
Building High-Performance, Easy-to-Use
Polymorphic Parallel Memories with HLS

L. Stornaiuolo1(B), M. Rabozzi1(B), M. D. Santambrogio1(B), D. Sciuto1(B),
C. B. Ciobanu2,3(B), G. Stramondo3(B), and A. L. Varbanescu3(B)

1 Politecnico di Milano, Milan, Italy
{luca.stornaiuolo,marco.rabozzi,marco.santambrogio,

donatella.sciuto}@polimi.it
2 Technische Universiteit Delft, Delft, The Netherlands

c.b.ciobanu@tudelft.nl
3 Universiteit van Amsterdam, Amsterdam, The Netherlands

{c.b.ciobanu,g.stramondo,a.l.varbanescu}@uva.nl

Abstract. With the increased interest in energy efficiency, a lot of
application domains experiment with Field Programmable Gate Arrays
(FPGAs), which promise customized hardware accelerators with high-
performance and low power consumption. These experiments possible
due to the development of High-Level Languages (HLLs) for FPGAs,
which permit non-experts in hardware design languages (HDLs) to pro-
gram reconfigurable hardware for general purpose computing.

However, some of the expert knowledge remains difficult to inte-
grate in HLLs, eventually leading to performance loss for HLL-based
applications. One example of such a missing feature is the efficient
exploitation of the local memories on FPGAs. A solution to address this
challenge is PolyMem, an easy-to-use polymorphic parallel memory that
uses BRAMs. In this work, we present HLS-PolyMem, the first complete
implementation and in-depth evaluation of PolyMem optimized for the
Xilinx Design Suite. Our evaluation demonstrates that HLS-PolyMem is
a viable alternative to HLS memory partitioning, the current approach
for memory parallelism in Vivado HLS. Specifically, we show that Poly-
Mem offers the same performance as HLS partitioning for simple access
patterns, and outperforms partitioning as much as 13x when combining
multiple access patterns for the same data structure. We further demon-
strate the use of PolyMem for two different case studies, highlighting the
superior capabilities of HLS-PolyMem in terms of performance, resource
utilization, flexibility, and usability.

Based on all the evidence provided in this work, we conclude that
HLS-PolyMem enables the efficient use of BRAMs as parallel memories,
without compromising the HLS level or the achievable performance.

Keywords: Polymorphic Parallel Memory · High-Level Synthesis ·
FPGA

c⃝ IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
N. Bombieri et al. (Eds.): VLSI-SoC 2018, IFIP AICT 561, pp. 53–78, 2019.
https://doi.org/10.1007/978-3-030-23425-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23425-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-23425-6_4


54 L. Stornaiuolo et al.

1 Introduction

The success of High-Level Languages (HLLs) for non-traditional computing sys-
tems, like Field Programmable Gate Arrays (FPGAs), has accelerated the adop-
tion of these platforms for general purpose computing. In particular, the main
hardware vendors released tools and frameworks to support their products by
allowing the design of optimized kernels using HLLs. This is the case, for exam-
ple, for Xilinx, which allows using C++ or OpenCL within the Vivado Design
Suite [1] to target FPGAs. Moreover, FPGAs are increasingly used for data-
intensive applications, because they enable users to create custom hardware
accelerators, and achieve high-performance implementations with low power con-
sumption. Combining this trend with the fast-paced development of HLLs, more
and more users and applications aim to experiment with FPGA accelerators.

In the effort of providing HLL tools for FPGA design, some of the features
used by hardware design experts are difficult to transparently integrate. One such
feature is the efficient use of BRAMs, the FPGA distributed, high-bandwidth,
on-chip memories [2]. BRAMs can provide memory-system parallelism, but their
use remains challenging due to the many different ways in which data can be
partitioned in order to achieve efficient parallel data accesses. Typical HLL solu-
tions allow easy-to-use mechanisms for basic data partitioning. These mech-
anisms work well for simple data access patterns, but can significantly limit
the patterns for which parallelism (and thus, increased performance) can be
achieved. Changing data access patterns on the application side is the current
state-of-the-art approach: by matching the application patterns with the sim-
plistic partitioning models of the HLL, one can achieve parallel operations and
reduce the kernel execution time. However, if at all possible, this transformation
also requires extensive modification of the application code, which is cumbersome
and error-prone to the point of canceling the productivity benefits of HLLs.

To address the challenges related to the design and practical use of parallel
memory systems for FPGA-based applications, PolyMem, a Polymorphic Paral-
lel Memory, was proposed [3]. PolyMem is envisioned as a high-bandwidth, two-
dimensional (2D) memory used to cache performance-critical data on the FPGA
chip, making use of the distributed memory banks (the BRAMs). PolyMem is
inspired by the Polymorphic Register File (PRF) [4], a runtime customizable
register file for Single Instruction, Multiple Data (SIMD) co-processors. Poly-
Mem is suitable for FPGA accelerators requiring high bandwidth, even if they
do not implement full-blown SIMD co-processors on the reconfigurable fabric.

The first hardware implementation of the Polymorphic Register File was
designed in System Verilog [5]. MAX-PolyMem is the first prototype of PolyMem
written entirely in MaxJ, and targeted at Maxeler Data Flow Engines (DFEs)
[3,6]. Our new HLS PolyMem is an alternative HLL solution, proven to be easily
integrated with the Xilinx toolchains. The current work is an extension of our
previous implementation presented in [7].

Figure 1 depicts the architecture of a system using (HLS-)PolyMem. The
FPGA board (with a high-capacity DRAM memory), is connected to the host
CPU through a PCI Express link. PolyMem acts as a high-bandwidth, 2D par-



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 55

allel software cache, able to feed an on-chip application kernel with multiple
data elements every clock cycle. The focus of this work is to provide an efficient
implementation of PolyMem in Vivado HLS, and employ it to maximize memory-
accesses parallelism by exploiting BRAMs; we empirically demonstrate the gains
we get from PolyMem by comparison against the partitioning of BRAMs, as pro-
vided by Xilinx tools, for three case-studies.

PCI-E

FPGA Board

Host

PolyMem

Kernel

DRAM

FPGA Chip

Fig. 1. System organization using PolyMem as a parallel cache.

In this work, we provide empirical evidence that HLS-PolyMem provides
significant improvements in terms of both performance and usability when com-
pared with the current memory partitioning approach present in Vivado HLS.
To this end, we highlight the following novel aspects of this work:

• We provide a new, complete, open-source implementation [45] of PolyMem
for Vivado HLS. This new implementation contains all the memory access
schemes supported by the original PRF, as well as its multiview feature. Our
implementation can be easily integrated within the Xilinx Hardware-Software
Co-Design Workflow;

• We present a basic, high-level PolyMem interface (i.e., a rudimentary API
for using PolyMem). The API includes basic parallel read and write opera-
tions. Furthermore, our API was further extended to support masked writes,
avoiding overwrites and further reduce latency. For example, when PolyMem
supports wide parallel access (e.g., 8 elements), but the user requires less data
to be stored (e.g., 5 elements), and wants to avoid overwriting existing data
(e.g., the remaining 3 elements). We demonstrate the use of the API in all the
applications discussed in this paper (synthetic and real-life examples alike);

• We design and prototype a synthetic, parameterized microbenchmarking
framework to thoroughly evaluate the performance of HLS-PolyMem. Our
microbenchmarking strategy is based on chains of operations using one or
several parallel access patterns, thus stressing both the performance and flex-
ibility of the proposed parallel memory. The framework is extended to enable
the comparison against existing HLS memory partitioning schemes. Finally,
we show how to use these microbenchmarks to provide an extensive analysis
of HLS-PolyMem’s performance.



56 L. Stornaiuolo et al.

• We design, implement, and analyze in detail two case-study applications
which demonstrate the ability of our HLS-PolyMem to cope with real applica-
tions and data, multiple memory access patterns, and tiling. Our experiments
for these case-studies focus on performance, resource-utilization, and produc-
tivity, and contrast our HLS PolyMem with standard memory partitioning
techniques.

Our results, collected for both synthetic and real-life case-studies, thor-
oughly demonstrate that HLS PolyMem outperforms traditional HLS partition-
ing schemes in performance and usability. We therefore conclude that our HLS-
PolyMem is the first approach that enables HLS programmers to use BRAMs to
construct flexible, multiview parallel memories, which can still be easily embed-
ded in the traditional HLS modus operandi.

The remainder of this paper is organized as follows. Section 2 provides an
introduction to parallel memories, and discusses the two alternative implemen-
tations presented in this work: the PRF-inspired PolyMem and the HLS parti-
tioning schemes. Section 3 presents the HLS PolyMem class for Vivado, together
with the proposed optimizations. In Sect. 4 we present our microbenchmarking
framework, as well as the our in-depth evaluation using this synthetic workload.
Section 5 describes our experience with designing, implementing, and evaluating
the two case studies. Section 6 highlights relevant related work and, finally, our
conclusion and future work directions are discussed in Sect. 7.

2 Parallel Memories: Challenges and Solutions

2.1 Parallel Memories

Definition 1 (Parallel Memory). A Parallel Memory (PM) is a memory that
enables the access to multiple data elements in parallel.

A parallel memory can be realized by combining a set of independent mem-
ories, referred to as banks or lanes. The width of the parallel memory, i.e., the
number of banks used in the implementation, represents the maximum number
of elements that can be read in parallel. The capacity of the parallel memory
refers to the amount of data that it can store. A specific element contained in a
PM is identified by its location, a combination of a memory module identifier (to
specify which one of the sequential memories hosts the data) and an in-memory
address (to specify where within that memory the element is stored).

Depending on how the information is stored and/or retrieved from the mem-
ory, we distinguish three types of parallel memories: redundant, non-redundant,
and hybrid.

Redundant PMs. The simplest implementation of a PM is a fully redundant
one, where all M sequential memory blocks contain fully replicated information.
The benefit of such a memory is that it allows an application to access any
combination of M data elements in parallel. However, such a solution has two



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 57

major drawbacks: first, the total capacity of a redundant PM is M times lower
than the combined capacities of all its banks, and, second, parallel writes are
very expensive in order to maintain information consistency.

To use such a memory, the application requires minimal changes, and the
architecture is relatively simple to manage.

Non-redundant PMs. Non-redundant PMs completely avoid data duplication:
each data item is stored in only one of the M banks. The one-to-one mapping
between the coordinate of an element in the application space and a memory
location is part of the memory configuration. These memories can use the full
capacity of all the memory resources available, and data consistency is guaran-
teed by avoiding data replication, making parallel writes feasible as well. The
main drawback of non-redundant parallel memories is that they require addi-
tional logic - compared to redundant memories - to perform the mapping, and
they restrict the possible parallel accesses: if two elements are stored in the same
bank, they cannot be accessed in parallel.

There are two major approaches used to implement non-redundant PM:
(1) use a set of predefined mapping functions that enable parallel accesses in
a set of predefined shapes [4,8–10], or, (2) derive an application-specific map-
ping function [11,12]. For the first approach, the application requires additional
analysis and potential changes, while the architecture is relatively fixed. For the
second approach, however, a new memory architecture needs to be implemented
for every application, potentially a more challenging task when the parallel mem-
ory is to be implemented in hardware.

Hybrid PMs. Besides the two extremes discussed above, there are also hybrid
implementations of parallel memories, which combine the advantages of the two
previous approaches by using partial data redundancy [13]. Of course, in this
case, the challenge is to determine which data should be replicated and where.
In turn, this solution requires both application and architecture customization.

2.2 The Polymorphic Register File and PolyMem

A PRF is a parameterizable register file, which can be logically reorganized by
the programmer or a runtime system to support multiple register dimensions
and sizes simultaneously [4]. The simultaneous support for multiple conflict-free
access patterns, called multiview, is crucial, providing flexibility and improved
performance for target applications. The polymorphism aspect refers to the sup-
port for adjusting the sizes and shapes of the registers at runtime. Table 1
presents the PRF multiview schemes (ReRo, ReCo, RoCo and ReTr), each sup-
porting a combination of at least two conflict-free access patterns. A scheme is
used to store data within the memory banks of the PRF, such that it allows
different parallel access types. The different access types refer to the actual data
elements that can be accessed in parallel. PolyMem reuses the PRF conflict-
free parallel storage techniques and patterns, as well as the polymorphism idea.
Figure 2(a) illustrates the access patterns supported by the PRF and PolyMem.



58 L. Stornaiuolo et al.

Fig. 2. PRF [4] design. The inputs are the matrix indexes (i, j) pointing to the first
cell of the block of data the user wants to read/write in parallel, and the AccessType
to select the shape of the parallel access.

Table 1. The PRF memory access schemes

PRF schemes Available access types

ReO Rectangle

ReRo Rectangle, row, main/secondary diagonals

ReCo Rectangle, column, main/secondary diagonals

RoCo Row, column, rectangle

ReTr Rectangle, transposed rectangle

In this example, a 2D logical address space of 8×9 elements contains 10 memory
Regions (R), each with different size and location: matrix, transposed matrix,
row, column, main and secondary diagonals. In a hardware implementation with
eight memory banks, each of these regions can be read using one (R1–R9) or
several (R0) parallel accesses.

By design, the PRF optimizes the memory throughput for a set of predefined
memory access patterns. For PolyMem, we consider p× q memory modules and
the five parallel access schemes presented in Table 1. Each scheme supports dense,
conflict-free access to p · q elements. When implemented in reconfigurable tech-



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 59

nology, PolyMem allows application-driven customization: its capacity, number
of read/write ports, and the number of lanes can be configured to best support
the application needs.

The block diagram in Fig. 2(b) shows, at high level, the PRF architecture.
The multi-bank memory is composed of a bi-dimensional matrix containing p×q
memory modules. This enables parallel access to p · q elements in one mem-
ory operation. The inputs of the PRF are shown at the top of the diagram.
AccessType represents the parallel access pattern. (i, j) are the top-left coordi-
nates of the parallel access. The list of elements to access is generated by the
AGU module and is sent to the A and m modules: the A module generates
one in-memory address for each memory bank in the PRF, while the m mod-
ule applies the mapping function of the selected scheme and computes, for each
accessed element, the memory bank where it is stored. The Data Shuffle block
reorders the Data In/Out, ensuring the PEF user obtains the accessed data in
their original order.

2.3 Matrix Storage in a Parallel Memory

Figure 3 compares two ways for a 6×6 matrix to be mapped in BRAMs to enable
parallel accesses. Thus, the default Vivado HLS partitioning techniques with a
factor of 3 is compared against a PolyMem with 3 memory banks, organized
exploiting the PolyMem RoCo scheme.

The memory banks, in this case, are organized in a 1× 3 structure, allowing
parallel access to rows and columns of three, eventually unaligned, elements. The
left side of Fig. 3 shows an example of a matrix to be stored in the partitioned

Fig. 3. Comparison between different partitioning techniques offered by Vivado HLS
(facto=3) and the RoCo scheme of PolyMem, with 3 memory banks, for data stored
in a 6× 6 matrix. PolyMem allows 3 parallel data reads/writes, from the rows and the
columns of the original matrix. Unaligned blocks are also supported.



60 L. Stornaiuolo et al.

BRAMs, aiming to achieve read/write parallelism. The right side illustrates three
techniques used to partition the matrix, using two unaligned, parallel accesses
of 3 elements (gray and black in the figure), starting respectively from the cells
containing elements 8 and 23. The HLS Array Partitioning techniques enable
either the black or the gray access to be performed in parallel (for Block and
Cyclic, respectively). Using PolyMem with a RoCo scheme, each element of each
access is mapped on a different memory bank; in turn, this organization enables
both the gray and the black access to happen in a single (parallel) operation1.

3 Implementation Details

This section describes the main components of our PolyMem implementation
for Vivado HLS. The goal of integrating PolyMem in the Xilinx workflow is to
provide users with an easy-to-use solution to exploit parallelism when accessing
data stored on the on-chip memory with different access patterns.

Our Vivado HLS PolyMem implementation exploits all the presented five
schemes (ReO, ReRo, ReCo, RoCo, ReTr) to store on the FPGA BRAMs the
data required to perform the application operations. Compared to the default
Vivado memory partitioning techniques, which allow hardware parallelism with a
single access pattern, a PolyMem employing a multiview scheme allows multiple
types of access simultaneously for unaligned data with conservative hardware
resources usage.

We implemented a template-based class polymem that exploits loop unrolling
to parallelize memory accesses. When HLS PolyMem is instantiated within the
user application code, it is possible to specify DATA T, i.e., the type of data
to be stored, the (p × q) number of internal banks of memory (i.e., the level of
parallelism), the (N × M) dimension of the matrix to be stored (also used to
compute the depth of each bank of data), and the scheme to organize data within
the different banks of memory. Listing 1.1 presents the interfaces of methods that
allow accesses to data stored within PolyMem. Simple read and write methods
use the m and A modules (described in Sect. 2.2) to compute, respectively, the
address and the depth of the bank of memory in which the required data is stored
or needs to be saved. On the other hand, the read block and the write block
exploit optimized versions of m and A to read/write (q · p) elements in parallel,
while limiting the hardware resources used to reorder data. Finally, we optimized
the memory access operations by implementing a write block masked method
to specify which data in the block has to be overwritten within PolyMem. As an
example, this method is useful when PolyMem supports a wide parallel access
(e.g., 8 elements), but the user requires less data to be stored (e.g., 5 elements),
and wants avoid overwriting existing data (e.g., the remaining 3 elements).

1 This small-scale example is included for visualization purposes only. Real-
applications are likely to use more memory banks, allowing parallel accesses to larger
data blocks.



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 61

Listing 1.1. List of the methods interfaces to allow user read/write data by used
sequential or parallel accesses

DATA_T read(int i, int j);

void write(DATA_T data , int i, int j);

void read_block(int i, int j, DATA_T out[p * q],
int PRF_ACCESS_TYPE );

void write_block(DATA_T in[p * q], int i, int j,
int PRF_ACCESS_TYPE );

void write_block_masked (DATA_T in[p * q],
ap_uint <p * q> mask ,
int i, int j,
int PRF_ACCESS_TYPE );

4 Evaluation and Results

In this Section, we focus on the evaluation of HLS PolyMem. The evaluation is
based on a synthetic benchmark, where we demonstrate that PolyMem offers a
high-performance, high-productivity alternative to partitioned memories in HLS.

4.1 Experimental Setup

We present the design and implementation of our microbenchmarking suite,
and detail the way all our measurements are performed. All the experiments
in this section are validated and executed on a Xilinx Virtex-7 VC707 board
(part xc7vx485tffg1761-2), with the following hardware resources: 303600 LUTs,
607200 FFs, 1030 BRAMs, and 2800 DSPs. We instantiate a Microblaze proces-
sor on the FPGA to control the DMA that transfers data between the FPGA
board DRAM memory and the on-chip BRAMs where the computational kernel
performs memory accesses. The Microblaze also starts and stops an AXI Timer
to measure the execution time of each experiment. The data transfers to and
from the computational kernel employ the AXI Stream technology.

Microbenchmark Design. To provide an in-depth evaluation of our Poly-
morphic memory, we designed a specific microbenchmark which tests the per-
formance of PolyMem together with its flexibility - i.e., its ability to cope with
applications that require different parallel access types to the same data struc-
ture. Moreover, we compare the results of the Polymem-augmented design with
the ones achievable by partitioning the memory with the default techniques
available in Vivado HLS. To ensure a fair comparison, we utilize a Vivado HLS
Cyclic array partition with a factor equal to the number of PolyMem lanes (both
designs can access at most p · q data elements in parallel from the BRAMs).

The requirements we state for such a microbenchmark are:



62 L. Stornaiuolo et al.

1. Focus on the reading performance of the memory, in terms of bandwidth;
2. Support all access types presented in Sect. 2.2;
3. Test a combination of more access types, to further demonstrate the flexibility

of polymorphism;
4. Measure the overall bandwidth achieved by these memory transfers.

To achieve these requirements, we designed different computational kernels
(IP Cores) that perform a (configurable) number of parallel memory reads, from
various locations inside the memory, using different parallel access patterns.
Each combination of parallel reads is performed in two different scenarios. The
accessed on-chip FPGA memory (BRAMs) M, where the input data are stored,
is partitioned by using (1) the default techniques available in Vivado HLS, and
(2) the HLS PolyMem technology.

A high-level description of the operations executed by the computational
kernels and measured by the timer is presented in Listing 1.2. Memory M is
used to store the input data and it is physically implemented in partitioned
BRAMs. The kernel receives the data to fill the memory M and N READS
matrix coordinates to perform parallel accesses with different access types - i.e.,
given an access type and the matrix coordinates (i, j), the computational kernel
reads a block of data starting from (i, j) and following the access type. When the
memory reads are done, the kernel sends sampled results on the output stream.

Listing 1.2. The structure of the proposed microbenchmark

stream in data to fill memory M
stream in N_READS read_coordinates

synchronize // wait for streaming to complete

// process reads
foreach ACCESS_TYPE in POLYMEM_SCHEME_SUPPORTED_ACCESS_TYPES :

chunk_size = N_READS / N_SUPPORTED_ACCESS_TYPES
foreach (i,j) in chunk_of_read_coordinates :

current_results_block = M.read_block(i, j, ACCESS_TYPE)
// done processing reads

foreach k in range(N_RESULTS_BLOCKS ):
stream out the k^th results_block

synchronize // wait for streaming to complete

By comparing the performance results of HLS-partitioning and PolyMem, we
are able to assess which scheme provides both performance and flexibility, and,
moreover, provide a quantitative analysis of the performance gap between the
two. We provide more details on how the measurements are performed in the
following paragraphs.

The complete code used for all the experiments described in this section is
available in our code repository [45].



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 63

Measurement Setup. In order to measure the performance of the two different
parallel memory microbenchmaks, we propose a setup as presented in Fig. 4.
Specifically, in this diagram, “Memory” is either an HLS-partitioned memory,
or an instance of PolyMem (as described in the previous paragraph).

Microblaze Memory
1 2

3

Bu er

A Result

Computational Kernel

Fig. 4. The measurement setup used for microbenchmarks. The measured bandwidth
corresponds to phase 2, where reading the data from the parallel memory happens.

In order to measure the performance of the two memories, we propose an
approach based on the following steps.

1. Measure, on the Microblaze processor, the overhead of phases 1 and 3. We
note that phases 1 and 3 are implemented using the basic streaming constructs
provided by the AXI Stream technology. We achieve this by a one-time mea-
surement where no memory reads or only one memory read are performed.

2. Measure, on the Microblaze processor, the execution time of the complete
setup, from the beginning of phase 1 to the end of phase 3. Due to the
explicit synchronization between phases 1, 2, and 3, we can guarantee that
no overlap happens between them.

3. Determine, by subtraction, the absolute execution time of phase 2 alone,
which is a measure of the parallel memory’s reading performance.

4. Present the absolute performance of the two memories in terms of achieved
bandwidth. For the case of PolyMem, we can also assess the efficiency of the
implementation by comparing the achieved bandwidth with that predicted
by the theoretical performance model [14].

5. Present the relative performance of the two parallel memories as speedup.
We calculate speedup as the ratio of the execution time of HLS-based parti-
tioning solution over the execution of the PolyMem-based solution. We chose
to use the entire execution time, including the copy overhead, as an estimate
of a realistic benchmark when the same architecture is used for real-life appli-
cations. We note that this choice is pessimistic, as the overhead of phases 1
and 3 can be quite large.

4.2 Results

All the results presented in this section are from experiments performed using
the settings in Table 2.

The input data stream employs double precision (64-bit) numbers, and the
computational kernel receives an amount of data (equal for all the experiments),
that includes the input matrix and the list of coordinates (i, j):



64 L. Stornaiuolo et al.

Table 2. Microbenchmark settings

Clock frequency (ClkFr) 200MHz

Data type (DType) 64-bit double

Input matrix size (DIM ×DIM) 96× 96

HLS partitioning factor (FACTOR) 16

PolyMem lanes (p× q) 16 (2× 8)

Number of passed coordinates (i, j) (N READS) 3072

Size of each read block (BLOCK SIZE) 16

Number of output blocks (N RESULTS BLOCKS) 50

N IN DATA = (DIM ·DIM) + (N READS · 2) = 15360 64-bit elements

The number of data that the computational kernel reads from the memory is
computed as follow:

N READ DATA = (N READS · BLOCK SIZE) = 49152 64-bit elements

The output data stream employs double precision 64-bit numbers, and the com-
putational kernel sends back to the microblaze a sample of the results (data
read), equal for all the experiments, amounting to:

N OUT DATA = (N RESULTS BLOCKS · BLOCK SIZE) = 80064-bit elements

To measure the overheads introduced by the data transfers in terms of hard-
ware resources utilization and execution time, we implemented two computa-
tional kernels: the first one does not perform any memory accesses (the BRAMs
are not even partitioned) and the second one performs only one memory access
(the added execution time of this one access is negligible). The second kernel
was executed for both memory configurations (HLS Cyclic and PolyMem). The
results are shown in Table 3. The consistent execution time indicates that the
overhead is systematic and constant.

Table 3. Hardware resources utilization and execution time spent in phases 1 and 3
of the proposed architecture

Memory Access LUT FF BRAM DSP Runtime [µs]

- - 41400 34064 21 0 265

HLS Cyclic Row 43194 35302 172 0 265

PolyMem Row 46375 36444 172 0 265



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 65

Table 4. Hardware resources utilizations, execution times and bandwidths for
microbenchmark experiments with different memory configurations and access schemes

Memory Scheme LUT FF BRAM DSP Runtime [µs] BW [GB/s]

HLS Cyclic ReO 45800 36121 172 0 503 1.54

PolyMem ReO 45590 36364 172 0 283 20.35

HLS Cyclic ReRo 90197 65993 174 224 503 1.54

PolyMem ReRo 59082 40661 172 0 283 20.35

HLS Cyclic ReCo 85055 64679 174 164 503 1.54

PolyMem ReCo 62549 40434 172 0 283 20.35

HLS Cyclic RoCo 67066 54217 174 100 503 1.54

PolyMem RoCo 55025 38944 172 0 283 20.35

HLS Cyclic ReTr 62259 54244 174 40 503 1.54

PolyMem ReTr 51282 37744 172 0 283 20.35

Given the data transfers execution time overhead equal to 265 ns, we can
compute the bandwidth (BW) in GB/s for each new experiment with the fol-
lowing formula:

BW [B/s] =
N READS ∗ BLOCK SIZE ∗ 8

(Exec. time − overhead)

In Table 4, we report the detailed results of our microbenchmarking experi-
ments, in terms of hardware resource utilization, execution time, and bandwidth.
We provide results for the two different memory configurations and all PolyMem
access schemes. As shown in Listing 1.2, the memory accesses are equally divided
among the access patterns supported by the selected scheme. We further note
that, for all the schemes, the speedup of the end-to-end computation (i.e., phases
1, 2 and 3 from Fig. 4) is 1.78x. For the actual computation, using the parallel
memory (i.e., without the data transfer overhead), the PolyMem outperforms
HLS partitioning by as much as 13.22x times. Moreover, in terms of hardware
resources, (1) the BRAM utilization is similar for both parallel memories, which
indicates no overhead for PolyMem, (2) PolyMem is more economical in terms
of “consumed” LUT and FF (up to 20% less), and (3) HLS partitioning makes
use of DSPs, while PolyMem does not. The following paragraph contains an
evaluation of these results.

Unaligned Accesses and Final Evaluation. The results suggest that the
Vivado HLS default partitioning techniques are not able to exploit parallel reads
for the described access patterns. This is due to the fact that, even if the data
are correctly distributed among the BRAMs to perform at least one access type,
parallel accesses unaligned with respect to the partitioning factor are not sup-
ported. To prove that, we perform experiments where the memory reads are
forced to be aligned with respect to the partitioning factor, for one of the access



66 L. Stornaiuolo et al.

type - e.g. having a cyclic partitioned factor of 4 on the Ro access, it is possible
to read 4 data in parallel at the coordinates {(i, j), (i, j+1), (i, j+2), (i, j+3)},
only if j is a multiple of 4. This is possible, at compile time, by using the integer
division on the reading coordinates (i, j) as follows:

aligned j =
⌊

j

BLOCK SIZE

⌋
∗ BLOCK SIZE

This ensures that aligned j is a multiple of the number of memory banks -
i.e. BLOCK SIZE. Using aligned j for the data access allows the HLS compiler
to perform more aggressive optimizations parallelizing the access to the parti-
tioned memory. Table 5 shows the results for the RoCo scheme with different
combinations of access types, where forced aligned accesses are performed or
not. The cases where the memory reads are aligned with respect to the parti-
tioning factor are the only ones where the default Vivado HLS partitioning is
able to achieve the same performance of PolyMem, while using fewer hardware
resources. However, even in this cases, the default Vivado HLS partitioning is
not able to perform all the memory accesses with the right amount of parallelism
if the application requires multiple access patterns. Practical examples showing
the advantages of using PolyMem are provided in the following section.

5 Application Case-Studies

In this Section, we analyze two case-study applications, i.e., matrix multiplica-
tion and Markov chain, that exploit our HLS PolyMem to parallelize accesses to
matrix data.

Each application demonstrates different HLS PolyMem features. In the
matrix multiplication case-study, we show how our approach outperforms imple-
mentations that use the default partitioning of Vivado HLS. For the Markov
Chain application, we show how HLS PolyMem enables performance gains with
minimal changes to the original software code.

Table 5. Hardware resources utilizations, execution times and bandwidths for the
RoCo scheme with different combinations of access types with and without forced
aligned accesses (FA)

Memory Access types LUT FF BRAM DSP Runtime [µs] BW [GB/s]

HLS Cyclic Ro 60127 52552 174 64 503 1.54

PolyMem Ro 45641 36432 172 0 283 20.35

HLS Cyclic FA Ro 43048 35316 173 0 283 20.35

PolyMem FA Ro 45175 36391 173 0 283 20.35

HLS Cyclic Ro, Co, Re 67066 54217 174 100 503 1.54

PolyMem Ro, Co, Re 55025 38944 172 0 283 20.35

HLS Cyclic Ro, Co, FA Re 47812 38003 173 0 429 2.23

PolyMem Ro, Co, FA Re 55328 38975 173 0 283 20.35



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 67

5.1 Matrix Multiplication (MM)

With this case study, we aim to demonstrate the usefulness of the multiview
property of HLS-PolyMem. Specifically, we investigate, in the context of a real
application, two aspects: (1) if there is any performance loss or overhead between
the two parallel memories for a single matrix multiplication, and (2) what is the
performance gap between the two types of parallel memories in the case where
multiple parallel access shapes are needed, on the same data structure, in the
same application.

Single Matrix Multiplication. For our first experiment, the application per-
forms one multiplication of two square matrices, B and C, of size DIM , that
are stored by using either the default HLS array partitioning techniques or the
HLS PolyMem implementation. Since the multiplication B ×C is performed by
accessing the rows of B and multiply-accumulating the data with the columns
of C, it is convenient, when using HLS default partitioning, to partition B on
the second dimension and C on the first one. Indeed, this allows to achieve par-
allel accesses to the rows of B and columns of C in the innermost loop of the
computation.

On the other hand, for the HLS PolyMem implementation, we store both B
and C in the HLS PolyMem, configured with a RoCo scheme, because it allows
parallel accesses to both rows and columns.

Listings 1.3 and 1.4 show the declaration of the matrices and their partition-
ing using the HLS default partitioning and the HLS PolyMem, respectively. Both
parallel memories use 16 lanes (i.e., data is partitioned onto 16 memory banks):
the HLS partitioned scheme uses a parallel factor of 16, while the B and C HLS
PolyMem instances are initialized with p = 4 and q = 4.

Listing 1.3. Declaration and partitioning of matrices to parallelize accesses to rows
(dim=2) of B and to columns (dim=1) of C with a parallel factor of 16.

float B[DIM][DIM];

#pragma HLS array_partition variable=B block factor =16 dim=2

float C[DIM][DIM];

#pragma HLS array_partition variable=C block factor =16 dim=1

Listing 1.4. Declaration of the matrices stored by using the HLS PolyMem with the
RoCo scheme with a parallel factor of 4 · 4 = 16.

#include "hls_prf.h"

hls::prf <float , 4, 4, DIM , DIM , SCHEME_RoCo > B;

hls::prf <float , 4, 4, DIM , DIM , SCHEME_RoCo > C;

Listings 1.5 and 1.6 show the matrix multiplication code when using the HLS
default partitioning and the HLS PolyMem, respectively.



68 L. Stornaiuolo et al.

Listing 1.5. Matrix multiplication code that leverages default HLS partitioning to
perform parallel accesses.

// B*C matrix multiplication

for (int i = 0; i < DIM; ++i)

for (int j = 0; j < DIM; ++j) {

#pragma HLS PIPELINE II=1

float sum = 0;

for (int k = 0; k < DIM; ++k)

sum += B[i][k] * C[k][j];

OUT[i][j] = sum;

}

Listing 1.6. Matrix multiplication code that exploits the HLS PolyMem with RoCo
scheme to perform parallel accesses.

// B*C matrix multiplication

for (int i = 0; i < DIM; ++i)

for (int j = 0; j < DIM; ++j) {

#pragma HLS PIPELINE II=1

float sum = 0;

for (int k = 0; k < DIM; k += 16) {

B.read_block(i, k, temp_row , ACCESS_Ro );

C.read_block(k, j, temp_col , ACCESS_Co );

for (int t = 0; t < 16; t++)

sum += temp_row[t] * temp_col[t];

}

OUT[i][j] = sum;

}

Double (Mirrored) Matrix Multiplication. Even though both approaches
achieve the goal of computing the matrix multiplication by accessing 16 matrix
elements in parallel, the HLS PolyMem solution provides more flexibility when
additional data access patterns are required, which is often the case for larger
kernels. In order to highlight this aspect, we also consider a second kernel func-
tion, in which both the B × C and the C × B products need to be computed.
This effectively means that the new kernel can only enable 16 parallel accesses
for both multiplications if the matrices allow parallel reads in using both row-
and column-patterns.

Results and Analysis. Table 6 reports the latency and resource utilization
estimated by Vivado HLS when computing the single matrix multiplication ker-
nel (1MM), B × C (rows 1, 2), and when computing the double multiplication
(2MM’s), B × C followed by C × B (rows 3, 4 and 5, 6) for the two parallel
memories under consideration.

As expected, when using the default Vivado HLS partitioning techniques, the
second multiplication (C × B) cannot be computed efficiently due to the way
in which the matrix data is partitioned into the memory banks, as described in
Sect. 2. Indeed, C can only be accessed in parallel by rows and B by columns.



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 69

Table 6. Latency and hardware resources for matrix multiplication with different
memory configurations and matrix dimensions

Memory Matrix size Parallel factor Latency Hardware resources

1 MM 2 MM’s BRAM DSP FF LUT

HLS 32 4 4227 n.a 18 40 6162 6485

PolyMem 32 4 (2× 2) 4227 n.a 18 40 6153 6018

HLS 32 4 4227 16503 18 40 7444 9197

PolyMem 32 4 (2× 2) 4227 4227 18 40 7367 7364

HLS 96 16 28033 442722 96 164 28554 40474

PolyMem 96 16 (4× 4) 28033 28033 96 160 30969 43636

On the other hand, the implementation based on HLS PolyMem is perfectly
capable of performing both matrix products (B × C and C × B) efficiently.
The performance data reflects this very well: the estimated latency reported
in Table 6 is the same for both products in the PolyMem case, and drastically
different in the case of HLS partitioning.

It is also worth noting that for a matrix size of 32 × 32, the two approaches
have similar resource consumption, while for matrices with larger dimensions and
a parallel factor of 16, the HLS PolyMem has a resource consumption overhead in
terms of FF and LUT of at most 8.5% compared to the HLS default partitioning
schemes. Finally, in order to empirically validate the designs, we implemented
the kernel module performing both B × C and C × B with matrix size of 96
and a parallel factor of 16 on a Xilinx Virtex-7 VC707 with a target frequency
of 100MHz. The benchmarking system is similar to that presented in Sect. 4: a
soft Microblaze core is used to manage the experiment, the input/output data
(matrices B and C, and the result) are streamed into parallel memory, and the
actual multiplication operations are performed using the parallel memory. For
the kernel with a single multiplication, the performance of the two solutions is the
same. However, for the kernel with the double multiplication, the HLS PolyMem
version achieves an overall speedup of 5x compared to the implementation based
on HLS memory partitioning.

5.2 Markov Chain and the Matrix Power Operation

With this case study, which has at its core the matrix power operation, we aim
to reinforce the need for multiview accesses to the same data structure, and
further demonstrate how tiling can be easily achieved and used in conjuction
with HLS-PolyMem, to further alleviate its resource overhead.

A Markov Chain is a stochastic model used to describe real-world processes.
Some of its most relevant applications are found in queuing theory, the study
of population growths [15], and in stochastic simulation methods such as Gibbs
sampling [16] and Markov Chain Monte Carlo [17]. Moreover, Page Rank [18], an
algorithm used to rank websites by search engines, leverages a time-continuous



70 L. Stornaiuolo et al.

variant of this model. A Markov Chain can also describe a system composed of
multiple discrete states, where the probability of being in a state depends only
on the previous state of the system.

A Markov Transition Matrix A, which is a variant of an adjacency matrix,
can be used to represent a Markov Chain. In this matrix, each row contains the
probability to move from the current state to any other state of the system. More
specifically, given two states i and j, the probability to transition from i to j is
ai,j , where ai,j is the element at row i and column j of the transition matrix A.

Computing the h-th power of the Markov Transition Matrix is a way to
determine what is the probability to transition from an initial state to a final
state in h steps. Furthermore, when the number of steps h tends to infinity, the
result of Ah can be used to recover the stationary distribution of the Markov
Chain, if it exists.

From a computational perspective, an approximate value for the result of
limx→∞Ax is obtained for large enough values of x. In our implementation,
matrix A is stored in a HLS PolyMem, so that both rows and columns can be
accessed in parallel. We then compute A2 and save the result into a support
matrix A temp, partitioned on the second dimension. After A2 is computed,
we can easily compute A2h by copying back results to the HLS PolyMem and
iterating the overall computation h times.

Listing 1.7 shows an HLS PolyMem-based algorithm that can be used to
compute A2h . The implementation consists of an outermost loop repeated h
times in which we compute the product A × A whose result is stored in Atemp
and copied back to the PolyMem for A before the next iteration.

Implementing the same algorithm by using the HLS partitioning techniques,
as presented in the previous case study, results in poor exploitation of the avail-
able parallelism, or in duplicated data, since A needs to be accessed both by
rows and columns.

Listing 1.7. HLS PolyMem implementation of A2h

hls::prf <float , p, q, DIM , DIM , SCHEME_RoCo > A;

for(int iter =0; iter <h; iter ++){

// A*A matrix multiplication

for (int i = 0; i < DIM; ++i){

for (int j = 0; j < DIM; ++j) {

#pragma HLS PIPELINE II=1

float sum = 0;

for (int k = 0; k < DIM; k += p*q) {

A.read_block(i, k, temp_row , ACCESS_Ro );

A.read_block(k, j, temp_col , ACCESS_Co );

for (int t = 0; t < p*q; t++)

sum += temp_row[t] * temp_col[t];

}

A_temp[i][j] = sum;

}

}



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 71

// Copy back results to PolyMem

for (int i = 0; i < DIM; ++i){

for (int t = 0; t < DIM; t += p*q) {

#pragma HLS PIPELINE II=1

A.write_block (& A_temp[i][t], i, t, ACCESS_Ro );

}

}

}

The HLS PolyMem enables parallel accesses to matrix A for both rows and
columns, but adds some overhead in terms of hardware resources and complex-
ity of the logic to shuffle data within the right memory banks. The resources
overhead has a quadratic growth with respect to the number p · q of parallel
memories used to store data [4].

A possible solution to this problem is a simple form of tiling, were we reduce
the dimension of PolyMem by dividing the input matrix A and storing its values
in a grid of multiple PolyMem s. If A has DIM × DIM elements, it is possible
to organize the on-chip memory to store data in a grid of b × b square blocks,
each having size DIM

b × DIM
b . In order to preserve the same level of parallelism,

we can re-engineer the original computation to work in parallel on the data
stored in each memory within the grid. Instead of computing a single vectorized
row-column product, it is possible to perform the computation on multiple row-
column products in parallel and reduce the final results.

Figure 5 shows how the input matrix is divided in multiple memories accord-
ing to the choice of the parameters p, q and b. Moreover, the figure also shows
which is the data accessed concurrently at each step of the computation. As an
example, for the case p = q = b = 2 there are 4 row-column products performed
in parallel (b2) and for each of them 4 values are processed in parallel (p · q).

It is important to notice that when p = q = 1 the PolyMem reduces to
memories in which a single element is accessed in parallel. In this case, each
PolyMem can be removed and substituted by a single memory bank.

Fig. 5. Comparison between different partitioning of the input matrix in a grid of b2

components implemented by PolyMem with a level of parallelism of p× q. When both
p and q are set to 1, it is possible to remove the HLS PolyMem logic.



72 L. Stornaiuolo et al.

In Table 7 we report the latency and the resource utilization estimated by
Vivado HLS together with the number of lines of code (LOC) for different con-
figurations of the parameters p, q and b on 8 iterations of the power operation
for a 384 × 384 matrix. The numbers demonstrate that by re-engineering the
code and the access patterns (b > 1), it is possible to achieve a smaller over-
all latency. However, this comes at the cost of a more convoluted code which is
approximately twice as long, in terms of lines of code, as the original version. On
the contrary, by using a single PolyMem (b = 1) we can still obtain higher per-
formance than using the default HLS array partitioning techniques, with a much
smaller and simpler code base. Indeed, PolyMem allows to reduce the time to
develop an optimized FPGA-based implementation of the algorithm with minor
modifications to the original software code. Thanks to HLS PolyMem we raise
the level of abstraction of parallel memory accesses, thus enhancing the overall
design experience and productivity.

Finally, to validate the flexibility the HLS PolyMem library, we implemented
and tested the application by using Xilinx SDx tool, that enables OpenCL inte-
gration and automatically generates the PCIe drivers for communication. In this
case, the benchmarking follows a similar method as the one presented in Sect. 4.1
and Fig. 4, with two amendments: (1) instead of using the Microblaze softcore,
we manage the experiment directly from the CPU of the host system where
the FPGA board acts as an accelerator, and (2) the transfers from stages (1)
and (3) are performed in blocks over the PCIe bus. We synthesized a design
for a matrix size of 256 and parameters p = q = b = 2 at 200MHz, and we
benchmarked its performance on the Xilinx Kintex Ultrascale ADM-PCIE-KU3
platform. The obtained throughput is 1.6GB/s. We note that this number is
significantly lower than the expected performance of the HLS-PolyMem itself
because it also includes the PCIe overhead. Without this overhead, the perfor-
mance of the computation using the parallel memory alone is expected to be
similar to the performance of a single PolyMem block with p× q lanes, running

Table 7. Latency, hardware resources and lines of code, for 8 iterations of the matrix
power operation with different memory configurations and a matrix size of 384

Memory p q b Latency Hardware resources LOC

BRAM DSP FF LUT

PolyMem 2 2 1 1557835871 1036 14 9936 11071 98

PolyMem 2 4 1 840333407 1044 17 19678 28855 98

PolyMem 4 4 1 488632423 1060 31 36138 53621 98

multi PolyMem 1 1 2 758085955 1036 14 6967 5572 188

multi PolyMem 1 2 2 394149976 1044 28 14709 12934 188

multi PolyMem 2 2 2 214032480 1060 45 24845 22418 188

NO PolyMem 1 1 4 101848419 1124 76 32852 13706 188



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 73

at 200MHz, which should be in the same order as that presented in Table 1
(i.e., 21GB/s for a 16-lane HLS-PolyMem).

6 Related Work

The concept of parallel memory is fairly old, and has been widely discussed in
scientific literature. As early as 1971, Kuck et al. discuss the advantages and
disadvantages of using memory systems with power of two memory banks [19],
based on results collected from a study on performed on the Illiac IV machine.

One of the earliest design methodologies and general designs of a parallel
memory system suitable, dedicated to image processing applications, are pre-
sented in [20]. The memory space is already organized as a 2D structure, while
the parameters p, q are the parameters of the parallel region to be accessed; the
authors discuss three different mapping functions, and ultimately demonstrate
the benefits parallel accesses bring to image processing.

In the 90s, more work has been devoted to investigating various address-
ing schemes and their implementation. For example, [9] investigates schemes
based on linear addressing transformation (i.e., XOR schemes), and the use
of these schemes for accessing memory in conflict-free manner using multiple
strides, blocks, and FFT access patterns. In [21], another memory system design,
enabling different parallel accesses to a 2D parallel memory is presented; their
design is different in that it focuses on 2D memories to be accessed by arrays
of 2D processing units, and thus their mapping and addressing functions are
specialized.

SIMD processors have fueled more research in building and using parallel
memories efficiently. For example, the use of memory systems that leverage a
prime number of memory modules to provide parallel accesses for rectangles,
rows, columns, and diagonals is investigated in [22]; the authors prove the advan-
tages in building fast mapping/addressing functions for such particular memo-
ries, an idea already envisioned and analyzed in [23]. In the same work [22], Park
also introduces a Multi Access Memory System, which provides access to multi-
ple sub-array types, although it uses memory modules in a redundant manner.
Research proposing an addressing function for 2D rectangular accesses, suitable
for multimedia applications, is presented in [10]; the aim of this work is to min-
imize the number of required memory modules for efficient (i.e., full utilization)
parallel accesses. The work in [24] also aims at the full utilization of the memory
modules, introducing a memory system based on linear skewing (the same idea
from 1971 [19]) that support accesses to block and diagonal conflict-free accesses
in a 2D space. [25] proposes a memory system with power of 2 memory modules
able to perform strided access with a power of two interval in horizontal and
vertical directions. The analysis of parallel memories is also refined - for exam-
ple, the effect of using a parallel memory to the dynamic instruction count of an
application is explored in [8].

The PRF multiview access schemes - which are fundamental for this work -
are explained in detail in [4], together with the hardware design and implemen-
tation requirements. This work introduces an efficient HLS implementation of



74 L. Stornaiuolo et al.

the PRF addressing schemes, greatly simplifying the deployment of PolyMem on
FPGAs. Alternative schemes also exist. For example, the Linear-Transformation-
Based (LTB) algorithm for automatic generation of memory partitions of multi-
dimensional arrays, which is suitable for being used during FPGA HLS loop
pipelining, is described in [11]. The Local Binary Pattern (LBP) algorithm
from [12] considers the case of multi-pattern and multi-array memory parti-
tioning. [26] discusses the advantages of a hierarchical memory structures gen-
erated on tree-based network, as well as different methods for their automatic
generation.

Building a memory hierarchy for FPGA kernels is recognized as a difficult,
error-prone task [27,28]. For example, [28–32] focus on the design of generic,
traditional caches. Moreover, the recently released High-Level Synthesis (HLS)
tools for FPGAs [33] provide a simple set of parallel access patterns to on-
chip memory starting from high-level languages implementations. More recently,
work has been done on using the Polyhedral Model to automatically determine
the module assignment and addressing functions [34]. By comparison, our work
proposes a parallel, polymorphic memory which can be exploited from HLS
tools and acts as a caching mechanism between the DRAM and the processing
logic; instead of supporting placement and replacement policies, our memory is
configured for the application at hand, and it is directly accessible for reading
and writing. Moreover, PolyMem includes a multiView feature, enabling multiple
conflict-free access types, a capability not present in other approaches [34].

Application-specific caches have also been investigated for FPGAs [26,29,35],
though none of these are polymorphic or parallel. For example, in [36], the
authors demonstrate why and how different caches can be instantiated for spe-
cific data structures with different access patterns. PolyMem starts from a similar
idea, but, benefiting from its multi-view, polymorphic design, it improves on it
by using a single large memory for all these data structures. Many of PolyMem’s
advantages arise from its PRF-based design [4], which is more flexible and per-
forms better than alternative memory systems [37–40]; its high performance in
scientific applications has also been proven for practical applications [41–43]. As
stated before, the first hardware implementation of the Polymorphic Register
File was designed in System Verilog [5]. MAX-PolyMem was the first prototype
of PolyMem written entirely in MaxJ, and targeted at Maxeler DFEs [3,6]. Our
new HLS PolyMem is an alternative HLL solution, proven to be easily integrated
with the Xilinx toolchains.

In summary, compared to previous work on enabling easy-to-use memory
hierarchies and/or caching mechanisms for FPGAs, PolyMem proposes a PRF-
based design that supports polymorphic parallel accesses through a single, multi-
view, application-specific software cache. The previous HLS implementation [3]
has demonstrated good performance, but was specifically designed to be used on
Maxeler-based systems. Our current HLS-PolyMem is the most generic imple-
mentation to date, it preserves the advantages of the previous incarnations of
the system in terms of performance and flexibility, and adds the ease-of-use of
an HLS library that can be easily integrated in the design flow of modern tools
like Vivado HLx and Vivado SDx.



Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 75

7 Conclusion and Future Work

In this paper, we presented a C++ implementation of PolyMem optimized for
Vivado HLS, ready-to-use as a library for applications requiring parallel mem-
ories. Compared to the naive optimizations using HLS array partitioning tech-
niques, the HLS PolyMem implementation is better in terms of performance,
provides high flexibility in terms of supported parallel access patterns, and
requires virtually zero implementation effort in terms of code re-engineering.
Our design exposes an easy-to-use interface to enhance design productivity for
FGPA-based applications. This interface provides methods for both the basic
parallel read/write operations, and it is extended with to support masked on-
chip parallel accesses. Furthermore, we provide a full, open-source implementa-
tion of HLS-PolyMem, supporting all the original PolyMem schemes [45]. Our
evaluation, based on comprehensive microbenchmarking, demonstrates sustained
high-performance for all these schemes. Our results demonstrate HLS-PolyMem
achieves the same level of performance as HLS-partitioning for simple access
patterns (i.e., rows and columns), and significant performance benefits compared
with HLS-partitioning for more complex access patterns. We observe bandwidth
improvement as high as 13x for complex access patterns combinations, which
HLS partitioning simply cannot support.

We also proved the flexibility of the library among the Xilinx Design Tools,
by implementing the kernels for both the Vivado workflow with a Virtex-7 VC707
and the SDx workflow with a Kintex Ultrascale 3 ADM-PCIE. Our empirical
analysis of our library on two case studies (Matrix multiplication and Markov
Chains) demonstrated competitive results in terms of latency, low code complex-
ity, but also a small overhead in terms of hardware resource utilization.

Our future work focuses on three different directions. First, we aim to provide
the usability of HLS for more case-studies, and further develop the API to better
support end-users. Second, we aim to further improve the implementation of the
HLS-PolyMem backend. For example, we consider improving the HLS PolyMem
shuffle module by exploiting a Butterfly Network [44] for the memory banks con-
nections, and enhance our HLS implementation to support both standard and
customized addressing. Third, we envision a wizard-like framework to automat-
ically analyze the user application code, estimate the potential benefits of using
HLS-PolyMem, and suggest how to actually embed the parallel memory in the
code to reach the best possible performance.

References

1. White Paper: Vivado Design Suite: “Vivado Design Suite” (2012). https://www.
xilinx.com/support/documentation/white papers/wp416-Vivado-Design-Suite.
pdf

2. Weinhardt, M., Luk, W.: Memory access optimisation for reconfigurable systems.
IEE Proc. Comput. Digit. Tech. 148(3), 105–112 (2001)

3. Ciobanu, C.B., Stramondo, G., de Laat, C., Varbanescu, A.L.: MAX-PolyMem:
high-bandwidth polymorphic parallel memories for DFEs. In: IEEE IPDPSW -
RAW 2018, pp. 107–114, May 2018

https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf
https://www.xilinx.com/support/documentation/white_papers/wp416-Vivado-Design-Suite.pdf


76 L. Stornaiuolo et al.

4. Ciobanu, C.: Customizable register files for multidimensional SIMD architectures.
Ph.D. thesis, TU Delft, The Netherlands (2013)

5. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: Scalability study of polymorphic
register files. In: Proceedings of DSD, pp. 803–808 (2012)

6. Ciobanu, C.B., et al.: EXTRA: an open platform for reconfigurable architectures.
In: SAMOS XVIII, pp. 220–229 (2018)

7. Stornaiuolo, L., et al.: HLS support for polymorphic parallel memories. In: 2018
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
pp. 143–148. IEEE (2018)

8. Gou, C., Kuzmanov, G., Gaydadjiev, G.N.: SAMS multi-layout memory: providing
multiple views of data to boost SIMD performance. In: ICS, pp. 179–188. ACM
(2010)

9. Harper, D.T.: Block, multistride vector, and FFT accesses in parallel memory
systems. IEEE Trans. Parallel Distrib. Syst. 2(1), 43–51 (1991)

10. Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: Multimedia rectangularly address-
able memory. IEEE Trans. Multimedia 8, 315–322 (2006)

11. Wang, Y., Li, P., Zhang, P., Zhang, C., Cong, J.: Memory partitioning for multi-
dimensional arrays in high-level synthesis. In: DAC, p. 12. ACM (2013)

12. Yin, S., Xie, Z., Meng, C., Liu, L., Wei, S.: Multibank memory optimization for
parallel data access in multiple data arrays. In: Proceedings of ICCAD, pp. 1–8.
IEEE (2016)

13. auf der Heide, F.M., Scheideler, C., Stemann, V.: Exploiting storage redundancy
to speed up randomized shared memory simulations. Theor. Comput. Sci. 162(2),
245–281 (1996)

14. Stramondo, G., Ciobanu, C.B., Varbanescu, A.L., de Laat, C.: Towards application-
centric parallel memories. In: Mencagli, G., et al. (eds.) Euro-Par 2018. LNCS, vol.
11339, pp. 481–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
10549-5 38

15. Arsanjani, J.J., Helbich, M., Kainz, W., Boloorani, A.D.: Integration of logistic
regression, Markov chain and cellular automata models to simulate urban expan-
sion. Int. J. Appl. Earth Obs. Geoinformation 21, 265–275 (2013)

16. Smith, A.F., Roberts, G.O.: Bayesian computation via the Gibbs sampler and
related Markov chain Monte Carlo methods. J. R. Stat. Society. Ser. B (Methodol.)
55, 3–23 (1993)

17. Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Prac-
tice. CRC Press, Boca Raton (1995)

18. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation meth-
ods for accelerating PageRank computations. In: Proceedings of the 12th Interna-
tional Conference on World Wide Web, pp. 261–270. ACM (2003)

19. Budnik, P., Kuck, D.: The organization and use of parallel memories. IEEE Trans.
Comput. C–20(12), 1566–1569 (1971)

20. Van Voorhis, D.C., Morrin, T.: Memory systems for image processing. IEEE Trans.
Comput. C–27(2), 113–125 (1978)

21. Kumagai, T., Sugai, N., Takakuwa, M.: Access methods of a two-dimensional
access memory by two-dimensional inverse omega network. Syst. Comput. Jpn.
22(7), 22–31 (1991)

22. Park, J.W.: Multiaccess memory system for attached SIMD computer. IEEE Trans.
Comput. 53(4), 439–452 (2004)

23. Lawrie, D.H., Vora, C.R.: The prime memory system for array access. IEEE Trans.
Comput. 31(5), 435–442 (1982)

https://doi.org/10.1007/978-3-030-10549-5_38
https://doi.org/10.1007/978-3-030-10549-5_38


Building High-Performance, Easy-to-Use Polymorphic Parallel Memories 77

24. Liu, C., Yan, X., Qin, X.: An optimized linear skewing interleave scheme for on-
chip multi-access memory systems. In: Proceedings of the 17th ACM Great Lakes
Symposium on VLSI, GLSVLSI 2007, pp. 8–13 (2007)

25. Peng, J.y., Yan, X.l., Li, D.x., Chen, L.z.: A parallel memory architecture for video
coding. J. Zhejiang Univ. Sci. A 9, 1644–1655 (2008). https://doi.org/10.1631/
jzus.A0820052

26. Yang, H.J., Fleming, K., Winterstein, F., Chen, A.I., Adler, M., Emer, J.: Auto-
matic construction of program-optimized FPGA memory networks. In: FPGA
2017, pp. 125–134 (2017)

27. Putnam, A., et al.: Performance and power of cache-based reconfigurable comput-
ing. In: ISCA 2009, pp. 395–405 (2009)

28. Adler, M., Fleming, K.E., Parashar, A., Pellauer, M., Emer, J.: Leap scratchpads:
automatic memory and cache management for reconfigurable logic. In: FPGA 2011,
pp. 25–28 (2011)

29. Chung, E.S., Hoe, J.C., Mai, K.: CoRAM: an in-fabric memory architecture for
FPGA-based computing. In: FPGA 2011, pp. 97–106 (2011)

30. Yiannacouras, P., Rose, J.: A parameterized automatic cache generator for FPGAs.
In: FPT 2003 (2003)

31. Gil, A.S., Benitez, J.B., Calvino, M.H., Gomez, E.H.: Reconfigurable cache imple-
mented on an FPGA. In: ReConFig 2010 (2010)

32. Mirian, V., Chow, P.: FCache: a system for cache coherent processing on FPGAs.
In: FPGA 2012, pp. 233–236 (2012)

33. Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., Zhang, Z.: High-
level synthesis for FPGAs: from prototyping to deployment. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 30(4), 473–491 (2011)

34. Wang, Y., Li, P., Cong, J.: Theory and algorithm for generalized memory partition-
ing in high-level synthesis. In: Proceedings of the 2014 ACM/SIGDA International
Symposium on Field-programmable Gate Arrays, FPGA 2014, pp. 199–208. ACM,
New York (2014)

35. Putnam, A.R., Bennett, D., Dellinger, E., Mason, J., Sundararajan, P.: CHiMPS:
a high-level compilation flow for hybrid CPU-FPGA architectures. In: FPGA 2008,
p. 261 (2008)

36. Nalabalapu, P., Sass, R.: Bandwidth management with a reconfigurable data cache.
In: IPDPS 2005. IEEE (2005)

37. Kuck, D., Stokes, R.: The Burroughs scientific processor (BSP). IEEE Trans. Com-
put. C–31(5), 363–376 (1982)

38. Panda, D., Hwang, K.: Reconfigurable vector register windows for fast matrix
computation on the orthogonal multiprocessor. In: Proceedings of ASAP, pp. 202–
213, May–July 1990

39. Corbal, J., Espasa, R., Valero, M.: MOM: a matrix SIMD instruction set architec-
ture for multimedia applications. In: Proceedings of the SC 1999 Conference, pp.
1–12 (1999)

40. Park, J., Park, S.B., Balfour, J.D., Black-Schaffer, D., Kozyrakis, C., Dally, W.J.:
Register pointer architecture for efficient embedded processors. In: Proceedings of
DATE, pp. 600–605 (2007)

41. Ramirez, A., et al.: The SARC architecture. IEEE Micro 30(5), 16–29 (2010)
42. Ciobanu, C., Martorell, X., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.: Scal-

ability evaluation of a polymorphic register file: a CG case study. In: Proceedings
of ARCS, pp. 13–25 (2011)

43. Ciobanu, C., Gaydadjiev, G., Pilato, C., Sciuto, D.: The case for polymorphic
registers in dataflow computing. Int. J. Parallel Program. 46, 1185–1219 (2018)

https://doi.org/10.1631/jzus.A0820052
https://doi.org/10.1631/jzus.A0820052


78 L. Stornaiuolo et al.

44. Avior, A., Calamoneri, T., Even, S., Litman, A., Rosenberg, A.L.: A tight layout
of the butterfly network. Theory Comput. Syst. 31(4), 475–488 (1998)

45. https://github.com/storna/hls polymem

https://github.com/storna/hls_polymem

	Preface
	Organization
	Contents
	A 65nm CMOS Synthesizable Digital Low-Dropout Regulator Based on Voltage-to-Time Conversion with 99.6% Current Efficiency at 10-mA Load
	1 Introduction
	2 Proposed Synthesizable LDO
	2.1 Architecture
	2.2 Transfer Function of the Control Loop
	2.3 Design Procedure of the Proposed LDO

	3 Prototype Implementation and Measurement Results
	4 Conclusion
	References

	An Instruction Set Architecture for Secure, Low-Power, Dynamic IoT Communication
	1 Introduction
	2 Pulsed-Signaling Techniques
	3 Pulsed-Index Communication Interface Architecture (PICIA)
	3.1 Register Set
	3.2 Instruction Formats
	3.3 Addressing Modes
	3.4 Interrupts
	3.5 External I/O

	4 PICIA Assembly Language
	4.1 Type 1 Instructions (I-Type 1)
	4.2 Type 2 Instructions (I-Type 2)
	4.3 Type 3 Instructions (I-Type 3)

	5 Experimental Verification and Results
	6 Securing PICIA
	6.1 Extended Register Set
	6.2 Extended Instruction Set
	6.3 Instruction Format

	7 Conclusions
	References

	The Connection Layout in a Lattice of Four-Terminal Switches
	1 Introduction
	2 Rearranging the Lattice
	2.1 Solving Problem1
	2.2 Hardness of Problem1
	2.3 Solving Problem2
	2.4 Hardness of Problem2

	3 Solving Problem3
	3.1 Impossible Instances
	3.2 Hardness of Problem3
	3.3 Heuristics for Problem3

	4 Experimental Results
	5 Concluding Remarks
	References

	Building High-Performance, Easy-to-Use Polymorphic Parallel Memories with HLS
	1 Introduction
	2 Parallel Memories: Challenges and Solutions
	2.1 Parallel Memories
	2.2 The Polymorphic Register File and PolyMem
	2.3 Matrix Storage in a Parallel Memory

	3 Implementation Details
	4 Evaluation and Results
	4.1 Experimental Setup
	4.2 Results

	5 Application Case-Studies
	5.1 Matrix Multiplication (MM)
	5.2 Markov Chain and the Matrix Power Operation

	6 Related Work
	7 Conclusion and Future Work
	References

	Rectification of Arithmetic Circuits with Craig Interpolants in Finite Fields
	1 Introduction
	1.1 Problem Description, Objectives, and Contributions

	2 Review of Previous Work
	3 Preliminaries: Notation and Background Results
	4 Algebraic Miter for Equivalence Checking
	5 Formulating the Rectification Check
	5.1 Single Fix Rectification

	6 Craig Interpolants in Finite Fields
	6.1 Computing a Rectification Function from Craig Interpolants

	7 Efficient Gröbner Basis Computations for EL and EH
	8 Experimental Results
	9 Conclusion
	References

	Energy-Accuracy Scalable Deep Convolutional Neural Networks: A Pareto Analysis
	1 Introduction
	2 Related Works
	2.1 Adaptive ConvNets
	2.2 Fixed-Point Quantization

	3 Energy-Accuracy Scalable Convolution
	3.1 SW: Multiprecision Convolution
	3.2 HW: Variable-Latency Processing Element
	3.3 Hardware Characterization

	4 Energy-Driven Precision Assignment
	4.1 Fixed-Point Quantization
	4.2 Multiprecision Fixed-Point ConvNets

	5 Results
	5.1 Experimental Set-up
	5.2 Benchmarks
	5.3 Results

	6 Conclusions
	References

	ReRAM Based In-Memory Computation of Single Bit Error Correcting BCH Code
	1 Introduction
	2 Preliminaries
	2.1 Galois Field Arithmetic
	2.2 Basics of BCH Encoding and Decoding Operation
	2.3 In-Memory Computing Using ReRAM

	3 Methodology
	3.1 Generation of GF Elements
	3.2 Encoding and Decoding Operations

	4 Experiment
	5 Conclusion
	References

	Optimizing Performance and Energy Overheads Due to Fanout in In-Memory Computing Systems
	1 Introduction
	2 Background and Related Work
	2.1 Memristor
	2.2 Memristor Aided LoGIC (MAGIC)
	2.3 In-Memory Computation Using Memristor Crossbar
	2.4 Fanout

	3 Proposed Approach
	3.1 Overall Approach: Case 1
	3.2 Mapping Scenario Analysis: Case 1
	3.3 Overall Approach: Case 2
	3.4 Mapping Scenario Analysis: Case 2

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Conclusions
	References

	Mapping Spiking Neural Networks on Multi-core Neuromorphic Platforms: Problem Formulation and Performance Analysis
	1 Introduction
	2 Background
	2.1 Target Application: Neural Network Simulation
	2.2 Target Architecture: Neuromorphic MPSoCs Board

	3 Problem Formulation
	3.1 Problem Relaxation
	3.2 Graph Partitioning

	4 Placement
	4.1 Naïve Placement
	4.2 Spectral Embedding
	4.3 Scotch
	4.4 Simulated Annealing

	5 Results
	6 Conclusions
	References

	Improved Test Solutions for COTS-Based Systems in Space Applications
	Abstract
	1 Introduction
	2 The MaMMoTH-Up System
	2.1 General Architecture and Functions
	2.2 The OR1200 Processor
	2.3 The UART Core

	3 Comparing the Functional and the Structural Approaches
	3.1 Background
	3.2 The Functional Test
	3.3 The Structural Test
	3.4 Results

	4 Safe Faults
	4.1 Safe Faults Identification
	4.2 Results

	5 Conclusions
	Acknowledgments
	References

	Analysis of Bridge Defects in STT-MRAM Cells Under Process Variations and a Robust DFT Technique for Their Detection
	1 Introduction
	2 Memories Based on STT-MRAM
	3 Read and Write Operations of STT-MRAM Cells
	3.1 Read Operation
	3.2 Write Operation

	4 Write Time Definition for an STT-MRAM Cell
	5 Analysis of STT-MRAM Behavior Under Short Defects
	5.1 Defect Model for Short Defects in the STT-MRAM
	5.2 Impact of Short Defects on Write Operation
	5.3 Impact of Short Defects on the Read Operation
	5.4 Summary Behavior of Write and Read Operation Under Short Defects

	6 Proposed Test Technique
	6.1 Fundamental of the Proposed Test Technique
	6.2 Proposed Test Circuitry

	7 Cost and Comparison of Our Proposal with Logic Test
	7.1 Detection Probability Comparison
	7.2 Hardware Comparison
	7.3 Other Issues
	7.4 Short Defects that Can Be Detected

	8 Conclusions
	References

	Assessment of Low-Budget Targeted Cyberattacks Against Power Systems
	1 Introduction
	2 Background
	2.1 Power Systems
	2.2 Protection and Control Equipment
	2.3 Grid Modernization
	2.4 Global Positioning System

	3 Open Sourcing Power System Cyberattacks
	3.1 Threat Model
	3.2 Open Source Intelligence for Modeling Power Systems
	3.3 Identifying Critical Locations with Contingency Analysis
	3.4 Open Source Exploitation - OSEXP
	3.5 Instantiation of an OSEXP Attack: GPS Time Spoofing Against PMUs

	4 Experimental Evaluation
	4.1 Power System Modeling
	4.2 GPS Experimental Setup
	4.3 Budget

	5 Conclusions
	References

	Efficient Hardware/Software Co-design for NTRU
	1 Introduction
	2 Related Works
	3 NTRU
	3.1 Notation
	3.2 Short Vector Encryption Scheme (SVES)
	3.3 NTRU with SVES

	4 NTRU Full Hardware Architecture
	4.1 Convolution (CONV)
	4.2 Blinding Polynomial Generation Method (BPGM)
	4.3 Mask Generation Function (MGF)
	4.4 Modulo Reduction (MOD P)

	5 NTRU HW/SW Co-design
	5.1 Software Implementation

	6 Security Analysis
	6.1 Optimized Architecture
	6.2 Vulnerabilities

	7 Results
	7.1 Results of Full Hardware Implementation
	7.2 Results of HW/SW Co-design

	8 Conclusion
	References

	Correction to: Improved Test Solutions for COTS-Based Systems in Space Applications
	Correction to: Chapter “Improved Test Solutions for COTS-Based Systems in Space Applications” in: N. Bombieri et al. (Eds.): VLSI-SoC: Design and Engineering of Electronics Systems Based on New Computing Paradigms, IFIP AICT 561, https://doi.org/10.1007/978-3-030-23425-6_10

	Author Index

