
FPGA-based Embedded System Implementation of
Audio Signal Alignment

Luca Stornaiuolo, Massimo Perini, Marco D. Santambrogio, Donatella Sciuto
Politecnico di Milano, Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Milan, Italy

{luca.stornaiuolo, marco.santambrogio, donatella.sciuto}@polimi.it

massimo.perini@mail.polimi.it

Abstract—FPGAs are considered a valuable solution for em-
bedded system applications thanks to their performance, energy
efficiency and capability to face system failures. However, the
number of available applications is limited due to the learning
curve needed to customize FPGA-based accelerators. As proof
of this, Xilinx recently released PYNQ, a platform for Zynq SoC
that relies on Python and overlays to ease the integration of
functionalities of the programmable logic into applications.

In this work, we build upon this framework to implement
an optimized embedded design for audio alignment and we
integrated it in the Python applications workflow. In particular,
we provide a custom accelerator designed for PYNQ and the
software interface to transparently exploit the programmable
logic from the Python code runs on the embedded CPU. We then
compare the executions on two different devices: the PYNQ-Z1
and the Raspberry Pi 3. Our FPGA accelerated implementation
is able to reach a speedup of 12.4x with respect to the PYNQ-Z1,
when only the CPU is used, and a speedup of 5.5x with respect
to the Raspberry Pi 3 version.

Index Terms—Zynq, SoC, PYNQ, Python, NumPy, FPGA,
Audio Alignment

I. INTRODUCTION

FPGAs are experiencing an exceptionally favorable mo-

ment, as demonstrated by Intel’s acquisition of Altera, Mi-

crosoft’s Catapult project [1], and Amazon’s integration of

FPGAs as accelerators in their cloud offerings1. The slowing

of Moore’s law, and the rise of fields as artificial intelligence

and computational biology, are indeed shifting the interest of

industry and academia towards less conventional computing

architectures, that can meet the ever increasing demand for

performance and energy efficiency, an exemplary choice being

precisely FPGAs. For this reason, FPGAs market is expected

to reach $12.1 Billion by 20242, showing a Compound Annual

Growth Rate (CAGR) of 7.3% starting from 2016.

However, no matter how much FPGA technology has ma-

tured, the usability barrier is still preventing the mainstream

adoption from happening. As a matter of fact, integrating

FPGA-based hardware accelerators into applications today is

still a cumbersome experience. The current implementation

flow requires specific skills and knowledge of low-level tools

that are simply out of reach for the largest part of software

developers, and albeit High Level Synthesis (HLS) does mit-

igate some difficulties, by at least offering the possibility to

1https://aws.amazon.com/it/ec2/instance-types/f1
2https://www.variantmarketresearch.com/report-categories/semiconductor-

electronics/field-programmable-gate-array-market

use higher level languages, today’s available tools still require

to go through the same development process.

In an effort to address the usability challenge, Xilinx re-

cently released the PYNQ (PYthon productivity for zyNQ)

platform [2]. Zynq architecture integrates a multi-core ARM

processor with an FPGA into a single chip. With Python

[3], developers can build complex applications very quickly,

by leveraging its high level of abstraction and the plethora

of available libraries. PYNQ then offers the possibility to

exploit the programmable logic within the Python environment

by means of overlays, or hardware libraries. These overlays
are essentially FPGA designs whose functionalities are made

available to the user as Python Application Programming In-

terface (API). Developers can then simply import and use these

libraries, exploiting the programmable logic while staying at

the pure-software level.

Within this paper, we present our work on accelerating

Audio Signal Alignment for a PYNQ-based embedded system.

The Audio Signal Alignment application we target is mainly

based on two scientific functions: the Cross-Correlation and

the Fast Fourier Transform. Since we deal with the Python

environment, we started from the NumPy (i.e. the most used
Python library for scientific calculus3) implementations of

these two functions and we accelerate them by offloading

part of the computation from the processing system to the

programmable logic available on Zynq SoCs. We exploited

the PYNQ overlay concept to build a hardware library that

can be integrated into the Xilinx platform and can be used

transparently by the end users. We have done this, so that

software developers and data scientists can exploit the accel-

erated version of the functions by simply changing the import

of NumPy in their Data Science applications, with everything
handled automatically from the system.

We have chosen Audio Signal Alignment also taking into

consideration the scenario where part of the scientific compu-

tation and signal preprocessing is performed on an embedded

device before sending the data to the cloud servers. This

reflects the Fog Computing paradigm [4], which, nowadays,

is increasingly gaining ground. For this reason, we have

compared the results on the PYNQ-Z1 board with the same

application performed on a Raspberry Pi device, one of the

most widespread solutions for embedded systems.

3http://www.numpy.org

132

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00031

Figure 1. These two figures describe the Audio Signal Alignment application. The left image shows two noisy audio of the same conference recorded with
different microphones in different places. Common recordings is in the range [150000:650000] of the first track and in the range [0:500000] of the second
track. The right image shows the Cross Correlation function result. The peak of the Cross Correlation function is in the 849946th sample. The middle point
is in the 699999th sample so we need to remove 149947 samples from the first signal in order to have them synchronized (with an error of 53 samples).

II. BACKGROUND AND MOTIVATION

In this section we provide a description of the Audio Signal

Alignment application, we briefly present the PYNQ platform

with the explanation of the rationale behind overlays, then we

show an overview about the embedded devices employed in

this project before ending the section with the related work

found in the literature.

A. Audio Signal Alignment

Signal alignment is a real-world problem suitable for em-

bedded system devices and in which our approach can be

adopted. In these kinds of problems, we have to align two

or more misaligned noise-corrupted signals in which the same

event has been recorded. These kinds of issues can occur in

many areas including biomedical and audio field and therefore

we studied how hardware acceleration can be applied to the

latter case. In the audio field, we often have multiple signals of

the same event recorded by different sources. There are many

reasons why this approach is adopted, such as the fact of being

able to generate a less noisy signal. Since it is not always

possible to have recordings synchronized together, an embed-

ded system able to synchronize audio tracks and remove the

portion of the signal not related to the event we are interested

in can be useful. An example can be founded in the scenario of

multiple audio signals of a recorded conference. We may have

many reasons to process them, e.g. speech-recognition, but

the audio sources could be recorded by multiple microphones

with no common starting or ending points. These signals could

also have multiple different sources of noise (e.g. crosstalk).

In this case, we may want an embedded device in charge of

sending to the server only the common parts of the different

signals adopting a Fog Computing paradigm, i.e. avoid sending

useless data that can be removed during pre-processing.

A similar approach can also be adapted to be able to

synchronize multiple video streams using their audio channels.

In this case, the saved data transfer will be even higher. The

software implementation of the audio alignment application is

inspired by [5]. Specifically, given two signals, this algorithm

requires to compute the Cross-Correlation function of their

samples and find the value x in which the Cross-Correlation
function is maximized. Defining N = len(f irst_signal) and
M = len(second_signal), x− (N+M−1)

2 is the number of sam-

ples that we need to remove from the first signal in order to

align it with the second one. In the case of negative value,

these samples need to be removed from the second signal.

In order to improve the performances of the algorithm, we

furthermore extracted a sequence of MFCC feature vectors

from both signals using [6]. This step requires applying the

Fast Fourier Transform of the signals. We then computed the

Cross-Correlation function of the feature matrices along the

time axis and calculated the average of the points in which the

Cross-Correlation function is maximized. Finally, the output

of the cross-correlated signals is averaged with the output of

the cross-correlated feature matrices to reduce the percentage

error of alignment. Figure 1 shows the result of applying Cross

Correlation function to two audio signals recorded by different

sources.

B. The PYNQ Platform

PYNQ is a Xilinx platform that targets Zynq SoCs, and

its objective is to allow developers to write applications that

exploit the programmable logic without having to use the

low-level design tools needed to design programmable logic

circuits. PYNQ relies on Python as the productivity language
of choice, a decision driven by its incredible popularity [3],

and the fact that Python raises the level of programming

abstraction which results in more concise, expressive code, that

is in turn less prone to errors and faster to write. Moreover,

PYNQ uses CPython, the default and most used Python

interpreter, that is written in C and comes with different

133

Figure 2. Schematic block diagram of the Zynq SoC [2] with its commu-
nication interfaces. The connected peripherals can be managed directly from
Python exploiting the PYNQ base overlay for PYNQ-Z1.

tools and methodologies to bind functionalities from foreign

languages into Python. This means that developers do not

have to compromise performance for productivity, as one can

always wrap high-performance code written in a lower-level

language into Python. This has been proven to be beneficial

in the case of PYNQ [7], but it is, in general, an important

feature of CPython, already exploited by the community to

build sophisticated libraries, such as NumPy itself, that expose
a simple Python interface but relies on highly optimized

code written in another language. Also, PYNQ proposes the

concept of overlays, or hardware libraries, as a mean to utilize
the programmable logic. These overlays resemble classical

software libraries but expose functionalities of the FPGA.

Programmable logic circuits are wrapped as Python modules,

that can be imported into the application and allow developers

to use hardware functions via a Python API. However, creating

an overlay still requires expertise in designing programmable

logic circuits. The key aspect is that overlays are conceived

to be designed once, but reused multiple times. In this sense,

Xilinx’s intent is to create an environment where a few experts

build overlays to offer a greater user-base the ability to exploit

programmable logic while staying at the software level.

C. Embedded Systems Devices

Embedded systems are electronic digital devices specialized

in particular functions used as components into larger systems.

They monitor and control the system through special hardware

devices cheaper and faster than general purpose solutions [8].

The reason why this technology became widespread, not only

in large industries but also in everyday life, is related to the IoT

(Internet of Things) concept. The IoT paradigm is based on

different types of physical devices that are connected together

through the network, to allow real-time data transmission and

items interaction [9]. What follows is a description of the

two platforms we used during our tests and they represent

two of the most used devices to develop embedded systems.

Moreover, these platforms are used as gateways in already

mentioned Fog Computing systems, thanks to their versatility

and power. The aim is to decentralize computing infrastructure

by extending Cloud Computing and services to the edge of the

network [10].

1) PYNQ-Z1: The device mainly used in our work is
Xilinx PYNQ-Z14, that combines Microprocessor and

Programmable Logic into a Zynq SoC. Figure 2 shows

the Zynq SoC architecture and the available interfaces

that can be used through the PYNQ platform. The

processor is Dual ARM® Cortex™-A9 MPCore™ with

CoreSight™ @ 650MHz with 32 KB Instruction, 32 KB

Data per processor L1 Cache, 512 KB unified L2 Cache

and 256 KB On-Chip Memory. The available logic is

85K logic cells (13300 logic slices, each with four 6-

input LUTs and 8 flip-flops), 630 KB of fast block

RAM, four clock management tiles, each with a phase-

locked loop (PLL), 220 DSP slices, internal clock speeds

exceeding 450MHz. The programmable logic has a logic

blocks structure (CLB) surrounded by I/O blocks (IOB)

that can be used arbitrarily.

2) Raspberry Pi 3: The second device we used is

Raspberry Pi 3 model B5, Broadcom BCM2837 64bit

ARMv8 quad-core Cortex A53 processor @ 1.2GHz, 1

Gb RAM, and it belongs to Microprocessor category.

To make a comparison, Raspberry Pi 3 is a valid solution

thanks to its reasonable cost, computational power, and energy

consumption [11], and its widespread is also thanks to the ease

of use. However, PYNQ-Z1 is suitable for the deployment of

embedded systems that require high performance to process

data. In fact, the programmable logic allows creating custom

circuits to accelerate software processes and it can be repro-

grammed to be flexible with different use cases (in contrast to

Application-Specific Integrated Circuits).

D. Related Work
Kammerl et al. [12] presented two graph-based approaches

able to synchronize several audio signals. Features like Spec-

tral Flatness or Zero-crossing Rate are extracted from the

audio sources. Then, a pairwise cross-correlation of features

is computed to generate the graph. Algorithms like Minimum

Spanning Tree or Belief Propagation are then used to compute

the final offset of each signal.
Ellis et al. [13] developed a system able to compute music

similarity not only adopting feature statistics, but also comput-

ing the relative position of those features in tempo-normalized

time. It works extracting music features averaged within each

beat: this allows to construct the beat-synchronous feature rep-

resentation. The cross-correlation peak value is the similarity

measure between two songs. Shrestha et al. [14] presented

two methods able to synchronize videos coming from different

sources. This is performed with audio synchronization. One of

the methods extracts features from the audio. Then, using a

classifier, probabilities of several classes are computed every

δ t. Each audio class is then compared with the same class
of other recordings using cross-correlation. The peak in the

correlation coefficient identifies the synchronization point.

4http://www.pynq.io/board.html
5https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

134

III. APPROACH

In this section, we introduce how our solution works and

how it can be used to take advantage of the Programmable

Logic of Zynq SoCs to accelerate the Audio Signal Alignment

application.

A. Transparent Hardware Acceleration

As NumPy is the most used library for Python Data Science
Application, providing hardware acceleration for it represents

a valuable contribution to the PYNQ project. We have there-

fore built a NumPy library designed for the PYNQ platform,
to enable transparent hardware acceleration for its Fast Fourier

Transform and Cross-Correlation function. Transparency is

granted by the fact that using the proposed library boils down

to simply changing the name in the import statement, as shown

in the following snippet of code. This reduces a lot the effort

of final users to take advantage of the Heterogeneous System

Architecture (HSA) selected.

Using original NumPy
import numpy as np
...
z = np.correlate(x, y, 'full')

Using NumPy with hardware acceleration
import numpynq as np
...
z = np.correlate(x, y, 'full')

This is possible thanks to an override-like process of the

original NumPy functions we used within the numpynq mod-
ule. In this way, if a NumPy function is not accelerated in
hardware or if the required context is not satisfied, the original

software version is called. In the following section, we better

explain this concept and its advantages.

B. Runtime Code Scheduling

There are circumstances in which offloading the compu-

tation to the FPGA does not bring any benefits, and might

actually hurt performance. For this reason, we implement

a predictive code scheduling mechanism, with an approach

similar to what has been done for GPUs [15]. In particular, for

each Fast Fourier Transform or Cross Correlation function call

(for which we provide a hardware accelerator), we implement

a scheduling policy based on performance history and some

input properties or physical constraints. Since our implementa-

tion wraps the original NumPy, we then automatically delegate
to it non-accelerated calls. We mostly consider the input size

and the input data type to predict the execution time of the

different implementations. We collect performance history data

for different inputs and build a model of performance that we

then use to discriminate what implementation to choose, given

the context.

We depict our code scheduling mechanism in Algorithm

1. In this algorithm, we identify context() as the action of
extracting contextual information from the specific call, as

the input size and the input data type, while hw_accelerator()

Algorithm 1 Performance History Scheduling
ctx← context(numpy_call)
hw_impl← hw_accelerator(numpy_call)
chosen_impl← sw_numpy
if history(hw_impl,ctx)> history(chosen_impl,ctx) then

chosen_impl← hw_impl
return chosen_impl

retrieves the available overlay that can be used to accelerate

such call if it exists. Finally, history() provides an estimation
of performance given the current context, relying, as the name

suggests, on performance history for the specific hardware

accelerator or the software execution of the original NumPy,

referenced in the pseudocode as sw_numpy. We account also
for the reconfiguration overhead for the estimates, checking

also whether the FPGA is configured with the considered

overlay (and removing the reconfiguration time in such case).

C. Data Transfers Optimization

To communicate and control DMAs from PYNQ, Xilinx

provides the users with a ready-to-use Python class that

manages the DMA operations. This interface is written using

CFFI6, that provides the possibility to call C functions, in-

cluded in properly compiled C libraries, directly from Python.

Our preliminary experiments showed that this implementation

introduces too much overhead for our purposes, and for this

reason, we have decided to re-engineer the DMA communica-

tion layer. We opted for rewriting completely the layer using

the Python/C API7 as it offered the best performance, at the

cost of a greater implementation effort. Also, we have removed

some time-consuming control routines present in the original

DMA interface offered by PYNQ when managing the buffers

needed for the data transfers. This can be done because of

the inclusion of the function-specific control routines in the

runtime code scheduling algorithm. Moreover, a lot of control

logic is present in the original implementation that is actually

superfluous in our case. In fact, with our approach, we hide the

DMA interface as everything is handled transparently from the

application developer’s perspective, while the PYNQ interface

is exposed directly to the user.

IV. PROPOSED DESIGN

In this section we present the hardware/software codesign

used to accelerate the Audio Signal Alignment application

and the improvements on the Cross-Correlation function and

Fast Fourier Transform we obtained following the approach

proposed in Section III.

A. Profiling

We used the cProfile Python library8 to profile the Audio

Signal Alignment application with different input audio sig-

nals. We decided to accelerate the Cross-Correlation function

6https://cffi.readthedocs.io
7https://docs.python.org/3.5/c-api/index.html
8https://docs.python.org/2/library/profile.html

135

Figure 3. Schema of the FPGA implementation of the Cross-Correlation function. The core has two local buffers to store portions of the signal and compute
more values in parallel. In this way the length of the two input streams is reduced by a factor equal to the size of local buffers. At each iteration, the core
outputs more than one value.

Local Buffer

Radix-2 Buttefly
Processing

Engine

Local Buffer

Radix-2 Buttefly
Processing

Engine
…

Local Buffer

Radix-2 Buttefly
Processing

Engine

Local Buffer

Radix-2 Buttefly
Processing

Engine
Output

Reordering

Order 0 Order 1 Order n-1 Order n

Figure 4. Diagram showing the basic blocks used in the implementation of the hardware accelerator for the Fast Fourier Transform. It implements a streaming
and pipelined architecture, consisting of a chain of radix-2 butterfly processing engines. Each engine has its own local memory and is followed by a final
output reordering stage at the end of the chain. Unlike cross-correlation, which requires only one core for signals of different lengths, we have implemented
several FFT cores to optimize the processing of signals of different lengths. Given an input signal, the right implementation is chosen at runtime by the
proposed Runtime Code Scheduling algorithm.

Table I
HARDWARE RESOURCES UTILIZATION

Overlay LUT LUTRAM FF BRAM DSP
Correlation 55.87% 1.95% 40.55% 5.36% 38.18%

FFT 19.60% 9.48% 14.68% 76.79% 27.27%

This table reports the post-implementation hardware resources
utilization for the two overlays described in this paper. Both of them
are created with the Xilinx Vivado Design Suite for the PYNQ-Z1
board. The available resources on this device are: 53200 LUT;
17400 LUTRAM; 106400 FF; 140 BRAM; 220 DSP.

and the Fast Fourier Transform, that occupy respectively

86.73% and 0.33% of the total execution time (the remaining

part of the execution time is mainly used by the audio decoding

process). This decision was also dictated by the possibility to

parallelize the operations that compose these two functions.

Taking into consideration that the Cross-Correlation function

occupies most of the total execution time, we have chosen

to put our maximum effort on its acceleration. We produced

two different overlays that can be transparently used at the

Python level to speedup the execution time. What follows is

the description of the two overlay designs.

B. Cross Correlation function

Given two univariate random signals X , Y , with values
x1,x2, ...,xn, y1,y2, ...,yn over a time-span 1, ...,n, and defined
a delay τ , the Cross Correlation result of the two signals with
respect to the delay τ is defined as:

CFτ =
∑n−τ

i=1 (xi− x̄0)(yi+τ − ȳτ)√
∑n−τ

i=1 (xi− x̄0)2
√

∑n−τ
i=1 (yi+τ − ȳτ)2

x̄0 =
1

n− τ

n−τ
∑
i=1

xi ȳτ =
1

n− τ

n

∑
i=τ+1

yi

where x̄0 and ȳτ are the sample means of X and Y over

interval n− τ .
If the above is computed for all delays τ = 0,1,2, ...n− 1

then it results in a full Cross Correlation function of twice the

length as the original signals X and Y . This function shows

136

0

30

60

90

10
24

40
96

81
92

16
38

4

32
76

8

65
53

6

Input size

E
xe

cu
tio

n
tim

e
[s

ec
]

5

10

15

20

10
24

40
96

81
92

16
38

4

32
76

8

65
53

6

Input size

S
pe

ed
up

 [x
]

Figure 5. Execution time and speedup of the Cross Correlation function for
different signal dimensions. The input size represent the length of the signals.
With two signals of size 65536 we have been able to reach a speedup greater
than 20x.

the degree of similarity of process X with process Y , shifted
by a certain delay τ .
To implement the optimized version of this algorithm,

we have exploited the fact that it is possible to compute

different points of the function independently to parallelize

the computation. The schema of our implementation is shown

in Figure 3. We have used the Dataflow paradigm to stream

the input signals of arbitrary dimensions. In fact, unlike the

software implementation where the algorithm accesses each

point of the signals from the host DDR using any stride and

type of access (with almost no loss in performance due to host

cache and pre-caching mechanisms), on the programmable

logic random accesses to the DDR on board is a costly

operation that can take hundreds of clock cycles. To solve

this, it is possible to take advantage of registers (in the form

of Look-up Tables) and BRAMs, which, however, are available

in limited quantities. So we created two local buffers of size

B on BRAMs: the first used to store part of the first input

signal, acting as a shift register, and the second used to collect
partial results. The two streams contain the signals repeated

and shifted of a certain delay and are read iteratively. At the

end of each iteration, result points are sent from the core to

the shared DDR memory through an output stream. In order to

keep the two streams synchronized, we pad with zeros one of

0.005

0.010

0.015

0.020

0.025

10
24

20
48

40
96

81
92

16
38

4

Input size

E
xe

cu
tio

n
tim

e
[s

ec
]

0.5

1.0

10
24

20
48

40
96

81
92

16
38

4

Input size

S
pe

ed
up

 [x
]

Figure 6. Execution time and speedup of the Fast Fourier Transform for
different signal dimensions. The input size represent the length of the input
signal. With a signal of size 16384 the hardware accelerated version reaches
a speedup of 1.3x.

the two inputs. Moreover, we further improved the design by

applying classical pipelining and loop unrolling optimization

to guarantee parallel execution and to mask the latency of

the operations. The BRAMs containing the local buffers are

partitioned to allow parallel accesses during the iterations.

Nevertheless, as many operations are done in parallel, the

execution time of the algorithm is proportional to the input

streams size: the local buffers reduce the stream size by a

factor B, which in turn reduces the complexity of the algorithm
by the same factor. Being able to use bigger local buffers

should lead to even higher performance improvements. More-

over, our implementation can be easily scaled with respect to

the available resources on the board, by changing the local

buffer size and its partitioning factor.

Figure 5 shows the results we have obtained with our

implementation with respect to the original NumPy Cross

Correlation function execution. In particular, we tested the

function call both when only the processing system (CPU) of

the PYNQ-Z1 is used and when also the programmable logic

(FPGA) is exploited. The FPGA implementation achieves a

clock frequency of 100MHz and uses 32bits floating points.

Thanks to the described design, we have been able to achieve

a speedup greater than 20x. The hardware resources utilization

is presented in Table I.

137

Figure 7. Execution time comparison between Raspberry PI 3 and PYNQ-Z1 with default NumPy library, and PYNQ-Z1 with our accelerated implementation
that exploits the programmable logic of the Zynq SoC. While considering two audio signals of size 130000, our solution is able to reach a speedup of 12.4x
with respect to the PYNQ-Z1 (only CPU) version and a speedup of 5.5x with respect to the Raspberry Pi 3 version.

C. Fast Fourier Transform

The second implementation we present is for the compu-

tation of the Fast Fourier Transform. Similarly to the Cross-

Correlation accelerator presented, we opted for a streaming

computation pattern, to allow continuous data processing.

Figure 4 shows the diagram of the Fast Fourier Transform

hardware accelerator, while the hardware resources utilization

is presented in Table I. More specifically, we relied on Xilinx’s

FFT IP core [16], and configured it to implement a streaming

and pipelined architecture, consisting of a chain of radix-2

butterfly processing engines. Each engine has its own local

memory and is followed by a final output reordering stage at

the end of the chain.

Figure 6 shows the comparison between the pure soft-

ware and the hardware/software execution times. The FPGA

implementation achieves a clock frequency of 100MHz and

each point of the input signal is represented by a complex

number that uses 32bits floating points both for the real and

the imaginary component. With a signal of size 16384, the

hardware accelerated version reaches a speedup of 1.3x. We

note that with a signal of size 8192 the CPU-only execution

time is smaller than the hardware implementation. This hap-

pens because the time overhead introduced by the data transfer

between the DDR and the programmable logic is greater than

the time gained by the accelerator in the computing phase.

However, thanks to our Runtime Code Scheduling algorithm,

the right implementation is chosen at runtime based on the

length of the signal.

V. RESULTS

This section describes the evaluation settings we adopted to

test our application and reports the results comparison in terms

of execution time. Since we want to check if our solution is

valid, not only with respect to the PYNQ-Z1 processor but also

with respect to a different embedded system device we have

tested our implementation on a Raspberry Pi 3 (see Section

II-C).

We have run the tests in the following way: we took two

audio files of the same conference from AMI Dataset EN2001a

[17]. These audio files have been recorded by two different

microphones placed in different positions. We then extracted

several times random samples: one of this is the shortest one,

the other one is longer and includes the same portion of the

conference that has been recorded in the first audio. We then

added a random zero-mean Gaussian noise to both signals and

we repeated these tests multiple times for each different length

of the samples. We then computed averages of the overall

execution time and of the final error.

The results are presented in Figure 7. As shown in the

graph, our solution outperforms both the PYNQ-Z1, when it

138

runs the pure software implementation of the functions and the

Raspberry Pi processor. Specifically, with two audio signals of

size 130000, the FPGA accelerated implementation is able to

reach a speedup of 12.4x with respect to the PYNQ-Z1 (only

CPU) and a speedup of 5.5x with respect to the Raspberry Pi 3.

The results also include the reconfiguration time of the FPGA

when a new overlay is required. As expected, the Runtime

Code Scheduling choose the right implementation to keep

the execution time of the PYNQ-Z1 (CPU+FPGA) solution

smaller or equal than the PYNQ-Z1 (only CPU) one.

As already said, the Cross-Correlation computation is the

most time-consuming aspect of the algorithm, that is why we

can clearly notice a much faster execution of the application

when FPGA is used. This fact is relevant in the audio field

since we usually have a high sample rate frequency. Our results

also show that the hardware implementation percentage error

is not bigger than the software one. This happens because

hardware implementation approximation is quite small and

does not change the value in which the peak is located in

the Cross-Correlation.

Finally, this experimental setting describes how this algo-

rithm performs quite well in low-noise environments, but this

hardware implementation could be used also in more com-

plex and less noise-sensible algorithms, such as the Adaptive

Cross-Correlation Method explained in [5]. In these kinds of

algorithms, we can expect similar or higher speedup since they

require multiple Cross Correlation computations. In case of

more than two signals, the speedup will be even bigger.

VI. DISCUSSION AND FUTURE DIRECTIONS

Regarding future work, we are thinking to pack the two IP

Cores within the same overlay, to reduce the reconfiguration

time overhead. Moreover, we want to take into consideration

partial dynamic reconfiguration of the programmable logic

to better exploit the FPGA resources. While doing this, an

improvement of our Runtime Code Scheduling is required

to find an optimal solution for the application execution,

following different reconfiguration patterns.

We also will continue to optimize more scientific functions

following the proposed approach to offer an increasingly

complete solution for data scientists and software developer.

We want to compare the power efficiency of the embedded

system devices when our solution is running on FPGA with

respect to the pure software execution.

Finally, to try our application in a real-time scenario, we are

planning to exploit our optimized version of the application to

align multiple electrocardiographs measured from an audience

to compute the overall quality of attention.

VII. CONCLUSIONS

We believe that scientists and pure software developers

should be allowed to benefit from hardware acceleration while

focusing on what it is most important to them, without

the need to invest precious time in learning how to design

and deploy hardware accelerators. For this reason, we have

proposed in this paper an hardware-accelerated version of the

Audio Signal Alignment application, that brings transparent

hardware acceleration on Zynq SoCs, when integrated within

the PYNQ platform. We described our approach and our

function-optimization workflow by showing the implementa-

tion processes and the results of two different overlays: the

Cross-Correlation function and the Fast Fourier Transform.
To demonstrate the validity of our solution, we have com-

pared the execution times of the different implementations

with three different system settings: the PYNQ-Z1 board and

the Raspberry Pi 3 device when only the CPU is used, and

the PYNQ-Z1 board when both the CPU and the FPGA

are exploited. The application that uses our FPGA-optimized

version of the application reaches a speedup of 12.4x with

respect to the PYNQ-Z1 software execution and a speedup of

5.5x with respect to the Raspberry Pi 3 software execution.

REFERENCES

[1] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in Computer Architecture (ISCA), 2014 ACM/IEEE 41st International
Symposium on. IEEE, 2014.

[2] “PYNQ: Python Productivity for Zynq,” http://www.pynq.io (accessed:
24th of September 2017).

[3] “IEEE Spectrum: The 2017 Top Programming Languages,”
https://spectrum.ieee.org/computing/software/the-2017-top-
programming-languages (accessed: 5th of October 2017).

[4] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1–8.

[5] K. J. Coakley and P. Hale, “Alignment of noisy signals,” vol. 50, pp.
141 – 149, 03 2001.

[6] T. Giannakopoulos, “pyaudioanalysis: An open-source python library for
audio signal analysis,” PloS one, vol. 10, no. 12, 2015.

[7] A. G. Schmidt, G. Weisz, and M. French, “Evaluating Rapid Appli-
cation Development with Python for Heterogeneous Processor-based
FPGAs,” in Proceedings of the 25th International Symposium on Field-
Programmable Custom Computing Machines, ser. FCCM ’17. IEEE,
2017.

[8] I. of Electrical and E. Engineers, “Ieee standard for information
technology-standardized application environment profile-posix realtime
application support (aep),” 1999.

[9] M. P. A. Hukeri and M. P. Ghewari, “Review paper on iot based
technology,” 2017.

[10] N. Constant, D. Borthakur, M. Abtahi, H. Dubey, and K. Mankodiya,
“Fog-assisted wiot: A smart fog gateway for end-to-end analytics in
wearable internet of things,” arXiv preprint arXiv:1701.08680, 2017.

[11] W. Anwaar and M. A. Shah, “Energy efficient computing: A comparison
of raspberry pi with modern devices,” Energy, vol. 4, no. 02, 2015.

[12] J. Kammerl, N. Birkbeck, S. Inguva, D. Kelly, A. J. Crawford, H. Den-
man, A. Kokaram, and C. Pantofaru, “Temporal synchronization of
multiple audio signals,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
4603–4607.

[13] D. P. W. Ellis, C. Cotton, and M. Mandel, “Cross-correlation of beat-
synchronous representations for music similarity,” 03 2008, pp. 57 –
60.

[14] P. Shrstha, M. Barbieri, and H. Weda, “Synchronization of multi-
camera video recordings based on audio,” in Proceedings of the
15th ACM International Conference on Multimedia, ser. MM ’07.
New York, NY, USA: ACM, 2007, pp. 545–548. [Online]. Available:
http://doi.acm.org/10.1145/1291233.1291367

[15] V. J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro,
“Predictive runtime code scheduling for heterogeneous architectures.”
HiPEAC, vol. 9, 2009.

[16] Z. Jin, L. Jun, and Z. Shuang, “The design and implementation of fft
algorithm based on the xilinx fpga ip core,” 2012.

[17] “AMI Dataset,” http://groups.inf.ed.ac.uk/ami/ (accessed: 27th of April
2018).

139

