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Abstract

The Lightning Network (LN) was released on Bitcoin’s mainnet in January 2018 as a
solution to favor scalability. This work analyses the evolution of the LN during its first
year of existence in order to assess its impact over some of the core fundamentals of
Bitcoin, such as: node centralization, resilience against attacks and disruptions,
anonymity of users, autonomous coordination of its members. Using a network theory
approach, we find that the LN represents a centralized configuration with few highly
active nodes playing as hubs in that system. We show that the removal of these central
nodes is likely to generate a remarkable drop in the LN’s efficiency, while the network
appears robust to random disruptions. In addition, we observe that improvements in
efficiency during the sample period are primarily due to the increase in the capacity
installed on the channels, while nodes’ synchronization does not emerge as a distinctive
feature of the LN. Finally, the analysis of the structure of the network suggests a good
preservation of nodes’ identity against attackers with prior knowledge about topological
characteristics of their targets, but also that LN is probably weak against attackers that
are within the system.

Introduction 1

Since its inception, Bitcoin has been known as a technology unable to perform a great 2

amount of transactions per unit of time [1]. Being coded in such a way that on average 3

a single block is mined and added to the blockchain every ten minutes, Bitcoin can 4

perform a maximum of seven transactions per second. In comparison, Visa can 5

routinely process two thousand transactions per second, with peaks of several thousand 6

transfers [1, 2]. 7

Miners are those players in this system that can build and add new constituencies to 8

the blockchain, so putting them in place to impose higher fees in times of great demand. 9

The most emblematic example occurred in 2017, when fees skyrocketed from less than 10

$1 per transaction to a maximum of nearly $40 [3]. Fees mainly depend on the amount 11

of transactions waiting to be added in the blockchain, regardless of the volume of 12

Bitcoins transacted per time. For large transferred amounts, the blockchain can 13

therefore be very cheap compared to traditional means of payment, potentially moving 14

the equivalent of several million of dollars for only a few cents, while it can be extremely 15

economically inefficient for routine payments and for micro-payments. These aspects 16

contribute to stimulate the growing interest for the deployment of blockchain solutions 17

in financial applications [4–6]. 18

It is against this background that some attempts have been proposed to increase 19

throughput and lower latencies. For instance, a hardfork of the Bitcoin’s blockchain 20

occurred in November 2017 with the implementation of the Segregated Witness (SegWit, 21
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Bitcoin Improvement Proposal 141) that quadruplicated the number of transactions 22

that can be placed into a single block. Another example occurred in August 2017 with 23

the hardfork that created Bitcoin Cash, a version of Bitcoin with blocks of 8Mb. 24

Among these infrastructural improvements, a recent novelty refers to the deployment 25

of the Lightning Network (hereinafter, LN). LN was initially proposed on February 2015, 26

while the corresponding mainnet was launched in January 2018, after a period of testing 27

on a copy of the original Bitcoin’s blockchain called “Testned”. LN is a system of 28

channels for micro-payments built on top of Bitcoin’s blockchain and, therefore, 29

indicated as a “Layer 2” solution based on smart contracts. In practice, two 30

counterparts can decide to open a bilateral channel by issuing a multi-signed 31

transaction on the blockchain, thereafter, allowing them to exchange back and forth a 32

predefined amount of bitcoins. This system is based on off-chain transactions, which 33

means that transactions on the LN do not need to be uploaded on the blockchain at 34

each iteration [7]. Eventually, a multi-signed transaction corresponding to the final 35

balance between the two counterparts will be released to the blockchain when that 36

channel is no longer needed. For this reason, nowadays LN is considered among the 37

most recognized solutions for scalability. 38

More practically, to open a channel in the LN, a preliminary transaction (namely, 39

the “channel funding”) between two counterparts is issued on the blockchain. After that 40

initial transaction, these two counterparts need to issue new “commitment transactions” 41

in order to exchange additional flows. These transactions simply refer to the balance of 42

the channel signed by the two counterparts, whose amount is not required to be 43

broadcasted to the entire network. The only exception is the final commitment, also 44

referred to as a “closing transaction”, since it closes the bilateral channel and sets the 45

new balance on the blockchain. If a channel is excessively unbalanced towards one 46

counterpart, then this channel is considered “unbalanced” and can constitute a problem 47

for other peers interested in exploiting that edge to route their transactions. This 48

multi-hop framework allows one party to send payments to other counterparts, without 49

issuing a brand-new channel, whenever a common path linking more channels is present 50

and has enough available capacity. As shown in Fig 1, if node “Eugene” wants to send 51

one Bitcoin to node “Manfred” on the LN without opening a direct channel, it must 52

search for another node that is connected to both these sources and target nodes with 53

enough capacity to allow the transfer of one Bitcoin to “Manfred” in exchange of one 54

Bitcoin from “Eugene” plus a fee. This mechanism is based on Hashed Time Lock 55

Contracts (HTLCs), which are cryptographic agreements issued off-chain and utilized to 56

make it extremely difficult for nodes in the multi-hop path to steal the amount 57

transacted through them [8,9]. In the illustrative example presented in Fig 1, nodes 58

“Georg” and “Gustav” represent those intermediate nodes through which the multi-hop 59

transaction can be performed and connect “Eugene” with “Manfred”. 60

Fig 1. Representation of a multi-hop transaction

Fig1.tif

The interest around LN and its promises for a scalable use of Bitcoin lead many to 61

invest time and money in its development and implementation. One year after its 62

inception on the mainnet, we believe it is time to assess the performance of the LN 63

along some of the features that motivated its deployment. For instance, during the 64

development of the LN, one of the most concerning aspects has been the possibility that 65

some participants would become very central in that system. This issue resides in the 66

nature of the multi-hop framework. Counterparts with higher capacity are, in fact, more 67

likely to act as payment hubs, de facto centralizing the underlying system [1]. The 68

centralization of the LN would create several concerns about its functioning and privacy. 69

Hubs may collect, in fact, information on a huge number of counterparts and even 70
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censor transactions or raise fees thanks to their key position in the system [10]. 71

To gauge such emerging topological features, we perform a network analysis of the 72

LN using one year data from the launch of the LN at the beginning of 2018 to January 73

2019. We note a tendency towards a centralized structure with a few highly connected 74

nodes. This aspect could pose a threat and a drawback for the value propositions of 75

Bitcoin. Highly connected nodes could be used, in fact, to harvest a great amount of 76

information coming from the flow they intercept. This means that even if the sending 77

node changes the routing plan, then there is still a high probability that such central 78

nodes, playing as hubs, are so well connected to the rest of the system to be included 79

again in the alternative new path. Even if the hub is legit, its presence could therefore 80

constitute an issue for the functioning of the LN and its adoption. 81

The identification of the topological properties of the LN has, therefore, guided our 82

assessment of its performance. For instance, very central nodes could pose as 83

preferential targets for attacks perpetrated to destabilize the network. We notice, in 84

fact, that the removal of key central nodes are likely to determine a disruptive effect, 85

while the network shows a remarkable robustness against random failures. Interestingly, 86

we also note that during the sample period, the efficiency of the LN has shown an 87

overall increase in its ability to transfer information mainly due to the growth in the 88

number of edges and their stored capacities rather than their better allocation within 89

the network. We also tackle the issue of synchronization among nodes, which is an 90

aspect strictly related to the efficiency of the network. We envisage each edge as a 91

binary oscillator, from an open to a close position representing the state of the balance 92

of the channel connecting two counterparts. The absence of coordination in the way 93

channels are re-balanced may, in fact, limit the overall adoption of the underlying 94

infrastructure. Our analysis reveals a slight deterioration of the network’s capability to 95

promote coordination in the way participants open and close their channels during the 96

sampled period. Finally, we assess the anonymity extent of the LN, which is another key 97

feature of the Bitcoin framework and we find that our estimates depict a LN which is 98

becoming more capable to protect users’ identity from attackers outside the system, 99

while it appears less able to preserve anonymity from inner attackers. 100

Materials and methods 101

To study how the LN has evolved during the sample period, we follow similar 102

approaches proposed by [11–13] for the Bitcoin’s transaction graph, thus adopting a 103

network perspective where each node is a single address representing a user. Edges 104

between pairs of nodes are, instead, the actual channels created by issuing a transaction 105

on the blockchain, while their capacity is measured by the amount of stored Bitcoins 106

(hereinafter, BTC). 107

Our reference period ranges over an entire year from the 12th of January 2018, 108

which corresponds to the launch of the LN on the mainnet, to the 12th of January 2019. 109

Our final dataset is comprised of about 4189 different nodes involved in 67917 channels. 110

We describe the latter by the pairs of nodes involved in the respective channels, the 111

opening and closing dates (if the channels have been closed during the sample period), 112

the amount of stored BTC and the corresponding value converted in USD. 113

We employ the reciprocal of the capacity of the nodes to create an undirected 114

weighted network. The unweighted version of the LN would provide an inaccurate 115

representation of the system since it poses poorly endowed edges with the same 116

capability to perform the multi-hop routing as those edges richer in terms of stored 117

BTC. This aspect is particularly relevant for practical purposes as highlighted in [14], 118

where it has been shown that the probability to successfully route a payment drops 119

dramatically for values above a few dollars. 120
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For representative purposes, the dataset has been divided into twelve snapshots 121

corresponding to the twelfth of each month from February 2018 to January 2019. 122

Although such investigation framework would prevent a proper analysis of the time 123

dynamics governing the evolution of the LN, it allows us to depict the main features 124

and their changes in time that are at the ground level of the core fundamentals of the 125

phenomenon under study. We provide some descriptive topological properties of these 126

twelve snapshots in Table 1. 127

Table 1. A Collection of Topological Measures for the LN. Columns in the table refer
respectively to: number of nodes, number of edges, density of the network, median degree, median
strength, average degree, average strength, average edges’ capacity, total capacity of the network,
diameter, radius, transitivity, portion of the capacity of the edges composing the minimum spanning
tree, assortativity coefficients for both the weighted and unweighted networks, correlation between
nodes’ degree and their average capacity (asterisks **,*** refer to significance at 1% and 0.1%,
respectively). We refer to the weighted adjacency matrix as W . Strength and capacity are expressed in
USD.

Nodes Edges Density
Median Median Avg. Avg. Avg. Edge
Degree Strength Degree Strength Capacity

Feb-18 518 1910 0.014 2 22.09 7.33 208.77 28.31

Mar-18 733 2060 0.008 2 18.91 5.60 121.15 21.56

Apr-18 1359 6029 0.006 3 14.71 8.70 161.89 18.25

May-18 1721 8172 0.005 3 17.72 9.35 203.95 21.48

Jun-18 1808 7876 0.005 3 13.78 8.57 174.18 19.99

Jul-18 2039 8996 0.004 3 15.01 8.57 380.66 43.14

Aug-18 2130 11137 0.005 3 21.80 10.07 564.55 53.99

Sep-18 2337 12312 0.004 3 25.50 10.01 621.25 58.96

Oct-18 2466 12429 0.004 3 30.54 9.62 578.33 57.37

Nov-18 2626 12958 0.004 3 31.33 9.47 558.71 56.61

Dec-18 2878 17086 0.004 3 20.90 11.40 1136.71 95.73

Jan-19 3613 23853 0.003 3 33.65 12.48 1173.98 88.91

Total
Diameter

Radius Transitivity MST Assortivity
Assortivity

Degree-Strength
Capacity ($) (LCC) (W) (W) (W) correlation

Feb-18 54072 6 4 12% 66% -0.16 -0.37 0.03

Mar-18 44401 7 4 5% 74% -0.14 -0.37 0.02

Apr-18 110003 7 4 9% 68% -0.05 -0.27 0.03

May-18 175503 8 5 9% 64% -0.06 -0.29 0.04

Jun-18 157455 8 5 7% 64% -0.05 -0.28 0.04

Jul-18 388082 8 5 7% 69% -0.01 -0.26 0.05∗∗

Aug-18 601241 8 5 9% 55% -0.03 -0.25 0.14∗∗∗

Sep-18 725934 8 5 9% 48% -0.07 -0.26 0.17∗∗∗

Oct-18 713085 8 5 9% 46% -0.07 -0.25 0.16∗∗∗

Nov-18 733584 9 5 8% 48% -0.07 -0.27 0.14∗∗∗

Dec-18 1635724 9 5 10% 25% 0.01 -0.24 0.25∗∗∗

Jan-19 2120788 9 5 10% 25% -0.07 -0.22 0.21∗∗∗

The largest connected components for each of these snapshots account for almost the 128

entire network, with only a few disconnected components mainly composed by single 129

pairs. The number of nodes simultaneously on-line in our time snapshots grows from 130

518 (in February 2018) to 3613 (in January 2019), while the corresponding number of 131

channels increases from 1910 to 23853. This determines a decreasing pattern in the 132

density of the links present in the network, which is only 1.45% in February 2018 and 133

reaches even lower values in January 2019 (about 0.37%). The LN has been evolving, 134

therefore, from a fairy sparse initial configuration to even higher levels of sparsity along 135

its short life. Interestingly, the degree distribution shows the tendency of the network to 136
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establish a few channels per node. The median degree, for instance, increases from a 137

value of only 2 (in February 2018) to 3 (in January 2019) edges per node, while the 138

corresponding average values move from about 7 to 12.5. This is an interesting aspect of 139

the LN given its need to route transactions, but also given the vocation of the Bitcoin 140

framework to be an uncentralized system. 141

However, an important aspect is the distribution of the strength and its evolution. 142

Here we refer to the strength of a node as determined by the weighted sum of all its 143

edges, taking into consideration the fact that nodes with higher values of strength stand 144

for users with higher capability to accept flows of transactions through their channels. 145

The median value stays almost stable over time (ranging between $13.78 and $33.65), 146

while the average value quintuplicates during the sample period (from $208.77 in the 147

first observation to $1173.98 in the last one). This clearly signals the enlargement of the 148

network and, possibly, the deployment of very active nodes. Similarly, the average 149

capacity installed on the channels increased considerably. As a result, the overall total 150

capacity of the system exhibits a sharp increase during the sample period. 151

Moreover, we explore the assortativity of the weighted network [15] and we find a 152

slightly disassortative tendency along the entire period, thus placing the LN in analogy 153

with infrastructural networks, such as railway stations [16], national airport 154

systems [17], and information, technological and biological networks [18]. This negative 155

relationship is emphasized in the unweighted version of the network. Surprisingly, we 156

notice, however, how being highly connected with the rest of the system is not strongly 157

correlated with the average capacity. This phenomenon could be in part explained by 158

the different behaviors of “poor” vs. “wealthy” (in terms of their actual disposable 159

BTC) nodes to form channels: “poor” nodes may opt to connect to hubs in order to 160

save the transaction fees required to open and close channels, while more “wealthy” 161

nodes may simply connect directly to other nodes bypassing hubs. In addition, many 162

channels may have been created as an attempt to test the LN without committing too 163

many satoshis (namely, this is the minimum amount of transferable BTC corresponding 164

to 0.00000001 BTC). Finally, Table 1 shows that the portion of the capacity installed on 165

edges that are part of the minimum spanning tree (MST) is decreasing over time, while 166

the presence of simple patterns in the formation of edges (see, for instance, the 167

Transitivity coefficient) has remained relatively stable. Although the network is 168

expanding (see also the Diameter and the Radius coefficients), we thus observe that 169

local structures appear diffused and recurrent over time. 170

Results 171

The way nodes tend to create channels is of utmost importance for the goals of the LN 172

to serve as a facilitating environment to favour scalability and adoption. The following 173

sections will focus, therefore, on specific topological aspects directly connected to 174

relevant pillars raised by the deployment of the LN. Firstly, we analyze the extent of 175

centralization in the network, i.e., whether the network presents very central nodes that, 176

playing a role like hubs, disobey the decentralization mission of the Bitcoin framework. 177

Secondly, we assess the efficiency of the LN, i.e., its capacity to disseminate information 178

through its nodes, which is a critical aspect for routing transactions. Thirdly, we focus 179

on the robustness of the network, i.e., its resilience against multiple failures among its 180

nodes that may occur due to hacking activities or infrastructural disruptions. Next, we 181

study the synchronization level of the LN, an issue related to the possibility that 182

multiple critical nodes may act with autonomous coordination, for instance by closing 183

channels and damaging the overall efficiency of the network. Finally, we analyze the 184

level of anonymity that is provided by the emerging network configuration. 185
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Centralization 186

One of the main concerns related to the LN refers to the emergence of configurations 187

with very central nodes acting as hubs, thus undermining the Blockchain aim of 188

promoting a highly decentralized system. In fact, since its establishment the LN has 189

shown the presence of some very central players in terms of number of connections. 190

However, although a binary representation is well diffused in network analysis, the LN is 191

not, in practice, a binary system and the amount of capacity installed on each edge is of 192

utmost importance for its functioning and scalability. Hence, simply referring to the 193

degree distribution would basically mean that each channel is assumed to be identical, 194

implying that those with a capacity of few satoshis are considered as important as those 195

with a whole stored BTC, which are instead much more able to perform multi-hop 196

transactions. For this reason, in this subsection we refer to the strength distribution, 197

which has been already applied to characterize nodes’ centralities in many different 198

contexts, such as stock markets, national railways and proteins [19–23]. 199

To take into account the relevance of the capacity installed on the channels, we plot 200

in Fig 2 the complementary cumulative distribution function of the strength values. We 201

also visualize the fitted distribution of the strength against the Log-Normal (in green) 202

and the Power-Law (in red) distributions. The latter is also tested with the variant of 203

the Kolmogorov-Smirnov test proposed in [24]. For instance, a typical feature of a 204

scale-free network, hence of a network with some very central nodes surrounded by a 205

large cloud of more peripheral nodes, is the presence of a Power-Law like decline in the 206

tail of the distribution [25,26]. Indeed, as shown in Fig 2, the Power-Law seems to 207

provide a reasonable fit along the sample period. Interestingly, the last two snapshots 208

show also the presence of an exponential decay in the upper tail which is likely to be 209

due to a technological constraint in the LN, given that the protocol itself limits the 210

possible amount installed on a single channel to 224 satoshis [27]. More generally, Fig 2 211

suggests that a bundle of nodes can be highly connected to the rest of the system, 212

largely characterized by nodes with only a few weak (in terms of capacity) connections. 213

Fig 2. Strength Distributions. The log-log plots show the fitted Power-Law (in red) and the
Log-Normal (in green) distributions for the cCDF of the strength distribution. We binned data using 50
quantiles; to take into consideration the skeweness within the bins we aggregated by medians. The
strength distributions for the original data are reported in the plot inserts. In December 2018 and
January 2019 we can notice the sudden decay due to the limit in capacities embedded in the protocol.

Fig2.tif

The presence of hubs is also a key element to differentiate between random and 214

scale-free networks. In many real-world cases, incoming nodes prefer in fact to create 215

connections with already well-established ones [26,28,29]. Fig 3 shows the amount of 216

connections between new nodes (spawned at time T ) and the ones already present at 217

time T − 1 versus the strength of the latter ones at time T − 1. A clear tendency for 218

new nodes to prefer opening channels with already well-established nodes emerges from 219

the figure. The LN seems that may resemble, therefore, an “hub and spoke” 220

configuration with some extremely well connected and endowed nodes acting as hubs 221

capable to attract and create connections with a great number of other new nodes. 222

We also notice the tendency of the network towards a more stable composition over 223

time of the top wealthiest nodes in terms of capacity. For instance, among the 409 nodes 224

that belong to the “top 5%” at least once in the time snapshots, only 62 appear more 225

than 50% of the times. If we consider more recent observations, this proportion increases 226

significantly since 138 out of 185 nodes are present in both December 2018 and January 227

2019. Moreover, the sample period witnessed a massive increase in the heterogeneity 228

level of the strength distribution. In the first snapshot, the lower 5% percentile had an 229

average strength of $0.2, compared to the top 5% that had average strength of about 230
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$2705. Conversely, at the end of the period such gap increased enormously, with the 231

bottom 5% showing an average strength of $0.1 and the top 5% of about $17356. 232

Fig 3. Tendency of Incoming Nodes to Form Channels. The log-log plots show the amount of
channels formed by new nodes with well-established ones, the latter ranked on the x -axis with respect
to their strength values at time T − 1.

Fig3.tif

Overall, these findings seem to support one of the original criticism regarding the 233

capacity of the LN to remain a decentralized system. One may argue, in fact, that such 234

emerging configuration is influenced by the multi-hop framework in which nodes, and in 235

particular newcomers, have opted to form connections with few very central peers in 236

order to efficiently spread transactions throughout the system. For this reason, in the 237

next subsection we analyze whether the configuration of the system is able to effectively 238

spread flows across its nodes by showing how the enlargement of the system has affected 239

the evolution of the LN’s efficiency. 240

Efficiency 241

A critical aspect for the functioning of the LN refers to the manner in which 242

transactions are performed in the multi-hop framework. To study the efficiency of the 243

network we employ the global efficiency of the network [30,31] that measures the sum of 244

the inverse of all the shortest paths of each node and normalizes it by the total number 245

of possible connections. In a weighted graph, global efficiency is thus affected by both 246

the level of interconnectivity between nodes and the distribution of the installed 247

capacity among the edges. In formula: E (G) = 1
N(N−1) ∗

∑
i 6=jεG

1
dij

, where N is the 248

number of nodes in graph G and dij is the geodesic distance between i and j. Then, to 249

better investigate the dynamics of the efficiency scores we normalize E(G) by the global 250

efficiency of an ideal network of the same size that is completely connected and equally 251

weighted (namely, E(Gideal)). In formula: ENorm(G) = E(G)
E(Gideal)

. These indicators help 252

us to show how information (in our case Bitcoins) can move efficiently through the LN 253

and reach different nodes. Hence, the higher the values of E(G) (or of ENorm(G)), the 254

more efficient is the network. 255

A rise in the efficiency of a network can thus be due to the optimization of its 256

structure, or due to an increase in the deployed resources across edges. Table 2 shows 257

that the LN seems to have become more efficient over time as indicated by E(G), 258

although when we consider ENorm(G) such improvement seems to be much more 259

narrow. In addition, Table 2 reports the average local efficiency among all the nodes 260

within the network (< E Local(G) >), which is a measure of the efficiency of a node’s 261

neighbourhood when deprived of that node. Interestingly, both the average local 262

efficiency and its normalized variant (< E LocalNorm(G) >) indicate a trend fairly 263

similar to the corresponding global efficiencies. Overall, the LN seems to be therefore a 264

system that is gradually becoming more efficient, especially after the second half of 2018. 265

Table 2. Efficiency of the LN. Global and local efficiencies and their normalized variants against
an ideal complete network where the total capacity is allocated evenly among all the N(N − 1) edges.

Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 Jan-19

E(G) 8.00 4.76 4.99 5.95 5.05 10.94 14.42 15.86 14.38 14.34 16.63 17.90

ENorm(G) 0.15 0.08 0.07 0.06 0.05 0.09 0.11 0.09 0.08 0.07 0.12 0.08

< E Local(G) > 13.23 4.15 6.47 8.37 9.61 17.68 33.02 42.47 34.91 27.38 38.22 41.27

< E LocalNorm(G) > 0.25 0.07 0.10 0.08 0.10 0.15 0.24 0.25 0.18 0.13 0.27 0.18

There should exist, therefore, a trade-off between the efficiency of the ideal network 266

and the actual cost of implementing it. Following [30], we take into account this aspect 267
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and we compute the network’s cost function as: CNorm(G) =
∑
i6=jεG aijγ(lij)∑
i6=jεGideal γ(lij)

, with γ 268

the cost evaluator function that we assume to be linear (as in most of the cases studied 269

in [30]), and entry aij equal to 1 if there is a link connecting node i to node j, and 0 270

otherwise. Hence, CNorm(G) assumes values in [0, 1], with 1 if the network is 271

completely connected. In our case, the cost of opening a channel does not depend on 272

other variables besides Bitcoin’s transaction fees, which we assume to be the same for 273

each possible channel (i.e., the cost to connect node i to node j is assumed to be 274

equivalent to open a channel between any other pair of nodes x and y in the network, 275

regardless their installed capacities). For this reason, in this simplified case CNorm(LN) 276

is equal to the density of the graph. As argued by [30], an “Economic Small World” 277

(ESW) network presents both high global and local efficiencies at a low price once 278

normalized against the ideal network. Comparing estimates of the efficiency of the 279

World Wide Web and the Internet Network provided in [30], we notice that both of 280

these networks have higher efficiency levels at lower prices than the LN. From this 281

evidence, we can not yet refer to the LN as an ESW network. Low levels of efficiency 282

and their relatively high cost may thus pose a challenge for the usage of the LN. If 283

efficiency is too low, then the multi-hop routing system may no longer be able to 284

connect nodes that do not share a direct channel, thus questioning the usefulness of the 285

LN as an effective solution for scaling Bitcoin. 286

Robustness 287

In the section about centralization, we have shown that the LN seems to present a 288

power-law tail in its strength distribution, which is a common characteristic of scale-free 289

networks. Scale-free networks are known to be resilient against random failures, but also 290

to be very exposed to targeted attacks. For this reason they are often referred as a 291

“robust yet fragile” configuration [32]. Moreover, [33] notice that many complex systems 292

are resistant to drastic node removal by random failures or attacks and show how 293

communication networks are surprisingly robust typically due to redundant wiring. 294

The presence of channels with different capacities implies that the LN resembles an 295

infrastructure network. Taking into consideration only the unweighted topology of the 296

network would possibly lead, therefore, to erroneous conclusions about its robustness 297

and capability to withstand an aggression or disruption. This aspect has been discussed 298

in a recent paper by [34], whose framework inspired our analysis. To evaluate the 299

effective impact of nodes removal, following [34], we also monitor the variation in the 300

size of the Largest Connected Component (LCC) after every round of nodes removal. 301

Finally, in line with [35], we also track the variation of the average local efficiency, 302

which is an alternative indicator to the clustering coefficient in measuring the fault 303

tolerance of disconnected networks [30,31]. 304

In our analysis, we consider both random failures and malicious attacks delivered 305

with different strategies based on topological centralities. Fig 4 reports the 306

consequences of removing an increasing number of nodes by showing the impact in 307

terms of the size of the LCC and the global and average local efficiency levels. More 308

generally, the amount of attacked nodes may depend on the size of the LN or be 309

constant assuming that the resources of the attacker(s) are not influenced by the size of 310

the LN itself. Taking into consideration possible attacker’s narrowness of resources, we 311

analyze the loss in efficiency when the attacker is able to remove from one to 50 of the 312

most central nodes. In order to favour the readability of the chart, we plot only four 313

illustrative snapshots (i.e. April, July, and October for year 2018, and January 2019). 314

As first attack strategy based on topological centrality, we remove the 50 most 315

endowed nodes in the network in terms of strength. We can easily observe the 316

remarkable improvement over time of the LN’s resilience against this type of attack. For 317
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instance, in April 2018 the removal of about 10 nodes would have caused the LCC to 318

lose more than 12% of its size, while the removal of the first 50 nodes would have 319

crippled the network by more than 20%. These percentages improve substantially in the 320

configuration corresponding to January 2019, when the potential damage reduces 321

significantly. Similarly, global and local efficiencies appear less affected in more recent 322

periods, although in each period even the removal of some of the most central nodes 323

seems sufficient to affect the efficiency of the system. Interestingly, a strategy based on 324

the removal of most central nodes in terms of betweenness seems to be more effective in 325

severing the LCC. Indeed, both attack strategies based on strength and betweenness 326

centralities have similar effectiveness in damaging the global efficiency levels, although 327

the configuration of January 2019 appears even more resilient than initial configurations 328

under the betweenness attack strategy. Moreover, we assess the robustness of the LN 329

against attacks based on the eigenvector centrality. Compared to the two previous 330

attacks, this strategy appears in general the least effective in terms of LCC’s size 331

reduction, while it is quite similar to the other attack strategies as concerns both global 332

and local efficiency disruption. Finally, the percentage of nodes which can be lost by the 333

LCC after a random failure remains almost stable across the different time snapshots 334

and decreases in a linear fashion with no particular abrupt disconnections. However, the 335

random disappearance of 10% of nodes would have still caused a difference in the global 336

efficiency of more than 25% in the first time snapshot. By contrast, in the last 337

observation this drop would be lower than 12%, thus supporting this improving 338

tendency. Similar patterns emerge for changes in local efficiency levels over time. 339

Overall, the efficiency of the network seems to be robust against random disruptions. 340

Moreover, despite a remarkable improvement in resilience, the LN can be very much 341

affected by targeted attacks. In particular, a malicious attacker interested in dividing as 342

many nodes as possible from the LCC could adopt a strategy based on the betweenness 343

centrality, or attack the most endowed nodes if he is interested in reducing the global or 344

local efficiency levels of the LN. 345

Fig 4. Efficiency Drops due to Random Failures and Attacks based on Strength,
Betweenness, and Eigenvector Centralities. Colors refer to the 12th of: April 2018 (black), July
2018 (red), October 2018 (green), January 2019 (orange). The first column’s x-axis represents the
percentage of nodes removed. For the second, third and fourth columns the x-axis is the number of
removed nodes. The LN has improved its robustness against random failures and malicious attacks
both in terms of local and global efficiency loss.

Fig4.tif

Synchronization 346

Synchronization is a critical feature for all those systems in which it is desirable to 347

achieve a distributed consensus, i.e., where different participants have to coordinate 348

locally with the aim to increase the global performances of the network [36,37]. This 349

aspect has been studied in several fields in engineering, such as distributed sensors, 350

parallel and distributed computing, and power grids [37]. For instance, [38] highlight 351

the importance of synchronization for power networks due to their volatile conditions of 352

both the demand and the supply side. Considering the routing system for indirect 353

transactions, we find that the LN presents the same issues since it has both demand and 354

supply sides that are not fixed. 355

Differently from power transportation systems, LN is a distributed multi-agent 356

infrastructure with no central entity capable of imposing the coordination among its 357

participants. From this perspective, the LN resembles a network made of sensor devices 358

with no central coordinator [39]. Distributed multi-agent networks can reach 359

synchronization by sharing the information they directly have access to. Then, this 360
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shared information can be used by each node to rearrange itself in order to increase the 361

efficiency of the entire system. In the LN case, this translates into making the multi-hop 362

routing as efficient as possible. In fact, it is possible to represent the whole LN as an 363

ensemble of multi-state oscillators (here represented by the channels) with three 364

different possible states depending on the balance of the capacity between each pair of 365

nodes, namely: “Open & Balanced”, “Open & Unbalanced” and “Closed”. Practically, 366

a channel can move to “Closed” or “Open & Balanced” from every other state, while 367

the “Open & Unbalanced” state can be reached only from “Open & Balanced”. 368

Although Bitcoin is a decentralized system in which consensus and coordination are 369

enforced by miners using the “Proof of Work” paradigm, the LN has not such feature to 370

enforce coordination among its nodes, thus its synchronization is limited by the ability 371

of its own members to reach a distributed consensus. 372

Since it is not possible to know the distribution of the capacity in one channel 373

without reaching it directly through the multi-hop path, a more synchronizable topology 374

would help to reduce the effort to collect this kind of information thus reducing the 375

latency during the multi-hop routing of transactions. For instance, [40] measure the 376

propensity of a network towards synchronization by the ratio between the highest and 377

the smallest non-zero value of the Laplacian Matrix’s eigenvalues, namely the 378

Eigenratio. In particular, the lower the value of the Eigenratio, the more the network is 379

synchronized and viceversa [41]. [42] associate the Laplacian largest eigenvalue, namely 380

the Laplacian “Spectral Radius”, with the stability of time varying networks. The first 381

smallest non-zero eigenvalue of the Laplacian Matrix (namely, λ2 also called “Algebraic 382

Connectivity”) instead assumes non zero value for all connected graphs [43,44] and 383

governs the rate of convergence of the system towards a distributed consensus [45]. 384

As in other studies about the synchronizability of real world networks [46,47], we 385

circumscribe our analysis to the Largest Connected Component, which accounts for the 386

near totality of our network participants. The Laplacian of the weighted graph has been 387

found to better describe the coordinability of a system in several real cases, such as 388

biological systems with “prey-predatory” interactions, transportation and neural 389

networks [48]. In our case, the quantity of information a node can learn from its 390

neighbourhood is not affected by the capacity installed on the channels, but only by the 391

presence of a direct link. For these reasons, we opt to analyze the topological 392

coordination of the LN from its un-weighted Laplacian matrix. 393

Table 3 reports the Eigenratio, the Spectral Radius, and the Algebraic Connectivity 394

for each time snapshot. Our findings show that the LN’s synchronizability after the 395

initial stages has maintained a stable behaviour during most of the sampled period and 396

that the increase of Eigenratios in the last observations mostly relates to the decrease in 397

the Algebraic Connectivity. This relates to a slight degradation in the LN’s capacity to 398

promote coordination among its nodes, which may lead to higher latencies in the 399

transactions routing. As [49] notes, networks with non narrow degree distributions, such 400

as scale-free networks, typically have poorer synchronizability. The sudden increase of 401

the Eigenratios after February 2018 thus seems to suggest the worsening in the 402

likelihood of self-coordination in the network after the initial deployment. Table 3 also 403

indicates that Algebraic Connectivity lies in a plateau at about 0.07 and is steady since 404

March 2018, thus depicting an almost stable connectivity of the underlying LN. 405

However, between November and December 2018, the Eigenratio worsened following a 406

comparable movement by the Algebraic Connectivity. By contrast, after a slight 407

variation in March 2018, the LN’s Spectral Radius remained stable around 1.93, which 408

indicates no particular evolution in the system’s stability. 409

To sum up, the LN’s topology has evolved during the sampled period into a 410

configuration that seems to worsen the possibility to reach shared consensus. The 411

causes seem to lay in the graph’s connectivity, represented here by the second smallest 412
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eigenvalue of the Laplacian matrix. 413

Table 3. LN’s Synchronization. The table shows that LN’s topology has evolved into a structure
less prone to promote a distributed consensus.

Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 Jan-19
Eigenratio 8.00 25.36 25.82 25.87 25.94 25.99 26.08 26.15 26.17 26.20 30.08 30.10

Algebraic
Connectivity

0.222 0.076 0.075 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.064 0.064

Spectral
Radius

1.778 1.924 1.925 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.936 1.936

Anonymity 414

Bitcoin has been typically related to anonymity issues. Before becoming a speculative 415

asset, it has achieved fame in part due to its use in the dark market [50]. In transaction 416

networks, it is important to preserve the privacy of the node that broadcasts the 417

message (i.e., the sender anonymity), while the privacy of the recipient can be known by 418

other parties. This is true also for the LN, where the receiving node is publicly 419

announced to let the payment route across the network. 420

Every system provides its users with a certain degree of anonymity, which spans from 421

zero to an absolute privacy, meaning that it is not possible for an attacker to distinguish 422

the effective sender [51]. To preserve the privacy of its nodes, a key role is thus played 423

by the network configuration itself. Some attempts to de-anonymize the components of 424

the network could rely, therefore, upon its topological properties and weakness. 425

[52] derived a measure based on entropy for assessing the degree of senders’ 426

anonymity for a certain crowd. Crowds are networks designed to provide privacy to 427

senders by routing the message across a number of other members of the crowd before 428

delivering it to the true receiver. This is precisely what happens with the LN’s 429

multi-hop framework: no intermediate node has the possibility to distinguish if the 430

previous one is just another intermediary or the actual sender. Our analysis relies 431

therefore, on the degree of anonymity that has already been applied to study similar 432

contexts such as cryptocurrencies [53,54] and the TOR network [55,56], where the latter 433

is a system with anonymity requirements comparable if not higher than those of 434

cryptocurrencies. More specifically, given a crowd composed by N nodes, among which 435

there is one attacker and C collaborators, we can describe the entropy of the system as: 436

H(X) =
N−pf (N−C−1)

N log2
[

N
N−pf (N−C−1)

]
+ pf

N−C−1
N log2

[
N
pf

]
, with pf being the 437

probability of forwarding the transaction to another node. In our case, this probability 438

is approximated by the normalized global efficiencies computed in the section about 439

efficiency. Finally, we obtain the degree of anonymity by dividing the entropy of the 440

system with its maximum defined as HM = log2
(
N−C). As a result, the degree of 441

anonymity can assume values from 0 to 1. In Fig 5, we analyse the LN’s degree of 442

anonymity during the sampled period. The LN presents a very low degree of anonymity, 443

with only the first time snapshot above 0.2 for a small number of collaborating nodes. 444

Considering the importance that the Bitcoin’s community gives to their own privacy 445

such values should raise concerns. 446

“Degree of anonymity” is an information theoretic measure used to assess the 447

privacy of a message transmitter node in a network that routes information [57]. [58] 448

propose a measure based on the structure of the network, named Topological Anonymity 449

(hereinafter, TA), to assess the level of anonymity provided by the structure of the 450

network. This indicator represents a composite measure, derived from the distributions 451

of both degrees and clustering coefficients, which is computed as follows: 452

TA =
∑max(deg (G))
i=1 (|Di|∗CCdifi)−

∑ ε−1
j=1 |Dj |

N , where |Dα| the number of nodes with degree 453

α, CCdifα the Boolean cluster coefficient that takes a value of 1 if var(CC(Dα)) > 0 454
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and zero otherwise, and parameter ε that indicates the required level of anonymity of 455

each node. TA assumes values ranging from -1, when the network is very prone to node 456

identity disclosure, to +1 which stands for the highest level of privacy preservation. The 457

second plot in Fig. 5 reports the TA of the LN for different values of the ε parameter. 458

During the sampled period, the LN has increased its TA remarkably going from 0.55 to 459

more than 0.70, for a value of ε of 2. The improvement is even more visible if we 460

consider larger values of ε. This means that LN’s topology has evolved into a structure 461

more capable to protect its users’ privacy by prioritising higher levels of anonymity 462

requirements. 463

Summarizing, LN does not seem to provide a significant anonymity preservation of 464

its users from attacks performed by malicious nodes present on transactions’ paths, 465

while its structure shows a remarkable and increasing strength in protecting the identity 466

of a node from attackers that possess only prior information about topological 467

properties of the target node. 468

Fig 5. Evolution of LN’s Anonymity Preservation. Plot on the left refers to the Degree of
Anonymity, while plot on the right is for the Topological Anonymity. Continuous lines: Feb-2018
(black), Mar-2018 (red), Apr-2018 (green) and May-2018 (orange). Segmented lines: Jun-2018 (black),
Jul-2018 (red), Aug-2018 (green) and Sep-2018 (orange). Double segmented lines: Oct-2018 (black),
Nov-2018 (red), Dec-2018 (green) and Jan-2019 (orange)

Fig5.tif

Discussion 469

This paper presents a topological analysis of the Bitcoin’s Lightning Network performed 470

during its first year of existence on the mainnet. In this period, the amount of nodes 471

has increased by almost 7 times and the number of available channels simultaneously 472

available by more than 12 times. The value loaded on channels is still negligible if 473

compared with Bitcoin’s $70 billion market cap as of the time of writing, but it is 474

growing rapidly both in total value as well as in the average capacity per channel. 475

For representative purposes, our analysis is based on consecutive time snapshots 476

which describe the configuration of the LN along its first year of existence. Although 477

there are limitations associated with such an investigation framework, and a need exists 478

for more advanced techniques to study the dynamic evolution of the network, our 479

findings still show how the concerns that the LN would have evolved into a centralized 480

structure were not without basis. The LN seems to be prone to present a structure with 481

highly centralized hubs to whom low degree nodes prefer to attach in order to be able to 482

reach more counterparts without having to establish direct connection with them. 483

Furthermore, we notice that during the sample period, the LN has improved its 484

efficiency both globally and locally due to the increase in capacity installed on its 485

channels. That being said, when compared with other networks, the LN does not seem 486

to have already reached a satisfactory level of efficiency. The LN also appears to be 487

quite resistant against random disruptions. It does not hold however as valiantly as for 488

random failures in case of malicious attacks performed by removing very central nodes 489

with respect to the strength, the eigenvector or the betweenness centralities of its nodes. 490

In addition, the possibility to create the conditions for reaching coordination among its 491

nodes has been shown to be extremely low. Finally, we find contradictory results in the 492

evolution of the anonymity. Studying LN’s ability to preserve its users privacy from an 493

attacker that controls one or more nodes, therefore capable to intercept and study the 494

flow of information within the network, we find that the system poses a weak layer of 495

protection, with low values of degree of anonymity. From a structural point of view, LN 496

is very effective into protecting its nodes’ identities from malicious external observers 497
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with only prior knowledge about topological characteristics, such as degree or cluster 498

coefficients, of the target node. Furthermore, this strength of the system is improving 499

over time even for higher privacy requirements. 500
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