM-type RRAM devices should be combined. To this
purpose, a dielectric material with high band gap should be adopted, to enable high
resistance of the HRS. To enable high resistance window and a high stability at
the same time, the TE should be reasonably active, although avoiding the choice of
Ag and Cu which may lead to volatile switching behavior. Finally, the BE material
should be inert to prevent set transition under negative applied voltage during the
reset operation [39].
Based on these considerations, a novel RRAM technology was recently proposed,

which combines a SiOx dielectric layer, a Ti-based TE and a C-based BE, as de-
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Fig. 2 SiOx-based RRAM device. (a) Device stack structure and (b) measured I−V curves, evi-
dencing set and reset transitions at positive and negative voltages, respectively. A large resistance
window of about 104 is obtained thanks to the high band gap of the SiOx dielectric layer and
the complete dissolution of the Ti-based CF in the HRS. Reprinted with permission from [58].
Copyright 2016 IEEE.

picted in Fig. 2a [58, 62]. The Ti cap serves as defect-injecting reservoir layer dur-
ing set, where Ti cations migrate into the SiOx to form the CF under a positive ap-
plied voltage [63, 64]. The application of a negative voltage leads to migration of Ti
cations back to the TE, with no further defect injection from the BE due to the inert
quality of the graphitic C layer. The BE is also confined into a 70-nm plug to enable
evaluation of the forming, switching, and reliability properties at the nanoscale. The
SiOx layer was deposited by e-beam evaporation from a SiO source, thus x should
be around 1 in the device stack.
Fig. 2b shows the measured I−V curves of a SiOx-RRAM device connected to an
integrated field-effect transistor (FET) to control the maximum current during the
set transition, also referred to as compliance current IC [63]. In the figure, IC was
limited to about 70 µA to study the device operation under relatively low current
consumption. The I−V curves show set transition for positive voltage and reset
transition at negative voltage, with a resistance window of about 104 between the
LRS and HRS, despite the relatively high resistance of the LRS due to the low IC.
The high resistance window is due to the high band gap of the SiOx layer, com-
bined with the CBRAM-type switching mode of the device, where Ti defects are
almost completely removed from the SiOx layer after reset, thus enabling a rela-
tively high resistance of the HRS. The abrupt set transition to the LRS reveals the
sudden formation of the CF, where more defects introduced into the SiOx enhance
the electric field and Joule heating, thus inducing the self-accelerated migration of
defects [65, 66]. On the other hand, the reset transition shows more gradual increase
of resistance, as the migration of defects causes an increase in the width of the de-
pleted gap, thus reducing the electric field and Joule heating. As a result, once the
reset transition has started, more voltage is needed to further promote migration of
defects, which is at the basis of the gradual drop of current in the reset transition of
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Fig. 3 Control of resistance window in SiOx-based RRAM. (a) Measured I−V curves at increasing
Vstop and (b) corresponding resistance for HRS and LRS as a function of Vstop, for IC = 70 µA. The
resistance window controllably increases with Vstop, thus enabling multilevel memory operation
and gradual synaptic depression. Reprinted with permission from [58]. Copyright 2016 IEEE.

Fig. 2b [66]. Note that the abrupt set transition is potentially interesting for digital
memory and logic computing applications [67], whereas synaptic potentiation gen-
erally requires gradual increase of the conductance, for progressive STDP and fine
updating of the synaptic weights in DNNs [25, 26, 27]. Gradual depression is how-
ever possible thanks to the negative feedback of the reset transition, thus enabling
the use of the SiOx RRAM in DNNs for supervised training by backpropagation
algorithm.
The gradual reset transition allows to tune the resistance of the HRS, by control-

ling the width of the depleted gap during reset [67]. This is shown in Fig. 3a, where
the HRS resistance at the end of the reset transition increases with the maximum
voltage Vstop applied in the reset sweep. The controllable HRS enables multilevel
operation of the SiOx RRAM, which enhances the scalability of the memory device
by allowing for the storage of more than one single bit within a physical memory
cell [68, 69, 70, 71]. Note that the increase of HRS is reflected by the corresponding
increase of the set voltage Vset , marking the set transition under positive applied
voltage. This can be explained by the relationship between Vset and the depleted
width ∆ in the HRS, where an increasing ∆ leads to a decreasing field across the
depleted gap for a given voltage, thus requiring a larger Vset to reach the critical
field for inducing the set transition by defect migration across the depleted gap [65].
The controllable HRS also allows to tune the resistance window which increases
with Vstop as shown in Fig. 3b. The slight decrease of the LRS resistance with Vstop
can be explained by the higher average field along the depleted gap for high HRS
resistance [58, 62]. The SiOx RRAM also demonstrates high cycling endurance of
almost 108 cycles, low cycle-to-cycle switching variations, and an excellent stability
at elevated temperature, where both HRS and LRS show negligible variations for an-
nealing at 260 ◦C for 1 hour [58, 62]. Overall, these favorable properties make SiOx
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Fig. 4 Sketch of a fundamental circuit block in a feed-forward neural network including a pre-
synaptic neuron (PRE) and a post-synaptic neuron (POST) connected by a resistive synapse with a
1T1R structure. As a spike is generated by the PRE, a current spike is activated across the synapse
leading to an increase of Vint within the POST. As Vint exceeds the internal threshold Vth for fire,
a backward spike is applied to the TE of the 1T1R synapse, causing the weight update according
to STDP. Adapted with permission from [91]. Copyright 2016 IEEE.

RRAM a promising technology for nonvolatile memory and in-memory computing,
including neuromorphic memristive networks.

3 RRAM synapses

Brain-inspired neuromorphic networks rely on synaptic plasticity according to bio-
logical learning rules, such as STDP and spike-rate dependent plasticity (SRDP), to
emulate human-brain functionalities including visual/auditory pattern learning [72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88] and pattern clas-
sification [89, 90]. The synaptic plasticity can be implemented at circuit level by
combining a RRAM device with a FET in the so-called one-transistor/one-resistor
(1T1R) structure, as shown in Fig. 4. Here, the 1T1R synapse is shown as a con-
necting element between a pre-synaptic neuron (PRE) and a POST-synaptic neuron
(POST) [83, 90, 91]. The PRE is connected to the gate of the FET in the 1T1R
synapse, while the POST receives the synaptic current from the BE while control-
ling the voltage at the TE of the 1T1R synapse. The operation of the 1T1R synapse
can be understood as follows: as the PRE generates a positive voltage spike, the
FET acts as a pass-transistor enabling a synaptic current proportional to the RRAM
synaptic conductance. The current spike enters the POST via the BE which can col-
lect incoming currents from several synaptic channels, as in the ideal McCulloch-
Pitts (MCP) neuron scheme [92]. The currents are integrated in the integrate-and-fire
POST circuit, eventually leading to a fire event as the integral signal Vint reaches the
threshold Vth. At fire, the POST generates a spike toward the next layer of neurons,
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Fig. 5 (a) PRE and POST voltage waveforms applied to the gate and the TE, respectively, for the
cases of positive delay (left) and negative delay (right). (b) If the PRE spike occurs before the
POST spike (∆ t > 0), the resistance decreases due to the positive TE spike causing set transition,
or synaptic potentiation. Otherwise, if the PRE spike occurs after the POST spike (∆ t < 0), the
resistance increases due to the negative TE spike causing reset transition, or synaptic depression.
(c) Correlation plot of the RRAM resistance R(ti+1) at epoch ti+1 as a function of the RRAM
resistance R(ti) at epoch ti for variable ∆ t, corresponding to the cases of potentiation, depression,
and no change of weight because of excessive delay. Reprinted from [87], which is licensed under
a Creative Commons Attribution 4.0 International License.

and additionally applies a feedback spike to the synapse TE. The feedback spike
consists of the sequence of a positive pulse and a negative pulse, which can induce
a weight update depending on the relative timing with the PRE spike, as shown
in Fig. 5a. If the PRE spike shortly precedes the POST spike (0 < ∆ t < 10 ms),
the resulting overlap between the PRE spike and the positive pulse in the POST
spike causes set transition, as the positive applied voltage is larger than the set volt-

Fig. 6 (a) Measured and (b) calculated STDP characteristics indicating the relative change of resis-
tance R0/R as a function of ∆ t for variable initial resistance states R0, from full LRS (R0 = 25 kΩ )
to full HRS (R0 = 500 kΩ ). Reprinted with permission from [83]. Copyright 2016 IEEE.
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age (VT E+ > Vset ), hence causing synaptic potentiation. On the other hand, if the
PRE spike shortly follows the POST spike (−10 ms < ∆ t < 0), the overlap between
the PRE spike and the negative pulse in the POST spike causes reset transition,
as the negative applied voltage is larger (in absolute value) than the reset voltage
(VT E− <Vreset ), hence causing synaptic depression. Fig. 5b shows the measured re-
sistance before/after the application of spikes in the Fig. 5a, showing that the RRAM
device undergoes a set process (synaptic potentiation) for 0 < ∆ t < 10 ms, whereas
the RRAM undergoes a reset process (synaptic depression) for −10 ms < ∆ t < 0.
Figure 5c shows the correlation plot of the resistance R(ti+1) measured after the
spike application as a function of R(ti) measured before the spike application, for
variable ∆ t [87]. Under potentiation condition, namely for positive delay satisfying
0 < ∆ t < 10 ms, a RRAM prepared in HRS undergoes a set transition to the LRS,
whereas if the RRAM device is initially in LRS, no resistance variation occurs be-
cause the RRAM is already at its minimum resistance state [87, 93]. For negative
delay satisfying −10 ms < ∆ t < 0, corresponding to the condition for synaptic de-
pression, a resistance transition is activated when the RRAM device is initialized in
its LRS. Finally, if ∆ t assumes values outside the plasticity window (|∆ t|> 10 ms),
the PRE and POST spikes do not overlap, therefore the RRAM resistance does not
change. As a result of the full set/reset operations taking place in the plasticity mech-
anism, the 1T1R synapse only displays HRS and LRS resistive levels, thus evidenc-
ing the binary operation of the 1T1R synaptic device due to the relatively abrupt set
and reset transitions [87]. Note that more resistance levels can be achieved by time-
dependent modulation of the PRE and POST spikes in the 2T1R synapse [94]. In this
synapse architecture, the waveform of the PRE spike allows for time-dependent po-
tentiation, where a longer ∆ t corresponds to a smaller conductance due to the lower
compliance current during set transition. On the other hand, the waveform of the
POST spike allows for time-dependent depression, where a longer ∆ t corresponds
to a smaller resistance due to the lower voltage applied during reset transition [94].
The enhanced functionality comes at the expense of a slightly higher complexity of
the 2T1R synapse circuit, requiring 2 transistors instead of only one in the 1T1R
synapse [91].
To further support the dependence of STDP on initial state in the 1T1R synapse,
Fig. 6 shows the measured (a) and calculated (b) STDP characteristics, namely
the ratio between the initial resistance R0 and the final resistance after potentia-
tion/depression, as a function of ∆ t for increasing R0 [83]. Calculations were done
based on a compact model for RRAM devices [66] including statistical variabil-
ity [83]. These results show binary STDP behavior, where the amount of potenti-
ation and depression is a function of R0. The variable change of resistance allows
the final resistance to be equal to either HRS or LRS, in strong analogy with bio-
logical synapses where the weight update is limited between two boundary states.
Fig. 7 further illustrates the three-dimensional (3D) color map of the calculated
STDP characteristics, evidencing the increase of potentiation/depression level of
1T1R synapse with increasing/decreasing R0 for positive/negative ∆ t [83].
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Fig. 7 Three-dimensional (3D) color plot of calculated STDP characteristics shown in Fig. 6.
Potentiation and depression are both a function of time delay and the initial synaptic state, resulting
in the final state being either HRS or LRS. Reprinted with permission from [83]. Copyright 2016
IEEE.

Fig. 8 (a) Schematic representation of a 2-layer feed-forward neural network with 64 PREs fully
connected to one POST by 64 1T1R synapses. To enable pattern learning, (b) a pattern and (c)
random noisy images are presented to the network with a random sequence as shown by the raster
plot in (d). (e) The presentation of the pattern causes POST fires because of Vint exceeding the
threshold, thus leading to potentiation in the synapses with ∆ t > 0. Random noise presentation
instead may cause depression, because of stimulation of PRE channels shortly after a fire event
with ∆ t < 0. Reprinted with permission from [83]. Copyright 2016 IEEE.

4 RRAM networks

4.1 Feed-forward networks

4.1.1 Simulation results

The demonstration of the STDP learning rule at the level of individual synapses
opens the way for unsupervised learning in full feed-forward networks, such as the
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Fig. 9 (a) Calculated synaptic weights in the pattern (red) and background (cyan) as a function
of time, obtained by a simulation of unsupervised pattern learning with a RRAM synapse model.
(b) Starting from random synaptic states, each lying between HRS and LRS, synapses change
their weight according to the stochastic learning process via potentiation of pattern weights and
depression of background synapses (c, d). The black and blue traces indicate the average weight
of pattern and background synapses, respectively. Reprinted with permission from [83]. Copyright
2016 IEEE.

perceptron network [95] depicted in Fig. 8a, consisting of a 2-layer neural network
with 64 PREs and a single POST [83]. In the network, each PRE is connected to the
POST via a 1T1R synapse as the one described in Fig. 4. A stochastic learning ap-
proach is adopted to induce unsupervised learning, namely, automatic potentiation
of synapses within a reference pattern, and depression of all other synapses. The
stochastic learning approach consists of the presentation of the reference pattern,
e.g. the alphabetical letter X (Fig. 8b). During this presentation, all PREs belong-
ing to the pattern collectively generate a spike which is applied to the corresponding
1T1R synapses. Alternatively, a random noise pattern, e.g., the one shown in Fig. 8c,
is presented, each one stimulating random PRE channels. Noise is randomly alter-
nated with the pattern at each epoch, namely, the periodic times marking the sub-
mission of a pattern to the network. While the presentation of the pattern causes
POST fire, thus potentiation of the active synapses within a certain epoch, the pre-
sentation of noise is crucial since it allows for the depression of all the synapses
in the background, namely, the space not included in the pattern. This is possible
because noise activates random synapses soon after POST fire, thus satisfying the
condition for depression with ∆ t < 0 according to the STDP learning rule.

Fig. 8 also shows a typical sequence of pattern and noise submissions to the input
layer (d) and the internal potential Vint of the POST as a function of time (e). The
presentation of the pattern generally causes fire, hence leading to potentiation of the
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active synapses according to STDP. On the other hand, the random synapses acti-
vated after POST fire are depressed according to STDP, thus further supporting the
importance of the noise alternation to induce depression. Note that the network is
never stimulated by two consecutive pattern submissions to avoid activation of the
pattern after fire, which could cause unwanted depression of pattern synapses [83].
Fig. 9a shows the calculated evolution of synaptic weights as a function of epochs
during training phase, where each epoch corresponds to a time interval of 10 ms.
The detailed map of synaptic weights is shown in the color plots of Fig. 9b-d, de-
scribing the weight distribution at epochs 0, 250 and 500. Starting from a uniform
distribution of synaptic weights at epoch 0, the pattern synapses undergo a rela-
tively abrupt potentiation within the first 50 epochs. On the other hand, background
synapses require a longer time of about 150 epochs for depression, due to the ran-
dom activation and depression of individual random synapses during the stochastic
learning process. The different timescale for potentiation and depression is clearly
indicated by the average conductance of pattern and background synapses in Fig. 9a.
These simulation results evidence the capability of visual pattern learning according
to STDP in a 2-layer perceptron neural network equipped with 1T1R synapses.

4.1.2 Hardware demonstration of unsupervised learning

Pattern learning via STDP was demonstrated in hardware via RRAM-based neu-
ral networks by achieving remarkable performances on both large [76] and small
scale [84, 86, 87, 88]. Fig. 10 shows the reference architecture for unsupervised
learning, consisting of a 2-layer perceptron with spiking neurons and 1T1R synapses.
This scheme was adopted in a full-hardware implementation with physical RRAM
devices and spiking neurons [87].

Fig. 11 shows a schematic illustration of the neural network circuit (a) and
the corresponding hardware implementation on a printed circuit board (PCB) (b).
The neural network consists of a 2-layer perceptron including 16 PREs, 16 1T1R
synapses and a single POST [87, 88]. The PRE spikes were implemented via digital
switches enabling the application of a voltage VG to the gate of the 1T1R synapses.
The PRE switches were controlled by an Arduino Due microcontroller (µC), which
also served as leaky integrate-and-fire (LIF) circuit of the POST for the digital in-
tegration of the synaptic currents, which were initially converted into an analog
voltage by an external transimpedance amplifier. The feedback spike to the 1T1R
synapses at fire was generated by the µC, driving a multiplexer (MUX) to provide
the appropriate voltage to the TE according to the scheme in Fig. 5.
Fig. 12 shows an experimental demonstration of unsupervised learning of a 4x4

visual pattern via the hardware spiking neural network in Fig. 11 [87]. The initial
weights of the 16 1T1R synapses were prepared in a random state between LRS and
HRS, then a diagonal pattern was submitted with stochastic alternation with random
noise images. Fig. 12a-d shows the color plots of the synaptic weights during the
unsupervised learning process of 1000 epochs (10 s). Fig. 12e shows the stochastic
submission of PRE spikes, representing the pattern or noise consisting of a 3% of
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Fig. 10 Illustrative scheme of a 2-layer neural network with perceptron structure including 4x4
PREs and one POST connected by 16 1T1R synapses. Reprinted from [87], which is licensed
under a Creative Commons Attribution 4.0 International License.

Fig. 11 (a) Circuit schematic and (b) hardware implementation of the RRAM-based feed-forward
network depicted in Fig. 10. Reprinted from [87], which is licensed under a Creative Commons
Attribution 4.0 International License.

activated channels at each epoch to induce background depression (see Sec. 3). The
pattern and noise were presented with equal probabilities of 50%. The relatively
small percentage (3%) of activated channels in the noise image was adopted to pre-
vent unwanted noise-induced fires which could lead to unstable behavior during the
learning process [88]. Fig. 12f shows the detailed evolution of all the pattern (red)
and background (blue) synaptic weights evidencing the fast convergence of pattern
weights to high conductance values (potentiation) and a more gradual transition of
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Fig. 12 (a-d) Color plots of the synaptic weights measured during a pattern learning experiment
performed by the network of Fig. 11 with a diagonal pattern. (e) Raster plot of PRE spikes within
pattern (red) and background (blue) channels. (f) Measured synaptic weights showing the adjust-
ment of pattern synapses to LRS and background synapses to HRS. Reprinted from [87], which is
licensed under a Creative Commons Attribution 4.0 International License.

background weights toward low conductance values (depression).
The ability to induce potentiation and depression in real time based on the submitted
input spikes allows to quickly adapt the stored weights to a dynamically changing
stimulation. To prove the ability to learn dynamic patterns, the network of Fig. 11
was trained with a sequence of 3 distinct patterns, while monitoring the synaptic
weights in real time during learning.
Fig. 13a-c shows the 3 patterns which were sequentially presented to the first layer

of the neural network during the experiment, while Fig. 13d shows a typical noise
image which was alternated with the patterns. After preparing the synaptic weights
in HRS (Fig. 13e), the network was externally stimulated by pattern #1 for 300
epochs (3 s), resulting in the potentiation of pattern synapses and depression of back-
ground synapses, as evidenced in Fig. 13f. In the following 300 epochs (epochs 301-
600), pattern #2 was submitted, causing the readjustment of the synaptic weights to
adapt to the new pattern, while the previous one was forgotten (Fig. 13g). At epoch
601, pattern #3 was presented in the PRE spikes, and eventually learnt by the synap-
tic network as evidenced by the color plot in Fig. 13h. Fig. 13i shows the raster plot
of PRE spikes evidencing the pattern and noise presentation to the network as a
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Fig. 13 Experimental demonstration of dynamic pattern learning as a result of sequential appli-
cation of (a) pattern #1, (b) pattern #2, and (c) pattern #3, each alternated with (d) random noise
spikes. (e-h) Color plots of measured synaptic weights during learning experiment which, (e) ini-
tialized in a random weight configuration, evidence an effective adaptation to the (f) pattern #1,
(g) pattern #2, and (h) pattern #3 within epoch 300, 600 and 1000, respectively. (i) Raster plot of
PRE spikes generated as a result of pattern (red) and noise (blue) presentation to the first layer
of the neural network and (j) evolution of synaptic weights within the pattern (red) and the back-
ground (blue) as a function of epochs, showing a selective potentiation of pattern synapses and a
slower depression of background synapses during each training phase. Reprinted from [87], which
is licensed under a Creative Commons Attribution 4.0 International License.

function of epochs during each training phase, while Fig. 13j shows the measured
synaptic weights as a function of time, further supporting online unsupervised learn-
ing by STDP.
A slightly more sophisticated perceptron is displayed in Fig. 14a, featuring 2 POSTs
in the second layer for the learning and recognition of 2 distinct patterns. POST1
and POST2 are each connected to the 3x3 PRE layer via 9 1T1R synapses capable
of STDP. Also, to avoid learning of the same pattern by the 2 POSTs, the first POST
(POST1) and the second POST (POST2) were controlled by the µC to implement a
winner-take-all (WTA) learning optimization scheme [74, 96], where the fire of one
POST caused the reset of the internal potential in the other POST. This was achieved
by 2 inhibitory synapses connecting POST1 to POST2, and POST2 to POST1, to
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Fig. 14 (a) Sketch of a perceptron network with 2 POSTs in the output neuron layer to implement
multiple pattern learning according to the winner-take-all (WTA) scheme. (b) Patterns submitted
to the PRE layer, consisting of a top bar and a bottom bar, which were then gradually modified by a
counter-clockwise rotation by one step every 1000 epochs to experimentally demonstrate the capa-
bility of online dynamic learning. (c, d) Color plots of synaptic weights connecting the input layer
to POST1 and POST2, respectively, evidencing the online adaptation to the dynamically changing
patterns. (e, f) Measured synaptic weights for POST1 and POST2, respectively, showing the evolu-
tion of pattern (red) and background (blue) synaptic weights during the learning process. Note the
adjustment of synaptic weights to LRS or HRS, for pattern or background synapses, respectively,
in every phase of the online learning experiment. Reprinted from [87], which is licensed under a
Creative Commons Attribution 4.0 International License.

allow for bidirectional WTA [74].
In the experiment, the 2 patterns and the usual noise images were submitted to the

3x3 input layer with random alternated sequence. A top bar and a bottom bar were
used as initial patterns for the first 1000 epochs, as shown in Fig. 14b. After this first
phase, the bars were modified by a 1-step counterclockwise shift along the perime-
ter of the 3x3 frame, until the bar reached the bottom, from the top, or vice versa.
Each new learning phase lasted 1000 epochs. Fig. 14c-d shows color plots of the
conductance of synapses connected to POST1 and POST2, respectively, during the
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Fig. 15 Color plots of measured synaptic weights at epoch (a) 0, (b) 300, (c) 600, and (d) 1000 as
a result of a gray-scale pattern learning. Whereas the black level corresponds to the HRS, gray and
white levels correspond to two different low resistance states, namely LRS1 and LRS2, with the
conductance of LRS1 being smaller than LRS2. (e, f) Measured and calculated I−V curves for the
1T1R synapses, showing the formation of LRS1 and LRS2, respectively, by the set transition with
different gate voltages VG1 and VG2, with VG1 < VG2, resulting in compliance currents IC1 < IC2,
thus causing LRS1 resistance being higher than LRS2. (g) Raster plot of PRE spikes evidencing
the input submission of gray and white patterns with different applied VG, and noise patterns
to obtain synaptic depression, hence black level or HRS. (h) Measured synaptic weights during
learning, evidencing the adjustment of the conductance to one of the 3 gray levels, namely HRS,
LRS1, and LRS2. Reprinted from [87], which is licensed under a Creative Commons Attribution
4.0 International License.

dynamic learning process, evidencing the capability of the 2 POSTs to separately
learn the 2 submitted patterns, and to respond to consecutive pattern shifts by grad-
ually adjusting the synaptic weights [87]. Fig. 14e-f shows the synaptic weights of
POST1 and POST2, respectively, as a function of epochs during the learning exper-
iment, further evidencing the synaptic plasticity in response to the input dynamic
patterns.
All previous examples consider digital input patterns, consisting of 0/1 states for
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each channel, which could be represented by HRS and LRS of the synapse, re-
spectively. On the other hand, a more realistic case is the gray-scale image, where
analog stimulation in the first layer, e.g., mapped in the spike frequency or spike
amplitude, requires more than 2 resistive levels to represent the input patterns. To
this purpose, the gray-scale pattern learning process described in Fig. 15 considers a
HRS level, corresponding to the black tone in the figure, and 2 different LRS levels,
called LRS1 and LRS2, with the weight of LRS1 being smaller than LRS2 [87].
Fig. 15a-d shows the color plots of the measured synaptic weights during a 1000-
epoch gray-scale pattern learning experiment performed by the hardware neural net-
work with 3x3 PREs and one POST. Starting from a random weight configuration,
the synaptic weights show the learning of a gray-scale image with 3 levels via a
selective analog potentiation process. To obtain these results, LRS1 and LRS2 were
achieved by using 1T1R synapses with 2 different compliance currents IC1 = 50 µA
and IC2 = 100 µA, respectively, as a result of the application of the gate voltages
VG1 = 2.1 V and VG2 = 2.5 V, as shown by the I−V curves in Fig. 15e-f. The
resulting conductance values are LRS1 (gray level) being lower than LRS2 (white
level) because of the lower IC resulting in a higher resistance [63]. Fig. 15g shows
the sequence of PRE spikes submitted to the network to implement the 3-level gray-
scale image learning, while Fig. 15h shows the evolution of the synaptic weights
with time, indicating the learning of 3 distinct gray-scale levels due to analog po-
tentiation for white and gray tones and noise-induced depression for black tone,
respectively. These experimental results support the capability of multi-level pattern
learning in 1T1R synapses, paving the way for color-scale image learning.

4.2 Recurrent neural networks

4.2.1 Attractor formation

While feed-forward networks can be helpful in several applications, such as learn-
ing and recognition of different kind of patterns, most of the information processing
in the human brain is done by recurrent neural networks (RNNs), where at least one
feedback loop exists connecting the output layer to the input layer [97]. For instance,
the brain ability to retrieve a previously stored memory, also referred to as attractor
state, in response to a partial stimulus, has been the subject of intense studies. Ac-
cording to biological observations, it is believed that this emergent computational
ability results from the specific recurrent synaptic topology in interested brain areas
such as the hippocampus. Thus, spiking RNNs were modeled and designed leading
to both CMOS-based [98, 99, 100, 101, 102, 103, 104] and memristor-based circuit
implementations [105, 106, 107, 108, 109, 110, 111]. Fig. 16a shows a simplified
sketch of a RNN consisting of 4 neurons, each providing both excitatory and in-
hibitory stimulations to each of the other 3 neurons, as well as receiving an external
input X. Specifically, according to the well-known Hopfield network topology [112],
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Fig. 16 (a) Illustrative scheme and (b) corresponding circuit implementation of a RNN with the
Hopfield network configuration, namely with no self-feedback connections, in the case of 4 fully-
connected neurons. The synapses consist of 1T1R structures and are operated as either excitatory or
inhibitory connections between 2 neurons in the RNN. (c) Schematic illustration of RNN operation
during the training phase at 2 neurons (N2 and N3) and their respective synapses. The time overlap
between neuron spikes causes potentiation of excitatory synapses, and depression of inhibitory
synapses. Adapted with permission from [111]. Copyright 2018 IEEE.

no self-feedback is present in any of the neurons, which prevents a divergent dynam-
ics occurring during network operation.

Fig. 16b shows the circuit implementation of the RNN with spiking neurons and
1T1R synapses [110, 111]. Here, integrate-and-fire neurons are fully connected one
to each other by excitatory (blue) and inhibitory (red) 1T1R synapses. The generic
i-th neuron has 2 inputs, namely the external current spike Xi, and the total synaptic
current activated by other neurons, and 3 outputs, namely (i) Gi, which is applied to
the gate of 1T1R synapses along the i-th row, (ii) Oi, which is applied to the TE of
excitatory 1T1R synapses along the i-th column, and (iii) O’i, which is applied to
the TE of inhibitory 1T1R synapses along the i-th column.
The operation of the RNN during the learning process of an attractor state is de-
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Fig. 17 Simulation of the learning process in a 6-neuron RNN, where two orthogonal attractor
states are formed in response to external stimulation of neurons N1, N2, and N3 (a), followed by
the external stimulation of neurons N4, N5, and N6 (b). Color code representation of the conduc-
tance values of (c) excitatory and (d) inhibitory synapses at times 0 s, 1 s, and 2 s. Weights of the (e)
excitatory and (f) inhibitory synapses evidencing the selective potentiation/depression of the exci-
tatory/inhibitory synaptic weights within the attractor activated by stimulation of N1, N2, and N3
during the first 1-s-phase, followed by the potentiation/depression of excitatory/inhibitory synapses
within the second attractor by stimulation of N4, N5, and N6 during the consecutive 1-s-learning
phase.

scribed in Fig. 16c for the specific pair of neurons N2 and N3, the excitatory synapse
W32 and the inhibitory synapse W’32. At the fire event of N3, the gates of all the ex-
citatory/inhibitory synapses along the 3rd row are activated, thus inducing synaptic
currents which are proportional to the synaptic weight. The synaptic currents are
activated by a relatively small voltage Vread being positive for excitatory synapses,
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and negative for inhibitory synapses. If the total current collected at the input of N2
exceeds the fire threshold, the neuron N2 fires. If the fires of the 2 neurons occur at
the same time, both gate and TE pulses are applied to synapses W32 and W’32 at the
same time, resulting in potentiation of the excitatory synapse, because of the posi-
tive TE voltage Vexc causing set transition, and depression of the inhibitory synapse,
because of the negative TE voltage Vinh causing reset transition [110, 111]. Thus,
the stimulation by external spikes causes network training according to the Hebbian
rule, where ’neurons that fire together wire together’ [113]. The potentiation of ex-
citatory synapses and the depression of inhibitory synapses cause the formation of
an attractor state in the RNN. Note that the potentiation of excitatory synapses and
the depression of inhibitory synapses are simplified cases of the STDP in the 1T1R
synapses described in Sec. 3, where the bipolar voltage pulse at the TE is replaced
by a unipolar voltage pulse, with either positive voltage Vexc or negative voltage Vinh.
Fig. 17 shows the simulation results of a sequential learning of two orthogonal at-
tractors, namely 2 attractors with no neurons in common, via a 6-neuron RNN based
on the network architecture shown in Fig. 16b [110]. First, all excitatory weights
were prepared in HRS, whereas all inhibitory weights were prepared in LRS. Then,
the pool of neurons N1, N2, and N3 were externally stimulated for 1 s, as shown in
Fig. 17a. Finally, external current spikes were applied to another pool including N4,
N5, and N6 for the following 1-s-long training phase (Fig. 17b). Fig. 17c shows the
evolution of the excitatory synaptic weights, indicating the potentiation of excitatory
synapses in the first attractor (N1, N2, N3) during the first learning phase, followed
by the potentiation of excitatory synapses in the second attractor (N4, N5, N6) in the
second learning phase. Note that external stimulation was asynchronous and had an
average frequency of 200 Hz for stimulated neurons. Similarly, Fig. 17d shows the
color plots for inhibitory weights at increasing times, evidencing the depression of
inhibitory weights in the attractors. Fig. 17e shows the detailed time evolution of
excitatory weights, while Fig. 17f shows inhibitory weights during the two learning
phases, further supporting the RNN capability of learning orthogonal attractors.

4.2.2 Associative memory

After the attractor learning, the RNN is operated in a different mode aimed at testing
or recalling the stored network states [107, 108, 110, 111]. A key property of the
RNN is that, after attractors are formed in the network, it is possible to recall an at-
tractor even in the presence of a partial or erroneous stimulus of the attractor, which
is important for error-tolerant brain-inspired cognitive systems [98, 112]. This type
of attractor recall is at the origin of associative learning, namely a fundamental cog-
nitive primitive in the mammalian brain, which received in-depth theoretical and ex-
perimental studies, as indicated by the well-known Pavlov’s dog experiments [114].
To illustrate the associative learning in the RRAM-based RNN, Fig. 18 shows sim-
ulation results for recalling the attractor (N1, N2, N3), and its significance in terms
of associative learning according to the Pavlov’s dog experiments [110]. If the food
presentation to the dog is always combined with the ringing of a bell, the ’bell’ and
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Fig. 18 Illustrative explanation of an associative memory referring to the Pavlov’s dog experi-
ments. The regular application of an external stimulus such as a bell’s ring during feeding leads
to the formation of an attractor state linking bell’s ring, food and salivation. As a result, the sound
of a bell’s ring after training induces the activation of the whole attractor, including the neurons
associated with the concept of food, and the stimulus to salivation (a). The attractor is similarly
activated by the direct sight of food (b). Reprinted with permission from [110]. Copyright 2017
IEEE.

Fig. 19 Simulation of the formation of two attractors as a result of external stimulation of a 64-
neuron RNN due to the sequential submission of pattern ’X’ for 5 s followed by pattern ’C’ for
another 5-s-long phase. (a, b) Pattern ’X’ and ’C’, respectively. (c-e) Color code representation of
the weights of (top) excitatory and (bottom) inhibitory synapses at times 0 s, 5 s, and 10 s, starting
from HRS and LRS, respectively. (f) Calculated weights of excitatory synapses (top) and inhibitory
synapses (bottom), clearly indicating the sequential formation of the attractor ’X’ (red), followed
by the attractor ’C’ (blue). Adapted with permission from [111]. Copyright 2018 IEEE.

’food’ are associated, i.e., an attractor is formed in the dog’s brain. Consequently,
whenever the dog hears the bell’s ring alone, it resuscitates the concept of food
and the stimulus to salivation (Fig. 18a), similar to the direct presentation of food
(Fig. 18b).

4.2.3 Pattern learning and reconstruction

RNN can provide insight regarding some typical human brain functionalities, such
as the memory formation and error-tolerant retrieval [99, 107, 108, 111]. Fig. 19
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Fig. 20 Incomplete patterns used for simulating pattern reconstruction after pattern learning with
(a) 9 active channels and (b) 5 active channels instead of the correct 12, for pattern ’X’. Incomplete
patterns with (c) 7 active channels and (d) 4 active channels instead of the correct 12, for pattern
’C’. Number of activated neurons within (e) the attractor ’X’ and (f) the attractor ’C’ as a function
of time, for different number of externally-stimulated neurons. (g) Color map of probability P of
reconstructing attractor ’X’, as a function of the number of externally activated neurons in pattern
’X’ and pattern ’C’. The probability of reactivating the attractor ’C’ can be obtained as 1-P. Adapted
with permission from [111]. Copyright 2018 IEEE.

shows simulation results of pattern learning in a RRAM-based RNN with 64 neu-
rons arranged with the architecture of Fig. 16b [111]. Orthogonal attractors were
formed by presenting 2 patterns in a sequence, namely the image ’X’ (Fig. 19a) fol-
lowed by the image ’C’ (Fig. 19b), both presented to the RNN for 5 s. The weights
were prepared in HRS for excitatory synapses and LRS for inhibitory synapses, as
shown in Fig. 19c. Then, the application of pattern ’X’ led to Hebbian modifica-
tion of the synapses in the first attractor within 5 s (Fig. 19d). The presentation of
the second pattern for the following 5 s led to the formation of the second attractor
(Fig. 19e). The attractor formation is further illustrated in Fig. 19f, showing the cal-
culated weights of the excitatory synapses (top) and inhibitory synapses (bottom) as
a function of time. The 2 phases for learning the ’X’ in the first 5 s and the ’C’ in
the following 5 s can be clearly seen.
After the attractor formation, the capability of reactivating the whole attractor by

submitting only part of the pattern was tested. Fig. 20 shows the input excitation
patterns that were submitted in the simulations, consisting of partial versions of the
pattern ’X’ with only (a) 9 active channels or (b) 5 active channels and partial ver-
sions of the pattern ’C’ with only (c) 7 active channels or (d) 4 active channels [111].
Fig. 20e shows the simulation results of attractor recall with the partial patterns in (a)
and (b), each case being simulated 10 times for statistical significance. The number
of activated neurons increases with time during the submission of the partial pat-
tern, eventually activating all the 12 neurons in the original pattern ’X’. Note that
the average time required to retrieve the whole pattern ’X’ decreases as the number
of externally stimulated neurons increases, as a result of the higher synaptic cur-
rent feeding other unstimulated neurons within the selected attractor. Similar to the
previous case for pattern ’X’, the stimulation of a part of attractor ’C’ leads to the
activation of all the 12 neurons in the attractor, as shown in Fig. 20f.
These results support error tolerant pattern recognition, where a pattern is recog-
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nized even in presence of a bare suggestion, or stimulation of only a fraction of the
pattern. To explore the limits of the error tolerant recognition, and the possibility
of confusion between competing patterns, Fig. 20g shows a color map of the cal-
culated probability P of recognizing the pattern ’X’ after externally stimulating the
64-neuron RNN for 1 s. The recognition probability is reported as a function of the
number of externally stimulated neurons belonging to ’X’ or ’C’. The reported P
is the average over 1000 simulations for each case. Note that all the simulations
eventually led to recognition of either ’X’ or ’C’, therefore the probability for rec-
ognizing C is given by 1-P [111]. The results indicate that P increases as the number
of stimulated X-neurons increases, and P decreases as the number of stimulated C-
neurons increases. For similar number of X- and C- neurons being excited, the color
plot shows random behavior of the RNN with P of about 50%. Finally, note that as
the stimulated X- and C-neurons within the submitted test pattern are both above
7, P assumes intermediate values since such a high external excitation can activate
either attractors with high probability, thus the recall process is mainly controlled
by the stochastic Poisson input spike trains used to stimulate the RNN. The results
corroborate the feasibility of error-tolerant brain-inspired RNN with RRAM-based
1T1R synapses capable of STDP.

5 Conclusions

This chapter provides an overview of the RRAM-based neuromorphic circuits for
brain-inspired computing. RRAM devices and architectures might provide a promis-
ing technology for scalable, energy-efficient neuromorphic chips, to tackle the chal-
lenges of the emergent big data processing and pervasive Internet of Things (IoT).
In this scenario, the RRAM device operation, challenges and emerging technolo-
gies are reviewed with reference to novel SiO2 RRAM capable of improved re-
sistance window and stability for multilevel operation in neural networks. Then,
RRAM synapses capable of STDP are described, addressing the physical processes
and circuit algorithms allowing for time-dependent potentiation and depression.
Finally, SNN architectures capable of pattern learning and other cognitive comput-
ing primitives are discussed, covering both feed-forward architectures and brain-
inspired recurrent SNNs. Pattern learning, associative memory, attractor recogni-
tion and error tolerant reconstruction of information are shown by the simulation of
RRAM-based RNNs. The scenario supports RRAM-based SNN as a promising and
attractive technology for low-power and scalable neuromorphic computing.
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