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Abstract: The interaction between the rotating blades and the external fluid in non-axial flow
conditions is the main source of vibratory loads on the main rotor of helicopters. The knowledge
or prediction of the produced aerodynamic loads and of the dynamic behavior of the components
could represent an advantage in preventing failures of the entire rotorcraft. Some techniques have
been explored in the literature, but in this field of application, high accuracy can be reached if a large
amount of sensor data and/or a high-fidelity numerical model is available. This paper applies the
Kalman filtering technique to rotor load estimation. The nature of the filter allows the usage of a
minimum set of sensors. The compensation of a low-fidelity model is also possible by accounting for
sensors and model uncertainties. The efficiency of the filter for state and load estimation on a rotating
blade is tested in this contribution, considering two different sources of uncertainties on a coupled
multibody-aerodynamic model. Numerical results show an accurate state reconstruction with respect
to the selected sensor layout. The aerodynamic loads are accurately evaluated in post-processing.

Keywords: state and load estimation; inverse identification; Kalman filter; multibody modeling

1. Introduction

The main rotor is the most significant component of any helicopter because it generates the needed
lift supporting the weight of the entire rotorcraft and provides the control moments required for the
execution of different maneuvers. The flexible rotating blades are constantly interacting with the
aerodynamic flow and are thus the main source of vibratory loads. These excitations are transmitted
to the rotor hub; consequently, their knowledge becomes of significant importance to preventing
failures and other undesirable mechanical effects on the entire rotorcraft. Besides, the variability of the
aerodynamic loads produced by the structure and flow interaction is of high complexity and cannot
be easily predicted or generalized for the same rotorcraft in different flight conditions. Therefore, the
problem of structural monitoring in helicopters covers many aspects of rotorcraft design and operations.
Several methodologies have been proposed in the literature. This problem can be approached in two
related fields of research: structural component monitoring and prediction of structural behavior or
aerodynamic loads.

A review of existing helicopter rotor health monitoring systems and techniques is presented
in [1]. The health and usage monitoring system (HUMS) and the rotor track and balance (RTB)
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system have been considered valuable instruments to increase failure detection information and
flight safety. Nevertheless, they do not provide detailed information about the structural status of
the rotor components. Ganguli et al. [2] studied the damage detection problem at the blade level,
in terms of localized changes of structural, inertia and aerodynamic properties. In a subsequent study,
Ganguli et al. [3] extended the previous work by presenting one of the first contributions on the usage
of artificial neural network (ANN) algorithms applied to damage modeling. Despite the disadvantage
of a large amount of data needed for training, ANNs appears in several works [4–6] in the field of
loads and damage monitoring in the helicopter area. In the last few decades, these techniques have
become widely used for force reconstruction [7,8] and aerodynamic flow interaction [9,10] problems.
One of the main advantages of ANN is that no physical model is required behind the application of
the methodology. When model-based techniques are employed, the accurate analysis of rotor blade
loads needs a coupled computational fluid dynamics (CFD) and computational structural dynamics
(CSD) simulation, as accurately reported in [11].

In recent years, focus is being placed on the combination of test and model solutions [12–15].
Among these techniques, the so-called blade shape sensing [14] has been demonstrated to be an efficient
modal-based approach to reconstruct the shape of the blade, combining a limited set of measurements
with assumed modal shapes. The optimal number and positions of sensors still constitute an open
field of research, together with the application of the technique to more complex systems, such as
a full helicopter rotor. The assembled structure is difficult or time-consuming to obtain in terms of
structural modeling and aerodynamic load computation with respect to the level of accuracy. The
intention of this contribution is to propose an approach able to perform appreciable prediction of
structural/aerodynamic information saving time in the modeling phase. The proposed approach
makes use of the estimators, and in particular, of the Kalman filter [16,17], which aims at solving a
state space model taking into account the model and observation (e.g., measurements in a real test
case) uncertainties. Besides the standard formulation, a robust Kalman filter has been also presented
in the literature [18–20] to address the problem of state estimation by being robust against the model’s
uncertainty. Indeed, when some unknown modeling errors exist, the estimation of the standard
Kalman filter might be not enough accurate. The robust Kalman filter is instead designed to consider
all possible uncertainties [18] by modeling an energy bounded noise, against the stochastic white noise
in the standard formulation [19]. The solution of two algebraic Riccati equations [18] is needed in the
robust Kalman filter and this might be a disadvantage. The modeling of the uncertain system is also
constrained to a norm-bound value, which has conceptually the same role of the model covariance
matrix as the standard Kalman filter [16]. Some works (e.g., [21,22]) already report the usage of the
Kalman filter for damage detection in rotorcraft applications. Different formulations of the standard
Kalman filter (KF) are widely used in the literature, such as the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF) [16]. The EKF is one of the possible non-linear versions of the
Kalman filter. The main principle is the linearization of the non-linear system around the current
estimated state using a first-order truncation of the Taylor series expansion of the model equations.
Some references on the application of the EKF can be found in [23–25]. The UKF is instead a recursive
estimator that addresses some of the approximation issues of the EKF. The UKF does not explicitly
approximate the nonlinear process and observation models; it uses instead the true nonlinear models
and approximates the distribution of the state random variable. However, in many application cases,
the EKF becomes more efficient from a computational point of view. An accurate comparison between
EKF and UKF can be found in [24]. When a joint states/inputs estimation is performed, both EKF and
UKF can be employed in a variant way. In this context, two different approaches are presented in the
literature: the dual Kalman filter (DKF) [26] and the augmented Kalman filter (AKF) [16]. The DKF
operates in two estimation stages, while the AKF estimates the states and the inputs simultaneously
by introducing an augmented state vector and this defines a reduction of the computational cost.
The AKF has been applied in many fields and was recently demonstrated to give accurate results
for automotive applications [25,27]. The results showed that, when the adopted structural model
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was not accurate enough, the AKF still provided a good estimation of the states at the expense of the
loads’ accuracy. Given the dependence of the aerodynamic loads on the states of the rotor blades [28],
the proposed approach performs a multiple-load and state estimation, with the aim of reaching high
accuracy for the states of the blades and re-using this information to compute the aerodynamic loads
in post-processing.

As already stated, the Kalman filtering technology has been widely applied in a lot of research,
but the intent of the authors is to demonstrate its potential in the rotorcraft field for load prediction,
thereby exploring the advantages in the model complexity and needed sensor data. A multibody
model [29] of the blades has been developed, following the finite segment formulation [30] approach.
The model can be considered as simplified because the blade flexibility is not modeled with high
accuracy like in a finite element modeling approach. This is, anyway, an acceptable simplification
for quasi-steady flight conditions and also if the user is interested mainly in aerodynamic loads
instead of blade deformations. Increasing the complexity of the model is out of the scope of this work,
but it is the intent of the authors to investigate the proposed methodology on highly accurate rotor
models in the future. Given the non-linear nature of a general multibody model, the EKF formulation
has been adopted in its augmented formulation. A steady flight condition is investigated in this
contribution. The 2-blade rotor model is first validated by comparing its results with those obtained
using MBDyn—free, general-purpose multibody software [31]—and then used to predict aerodynamic
load distribution and the displacement/velocity field along the blade span. This paper is structured
as follows. In Section 2, the theoretical background is provided, giving a generic overview on all the
touched-upon topics with the formulations used: rotor multibody modeling, aerodynamic modeling
and augmented Kalman filter. In Section 3, the developed workflow needed for states and loads’
prediction is presented, followed by a numerical validation of the developed model and numerical
results of the estimation problem in Section 4. Concluding remarks are discussed in Section 5.

2. Methodologies: Theoretical Background

In the present contribution, the structural model of the rotating blades is developed using
a multibody simulation approach [29] based on the finite segment theory presented in [30].
A quasi-steady formulation is adopted for the aerodynamic loads and a uniform inflow model is
used, based on the blade element momentum theory (BEMT) [32]. The prediction of aerodynamic
loads and states of the developed multibody model is proposed using a Kalman-based approach.

2.1. Multibody Structural Model

In structural modeling, a multibody dynamics simulation is a convenient approach when the
system is complex and phenomena caused by nonlinearities cannot be neglected. A rotating blade is
subject to high stresses and deformations and is connected to the hub through some mechanisms, e.g.,
pitch, flap and lag hinges, which need to be modeled in order to reproduce the correct behavior of the
fully assembled structure. There are two main classes of formulations for multibody analysis: ordinary
differential equations (ODE) and differential-algebraic equations (DAE). A detailed explanation of the
differences between the two formulations is provided in [33,34]. In this contribution, an index-2 DAE
approach is chosen, which formulates the equations of motion of a constrained system as:

q̇(t)− v(t) = 0

M(q(t))v̇(t) + f(q(t), v(t), t)− B(q(t))Tλs(t) = 0

B(q(t))v(t) = 0

(1)

where t is the time variable; q ∈ Rn and v ∈ Rn are the n-coordinates and n-velocity vectors of the
system; M ∈ Rn×n is the mass matrix; f ∈ Rn is a general non-linear term including all the other forces,
e.g., elastic, external and quadratic contributions; B ∈ Rn×m is the Jacobian matrix of the constraints,
given by differentiating the constraint condition with respect to q; λs ∈ Rm is the vector of m Lagrange
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multipliers; and q̇ and v̇ are the time derivatives of q and v. The set of Equations in (1) includes only
the velocity constraint. A way to enforce the index-2 formulation is to use a variant form given by
Gear, Gupta and Leimkuhler (GGL) [35]:

q̇(t)− v(t) + B(q(t))Tµs(t) = 0

M(q(t)) ˙v(t) + f(q(t), v(t))− B(q(t))Tλs(t) = 0

B(q(t))v(t) = 0

g(q(t)) = 0

(2)

In Equation (2), additional multipliers µs at velocity level and a set of algebraic equations g(q(t)) ∈ Rm,
i.e., position constraints, are included. The GGL formulation is the one adopted in the multibody
solver used in this work. For sake of simplicity, the time dependence of all variables will be omitted in
the next sections.

2.1.1. Finite Segment Beam Formulation

Each multibody model of the blades is composed by Ne rigid bodies, connected by Ne − 1 flexible
elements. In the finite segment approach [30], these are spring elements, as shown in Figure 1. Given
two bodies B1 and B2, the equivalent stiffness k12 is:

k12 =
k1bk2a

k1b + k2a
(3)

Figure 1. Two rigid bodies connected through elastic elements. a and b are the two faces of each body
where the connections are. k12 is the total stiffness matrix given by the interaction of both elastic forces
from faces B1b and B2a.

A rigid body in space has six degrees of freedom (DOFs), i.e., three positions and three rotations;
thus, the stiffness parameter in Equation (3) results in a 6 by 6 matrix k12. For a certain body j,
the elemental stiffness matrix at the generic face f can be derived from a finite element beam theory [36]
formulation:

kj f =



EA
l 0 0 0 0 0
0 12EIz

l3(1+Φy)
0 0 0 −6EIy

l2(1+Φz)

0 0 12EIy
l3(1+Φz)

0 6EIz
l2(1+Φy)

0

0 0 0 GJ
l 0 0

0 0 6EIz
l2(1+Φy)

0 (4+Φz)EIy
l(1+Φz)

0

0 −6EIz
l2(1+Φz)

0 0 0 (4+Φy)EIz
l(1+Φy)


(4)

where l is the free-length of the beam; EA, EIy, EIz and GJ are the cross-sectional properties of the
beam; and Φy and Φz are two coefficients to account for shear deformation effects.

2.2. Aerodynamic Model

The interaction between a rotating blade and the external fluid defines a complex aerodynamic
field and a 3D analysis should be used to enable an accurate performance estimation of the rotor.
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However, this contribution aims to outline a general workflow for loads and states prediction on a
rotating blade in a realistic aerodynamic scenario. The employment of highly accurate aerodynamic
modeling, such as CFD analysis, is thus out of the scope of this work. In this paper, MBDyn is first used
as the reference code for validation purpose and then to generate reference data for Kalman filtering
estimation. A 2D aerodynamic model is employed, computing the inflow velocity based on the BEM
theory. An advantage that will be underlined in Section 3 is the dependence of the aerodynamic
loads on the states of the blade structural model. All the analyses presented in the paper refer to a
quasi-steady aerodynamic model.

2.2.1. Aerodynamic Loads

Figure 2 shows a sketch of an airfoil in the rotating reference frame which is adopted in the
presented rotor model. It is identified by {X, Y, Z} with corresponding unit vectors {î1, î2, î3}. In the
helicopter modeling, the rotating frame follows the motion of the hub, which rotates with rotational
speed Ω. The elemental lift dL and drag dD, evaluated at the stage r, can be written as:

dL =
1
2

ρq̇T
r q̇rCLcdr (5)

dD =
1
2

ρq̇T
r q̇rCDcdr

dL and dD are respectively orthogonal and parallel to the air velocity u. From Equation (5):

• ρ is the air density.
• q̇r is the velocity vector evaluated at the stage r. Considering the blade modeled as a rigid body,

q̇r is expressed as:

q̇r = Ωî3 × r + β̇|r|î3 + (u1 î1 + u2 î2 + u3 î3) (6)

where β̇ is the flapping velocity, which is defined as the time-derivative of the angle β shown in
Figure 2. u1,2,3 are the components of the air velocity. In hovering flight, the air velocity is reduced
to only the vertical contribution along î3, naming the inflow velocity ui. If the point resides on an
axis parallel to î1, then:

q̇r = Ω|r|î2 + β̇|r|î3 + (u1 î1 + u2 î2 + u3 î3). (7)

• CL and CD are the aerodynamic coefficients; in general, they are tabular values for a given airfoil.
Important for the evaluation of the total thrust produced by the rotating blades is the expression
of the lift coefficient CL. This contribution focuses on small angles of attack α and low values
of the Mach number, such that a linear relation CL = aα is guaranteed, with a representing the
lift slope of the section, and α = θ −Φ (Figure 2). θ and Φ are respectively the pitch and inflow
angles of the section. More details about the derivation of Φ are given in Section 2.2.2.

• c indicates the chord of the blade at stage r.

In this work, the assumption of constant slope a and angle Φ for all the points of a given section
is made. The elemental lift in Equation (5) can be rewritten as:

dL =
1
2

ρq̇T
r q̇ra(θ −Φ)cdr (8)

By integrating the elemental lift along the radius R, the total thrust produced by a rotor with b blades
at time t is:

T =
1
2

ρabΩ2
∫ R

0
c(θ −Φ)r2dr (9)
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Further details can be found in reference [37].

Figure 2. Velocity vector and angles definition for a blade station at distance r from the hub
rotating frame.

2.2.2. Uniform Inflow Model

In the previous section, the inflow velocity ui was introduced. It indicates the contribution of the
volume of air that is moved by the rotor on the blade velocity. An inflow model based on the BEM
theory is used with the assumption of uniform distribution, which is an acceptable approximation for
hovering or in general in quasi-steady flight conditions. The inflow velocity can thus be written as:

ui =

√
T

2ρA
(10)

with A = πR2 being rotor disk area. In the following, we will refer to the induced velocity as its
dimensionless value λi =

ui
ΩR . The sectional inflow angle becomes:

Φ =
ui
Ωr

=
λi
x

(11)

with x = r/R, i.e., the dimensionless spanwise position of the blade section. From Equation (10),
it is clear that the value of the induced velocity is constantly updated depending on the value of the
thrust produced at time t. Such dependence drops for a steady condition, but it is still important,
for this work, to take into account time-dependent conditions, e.g., the transient regime from initial
conditions to steady-state. Dynamic inflow models (e.g., Pitt–Peters, Peters–He [38]) are available, but
they are not necessary in our estimation, as they mainly address very low frequency transients usually
associated with flight dynamics, rather than vibrations. Since the thrust T depends on the inflow
angle (Equation (9)), an implicit problem needs to be solved iteratively. Two numerical approaches are
presented in the literature [39], based on fixed-point or Newton–Raphson iteration. The latter is used
in this contribution for the aerodynamic solver. It is reported in the following because of its importance
in understanding the full aerodynamic model and the Kalman estimation principle. Introducing µ
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as the dimensionless air velocity parallel to the rotor disk, i.e., µ = |u|cosα
Ωr in the plane of rotation, the

following implicit function is defined:

f (λ) = λ− CT(λ)

2
√

µ2 + λ2
= 0 (12)

with λ = µ tan(α) − λi. CT is the blade-loading coefficient or dimensionless thrust, defined as:
CT = T

ρA(ΩR)2 . Equation (12) is solved with the Newton–Raphson iteration scheme, and for small

values of µ, the usage of the hover value as a first guess of λ, i.e., λ0 =
√

CT
2 , generally allows it to

converge with a limited number of iterations.

2.3. Kalman Filter for Implicit Scheme

This section aims to give an overview of the main principle of the Kalman filter (KF) and
to understand how and in which formulation it can be applied to a DAE system—for instance,
Equation (2). The filter operates on a state-space form in two phases, i.e., prediction and correction.
The model predicts the state in the next time instant and the same prediction is then corrected using
the observations given as input to the algorithm at each time step. These two steps for a linear time
invariant (LTI) system are translated in the state-space system:{

ẋ = Ax + Bp

y = Cx + Dp
(13)

where x, p and y are respectively the state, input and observation vectors. A and B are matrices
depending on the dynamics of the system; C and D depend on the nature of the observations. If the
problem presents non-linearities, the system (13) becomes a set of non-linear implicit functions:{

h(x, ẋ, p) = 0

y = k(x, p)
(14)

This set of equations can be easily identified in the GGL form in Equation (2) of a multibody system,
defining the following state vector and its time derivative:

x = [q, v, λs, µs]
T (15)

ẋ = [q̇, v̇, λ̇s, µ̇s]
T (16)

A mismatch between Equations (14) and (2) can be observed because no information about the input
vector p is included in the GGL set of equations. The dynamics of p should be added. Given the
unknown nature of this entity in the estimation context, a good assumption is that of zeroth-order
dynamics, i.e., zero time-derivative of p, which leads to ṗ = 0. This model has been widely adopted
and validated in the literature [25,27,40,41], and a clearer explanation will be provided in the following.
In this contribution, the estimation process is performed in discrete-time domain, and thus the
discretization of the continuous-time GGL formulation expressed in Equation (2) is needed. The
multibody solver used in the present work executes this step by applying the implicit backward
differentiation formulas (BDF) integration method [42]:

żk+1 =
s

∑
j=0

αjzk+j (17)

with s and α respectively as order and coefficients of the adopted BDF scheme, and z as a general
variable with time derivative ż. Given the nature of the Kalman filter which estimates the states at
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time step k + 1 from the estimated quantity at the previous time step k, a first order integrator has been
adopted. From Equation (17), the first order integration of ẋ takes the form:

ẋk+1 = α(xk+1 − xk) (18)

The discrete-time scheme of Equation (2) becomes:

q̇k+1 − vk+1 + B(qk+1)
Tµs,k+1 = 0

M(qk+1)v̇k+1 + f(qk+1, vk+1)− B(qk+1)
Tλs,k+1 = 0

ṗk+1 = 0

B(qk+1)vk+1 = 0

g(qk+1) = 0

(19)

in which the first-order time derivatives are evaluated at the time-step k + 1 by applying Equation (18).
The zeroth-order input dynamic is also included in the third row of Equation (18), where ṗ ∈ Rp and p
is the number of inputs. The final goal of this work is to estimate or predict jointly the state vectors x
and ẋ, and the external loads identified in p, which will not be considered anymore as an input to the
system, but another set of quantities to be estimated. This is the field of application of the augmented
Kalman filter (AKF), which defines an augmented state vector xa and its time-derivative:

xa = [q, v, p, λs, µs]
T (20)

ẋa = [q̇, v̇, ṗ, λ̇s, µ̇s]
T (21)

The filter estimates both variables; thus, a new vector is introduced: x̄a = [xa
T , ẋT

a ]
T . An important

feature of the AKF is that it considers the inaccuracies of model and observations, which are respectively
identified in zero-mean Gaussian noise wx̄a and wy. A covariance matrix associated with each noise

vector is defined as Q = E
[
wx̄a wT

x̄a

]
, R = E

[
wywT

y

]
.

At this stage, all the ingredients needed to apply the AKF to the DAE system have been described.
The estimation process can be divided into the two following steps, shown in Figure 3:

1. Prediction—integration of the equation of motion (19) by using the first-order BDF integrator
scheme in Equation (17).

2. Correction—updating of the solution of the previous step with the available observations y:

x̄a
+
k+1 = x̄a

−
k+1 + Kk+1(yk+1 − k(x̄a

−
k+1)) (22)

where K is the Kalman gain, obtained in the definition of the filter by minimizing the estimation
covariance. Further details on the derivation of K and on the update of the covariance matrices
during the estimation can be found in [16].

Figure 3. Kalman filter scheme based on the prediction-correction principle.

3. Workflow for Estimation of States and Loads on a Rotor Blade

In the previous section, all the methodologies needed to approach the estimation problem for a
coupled multibody-aerodynamic rotating system have been presented. As stated in the introduction,
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and indicated in Equation (5), the aerodynamic loads are functions of the states of the system, and
in particular of the velocity and orientation vector of the airfoil section where the aerodynamic
contribution is evaluated. The estimation problem could thus be approached in two ways:

1. Writing the vector p in Equation (19) as a function of q and q̇, i.e., the orientation and velocity of
a given point;

2. Modeling the aerodynamic forces as external loads without explicit dependence on the states.

Both options are feasible, depending on which problem we want to solve. In the first case, a
simple KF can be applied, and only the state vector x is estimated. This option is feasible but can hardly
reach high accuracy, particularly when a low-fidelity model is used. The second option is the case
of the AKF; it is the most suitable option in the present cases, since it can compensate for modeling
errors at the expense of the quality of the estimated loads. The question that arises is: how does this
approach take into account the underlying aerodynamic model? In this case the aerodynamic model,
coupled with the structural one, is needed only as a reference case. That means it allows the user to
generate the data used as the input of the filter, i.e., the observations. Most importantly, the knowledge
of the aerodynamic model, referring to the observations, is needed to post-process the estimation data
and extract the correct aerodynamic loads.

The proposed approach is schematically shown in Figure 4. It will be explained in the following
through an example. Consider a blade discretized with two rigid bodies (Figure 5) and (i) modeled as
indicated in the formulation of Section 2.1.1, or (ii) with aerodynamic loads acting at the application
point of each body (usually at the quarter chord of the section). It is worth noticing that the distributed
aerodynamic loads are evaluated on a more refined fictitious aerodynamic line (Figure 5) or surface,
and the equivalent aerodynamic loads L, D and M (namely lift, drag, and the pitch moment) are
applied on the rigid bodies. If a flexible finite element blade is considered, a more complex approach
is needed to reduce the aerodynamic forces distribution on the structural model; this represents a
possible future development of the present work. The preparation of the estimation process can be
summarized as:

• Collection of measurements that make the system observable. This is an important requirement for
Kalman-based techniques. For load estimation, it more strictly translates into a number of
position-level observations equal to or greater than the number of loads to be estimated [41,43].

• Definition of the set of loads. This decision should be made in conjunction with the previous
step. For multiple distributed loads, the definition of a subset of loads p could be useful to
reduce the number of observations needed. For the case in Figure 5, the full input vector
is p = [L1, D1, M1, L2, D2, M2]; a good choice could be the selection of loads close to the tip
ps = [L2, D2, M2], because their contributions to the dynamics of the blade are higher.

The AKF will estimate the data q+
1 , v+

1 , q+
2 , v+

2 , together with the chosen subset of equivalent
loads comprising the compensation of modeling errors p+

s = [L+
2 , D+

2 , M+
2 ]. The results of similar

studies in other fields of application can be summarized as:

q+ = q + εq (23)

v+ = v + εv (24)

p+ = p + εp (25)

with εq and εv at small and acceptable values, while εp assumes higher values as much as the modeling
errors do. At this stage, the states at position and velocity level are accurate enough and can be re-used
to evaluate the distributed lift contribution of Equation (5). Two steps are thus proposed:
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• Extrapolation of q̇ along the blade span. The components of the velocity vector along the blade can
be approximated as a linear function of the position r:

q̇(r)i2 = Ωr (26)

q̇(r)i3 = β̇r (27)

• Evaluation of the lift distribution along the blade span. Recalling Equation (5), and given a certain
flight condition with known pitch angle θ, the only unknown in the elemental lift will be the
inflow angle φ:

dL = dL(λi) (28)

The iterative process in Section 2.2 can thus be applied to find the exact value of λi at each
time-step.

Figure 4. Proposed workflow for distributed aerodynamic loads, based on Kalman filtering estimation.

Figure 5. Example of a blade discretized with 2 elements. The lift distribution per unit length is
shown above.

4. Numerical Validation on a 2-Blade Rotor Model

This section presents a numerical example of the methodology presented in Section 3 on a 2-blade
rotor model. Python [44] multibody code with embedded aerodynamic force evaluation was used.
Each blade was modeled as composed by four rigid bodies, connected through elastic elements
with properties listed in Table 1 and uniform chord. No twist angle was considered. Two different
experiments were done:
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• Noisy reference observation data generated in Python code by simulating the coupled
structural-aerodynamic model. Estimation of a subset of lumped loads on the same structural
model without aerodynamic and subsequent distributed load evaluations.

• Reference observation data generated in MBDyn on a similar, but independently-formulated
structural-aerodynamic model. Estimation of a subset of lumped loads on the structural Python
model and subsequent evaluation of distributed loads.

One flight condition is shown in this contribution for the two cases: rotational speed Ω = 60 rpm
and pitch angle θ = 3 deg. The airfoil used in the aerodynamic solver was a symmetric NACA0012
profile. To reduce the complexity of the entire problem, in this initial work the hub was fixed to the
ground. Gravity was also applied.

Table 1. Blade and rotor features.

Blade Structural Properties Blade Elastic Properties

Total mass 82.76 kg EAelem 5.69E8 N
Chord 0.537 m EIyy,elem 4.00E5 Nm2

Total Length 6.988 m EIzz,elem 4.00E5 Nm2

Radius 7.420 m GJelem 8.40E5 Nm2/rad

Root Hinges—Distance From Hub Root Hinges—Elastic Properties

Flap offset 0.289 m Flap damping characteristic 7.50E3 Nms/rad
Lag offset 0.269 m Lag damping characteristic 7.00E3 Nms/rad
Pitch offset 0.432 m

4.1. Kalman-Based Estimation

The estimation process first requires the collection of a set of observations/measurements to
be used as reference data. In a real test case, this means that a sensor layout needs to be designed
satisfying the observability conditions, which allows for a robust estimation. As stated in Section 3,
the first step is thus the definition of which states in terms of modes, loads or parameters the user
wants to estimate. The scope of the AKF is the estimation of the external loads p, together with the
states of the system. The normal modes of a structural dynamic model are all damped, resulting in an
asymptotically stable system, a sufficient condition when the target is the estimation of the input loads.
For further details on observability and stability requirements of the Kalman filter, refer to [43].

Considering a single blade as represented in Figure 6, a total of eight equivalent loads L and D
are defined in the model. If the NACA airfoil is not symmetric, the pitch moment for each element has
to be added. As explained in Section 2.3, a number of position-level sensors equal to or greater than
the number of loads to be estimated is needed. For two blades modeled as in Figure 6, this means the
usage of at least eight position sensors. If a more refined blade with a higher number of elements is
modeled, the number of required sensors becomes unreasonable from a practical point of view, i.e.,
installation. As proposed in Section 3, a further simplification is adopted in this study by estimating a
reduced set of loads acting on the most sensitive sections of the blade. Assuming that:

• The aerodynamic loads give higher contribution in the proximity of the blade tip;
• The in-plane loads are much smaller than the out-of-plane ones, namely, L� D,

then the selection falls on two generic forces acting on elem3 and elem4, as shown in Figure 6. The subset
of loads indicated as ps will be: ps = [F3, F4]

T .
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Figure 6. A 4-element blade model with all aerodynamic forces (left) and a reduced set of significant
forces (right).

4.1.1. Reference Noisy Data

Starting from the above-mentioned assumptions, the sensors’ layout in Table 2 is defined. x, y
and z are the directions in the fixed reference frame. The selection was performed considering the
forces modeled on elem3 and elem4 and thus the sensors were located on the same elements because
they were considered to be more sensitive. Moreover, two velocity sensors were also included in order
to capture the flapping motion. For a more complex system, an observability study is needed and it
will be the focus of further development of this work.

Table 2. Sensor layout.

Position Sensors Velocity Sensors

elem3 z elem3 z
elem4 z elem4 z

Starting from this layout, a coupled multibody-aerodynamic simulation was performed and
position/velocity sensor data were stored by applying additive white Gaussian noise, which defines
the covariance matrix R. The missing information was on the model covariance Q. In previous
work [25,27], a higher source of uncertainties was considered on the load states, such that Qp � Qx.
This was a valuable assumption, since we can assume that the model used was accurate enough, but
no information on the external loads is available. The zeroth-order input model in the discrete time
formulation will be read as:

pk+1 = pk + wp (29)

with wp Gaussian noise associated with vector p, an important tuning parameter of the filter [25,27].
The results of the estimation can be observed in Figures 7 and 8 showing respectively the

estimation of the states used as sensors and some of the unmeasured states along the blade. A good
identification of the out-of-plane quantities is obtained, because the used sensors guarantee the
observability of the flapping mode. Some delay in the time-histories of the in-plane estimation was
instead observed, because of two assumptions made at the beginning:

• The sensor layout does not include in-plane quantities, e.g., position sensors in y−direction.
• Only out-of-plane loads are considered in the estimation, even if the reference sensors come from

a coupled multibody-aerodynamic simulation which includes lift and drag forces. The choice to
not estimate the drag forces was because the resulting magnitude would be comparatively small
with respect to the computed lift.

These modeling errors were, however, compensated by the filter on the estimated loads shown in
Figure 9. The real aerodynamic loads L3 and L4 evaluated in the simulation were compared with the estimated
quantities F3 and F4, which showed mean values that did not match the reference ones. The good results
to be considered are the ones on the states in Figure 8. At this point, the approach proposed in Section 3
and shown in Figure 4 could be executed. Performing an interpolation of the states q̇y and q̇z in order to
extrapolate data on 11 points along the blade and applying the iterative Newton–Raphson method for inflow
evaluation, the distributed lift field can be reconstructed. The results in terms of lift and angle of attack reached



Sensors 2020, 20, 4196 13 of 19

at the steady-state condition are shown in Figure 10. The absolute error, defined as the absolute value of the
difference between simulated and estimated data, i.e., err = |ys− ye|, is shown in Figure 11.

Figure 7. Estimation of the states used as sensors. Reference noisy data.

Figure 8. Estimation of the unmeasured velocity and position entities with reference to the sensor
layout in Table 2. Reference noisy data.

Figure 9. Force estimation on elem3 and elem4 with reference to the sensor layout in Table 2. Reference
noisy data.



Sensors 2020, 20, 4196 14 of 19

Figure 10. Distributed lift and angle of attack along the aerodynamic span in steady-state, with 11
points of integration. Reference noisy data used in the estimation.

Figure 11. Absolute error of distributed lift and angle of attack—reference data in Figure 10.

4.1.2. Reference Data from Mbdyn

In this section, the same analyses presented in Section 4.1.1 are performed. The difference is in the
reference data used, which, in this case, were generated from MBDyn. The scope of this analysis is
to further demonstrate the usability of the KF for a rotating blade, using data from an independent
model as a different source of uncertainty. In the previous section, the uncertainty was introduced by
adding noise on the reference data. In this case, the uncertainty is instead in the reference model itself,
which presents a different formulation/modeling with respect to the one adopted in the Python solver.
This framework is similar to a real test-case, where the numerical model usually cannot be perfectly
correlated with the real one.

The discrepancies encountered in the blade multibody modeling are in the finite segment
formulation, which, for the MBDyn software, is replaced by the finite volume formulation [45]:
the flexible beam element connects three nodes, i.e., bodies, and the internal forces are evaluated
in well-chosen points between the two endpoints. Details can be found in the referenced paper.
The different modeling also translates in a mismatch of mass distribution along the blade. A sketch of
the two approaches for one flexible element of free-length l is shown in Figure 12. The relationship
between rigid bodies and flexible elements is:

• Finite segment: nbodies = 2(n f lex − 1);
• Finite volume: nbodies = 2n f lex + 1.
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In the finite segment approach, two bodies are present in the length l; for the finite volume approach,
three bodies are instead modeled. The total mass is the same for both formulations but a different
distribution is observed.

Figure 12. Graphic comparison between finite segment and finite volume modeling of a flexible
element of free-length l.

The reference blade in MBDyn has been modeled with the same properties listed in Table 1, seven
rigid bodies and three flexible elements. This discretization was arbitrarily chosen, preserving the
same number of flexible element used in the Python model. A comparison between the two models
can be found in Figure 13a, which shows the vertical displacement evaluated at the same position of
elem4 for both models, under gravity (applied gradually) and in rotating conditions. In Figure 13b,
the same comparison is shown but also aerodynamic loads were used. The errors for the steady value
are around 3% and 7%, and the transient regime shows a slightly different dynamic behavior.

(a) (b)
Figure 13. Comparison of vertical displacement at elem4 position (a) without and (b) with aerodynamics.
The model is in rotation and under gravity.

Here, the scope of the application of the AKF is to compensate these modeling errors identified in
a different response of the blade elements. The results of the same analysis performed in the previous
section, with the sensor layout in Table 2, are shown in terms of estimated sensors and states in
Figures 14 and 15. In this case, the filter cannot compensate for both modeling and force errors and this
is observed on the velocities in the y direction in Figure 15: these quantities should be the same in the
two models, because the in-plane velocity is almost equal to Ωr for each position r along the blade span.
By applying the post-processing iterative method for inflow evaluation, the distributed aerodynamic
lift was obtained and shown in Figure 16 with the corresponding absolute error. The mismatch between
the reference lift and the estimated one increases going from the root to the tip, because of its sensitivity
to the in-plane velocity. In order to increase the accuracy of the estimation, a different sensor layout
can be employed, including in-plane information of the blade, as listed in Table 3. With this set of
sensors, the in-plane velocity can be correctly estimated and the results on elem3 and elem4 are shown
in Figure 17.
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Figure 14. Estimation of the states used as sensors. Reference data from MBDyn.

Figure 15. Estimation of the unmeasured velocity and position entities with reference to the sensor
layout in Table 2. Reference data from MBDyn.

Figure 16. Distributed lift along the aerodynamic span in steady-state (left) and absolute error (right),
with 11 points of integration. Reference data from MBDyn.
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Figure 17. Estimation of the velocities of elem3 and elem4 with reference to the sensor layout in Table 3.
Reference data from MBDyn.

Table 3. Sensors layout.

Position Sensors Velocity Sensors

elem3 z elem3 z
elem4 z elem4 z
elem4 y

5. Conclusions

In this paper, the problem of identifying states and aerodynamic loads on a rotating helicopter
blade is addressed. A well-known and validated Kalman-based approach is proposed, as it has never
been used before for this purpose in the rotorcraft field. A multibody articulated rotor with two blades
is developed based on the finite segment theory, and a steady aerodynamic condition is considered
with a uniform inflow model from the blade element momentum theory. One of the advantages of the
Kalman filtering technique is in the usage of a reduced set of sensors which guarantee the observability
of the system, or more specifically, of the estimated quantities. Although a thorough observability
study has not been carried out because of the simplified model, the efficiency of the Kalman filter
estimation has been proven by using simulated noisy sensors and reference data generated in MBDyn,
independent multibody simulation software. Both cases have confirmed the conclusions made in
previous work: when some modeling errors are present, e.g., structural properties or load location,
all the uncertainties are compensated in the load estimation while still providing an accurate state
reproduction. This is a great advantage of the Kalman filter in the augmented formulation over
other techniques cited in the literature, reducing the need for highly accurate models, which are
highly time-consuming to use, especially in the rotorcraft field. In the specific case of quasi-steady
aerodynamic loads, the formulation of lift and drag is easily expressed in terms of the system states.
Given a set of available sensor data, the proposed approach addressed the identification problem
by modeling the aerodynamic loads as general external forces, while aiming to reach high accuracy
only on states at position and velocity-level. This is already an advantage, because no aerodynamic
evaluation is needed during the estimation. From the knowledge of the estimated states at each time
step, an extrapolation of the velocity field data is proposed and the distributed lift will preserve only
the dependence from the inflow velocity. At this stage, an implicit function can be iteratively solved.
Velocity and position sensors are not feasible in a real test case, but the intent of the authors was to
investigate the usage of other sensors, e.g., strain, and validate the presented work on experimental data.
This research aims also to extend the proposed approach on a more complex system, by employing a
flexible finite element blade model. In that case, the selection of the reduced set of loads will become a
challenge in the estimation process.
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