
A GPU-accelerated compressible RANS solver for
Fluid-Structure Interaction simulations in turbomachinery
Andrea Gadda1*, Luca Mangani2, Giulio Romanelli3, Paolo Mantegazza4, Ernesto Casartelli5

SY
M

PO
SI

A

ON ROTATING MACH
IN

ERY

ISROMAC 2016

International
Symposium on

Transport
Phenomena and

Dynamics of
Rotating Machinery

Hawaii, Honolulu

April 10-15, 2016

Abstract
The typical approach in Computational Fluid Dynamics (CFD) relies on the negligible structural

deformation due to aerodynamic loads. However when geometry optimization for performance and

power efficiency is the ultimate goal, an accurate Fluid-Structure Interaction (FSI) analysis could improve

results accuracy. This is particularly important for turbomachinery applications, where usually only

centrifugal and thermal effects are considered to deform the original geometry, through a FEM solver,

before computing the pure aerodynamic solution. Even if turbomachinery blades are less susceptible to be

deformed by aerodynamic loads than other aeronautical components (e.g. helicopter blades, entire planes)

trim solutions could lead to better results. Alongside with results accuracy, computational efficiency is

mandatory and today GPUs can be exploited to accelerate simulations. In this article we present and

describe a GPU-accelerated FSI solver for turbomachinery applications. The solver is validated with a

typical literature case.

Keywords
Fluid-Structure Interaction — GPU computing — Turbomachinery
1Department of Aerospace Sciences and Technologies, Politecnico di Milano, Milano, Italy
2Department of Fluid Mechanics and Hydraulic Machines, Lucerne University of Applied Sciences and Arts, Luzern, Switzerland
3Department of Aerospace Sciences and Technologies, Politecnico di Milano, Milano, Italy
4Department of Aerospace Sciences and Technologies, Politecnico di Milano, Milano, Italy
5Department of Fluid Mechanics and Hydraulic Machines, Lucerne University of Applied Sciences and Arts, Luzern, Switzerland
*Corresponding author: andrea.gadda@polimi.it

INTRODUCTION

When dealing with aerodynamic components, especially in

the turbomachinery field, the usual approach adopted with

CFD relies on the negligible structural deformation due to

aerodynamic loads. However, if performance and power ef-

ficiency are the ultimate goals (e.g. propulsion), a correct

prediction of the structure-flow interaction could improve

results accuracy. This is particularly important in a typical

geometry optimization loop, where hundreds of slightly differ-

ent geometries have to be analyzed. Aerolastic simulations, i.e

trim and flutter analysis, are nowadays a fundamental step in

aircrafts [1] and helicopters blades design. In fact, with these

aerodynamic components, tip displacements can be easily

appreciated as they usually are multiple of the blade thick-

ness. With turbomachinery blades however, deformations

due to aerodynamic loads are usually less noticeable. As an

example, in our trim simulations of the NASA’s Rotor 67 test

case, tip displacements are smaller than the blade thickness.

Nonetheless, an accurate prediction of this kind of behavior is

particularly important due to the presence of the shroud wall

near the blade tip. Turbomachinery trim and flutter predictions

still represent a challenge due to complex phenomena like

rotor-stator interactions, separations and shock waves. The

usual time-linearized, frequency-domain strategies can be in-

adequate when this kind of strong non-linear phenomena occur

in the flow, making necessary time-domain simulations [2, 3]

or the harmonic balance technique [4]. The scenario is further

complicated by the periodic and multi-stage nature typical of

axial compressors and turbines. In flutter and aerodynamic

damping simulations, a fundamental role is also played by

the Inter-Blade Phase Angle (IBPA) [5] when solution spatial

periodicity is not related to a single blade anymore. How-

ever, in order to save computational time by reducing the

computational domain to a single passage, as usually done

with periodic boundary conditions, time-delayed boundary

conditions [6] can be used.

Besides unsteady analysis, another important aspect, not

yet adequately investigated, is represented by the trim analysis,

which is fundamental for an accurate steady analysis that aims

to consider static blade elasticity for the performance evalua-

tion of turbomachinery. Trim analysis can be used to provide

more accurate initial conditions for unsteady simulations or to

improve the characteristic curve computations.

With the aim of an optimization process, another require-

ment of totally different nature arises: computational efficiency.

This problem is typically addressed by implementing an ef-

ficient implicit formulation [7, 8] or by accelerating explicit

formulations with multiple combined convergence accelera-

tion techniques [9]. Nowadays, GPUs provide a cheap and

relatively easy way to obtain great SIMD (Single Instruction

Multiple Data) floating point performance at the cost of a

limited amount of available memory with respect to the usual

amount of system RAM [10, 9, 11]. Thus, the idea is to exploit

GPUs architecture to accelerate an explicit FSI solver, keeping

a low memory usage. Furthermore, the structural FEM model

is reduced to a modal representation [12, 1] in order obtain

both an accurate and efficient FSI formulation.

The purpose of this article is to describe the architecture

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 2/12

and the validation of a GPU-accelerated Fluid-Structure In-

teraction (FSI) solver for compressible viscous (using RANS

models) flows. A pioneer work describing the impact of

static deformation on the turbomachinery performances will

be provided. In particular the well known NASA’s Rotor

67 case [13, 14] is chosen for the trim analysis. This is a

typical axial compressor rotor blade. Effects of trimmed solu-

tions on the most important integral quantities (i.e. massflow,

characteristic curves) are investigated and a comparison with

pure aerodynamic results is provided. Numerical results are

also compared with two sets of experimental data available in

literature. The GPU solver is written in OpenCL in order to be

compatible with both AMD and NVIDIA GPUs. This choice

allows the solver to be natively executed also on CPUs, with-

out source code modifications, improving the solver hardware

compatibility and allowing to easily perform comparisons

with multi-core CPUs. The proposed approach is validated

with typical industrial cases.

1. METHODS
1.1 Aerodynamic numerical formulations
The numerical aerodynamic formulations are chosen with

the aim to obtain a computationally efficient general-purpose

compressible RANS solver. The purpose of this section is

to introduce the aerodynamic numerical formulations imple-

mented in the solver. For a better description of the adopted

formulations, the reader is referred to [9].

The Reynolds Averaged Navier-Stokes (RANS) equations

governing the dynamics of a compressible, viscous and conduc-

tive fluid are written within an Arbitrary Lagrangian Eulerian

(ALE) framework in integral conservative form as follows:

d

dt

∫
V

U dV+
∮
S
[f(U)−g(U)−U w] ·n dS =

∫
V

h(U) dV
(1)

whereV (t) is the time-varying spatial domain delimited by the
boundary S(t) with normal unit vector n(x, t). In the special
case of local velocity of the moving boundaries w(x, t) equal
to zero, the classical Eulerian description of the continuum is

recovered.

The arrays of the conservative variablesU(x, t), convective
fluxes f(U) and viscous fluxes g(U) are defined as follows:

U =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ

ρu
ρ Et

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρu
ρu uT + p I
ρ Et u + p u

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
g =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

τ

τ · u + q

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2)

where ρ(x, t), u(x, t) and Et (x, t) are the density, the velocity
and the total specific energy. p(x, t), τ(x, t) and q(x, t) are the
pressure, the viscous stresses tensor and the power exchanged

by conduction. The problem is closed when the equation

of state for the pressure (Polytropic Ideal Gas model), the

constitutive equations for the viscous stresses tensor (New-

tonian fluid model) and the power exchanged by conduction

(Fourier model) are specified. The source term h(U) allows for
modeling gravitational forces, Coriolis acceleration, porous

media.

The source term, together with the ALE framework, is

also used when dealing with Multiple Reference of Frame

(MRF) simulations, such as for multi-stage compressors and

turbines [15]. Given Ω as the rotor row angular velocity, by

enforcing the ALE velocity as w = Ω × r and the source
term as h(U) = {0,−Ω × ρu, 0}T it is possible to solve the
Navier-Stokes equations (1) for rotor cases without actually

moving the mesh.

The solver is capable to handle hybrid unstructuredmeshes,

i.e. meshes where different cells could have different number

of faces and where there are no simple index-based strategies

to identify cell neighbors. This feature offers significant

advantages in terms of handling complex geometries, thanks

to numerous unstructured mesh generation tools available.

However, this comes at the price of a reduced efficiency

in memory access patterns, especially for GPU executions.

Therefore the code must be designed to maximize coalesced

memory access and minimize branch divergence [10].

Within an unstructured grid framework, let us denote with

Γi = {Γi1, Γi2, . . . , Γin} the set of n interfaces delimiting the
i-th finite volume ΔVi , the FV cell-centered discretized form

of the RANS equations corresponds to the following system

of ordinary differential equations:

d(UiΔVi)
dt

= Qi = −
n∑
j=1

|Γi j | (Fi j−Gi j)+Hi ΔVi ∀ i, (3)

where Ui (t) is the vector of unknown variables averaged on
the i-th cell ΔVi and collocated in its center. Fi j (Ui,Uj,Wi j)
and Gi j (Ui,Uj) are the convective and viscous numerical
fluxes through interface Γi j . FinallyHi (Ui) is the source term
evaluated in i-th cell center.
Concerning the space discretization operators, in order

to obtain a monotone but sharp solution near shock waves

and contemporarily to achieve a second order accuracy in

space in smooth flow regions, a combination of the monotone

first order accurate Roe’s upwind flux and a second order

accurate centered flux is used. The blending of the two is

automatically controlled by means of the flux limiter by van

Leer, requiring the numerical solution on the extended cells i∗
and j∗ to be available [16]. This operation is performed using
a connectivity data structure built in the pre-processing stage.

As alternative options AUSM+ [17] and CUSP [18] fluxes are

implemented. In this case second order accuracy is achieved

by means of min-mod limited solution reconstruction.

The viscous numerical fluxes are assembled using a cell-

limited Gauss algorithm for the evaluation of the velocity

and temperature gradients. As alternative option a thin layer

approximation is also implemented, which is much more

efficient since it does not require to assembly the gradient fields

but has a limited validity interval. Turbulence is modeled using

a 1-equation Spalart-Allmaras model in which the additional

transport-diffusion-reaction equation is solved for the new

variable ν̃ [19]. Automatic wall treatment is implemented to

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 3/12

handle meshes at all nondimensional wall distance (y+), raging

from the viscous sublayer to the log layer, thanks to a blended

formulation [20, 21] between the solutions provided by the two

layers. Alternatively, a simple algebraic Mixing Length (ML)

model is also implemented, where the kinematic viscosity

νt = l2B is a function of the strain rate tensor magnitude B
and the length l = k min(y,Δ) [22].
Besides the usual inflow, outflow and wall boundary con-

ditions other types required for turbomachinery applications

are implemented [9], such as Mixing Plane (MP) [23, 24],

AMI periodic boundary conditions, total and mass-flow inlet

boundary conditions.

Since the explicit nature of the solver, convergence accel-

eration techniques like Multi-Grid (MG), Residual Smoothing

(RS) and Local Time Stepping (LTS) [25, 26, 9] must be used

to damp residuals and to obtain convergence rates that can

be comparable with the ones provided by implicit solvers.

LTS allows different cells to advance with different time-steps

based on their geometrical and flow properties, accelerating

in particular the convergence of the bigger cells far from the

wall. A simplified MG strategy is implemented, an adaption

to unstructured polyhedral grids of the formulation originally

proposed by Denton and better explained in [9]. Basically the

original mesh is agglomerated in multiple levels of coarser

meshes. Transients are dispersed more quickly on the coarser

levels, as larger time steps are allowed, while retaining the

spacial accuracy of the finest [25, 26, 9]. These techniques

accelerate the convergence of steady solutions, but can’t be

directly used for unsteady simulations since the time (often

called "pseudo-time" at this point) has no longer any physical

meaning. The problem of performing unsteady simulations

by maintaining the convergence boost provided by these tech-

niques is addressed using the Dual Time Stepping (DTS)

formulation [27].

1.2 FSI numerical formulations
The following subsections are aimed to introduce the numerical

formulations that, alongside with the previously introduced

CFD strategies, allow the solver to perform FSI simulations.

The reader is also referred to [1, 12] for a more detailed

description of the implemented strategies.

1.2.1 Modal reduction of the structural model
With the aim of obtaining a solver capable of flutter and

aerodynamic damping computations, the structural model is

reduced using the modal approach. Neglecting the structural

damping, the free response equation of the structural system

can be represented in the matrix notation as follows:

[
M̄
]
{üs (t)} +

[
K̄
]
{us (t)} = {0} (4)

where {us (t)} is the vector of nodal displacements,
[
M̄
]
is

the mass matrix in structural nodal coordinates,
[
K̄
]
is the

stiffness matrix in structural nodal coordinates. From this

equationwe can obtainmodal shapes and frequencies, basically

eigenvectors and eigenvalues of the free deformable system.

We can represent the transformation from modal coordinates

{q(t)} to nodal coordinates as follows:
{us (t)} = [U] {q(t)} (5)

Matrix [U] represents modal shapes and its transposed is
used to obtain modal displacements from structural nodal

displacements:

{q(t)} = [U]T {us (t)} (6)

This way, using the transformation matrix [U] it is possible to
rewrite equation 4 in modal coordinates:

[M] {q̈(t)} + [K] {q(t)} = {0} (7)

where [M] is the generalized mass matrix and [K] is the
generalized stiffness matrix, the matrices in modal coordinates.

Modes can be normalized in different ways, e.g. to obtain

a unitary generalized mass, in which case the generalized

mass matrix becomes the identity. The main advantage of

the modal representation of the structural behavior consists

in the possibility to build an accurate and efficient reduced

model using just few modes. An important aspect is that when

computing modes of rotating components like rotor blades,

centrifugal effects must be taken into account. Basically those

effects are translated into stiffness contributions by the FEM

solver.

When the structural system is loaded with aerodynamic

forces, equation 7 can be rewritten adding the generalized

aerodynamic forces vector to the right hand side:

[M] {q̈(t)} + [K] {q(t)} = {Q(t)} (8)

Matrix [U]T can be used to obtain generalized aerodynamic
forces from aerodynamic forces known on structural nodes:

{Q(t)} = [U]T { fs (t)} (9)

Thus, thanks to relations 5, 9 and equation 8, knowing

aerodynamic forces on structural nodes allows the solver to

compute displacements on structural nodes.

1.2.2 Aeroelastic Interface
Here we briefly describe the adopted aeroelastic interface. For

a more detailed description, the reader is referred to [12]. Usu-

ally aerodynamic and structural grids are independent. This

means that aerodynamic nodes {xa} are usually different from
structural nodes {xs }. Thus we need a way to project aerody-
namic loads from aerodynamic nodes ({ fa (t)}) to structural
nodes ({ fs (t)}) in order to compute structural displacements,
and a way to project structural displacements from structural

nodes {us (t)} to aerodynamic nodes {ua (t)} in order to provide
the FSI solver the updated geometry from which re-compute

the flow.

The aeroelastic interface can be represented by means of a

linear operator [I]:
{ua (t)} = [I] {us (t)} (10)

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 4/12

As explained in [12], it is fundamental for the aeroelastic in-

terface the conservation of momentum and energy exchanged

between the aerodynamic and the structural subsystems. This

means that the virtual work made by the aerodynamic forces

{ fa (t)} for the structural displacements interpolated on the
aerodynamic nodes {ua (t)} must be equivalent to the virtual
work made by the aerodynamic forces interpolated on struc-

tural nodes { fs (t)} for the structural displacements {us (t)}.
The consequence of this requirement is that the transpose of

the aeroelastic interface operator can be used to obtain the

aerodynamic forces on structural nodes from aerodynamic

forces on aerodynamic nodes:

{ fs (t)} = [I]T { fa (t)} (11)

The interfacematrix can be computed using different strategies.

The approach here used consists of an interpolation scheme

based on a Moving Least Squares (MLS) technique and the

use of Radial Basis Functions (RBF). When using RBF, the

influence between the structural and aerodynamic nodes is

weighted using functions that depends only by their distance:

φ(xs, xa) = φ(| |xs − xa | |) (12)

where xs is a structural point and xa is an aerodynamic point.
Different kind of functions can be used, allowing to adjust the

smoothness of the interpolation.

It must be noted that the aeroelastic interface binds only

the aerodynamic and structural nodes that reside on the surface

of the deformable geometry. Thus from the displacements

of the structural nodes it is possible to compute only the

displacements of the aerodynamic nodes on the moving walls.

Furthermore, the aeroelastic interface is computed only once

and can be used for all the subsequent FSI simulations like

trim, aerodynamic damping and flutter analysis.

The aeroelastic interface matrix is stored and reused each

time the aerodynamic loads and the structural displacements

have to be exchanged between the aerodynamic and structural

meshes. Storing this matrix on the GPU memory would lead

to an unacceptable memory overhead. Thus, the interface

matrix is stored in the system RAM and computations are

performed by the CPU. Although the GPU execution is tem-

porarily stopped to wait the CPU in this phase, the procedure

is still computationally efficient. In fact the data exchanged

between the CPU and the GPU is limited to the aerodynamic

loads and structural displacements of wall nodes. Further-

more the computational time required by this procedure is

basically negligible with respect to the time required by the

GPU for the convergence of the aerodynamic solution over

the updated aerodynamic mesh geometry, thanks also to the

modal representation of the structural model that reduces the

total number of structural d.o.f. This is due to the fact that

few thousands aerodynamic iterations are needed to reach

aerodynamic residuals convergence between two geometry

updates. This is true both for steady trim analysis and unsteady

analysis using the DTS technique.

1.2.3 Internal nodes displacements
Once the aerodynamic wall nodes displacements are obtained,

we need to compute the displacements of the aerodynamic

mesh internal nodes of the fluid domain. This problem

can be addressed using different strategies such as laplacian

smoothing. This phase during a typical FSI simulation could

easily need to be repeated hundreds or thousands of times,

thus a computational efficient algorithm is required. It must be

also kept in mind the reduced amount of memory available on

GPUs: an explicit algorithm is preferred over a strategy that

involves the solution of a system of equations. In particular an

Inverse Distance Weighting (IDW) algorithm is adopted for

this purpose.

Basically, the displacements
{
uk
a

}
of an internal aero-

dynamic node k are computed weighting the displacements
of wall nodes

{
uia

}
through a function of the inverse of the

distance between node k and wall node i:

{
uk
a

}
=

∑Nwall

i=0
Wk−i

{
uia

}
∑Nwall

i=0
Wk−i

(13)

Wk−i is the weighting function and can be expressed as follows:

Wk−i =
1

|xk − xi |p (14)

The exponent n can be changed to adjust the smoothness of
the results. Usually p = 2 or p = 3 provides good results.
IDW weights are constants during the FSI simulation, so

they could be stored in a matrix that can be accessed every

time the aerodynamic mesh has to be updated. However,

storing this matrix would require a large memory overhead.

Since the limited amount of GPU memory, IDW weights are

recomputed every time they are needed by GPU cores instead

of being stored. This would lead to large computational

overhead in a typical CPU architecture composed by few cores.

However this is not a problem in a typical GPU architecture

where several floating point computations can be performed

while waiting for data to be recovered from GPU memory.

Furthermore, the computational time spent to update the mesh

with this algorithm is basically negligible with respect to the

time required by the explicit aerodynamic iterations to reach

convergence over the updated mesh. This is true both for trim

simulations and FSI simulation where the mesh deformation

is enforced (aerodynamic damping and flutter analysis).

After this phase, the aerodynamic mesh is changed. The

connectivity between elements is preserved, however mesh

metrics have to be recomputed from the new positions of

the aerodynamic points. This can be efficiently done by the

GPU since recomputing the metrics of millions of cells can be

concurrently done by the thousands of available GPU cores.

1.3 Trim analysis
The aim of this section is to briefly describe the strategy used

to perform trim analyses. The FSI algorithms and strategies

previously introduced are combined together to perform this

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 5/12

numerical simulation. The main differences between a trim

analysis and an aerodynamic damping or flutter analysis are

basically two. First of all, a trim analysis is basically a steady

analysis while aerodynamic damping and flutter analyses

require unsteady solutions. Furthermore, in aerodynamic

damping and flutter analyses the structural displacements

given by modal shapes are used to enforce the deformation on

the structure. Conversely, in trim analysis, aerodynamic loads

are responsible for the structural deformation, thus the steady

solution of system 8 is required. Moreover, trim analysis is

performed using an iterative procedure were aerodynamic

loads are used to deform the structure. The new obtained

shape is then used to recompute the aerodynamic solution. The

procedure is repeated until modal and aerodynamic residuals

reach convergence.

Before starting the trim analysis two pre-processing steps

are required. In particular the modal representation of the

structural model of the deformable geometry is needed. This

is done only once before any FSI simulation, i.e. trim, aerody-

namic damping or flutter analysis. Modal shapes alongside

with generalized masses, stiffness and frequencies can be

obtained using several available commercial and free FEM

solvers like NASTRAN or Code_Aster [28]. Different kind

of FEM elements can be used, e.g. beam, shell/plate, solid

elements, in a trade-off between accuracy and computational

efficiency. It is worth to remind that since we are studying

rotating blades, centrifugal effects must be taken into account

in the modal analysis. FEM solvers can easily account for cen-

trifugal effects as stiffness contributions. Another fundamental

step is performing the computation of the aeroelastic interface

matrix. When dealing with several thousands of aerodynamic

and structural wall nodes, the assembly of this matrix can

be a computationally intensive job, requiring minutes on a

modern multi-core CPU. However, it is needed to compute the

aeroelastic interface matrix only once, as it can be saved on

disk and re-loaded every successive FSI simulation.

After the modal representation of the structural behavior

and the aeroelastic interface matrix computation, it is possible

to start the trim analysis for the entire rotor characteristic

curve. First of all the pure aerodynamic solution at choking

condition is computed, providing a guess solution to start

the entire trim analysis. This is done using the explicit time-

stepping procedure with the help of convergence acceleration

techniques since we are searching a steady solution. At this

point, aerodynamic loads over the aerodynamic mesh wall

boundary points { fa} are obtained. Using relation 11, thus
using the aeroelastic interface matrix, aerodynamic loads are

projected over the structuralmeshwall points of the deformable

blade in order to obtain { fs }. Since the structural model is
represented by modal properties, generalized aerodynamic

forces have to be computed. Relation 9 allows the solver to

obtain forces inmodal coordinates {Q} from forces in structural
nodal coordinates { fs }. Now it is possible to compute the
response, in term of modal displacements {q}, of the structure
due to aerodynamic loads. Basically we need the steady

version of the forced system 8:

[K] {q} = {Q} (15)

Since usually just few modes are sufficient for an accurate

representation of the structural behavior, the solution of sys-

tem 15 requires very small computational times. Once modal

displacements {q} are obtained, in the next step the structural
nodal displacements {us } are computed using relation 5. Using
again the aeroelastic interface matrix and relation 10, aero-

dynamic mesh wall nodes displacements {ua} are recovered
from structural mesh wall nodes displacements {us }. Now it
is possible to compute the aerodynamic mesh internal nodes

displacements using the IDW strategy and recompute the aero-

dynamic mesh metrics. With the updated aerodynamic mesh

a new steady solution is computed. Convergence is reached

when aerodynamic residuals, generalized aerodynamic loads

and modal displacements residuals are under a user-specified

tolerance.

For the Rotor 67 test case about 500 explicit aerodynamic

iterations are performed between two mesh updates and about

15-20 mesh updates are required for the aeroelastic conver-

gence of one characteristic curve point. It must be underlined

that thanks to the efficient IDW algorithm and the reduced

amount of data transferred between the CPU and the GPU

at each mesh update, the computational time required by the

mesh update is basically negligible with respect to the time

required by explicit aerodynamic iterations.

1.4 Hardware and software aspects
Since the solver is written in OpenCL, its source code is

composed by two sets of files: one for the "host" and one

for the "device". The host is basically the CPU that starts

the solver and enqueues work for the device. The host code

is written in standard C/C++ language. The device is the

GPU or the CPU that is actually used to perform the CFD/FSI

computations. The device code is composed by functions

called "kernels" written in OpenCL C, a language similar to

the standard C99 but with some restrictions. Functions and

types of the OpenCL API are used in the host source code in

order to organize the work (kernels executions) that is sent to

the device and to exchange "buffers" (basically memory arrays)

between the host and the device. Most CPU and GPU vendors,

e.g Intel, AMD, NVIDIA, have their own OpenCL-compliant

implementations, allowing the solver to be executed natively

on a wide range of devices [11, 9]. During kernel executions,

the whole work is split in chunks, called "work-items", that are

executed in parallel by GPU or CPU cores. Since nowadays

GPUs have thousands of cores, their architectures are well

suited for the data parallelism where the same operation have

to be performed on a large dataset. This is basically what is

needed for an explicit solver. It must be noted however, that if

different "work-items" have to perform different computations

(branch divergence), a performance loss is inevitable with

GPUs. Thus, device code must be opportunely optimized for

the GPU architecture. Another typical aspect of GPUs is the

memory optimized for sequential access. Again, kernels must

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 6/12

be optimized to reduce performance loss given by a typical

hybrid unstructured mesh addressing. CPUs, nonetheless,

are less susceptible to this kind of problems thanks to their

MIMD (Multiple Instructions Multiple Data) architectures

and bigger caches. Furthermore, GPUs main limitation is the

reduced amount of "global memory", basically the amount

of memory available to store buffers. A continuous data

flow between the CPU and the GPU during the simulation

would not be a good strategy since the PCI-Express bus that

connects them would be a bottleneck. With these restrictions

in mind, the explicit formulation is the better choice since

the matrix storage is avoided. Despite these types of GPU

problems and limitations, a typical 400USDgamingGPUs (e.g

AMD 290X) can provide over 5 TFLOPS of single precision

performance, an order of magnitude more than a CPU of

the same price level (e.g. Intel i7 3930K). Since the main

advantages in using GPUs to perform numerical computations

can be achieved with single precision, all the equations in the

solver are opportunely kept dimensionless to reduce numerical

problems. Finally it is important to notice that with the ability

to perform computations in single precision floating point

format and having low memory requirements, the solver is

compatible with both HPC (High Performance Computing)

GPUs and cheap gaming GPUs. HPC GPUs typically are

an order of magnitude more expensive than gaming GPUs

but exhibit more memory, ECC memory feature and higher

double precision performance. However, HPC GPUs usually

have about the same single precision peak computational

power as gaming GPUs. All the simulations performed in this

article were carried out using cheap gaming GPUs and single

precision. Results were also reproduced with double precision

and using an ECC memory-compliant GPU (Tesla C1060) but

appreciable differences were not found [9].

The solver uses the OpenFOAM framework to carry out

pre-processing and post-processing phases. In particular

mesh loading, metrics computations, domain decomposition

for multi-GPU executions, AMI (Arbitrary Mesh Interface)

weights and addressing computations, and monitoring rele-

vant performance metrics (i.e. mass-flow, pressure ratio) are

computed with the help of the OpenFOAM API. The device

code that performs the actual CFD/FSI computation is how-

ever written from scratch with OpenCL API and OpenCL C.

Thanks to the OpenFOAM framework and an the opportunely

tuned GPU code, the solver is compatible and computationally

efficient with hybrid unstructured meshes [9].

2. RESULTS AND DISCUSSION
2.1 NASA’s Rotor 67 trim
Here we describe the results of the trim analysis of the well

known NASA’s Rotor 67 case. Rotor 67 represents a typical

fan blade geometry, here modeled as an isolated rotor, for

which two sets of experimental data are available (one taken in

1984 and one lately in 2004). For this transonic axial fan test

case, a number of CFD performance predictions have been

published [13, 14]. The fan angular velocity adopted for the

tests is 16043 rpm.

For what concerns the aerodynamic mesh, the details for

the hub and the blade are shown in figure 1. The adopted

unstructured grid is composed by about 1.1 · 106 hexahedral
cells and wall regions are discretized with an average

y+ � 0.5. Respectively, total and average pressure boundary
conditions are imposed at inlet and outlet. The adopted turbu-

lence model for aerodynamic and aeroelastic simulations over

the entire characteristic curves is Spalart-Allmaras. However,

a comparison between Spalart-Allmaras and Mixing Length

turbulence models is also provided to check the mass flow

convergence at choking conditions.

Figure 1. Detail of the computational mesh for Rotor 67 test case.

The structural mesh is instead composed by about 8 · 104
tetrahedrons (solid elements). Only the blade was modeled

with FEM elements while the hub is supposed to be non

deformable. The modal analysis was performed with the

Code_Aster FEM solver. Just 3 modes are sufficient for an

accurate representation for trim purposes. However, 4 modes

are used in this simulation to check modal convergence. Using

5 or more modes leads basically to negligible differences in

the results. Table 1 shows modes frequencies and describes

their shapes.

Table 1. Rotor 67 modes frequencies and description.

Mode Frequency (Hz) Description

1 760.3 1st flexural

2 2174 2nd flexural

3 3146 1st torsional

4 4920 Mixed

With the aim of the characteristic curves computation, let

us first discuss the choking point. The solver needs approxi-

mately 50 · 103 explicit iteration to reach pure aerodynamic
steady solution for this particular point. Using an AMD 290X

GPU the required time is about 25 min. Figures 2 show the

residual and mass flow values during convergence at choking

point using Mixing Length and Spalart-Allmaras turbulence

models. From this solution, the trim analysis is started and

another 10min of wall time are required by the same GPU

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 7/12

to reach aeroelastic convergence. Experimental value of the

mass flow is 1.589 kg/s. The pure aerodynamic solution and
the aeroelastic solution converges to a mass flow of 1.570 kg/s
with an error of 1.76%.

−6

−5

−4

−3

−2

−1

0

0 10k 20k 30k 40k 50k

Iterations [−]

Residuals |·|2 [−]
ML

SA

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 10k 20k 30k 40k 50k

Iterations [−]

Massflow [kg/s]

ML

SA

EXP

Figure 2. Residuals and mass-flow convergence history for Rotor
67 test case. Comparison between Mixing Legnth (ML),

Spalart-Allmaras (SA) turbulence models and experimental data

(EXP).

Figure 3 and 4 shows the displacement field and a detail of

the blade edge of the deformed configuration obtained with the

trim solution at the choking point. It is possible to see from

the magnitude (colors from blue to red) that the deformation

of the blade is mainly flexural, basically the shape of the first

mode, with smaller influence from higher modes.

Figure 3. Blade displacements field at choking conditions, colors
from blue to red represent displacements magnitude.

In figures 5 and 6 the efficiency and pressure ratio char-

acteristic curves as a function of non-dimensional mass flow

are compared with the two sets of experimental results. It

is possible to see that both the aerodynamic and aeroelastic

solutions are in good agreement with the experimental points.

Figure 4. Detail of blade deformation. Grey surface: original non
deformed blade. Surface with edges: deformed blade at choking.

In particular, both numerical curves are in better agreement

with the 2004 data set for what concerns the peak efficiency

point while are significantly lower than 1984 measurements.

It must be stressed however the measurement uncertainty of

the 1989 data set. It is possible to see that the trim solution

basically provides the same results as the aerodynamic solu-

tion for the efficiency curve, and a slightly higher curve for

the pressure ratio, especially near the efficiency peak region.

Generally, however, the differences between the aerodynamic

and the aeroelastic solution are small, due to the high stiffness

of the blade.

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

E
ffi

ci
en

cy
 [-

]

massFlow/massFlowchoke [-]

Experimental Data, 1989
Experimental Data, 2004

Solver, aerodynamics only
Solver, trim

Figure 5. Efficiency as a function of mass flow for the Rotor 67 test
case.

Figure 7 shows the displacements ({q}) of the four consid-
eredmodes during convergence over the trimmed characteristic

curve. It is possible to see that the curves are made by multiple

steps, representing the convergence over different points of

the characteristic curves, starting from the choking point and

moving to the stall region. From modal displacements and

modal stiffness it is possible to compute the elastic energy

contribution of each mode. Basically the main contribution to

the total elastic energy is given by the first mode, while the

second, the third and the fourth mode contributes are at least

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 8/12

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

P
R

 [-
]

massFlow/massFlowchoke [-]

Experimental Data, 1989
Experimental Data, 2004

Solver, aerodynamics only
Solver, trim

Figure 6. Pressure ratio as a function of mass flow for the Rotor 67
test case.

two order of magnitude lower. Using just 3 modes basically

provides the same results. In particular, we can see that mode

4 displacements are basically 0 over the entire characteristic

simulation. Using 5 or more modes with higher stiffness leads

to further negligible contributions to the results.

-5x10-6

 0

 5x10-6

 1x10-5

 1.5x10-5

 2x10-5

 2.5x10-5

 3x10-5

 3.5x10-5

 4x10-5

 4.5x10-5

 5x10-5

 0 50000 100000 150000 200000 250000 300000 350000 40000

G
en

er
al

iz
ed

 M
od

al
 D

is
pl

ac
em

en
ts

 [-
]

Aerodynamic Explicit Iterations [-]

Mode 1
Mode 2
Mode 3
Mode 4

Figure 7. Modal displacements of the considered modes for the
Rotor 67 trim analysis

To give a more complete view to the trim analysis using

modal representation of the structural behavior, figure 8 shows

generalized aerodynamic forces ({Q}) of the four considered
modes.

Figures 9 and 10 shows the detail of efficiency and pressure

ratio characteristic curves for the Rotor 67 near the peak

efficiency point. It is possibile to see that when using different

number of modes the curves are slightly different. However,

using 3 or 4 modes the results are basically identical.

Figures 11 and 12 show the relativeMach number contours

predicted at the peak-efficiency point. A comparison with

experimental data is also provided at 10% and 30% span

from the shroud wall. It is possible to see that both the pure

aerodynamic and the aeroelastic solutions are in agreement

with the measurements, in particular for what concerns the

shock position in figure 11. The differences in shocks locations

between the aerodynamic and trim solutions are very small,

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0 50000 100000 150000 200000 250000 300000 350000 40000

G
en

er
al

iz
ed

 A
er

od
yn

am
ic

 F
or

ce
s

[-
]

Aerodynamic Explicit Iterations [-]

Mode 1
Mode 2
Mode 3
Mode 4

Figure 8. Generalized aerodynamic forces of the considered modes
for the Rotor 67 trim analysis.

 0.88

 0.89

 0.9

 0.91

 0.92

 0.98 0.984 0.988 0.992 0.996 1

E
ffi

ci
en

cy
 [-

]

massFlow/massFlowchoke [-]

Experimental Data, 1989
Experimental Data, 2004

Solver, aerodynamics only
Solver, trim, 1 modes
Solver, trim, 2 modes
Solver, trim, 3 modes
Solver, trim, 4 modes

Figure 9. Efficiency as a function of mass flow for the Rotor 67 test
case, detail near peak efficiency using different number of modes.

 1.5

 1.55

 1.6

 1.65

 1.7

 0.98 0.984 0.988 0.992 0.996 1

P
R

 [-
]

massFlow/massFlowchoke [-]

Experimental Data, 1989
Experimental Data, 2004

Solver, aerodynamics only
Solver, trim, 1 modes
Solver, trim, 2 modes
Solver, trim, 3 modes
Solver, trim, 4 modes

Figure 10. Pressure ratio as a function of mass flow for the Rotor
67 test case, detail near peak efficiency using different number of

modes.

basically negligible.

In order to highlight the importance of a trim analysis

during the design and optimization phases of a rotor blade let

us try to see the effects given by changing the blade stiffness.

Since the limited amount of space availablewewill not perform

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 9/12

Figure 11. Comparison of relative Mach number contours with experiments at peak efficiency, 10% span from shroud. From left to right:
numerical trim solution, experimental data, numerical aerodynamic solution.

Figure 12. Comparison of relative Mach number contours predicted with experiments at peak efficiency, 30% span from shroud. From left
to right: numerical trim solution, experimental data, numerical aerodynamic solution.

a detailed quantitative analysis but just a qualitative study of

the changing in the blade tip displacements obtained through a

stiffness reduction of the blade. As an example we can reduce

the first mode (flexural shape) stiffness of about ten times and

see the blade shape at choking conditions. Figure 13 shows the

detail of the tip displacements. It is easy to see the differences

from figure 4: the blade tip is now characterized by bigger tip

displacements. It is straightforward that one of the possible

aims of a rotor trim analysis would be an accurate study of the

interaction between the blade tip and the shroud wall.

2.2 GPU acceleration
Here we briefly present the GPU speedup results for the Rotor

67 test case. For more detailed benchmarks regarding the GPU

solver, the reader is referred to [9, 11]. All the convergence

acceleration techniques (MG, RS, LTS) were active during

these benchmarks in order to honestly represent a true simula-

tion. The adopted cost metrics is the elapsed time per iteration

per cell and the comparison involves CPUs in single thread

execution, CPUs with multi-threading and GPUs. Thanks

to OpenCL, the solver can be natively executed by several

different CPUs and GPUs architectures without modifications.

Benchmarks were carried out with single precision to fully

exploit peak computational power provided by the adopted

devices. Furthermore, when available, the compiler auto-

vectorization is used to exploit SSE/AVX capabilities of the

modern multi-core CPUs. Table 2 shows the CPUs used for

the comparison, basically an entry level CPU (AMD Phenom

II X4 840) and an high end CPU (Intel i7 3930k). Table 3

shows instead the GPUs used for the comparison, raging from

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 10/12

Figure 13. Mesh deformation at choking point using 1/10 the
stiffness of the first mode.

an entry level gaming GPU (NVIDIA GTX 650) to an high

end gaming GPU (AMD 290X). It is worth remembering that

gaming GPUs are here preferred thanks to their high single

precision performances provided at relatively low cost with

respect to typical HPC GPUs like NVIDIA Tesla or AMD

FirePro series.

Tables 2 and 3 also show prices and theoretical single-

precision peak performance of the adopted devices for a

more honest comparison. For the AMD CPU, however, data

regarding the theoretical peak performances where not found

on the official website (although it can be estimated to be about

30-50 GFLOPS).

Table 4 shows the results for the time per iteration per cells

for each available device. From these results it is possible to

build table 5. In this table, at each row, CPUs in single and

multi-thread execution timings are taken as reference for the

speedup value computation. As an example, on the last row,

we can see that the AMD 290X is 13.06 times faster than the

Intel i7 3930k CPU using all the 6 cores. Considering that

this GPU costs about 400 USD and the CPU costs about 500

USD, it is clear the advantage to perform a simulation using

the GPU. Even on a possible low-end workstation composed

by the AMD Phenom II X4 840 CPU and the NVIDIA GTX

650 GPU we can see that using the GPU allows the solver to

complete simulations about 16 times faster. Furthermore it

is possible to see that the cheapest GPU (GTX 650) is about

3.5 times faster than the most expensive CPU (i7 3930k) used

for these test, but costs only 1/5 of the price. Alongside with

the price, it is possible to consider the TDP (Thermal Design

Power), that gives an idea of the power consumption. For

instance, the Intel CPU and the NVIDIA GTX 660 GPU have

the same TDP but the GPU is about 6 times faster than the

CPU. This also underlines the power consumption advantages

of using GPUs for numerical simulations when the particular

problem allows an efficient execution on these kinds of devices,

a non secondary aspect in clusters and supercomputers.

3. CONCLUSIONS
In this paper we have described the architecture and implemen-

tation of a GPU-accelerated explicit density-based aeroelastic

RANS solver for turbomachinery applications. The solver is

based on the OpenFOAM framework but the code that actually

performs CFD/FSI computations is written from scratch with

OpenCL API and OpenCL C in order to be compatible with

a wide range of multi-core CPUs and GPUs. The solver

was validated using a well known turbomachinery case, the

NASA’s Rotor 67 axial fan. For this particular case two ex-

perimental data sets are available. A comparison between the

pure aerodynamic solution and the trim solution for the entire

characteristic curve was provided in order to asses the possible

advantages given by simulating the interaction between the

flow and the blade structure. However, as the results suggest,

for this particular case the differences between the aerody-

namic and aeroelastic solution are very small. This is basically

due to the fact that with respect to other typical aeronautical

cases (e.g. helicopter blades and planes) these fan blades are

very stiff. Thus, blades displacements are very small in all the

considered operating conditions and their effects on the flow

are basically negligible.

Alongside with the aeroelastic investigation, a comparison

between the time per iteration per cell given by different CPUs

and GPUs was provided, highlighting the advantages given by

GPU executions in term of wall time and costs.

REFERENCES
[1] G. Romanelli. Computational Aeroservoelasticity of Free-

Flying Deformable Aircraft. PhD thesis, Politecnico di
Milano, Italy, 2012.

[2] Yun Zheng and Yang Hui. Coupled fluid-structure flutter
analysis of a transonic fan.Chinese Journal of Aeronautics,
24(3):258–264, 2011.

[3] Volker Carstens, Ralf Kemme, and Stefan Schmitt. Cou-
pled simulation of flow-structure interaction in turboma-

chinery. Aerospace Science and Technology, 7(4):298–
306, 2003.

[4] Earl H Dowell and Kenneth C Hall. Modeling of fluid-
structure interaction. Annual Review of Fluid Mechanics,
33(1):445–490, 2001.

[5] N. Donini. Aeroelasticity of turbomachines linearized
flutter analysis. Master’s thesis, Politecnico di Milano,

Italy, 2012.

[6] G Romanelli, L Mangani, and E Casartelli. Implementa-
tion of a cfd-based aeroelastic analysis toolbox for turbo-

machinery applications. In ASME Turbo Expo 2014:
Turbine Technical Conference and Exposition, pages
V02BT45A010–V02BT45A010. American Society of

Mechanical Engineers, 2014.

[7] L. Mangani, M. Buchmayr, and M. Darwish. Imple-
mentation and Evaluation of a Fully Coupled Solver in

Openfoam: Steady State Incompressible Turbulent Flows.

Numer. Heat Transfer B, in print, 2014.
[8] L. Mangani, M. Buchmayr, and M. Darwish. Imple-
mentation and Evaluation of a Fully Coupled Solver in

Openfoam: Steady State Incompressible Turbulent Flows

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 11/12

Table 2. CPU used for the benchmark.

Vendor Model Cores SP Performance Frequency Price TDP OpenCL runtime

AMD Phenom II X4 840 4 N/A 3.2GHz ∼ 100 USD 95 W AMD APP SDK

Intel i7 3930k 6 ∼ 170 GFLOPS 3.2GHz ∼ 500 USD 130 W Intel OpenCL Runtime

Table 3. GPU used for the benchmark.

Vendor Model Global Memory Cores SP Performance Frequency Price TDP OpenCL runtime

NVIDIA GTX 650 1 GB 384 ∼ 800 GFLOPS 928 MHz ∼ 100 USD 110 W CUDA SDK

NVIDIA GTX 660 2 GB 960 ∼ 1800 GFLOPS 980 MHz ∼ 200 USD 130 W CUDA SDK

AMD 290X 4 GB 2816 ∼ 5600 GFLOPS 1040 MHz ∼ 400 USD 290 W AMD APP SDK

Table 4. Time per iteration per cell.

Phenom 1-core Phenom 4-core i7 1-core i7 6-core GTX 650 GTX 660 290X

5.99e-6 1.74e-6 1.82e-6 3.67e-7 1.04e-7 6.37e-8 2.81e-8

Table 5. Relative speedups.

Phenom 1-thread Phenom 4-threads i7 1-thread i7 6-threads GTX 650 GTX 660 290X

1.00x 3.44x 3.29x 16.32x 57.6x 94.04x 213.17x

0.29x 1.00x 0.96x 4.74x 16.26x 27.32x 61.92x

0.30x 1.04x 1.00x 4.96x 17.5x 28.57x 64.77x

0.06x 0.21x 0.20x 1.00x 3.53x 5.76x 13.06x

in Rotational Reference Frames. Numer. Heat Transfer B,
in print, 2014.

[9] G Romanelli, L Mangani, E Casartelli, A Gadda, and
M Favale. Implementation of explicit density-based un-

structured cfd solver for turbomachinery applications

on graphical processing units. In ASME Turbo Expo
2015: Turbine Technical Conference and Exposition,
pages V02BT39A034–V02BT39A034. American Soci-

ety of Mechanical Engineers, 2015.

[10] M. Favale and A. Gadda. A gpu parallelized two fields
full potential formulation for real gases. Master’s thesis,

Politecnico di Milano, 2013.

[11] Luca Mangani, Giulio Romanelli, Andrea Gadda, and
Ernesto Casartelli. Comparison of acceleration techniques

on cfd open-source software for aerospace applications. In

22nd AIAA Computational Fluid Dynamics Conference,
page 3059, 2015.

[12] Giulio Romanelli, Michele Castellani, Paolo Mantegazza,
and Sergio Ricci. Coupled csd/cfd non-linear aeroe-

lastic trim of free-flying flexible aircraft. In 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics and Materials Conference, 2012.

[13] Andrea Arnone. Viscous analysis of three-dimensional
rotor flow using a multigrid method. Journal of turboma-

chinery, 116(3):435–445, 1994.
[14] A. D. Grosvenor. Rans prediction of transonic compres-

sive rotor performance near stall. ASME Paper, (GT2007-
27691), 2007.

[15] Robert T Biedron and James L Thomas. Recent en-
hancements to the FUN3D flow solver for moving-mesh

applications. AIAA Paper, 1360:2009, 2009.
[16] G. Romanelli, E. Serioli, and P. Mantegazza. A Free

Approach to Modern Computational Aeroelasticity. 48-th
AIAA Aerospace Sciences Meeting, 2009.

[17] Meng-Sing Liou. A sequel to ausm: Ausm+. Journal of
computational Physics, 129(2):364–382, 1996.

[18] ShigefumiTatsumi, LuigiMartinelli, andAntony Jameson.
Flux-limited schemes for the compressible navier-stokes

equations. AIAA journal, 33(2):252–261, 1995.
[19] P.RSpalart and S. R.Allmaras. A one-equation turbulence

model for aerodynamic flows. AIAA, (92-0439), 1992.
[20] M Popovac and K Hanjalic. Compound wall treatment

for RANS computation of complex turbulent flows/heat

transfer. Flow, turbulence, combustion, 78(2), 2007.
[21] Georgi Kalitzin, Gorazd Medic, Gianluca Iaccarino, and

Paul Durbin. Near-wall behavior of RANS turbulence

A GPU-accelerated compressible RANS solver for Fluid-Structure Interaction simulations in turbomachinery — 12/12

models and implications for wall functions. Journal of
Computational Physics, 204(1):265–291, 2005.

[22] R. V. Chima, P. W. Giel, and R. J. Boyle. An algebraic
turbulence model for three-dimensional viscous flows.

31-st Aerospace Sciences Meeting and Exhibit, 1993.
[23] Lucian Hanimann, Luca Mangani, Ernesto Casartelli,

Thomas Mokulys, and Sebastiano Mauri. Development

of a novel mixing plane interface using a fully implicit

averaging for stage analysis. Journal of Turbomachinery,
136(8), 2014.

[24] L.S. Dzung. Konsistente mittelwerte in der theorie der
turbomaschinen fuer kompressible medien. Brown-Boveri
Mitteilungen, 1971.

[25] Tobias Brandvik and Graham Pullan. An accelerated 3d
navier–stokes solver for flows in turbomachines. Journal
of Turbomachinery, 133(2), 2011.

[26] Christian Klostermeier. Investigation into the capability
of large eddy simulation for turbomachinery design. PhD
thesis, University of Cambridge, 2008.

[27] J. Blazek. Computational Fluid Dynamics: Principles
and Applications. Oxford University Press, 2001.

[28] Code aster website. http://www.code-aster.org/.

