
For Peer Review
Analytical Framework for Precise Relative Motion in Low 

Earth Orbits

Journal: Journal of Guidance, Control, and Dynamics

Manuscript ID 2019-07-G004716.R1

Manuscript Type: Full Paper

Date Submitted by the 
Author: n/a

Complete List of Authors: Galas, Gabriella; Politecnico di Milano, Department of Aerospace Science 
and Technology
Colombo, Camilla; Politecnico di Milano, Department of Aerospace 
Science and Technology
Lara, Martin

Subject Index Category:
31400 Dynamics < 30000 GUIDANCE, CONTROL, AND DYNAMICS 
TECHNOLOGY, 33300 Spacecraft Guidance and Control < 30000 
GUIDANCE, CONTROL, AND DYNAMICS TECHNOLOGY

 

Note: The following files were submitted by the author along with the article. You may review these files 
online, if you wish. Acceptance for publication will be based solely on the content of the article.

1stReviewSubmission.zip

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review



For Peer Review

Analytical Framework for Precise Relative Motion in

Low Earth Orbits

Gabriella Gaias1 and Camilla Colombo2

Politecnico di Milano, Milano, 20156, Italy

Martin Lara3

University of La Rioja, Logroño, 26006, Spain

This work presents a practical and e�cient analytical framework for the precise

modeling of the relative motion in low Earth orbits. Developed to support the de-

sign and veri�cation of relative guidance navigation and control algorithms devoted to

spacecraft rendezvous for active debris removal applications, only the orbital pertur-

bation due to non-spherically symmetric mass distribution is considered. The relative

motion is modeled in mean relative orbital elements, revisiting the available formula-

tions to include the �rst-order expansion of the e�ects due to any even zonal harmonics

and the second-order expansion of the unperturbed and J2 terms. Mean/osculating or-

bital elements conversions are obtained merging a second-order Hamiltonian approach

applied to the J2 problem with Kaula's linear perturbation method for the remaining

terms of the geopotential. The paper describes the main building blocks of the frame-

work as well as their interfaces, since the key aspect to achieve precision is to set up

a fully consistent environment. Results show the achievable accuracy under realistic

operational conditions for possible guidance and navigation applications.
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I. Introduction

The stringent need of performing active debris removal and satellite life extension, to preserve

commercially and scienti�cally relevant orbits in the low Earth orbit (LEO) belt [1], asks for accurate

relative motion models accounting for the perturbation due to non-spherically symmetric mass dis-

tribution. The critical targets in this region typically lay on near-circular orbits at an height where

the aerodynamic drag is not strong enough to support their natural decay in a reasonable time span

[2]. For what concerns noncooperative rendezvous in LEO, the Autonomous Vision Approach Navi-

gation and Target Identi�cation (AVANTI) experiment has demonstrated the feasibility to approach

a fully passive object, from approximately 50 km of separations down to few dozens of meters, re-

lying exclusively on angles-only observations extracted from a monocular, far-range, camera system

[3]. At the same time, in addition to formation-�ying and rendezvous applications, new concepts of

space-based space situational awareness are emerging, to classify the debris population [4]. These

foresee spaceborne relative orbit estimation based on angles-only observations, to complement the

existing ground-based services. The relative navigation based on angles-only observations is critical

due to the weak observability of the relative state from bearing-only information. This impacts the

navigation accuracy achievable by onboard systems [5]. And, for ground-in-the-loop applications,

the numerical integration of the equation of motions either in Cartesian frame [6] or through the

Gauss variational equations (GVEs) [4], is employed. Indeed, a fully analytical formulation able

to achieve accuracy performances comparable to numerical schemes, would be bene�cial to support

the synthesis of spaceborne guidance navigation and control (GNC) algorithms [7].

Several relative motion models have been proposed in the recent years [8]. Among these, orbital

elements based approaches are often exploited, following the seminal works [9, 10], which recognized

the advantages of linearizing with respect to the elements of the chief satellite. Generally, working

in the elements' space allows reducing the linearization errors in the initial conditions, simpli�es

the inclusion of orbital perturbations, and allows exploiting celestial mechanics methods to identify

the most e�cient locations of the orbit correction maneuvers when designing relative guidance

and control algorithms. The state variables' set can either be constituted by elements' di�erences

between the deputy and chief satellites or functions thereof. In both cases several families can
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be adopted, o�ering di�erent levels of singularity in their de�nitions (e.g., classical, non-singular,

equinoctial, Hoots [11] elements) or supporting a canonical structure (e.g., Delaunay, Poincarè,

Whittaker [12] elements). By focusing only on models including the geopotential perturbation, Gim

and Alfriend introduced the geometric method to develop a state transition matrix (STM) including

the e�ect of secular, long-, and short-periodic contributions due to J2 to the �rst order. The core

part of this methodology is constituted by the �rst-order expansion of the secular orbit of the chief

satellite, whose state is parametrized in di�erences of non-singular elements with the argument of

true latitude for the satellite anomaly on the orbit. Then the STM is completed by the Jacobian

of the mean-to-osculating transformations and by a �rst-order mapping of the elements' di�erences

into the relative state in a curvilinear co-moving reference frame. This approach has been also

developed in equinoctial elements [13]; whereas Sengupta et al. included the second-order Taylor

expansion of the unperturbed (i.e., Keplerian) orbit of the chief satellite in the core part [14]. More

recently, Yang et al. extended the Gim-Alfriend GA-STM by including the second-order Taylor

expansion, while adopting the same parametrization [15]. There, the second-order transition tensor

(STT) is developed for both unperturbed and secular solution due to J2. Moreover, the mapping of

the elements' di�erences into the relative state also includes the second-order Taylor expansion.

Parallel to these models parametrized in elements' di�erences, several options employ the so

called relative orbital elements (ROEs) inherited from the co-location of geostationary satellites [16]

and afterwards adapted to the formation-�ying �eld [17]. By adopting ROEs, Gaias et al. proposed

a STM including the e�ects due to the Earth oblateness for the near-circular case [18]. It is derived

by expanding to the �rst order the mean time derivatives of the chief elements from the Brouwer's

satellite theory. Since the expansion is carried out on the derivatives, one obtains the plant matrix

corresponding to the linearized relative dynamics, which, by neglecting terms proportional to the

chief eccentricity, reduces to a linear time-invariant system. For the general eccentric case, in order

to integrate the linearized time-variant system in ROEs, Koenig et al. introduced an intermediate

transformation (basically a rotation of the relative eccentricity vector within the orbital plane) to

obtain a linear time-invariant system (moreover with plant matrix nilpotent of order 2) equivalent

to the original system within the �rst-order assumption [19]. Note that such transformation can be
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exploited to compute the STM of the relative motion accounting for the �rst-order secular e�ects

due to any term of the geopotential, as performed in [20], since only even zonal terms give rise to

secular e�ects [21].

The inclusion of the e�ects produced by the zonal geopotential terms higher than order-2 up to

part of J4 has been performed exploiting spheroidal orbital elements [22, 23]. In classical elements,

instead, Yan et al. extended the core of the GA-STM including the e�ects due to J2
2 , J4, and J6

while the initial osculating elements consistent to a given set of mean elements were obtained by

a least squares approach [24]. The majority of the models mentioned so far, also recalled in [8],

exploit the geometric method applied to �rst-order satellite theories. Indeed, the e�ect on the

relative dynamics produced by geopotential terms higher than the oblateness one is tiny and might

become signi�cant over longer propagation time spans or large size of the relative orbit. Thus,

in presence of errors in the computation of the initial mean elements from a given osculating set

using �rst-order transformations, that contribution is shadowed by the propagation of such initial

errors. By considering a second-order Lie-series based approach, at least for the dominant J2 term,

the overall accuracy obtainable by relative motion models greatly improves [25]. Recent works

focus on the extension of the GA-STM computing the mapping, elements' transformation, and core

blocks from second-order satellite theories developed through canonical perturbation methods. In

particular, in [26] Hoot's satellite theory is extended to second order and the STM is then written

in Hoot's variables, whereas Mahajan et al. tackled the full zonal problem [27] as well as the general

problem [28] - including secular and periodic e�ects due to the zonal, sectorial, and tesseral harmonic

perturbations - to obtain a �rst-order STM in equinoctial elements. Compared to the models that

include the perturbation e�ects of the J2 harmonic up to �rst order only, these formulations allow

achieving much more accurate propagation results, at the cost of an increased complexity of the

functional expressions of the components of the STM.

This work focuses on the set-up of an analytical framework that allows improving the accuracy

performances of the simple �rst-order J2-only models, while keeping the minimum level of complex-

ity strictly required. A modular structure is used: the elements' transformations are kept separated

from the core propagation module, to exploit the accuracy of the implemented algorithm also using
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available �rst-order models. In addition, for the elements' conversion, a compact algorithm - suit-

able also for onboard implementation - is developed. This can include a user-de�nable order and

degree terms of the geopotential, is fully analytical in both transformation directions, and free from

singularities (but not applicable in the vicinity of the critical inclination).

The core part of the framework is composed by the STM of the relative motion in mean ROEs,

where only the secular e�ects due to odd zonal harmonics up to order-6 are considered. Here, the use

of the di�erential mean argument of longitude instead of the di�erence in true argument of latitude

(as done in [10, 15]) allows reducing the coupling among the elements of the STM. With respect

to the available ROE-based relative motion models, the current analytical formulation generalizes

the �rst-order state transition matrix to include the secular e�ect of even zonal harmonics without

introducing any further assumption (and is valid also for the eccentric case). Moreover, the analytical

expression of the second-order state transition tensor accounting for the Keplerian and �rst-order

J2 terms is also provided. On need, the approach is easily extendable to include further terms of

the expansion.

The second main building block of the framework is the function to perform osculating-to-mean

transformation of the absolute orbital elements, needed since GNC algorithms are conveniently de-

veloped in the mean ROEs [3, 29�31], whereas the absolute motion of the chief satellite is generally

estimated onboard to provide the absolute Cartesian state in an Earth-centered inertial reference

frame [32]. The computation of mean elements from the osculating set is based on averaging tech-

niques. The survey in [33] presents an overview of available analytical orbital theories depending

on included perturbations and orbit types. The accuracy requirement for formation �ying applica-

tions is relaxed by the fact that the satellites lie in neighboring orbits and, therefore, part of the

conversion-error cancels as soon as one regards the relative mean elements. Moreover, the typical

propagation time-scales between orbit corrections rarely exceed few days, especially when the satel-

lites are very close to each other. The most critical requirement for close formation �ying is the

level of autonomy of the onboard relative GNC system.

Since the oblateness term is the largest coe�cient of the geopotential, the periodic corrections

due to all zonal, sectorial and tesseral harmonics can be computed combining an approach addressing
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the J2 to the second-order with the Kaula �rst-order method for the remaining higher degree zonal,

sectorial and tesseral terms [34, 35]. More recently Spiridonova et al. exploited the same strategy

for ground-based LEO orbit monitoring and maintenance, using an iterative method to cancel the

short-periodic terms due to J2 computed with Eckstein's satellite theory [36, 37]. In this work the

conversion function employs a second-order Lie-series based approach, analytically derived up to

certain order expansion of the eJ2 term (where e is the eccentricity of the chief orbit), to cancel

the short- and long-periodic terms due to the dominant J2 coe�cient. Then, the semi-major axis

component only is re�ned through the �rst-order Kaula method up to the required order and degree

term of the geopotential. As the drift in the along-track direction is proportional to the relative

semi-major axis, in fact, the highest precision is strictly required only for such component of the

orbital elements' set.

The paper is organized as follows: section II describes the framework critically motivating its

design choices. Section III focuses on the algorithm to convert from/to mean/osculating elements,

providing the numerical comparison with respect to other methodologies in the literature. Sec-

tion IV addresses the relative motion model in the mean ROE space, explaining the development of

the �rst-order state transition matrix as well as of the second-order state transition tensor. Section V

presents the achievable accuracy results, focusing on both the bene�ts from the implemented ele-

ments' transformation algorithm and the improvements produced by the developed relative motion

model. The functional expressions of the transformation algorithms are available in the supplemen-

tal appendix to this paper.

II. Framework de�nition

This section describes the framework in terms of actions' �ow and use to support the design

of relative GNC algorithms. Figure 1 shows two possible con�gurations, to serve respectively nav-

igation and guidance purposes. For each set-up, gray-background boxes denote information from

outside: either inputs to the operations or data required to accomplish the GNC task (e.g., the true

observations from sensors h(t)). Outputs, instead, are in dark-background blocks. All operations

are implemented on the chief satellite, whose absolute state yc is known at each current time. In

6
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noncooperative scenarios, the state of the deputy spacecraft has to be estimated out of the obser-

vations collected by the sensors mounted on the chief. Accordingly, in the navigation task, one

aims at estimating the relative state at a given time δᾱ0 (parametrized in ROEs, which are de�ned

later in Eq. (1)), so that the residuals between the collected h(ti) and modeled h̃(ti) observations

of the deputy spacecraft are minimized. Once that the relative state at a certain time is known,

the guidance task aims at �nding a control policy that brings the relative trajectory to a target

one at a later time δᾱtar, minimizing the error in the relative state at that time t. Examples of

implementation of guidance and control schemes are provided in [3, 29�31]. Figure 1 depicts the

chain of operations for both navigation and guidance set-ups. At each time t, the functions speci�ed

over the arrows are computed, following order and direction. The result of each operation is written

in the neighboring box.

δᾱ0
Φ,Ψ−−−−−→ δᾱ(t) h(t)

+ −−→ αd(t)
T−1

1 ◦T2−−−−−−−→ ỹTOD
d

(t) −−→h̃(t)

yEME
c (t) R−−−→ yTOD

c (t) T1−−−→ αc(t)
T−1

2−−−−→ ᾱc(t)

a) Navigation set-up

δᾱ0
Φ,Ψ−−−−−→ δᾱtar(t)

+ −−→ ᾱd(t) T2−−−−→ αd(t)
T−1

1−−−−→ ỹTOD
d

(t)

yEME
c0

T−1
2 ◦T1◦R−−−−−−−−−→ ᾱc0

sat. th.−−−−−−−→ ᾱc(t) T2−−−−→ αc(t)
T−1

1−−−−→ ỹTOD
c (t)

b) Guidance set-up

Fig. 1 Actions' �ow of the framework: chain of operations executed at each time t.

Regarding the nomenclature adopted in Fig. 1, the absolute orbit of the chief, in LEO usually

estimated onboard by processing GNSS position data, is expressed in a Cartesian Earth-centered

inertial reference system. A common choice is to employ the Earth Mean Equator and Equinox

of J2000 (EME) reference system, given the availability of star catalogs in that frame [38]. The
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conversion between osculating/mean elements, instead, requires the use of the true of date (TOD)

reference system, coherently with the arrangement of the geopotential harmonics with respect to the

terrestrial equator. Accordingly, the transformation R in Fig. 1 is the rotation from EME to TOD,

which is a composition of the precession and nutation rotations [38]. In order to work in the elements'

space, the Cartesian absolute state is transformed into the corresponding set of osculating elements

through the transformation T1. Here α = (a, u, ex, ey, i,Ω)T is the set of Keplerian non-singular

elements, with ex = e cosω, ey = e sinω, and u = ω+M respectively being the x and y components

of the eccentricity vector and the spacecraft mean argument of latitude, a the semi-major axis, ω

the argument of the perigee, M the mean anomaly, and i the inclination. The transformation from

mean to osculating elements T2 will be explained in details in section III; the ·̄ notation denotes

mean quantities, which therefore are the averaged ones out of T−1
2 . The relative state in ROEs δα

is de�ned as follows:

δα = (δa, δλ, δex, δey, δix, δiy)
T

= (∆a/ac,∆u+ ∆Ω cos ic,∆ex,∆ey,∆i,∆Ω sin ic)
T

(1)

where ∆· denotes the di�erence between quantities of the deputy �d� and chief �c� satellites, δλ

is called the relative mean argument of longitude, and the vectors (δex, δey)T and (δix, δiy)T are

respectively known as the relative eccentricity and inclination vectors. As explained in [39], the

functional expression of the relative inclination vector in Eq. (1) corresponds to the unit non-coplanar

vector between chief and deputy orbits, when ∆i and ∆Ω are small. Whereas the relative eccentricity

vector in Eq. (1) is de�ned as the di�erence of the eccentricity vectors of deputy and chief satellites,

having assumed that the two orbital planes almost coincide (again ∆i and ∆Ω << 1) so that the

projection of ed on the chief orbital plane is assumed to coincide with the original vector [40]. Note

that Han and Yin in [41] remove this last assumption, to obtain a de�nition that is valid also for

eccentric reference orbits (i.e., the additional term that remains after considering small di�erences

of orbital elements is proportional to e∆Ω and thus negligible in LEO for small eccentric orbits). By

introducing a polar notation for both relative eccentricity and inclination vectors, the phase angles

de�ned from the axes of nodes of the chief satellite have respectively the meaning of perigee ϕ and

ascending node θ of the relative orbit. And, for almost-bounded relative orbits (i.e., δa ≈ 0) the

8

Page 8 of 34

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

minimum distance in the local radial-normal (RN) plane can be related to the di�erence of ϕ and

θ angles and thus to the phasing of the relative eccentricity/inclination vectors [39], with all the

important consequences on spacecraft proximity operations and collision avoidance strategies. Note

that the analytical expression of the one-orbit minimum RN distance can be straightaway extended

to drifting relative orbits, resulting from non-vanishing relative semi-major axis encountered during

a rendezvous or produced by the action of the di�erential aerodynamic drag, to take into account

the shift in the radial direction [42]. Finally the use of δλ, thanks to the term ∆Ω cos ic, which is

a correction of the basis of the mean argument of latitude for non-coplanar satellites [41], allows

decoupling the in-plane and out-of-plane relative motions (in the unperturbed case). This factor

is extremely useful when designing impulsive guidance and control algorithms based on the GVEs,

fostering the design of recon�guration relative trajectories directly in the ROE space [43, 44].

By comparing the functional blocks of the framework with the chain of transformations com-

posing the geometric method developed in [10], one can note that, �rst, in both approaches the

core part is constituted by the propagation of the orbital elements based relative state vector in the

mean space. Nevertheless, by using δα as parametrization, where δλ is a trivial function of ∆u,

simpler expressions of the components of the �rst-order STM are obtained, because there is no need

to relate the expansion of u̇ to the di�erence of true argument of latitude. Second, the mean to

osculating transformations T2 are directly employed instead of their Jacobian. In [10, 15] the latter

is required to subsequently map the di�erences in osculating elements into the relative state in the

local curvilinear co-moving frame. From an engineering point of view, however, it is very convenient

to develop guidance and control algorithms directly in the ROE space. Examples are dead-band

control strategies on the ROE evolution for formation-keeping [29, 30] or delta-v minimum trajec-

tory design through way-points in the ROE space for large recon�gurations [3, 44]. Note that, the

additional mapping into the relative state introduces further approximations that may degrade the

overall propagation accuracy. For this reason, in comparative studies as [8] the GA-STM method is

evaluated splitting its core function from the full formulation. And in angles-only relative navigation

cases, where the observability property demands for the best possible accuracy, the observations are

modeled as in this framework from ỹd and yc [4�6]. Last, considering the structure depicted in

9
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Fig. 1, the solution of the Kepler's equation is required only by the transformation T−1
1 , to recover

the Cartesian absolute state from the osculating elements set α.

The overall accuracy of the framework is assessed by considering each error source introduced in

the chain of actions. Errors in the implementation of the block interfaces and the two-way errors in

the conversion algorithm T2 introduce arti�cial sources of error that degrade the overall performance

of the relative motion model. The focus of this paper is the precise modeling of the relative motion;

thus, in the navigation set-up, the modeled observations h̃ are computed from ỹd and yc without

introducing errors. Moreover, no guidance/control policies are considered and the target relative

state at a future time is simply the propagated relative state up to that time. Coherently, the

framework accuracy is given by:

δenav(t) = ‖ỹd(t)− yd(t)‖

δegui(t) = ‖(ỹd(t)− ỹc(t))− (yd(t)− yc(t))‖
(2)

where all quantities are expressed in the same reference frame, as for example the TOD. In the

navigation case, as the chief state is known from the onboard absolute navigation system, it is

important to minimize the two-way error of the mean/osculating elements conversions (i.e., T2◦T−1
2 ),

in agreement with the results in [25] where the e�ect of using di�erent transformations was compared.

In the guidance set-up, the error in the relative state is decoupled from the one in the absolute state

by subtracting ỹc(t). As a matter of fact, in the majority of formation-�ying applications the

payload poses requirements on the relative control and not, simultaneously, on the absolute orbit.

For remote sensing applications, the payload measurements are processed on-ground on the basis

of post-facto precise orbit determination products [45]. In this way, the computation of ᾱc0 is not

required to the same precision of that for semi-analytical long-term orbit propagation. Moreover,

the propagation of ᾱc at later time can be based on a satellite theory second-order only for the

dominant J2 contribution, still providing accurate enough performance with simple and compact

algorithms.

In a pure simulation environment (e.g., when no �ight-data are available) the reference quantities

yd(t) and yc(t) are numerically propagated (using the proper force �eld) starting from some known

initial conditions. Note that in the scheme �ow of Fig. 1 the yEME
d0 is not given. As for the numerical
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assessment of section V, such initial condition is computed according to the chart in Fig. 2, to allow

the de�nition of the relative state at initial time directly in mean ROEs. Note that in Figures 1

and 2, the symbol + denotes the computation of the deputy's αd from chief's orbital elements and

the ROEs using the de�nition of Eq. (1).

δᾱ0

+ −−→ ᾱd0
T2−−−−→ αd0

R◦T−1
1−−−−−−→ yEME

d0

yEME
c0

T1◦R−−−−−−→ αc0
T−1

2−−−−→ ᾱc0

Fig. 2 Deputy initial conditions for the reference orbit.

III. Osculating/Mean Orbital Elements Conversions

This section describes the algorithm implemented in the elements transformations, where T2

is the direct conversion from mean to osculating elements. On the contrary, the extraction of the

mean elements from the osculating set is referred as to the inverse transformation T−1
2 .

A. Hamiltonian approach for the main problem

The analytical solution of the J2 problem is computed using Hamiltonian perturbation theory

by Lie transforms [46]. In particular, three consecutive canonical transformations are applied to

obtain the secular terms of the solution up to the third order of J2, whereas the periodic terms are

computed up to the second order of J2. Thus, the elimination of the parallax [47�49] is applied

�rst to remove non-essential short-period e�ects from the original Hamiltonian. This pre-processing

casts the Hamiltonian into a suitable form that eases the complete removal of the mean anomaly up

to higher orders in a following Delaunay normalization [50]. A �nal Lie transformation eliminates

the remaining long-period terms, which are related to the argument of the perigee, yielding a

completely reduced, integrable Hamiltonian from which the secular frequencies are easily derived.

The analytical solution constructed in this way is free from singularities related to equatorial or

circular orbits, yet it cannot cope with the critical inclination resonance. All the transformations
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have been computed in closed form of the eccentricity. However, in view of the solution is only

applied to LEO orbits, for better e�ciency in the evaluation the periodic corrections have been

expanded in powers of the eccentricity. Thus, the �rst-order corrections are accurate to the order

of J2e
3, whereas the second-order corrections are accurate to the order of J2

2 e. As a result, the

mean-to-osculating transformations are written as follows:

α̂ = ᾱ + f
(1)
perigee(ᾱ) + 1

2f
(2)
perigee(ᾱ)

α̃ = α̂ + f
(1)
delaunay(α̂) + 1

2f
(2)
delaunay(α̂)

α = α̃ + f
(1)
parallax(α̃) + 1

2f
(2)
parallax(α̃)

(3)

starting from the mean set ᾱ to obtain the osculating set α in three steps, with f
(1)
• and f

(2)
•

denoting respectively the �rst-order and second-order corrections. The functional expressions for

the perigee, delaunay, and parallax transformations are reported in the supplemental appendix. The

inverse transformation, instead, is given by:

α̃ = α− f (1)
parallax(αosc) + 1

2g
(2)
parallax(αosc)

α̂ = α̃− f (1)
delaunay(α̃) + 1

2g
(2)
delaunay(α̃)

ᾱ = α̂− f (1)
perigee(α̂) + 1

2g
(2)
perigee(α̂)

(4)

to compute ᾱ fromα. The second-order inverse corrections g
(2)
• are also reported in the supplemental

appendix.

1. Accuracy of the analytical transformation

This section presents the accuracy analysis of the previously developed transformation and

compares it with di�erent other approaches from the literature. In particular the following method-

ologies are considered. The �rst-order mapping described in Appendix F of Ref. [51] (hereafter

labeled as SJ-1st, from the initials of the names of the authors) and used in the �ight software of

the AVANTI experiment [3]. Such method is based on Brouwer's satellite theory [52] with Lyddane's

modi�cation [53] to accommodate small eccentricity and small inclination orbits. Due to the �rst

order truncation, direct and inverse transformations simply di�er by a sign. The �rst-order trans-

formation developed in Ref. [10] using the Brouwer's generating functions re-arranged to produce a

12

Page 12 of 34

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

single transformation from mean to osculating elements. In this comparison the expression given in

Eq. (42) of Ref. [10], and not its Jacobian, is implemented. This approach is labeled GA-1st, again

from the initials of the names of the authors of Ref. [10]. The implementation of the short- and

long-periodic corrections provided by Brouwer in [52] though using Lyddane's modi�cation, taking

only into account the e�ects due to J2. Finally, the implementation of the short- and long-periodic

corrections provided by Eckstein and Hechler in [37], which presents a second-order satellite theory

suitable for near-circular orbits (eccentricity of the order of the J2) that improves the one originally

developed by Ustinov in [54]. Although Ref. [37] is developed to account for zonal terms up to

order-6 and tesseral terms up to order-4 degree-4, here only the corrections related to the J2 are

considered. In particular, short-periodic corrections include terms of J2, J2e, and J2
2 (this latter

only for the semi-major axis); whereas the long-periodic ones include terms of J2, J2e, J2e
2, J2

2 ,

and J2
2 e.

Note that in the last two cases the inverse transformation is not known in explicit form. There-

fore, the osculating-to-mean conversion is computed iteratively with a �xed-point numerical scheme

[55, 56], and the methodologies are respectively labeled B-I and E-I (taking the authors' initials

and "I" standing for iterative). The numerical loop is initialized with the osculating set, and, to

ease the convergence, the semi-major axis component of the non-singular elements' set is normalized

using the known osculating value. In this way the threshold determining the terminating condition

can be set to 1e-8 and it is generally satis�ed within three iterations [25].

In order to compare the performances of all the approaches mentioned so far, a reference scenario

of a near-circular (i.e., e = 0.001) orbit at 500 km of height is considered. This orbit is propagated

through numerical integration (Dormand and Prince DO-PRI8, �xed time step of 10 s) of the

equations of motion subject to J2 only. At each step, the inertial state, in the TOD reference system,

is transformed into osculating elements, which then represent the true set of orbital elements.

Figure 3 shows the mean elements, resulting from the inverse transformation at each integration

step; the analytical transformation developed in Section IIIA is labeled A-2nd, where "A" stands

for analytical. One can note that the obtained mean values vary over the one orbit period time as

result of the transformation error and of the matching imposed by the iterative process (for B-I and
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Fig. 3 Mean elements over time (1 orbit) obtained from the inverse transformation.

E-I only). The fact that the conversion error depends on when it is carried out is a relevant aspect for

those spaceborne guidance algorithms executed at times corresponding to di�erent mean anomalies

of the orbit. In addition, the size of the error depends on the accuracy of the transformation

method, with the two second-order approaches (i.e., E-I and A-2nd) achieving better results. For

the anomalies, the plot shows the values to the net of the secular e�ect, which is obtained through

linear �tting of the corresponding data. The focus of formation �ying is on the relative motion and

thus on the di�erence of the transformation error between the chief and the deputy orbits. Clearly,

part of the absolute conversion error cancels because the orbits are similar and the satellites close.

Nevertheless, the bigger the oscillation in mean-value the larger the relative error may be. The

variation of mean-values for all the components except for the semi-major axis is indeed negligible

for propagation time spans of few days (see Fig. 3). An error in the relative semi-major axis, instead,

turns into an error in the secular component of the relative motion (a kind of an arti�cial drift)

degrading remarkably the overall accuracy of the solution propagated over time.

Figure 4 shows the semi-major axis component only (i.e., the one responsible for the change in

phasing between the chief and the target), showing the evolution of the mean value with respect to
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a) All considered methods.
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 E-I A-2nd

b) Only second-order methods.

Fig. 4 Semi-major axis component; plotting its value minus mean value at initial time.

the value obtained at the �rst step ā(t0) = ā0. In the left view all the approaches are depicted; note

that SJ-1st and GA-1st are equivalent. Whereas in the right one the focus is on the second-order

methods. This allows comparing their performances and visualizing the e�ects introduced by the

simpli�cation of terms performed in E-I, where the second order J2-solution is not fully consistent

as J2
2 terms were neglected everywhere except for in the semi-major axis [36, 37]. Note that the

discontinuities in the results of E-I are due to the numerical process, which is repeated at each

considered time step.

B. The complete transformations

The A-2nd transformation is used to cancel the e�ect of the J2, providing better accuracy than

E-I while avoiding a numerical iterative process. The algorithm is then completed by applying the

periodic corrections due to any remaining element of the zonal, sectorial, and tesseral harmonics

based on the Kaula's �rst-order method. This formulation, in fact, is very convenient for the

recursive implementation of the higher order and degree components of the geopotential. The use

of a �rst-order theory for the terms of order greater than two is reasonable, as they are of order of

J2
2 .

As explained in the introduction, in formation �ying applications the highest accuracy is actually

needed only for the semi-major axis component (i.e., the one responsible for the secular growth of
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the relative orbit). Accordingly, to ful�ll the most compact algorithm, the Kaula-based corrections

are only performed for the semi-major axis, as follows [35]:

∆almpq =
µeR

l
e

nal+2 2Flmp(i)Glpq(e) (l − 2p+ q)
Slmpq

Ψ̇lmpq

Slmpq =


+Clm cos Ψlmpq + Slm sin Ψlmpq if l −m is even

−Slm cos Ψlmpq + Clm sin Ψlmpq if l −m is odd

Ψ = (l − 2p)ω + (l − 2p+ q)M +m(Ω−Θ)

(5)

where ∆a is the change in semi-major axis, l and m are order and degree of the geopotential

with coe�cients Clm and Slm, p ≤ l is an index, Flmp are the inclination functions, Glpq are the

eccentricity functions (the short periodic ones are series, but for small eccentricities is enough to

consider the index q ∈ [−2, 2] [57]), and Θ is the Greenwich sideral time.

The transformations obtained combining Hamiltonian and Kaula's approaches are labeled KA-

l×m, being l and m respectively order and degree of the geopotential terms accounted in the

corrections. No problems of singularity arise in the Kaula-phase, since this is used only to correct

the semi-major axis (e.g., there are no issues due to the e at denominator of the ∆e part of the

eccentricity vector correction, for the cases in which it does not simplify with the e coming from

the eccentricity functions). Moreover, the correction of the semi-major axis requires only the com-

putation of inclination, short-, and long-periodic eccentricity functions but none of their derivatives

with respect to their arguments. Finally, the �rst order correction is the same in both directions,

except for the sign. The e�ect of using the KA-l×m algorithm on the overall numerical accuracy

achievable in the modeling of the relative motion is presented later in Section V.

IV. Relative motion model in mean elements

After having applied the transformations T−1
2 , the only mean elements that present a secular

variation are Ω, ω, and M , generated by even zonal harmonics only. At this point ROE-based

models in literature derive the plant matrix of the linearized relative dynamics by expanding to

the �rst order the time derivatives of of the chief satellite ˙̄αc [18, 19]. Following the approach of
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[10, 15, 28], instead, here the mean orbit of the chief ᾱc(t)

ex(t) = ex0 cos (ω̇(t− t0))− ey0 sin (ω̇(t− t0))

ey(t) = ex0 sin (ω̇(t− t0)) + ey0 cos (ω̇(t− t0))

Ω(t) = Ω̇(t− t0) + Ω0

u(t) = ω̇(t− t0) + Ṁ(t− t0) + u0

(6)

is expanded (a and i are constants). In Eq. (6) the ·̄ notation and the "c" subscript are dropped

dealing with mean quantities of the chief only. In this way, the STM is directly derived, with no

need to integrate the linearized system of equations. Moreover, the extension to further terms of the

Taylor expansion, as needed to model rendezvous or larger formations, becomes straightforward.

A. The �rst-order state-transition matrix

The STM is obtained by retaining the �rst-order only expansion with respect to a, ex, ey, and

i rearranged so that δα(t) = Φ(α0,∆t)δα0 with the ROEs de�ned in Eq. (1):

Φ(α0,∆t) =



1 0 0 0 0 0

a∆t
∑
p g

(p)
a 1 ∆t

∑
p g

(p)
ex ∆t

∑
p g

(p)
ex ∆t

∑
p g

(p)
i 0

a∆tA1

∑
p ω̇

(p)
a 0 C + ∆tA1

∑
p ω̇

(p)
ex −S + ∆tA1

∑
p ω̇

(p)
ey ∆tA1

∑
p ω̇

(p)
i 0

a∆tA2

∑
p ω̇

(p)
a 0 S + ∆tA2

∑
p ω̇

(p)
ex C + ∆tA2

∑
p ω̇

(p)
ey ∆tA2

∑
p ω̇

(p)
i 0

0 0 0 0 1 0

a sin i∆t
∑
p Ω̇

(p)
a 0 sin i∆t

∑
p Ω̇

(p)
ex sin i∆t

∑
p Ω̇

(p)
ey sin i∆t

∑
p Ω̇

(p)
i 1


(7)

where ∆t = t − t0 is the time elapsed from the starting epoch, p is the index of the ordered set

J:{J0, J2, J
2
2 , J4, J6} collecting the considered zonal contributions, and the subscript notation f

(p)
x

is used to denote the partial derivatives of f (p) - generated by the J{p} contribution - with respect

to the element x. The notation J0 has been used to express the Keplerian solution, for which only

M varies over time with Ṁ = n, being n the unperturbed mean motion. The remaining functions
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that appear in Eq. (7) are:

S = sin
(∑

p ω̇
(p)∆t

)
C = cos

(∑
p ω̇

(p)∆t
)

A1 = −(Sex0 + Cey0) A2 = +(Cex0 − Sey0)

g = ω̇ + Ṁ + Ω̇ cos i

(8)

where ω̇ and Ω̇ respectively are the time derivatives of the argument of perigee and of the longitude of

ascending node. The STM structure of Eq. (7) accounts for whatever order of the geopotential (i.e.,

with J up to the consistent p term and T−1
2 of proper order and degree), and is valid for whatever

eccentricity without introducing any further approximation. Thus it generalizes the ones of [18, 19],

with Φ supporting a straightforward geometrical representation of the evolution of the mean ROEs

over time. Given its relevance in the design of formation keeping and recon�guration algorithms, the

functional expression of Eq. (7) including only the dominant J2 e�ect to the �rst-order is provided

in the supplemental appendix. The description of the qualitative evolution of the ROEs in their

space has been discussed in several works [17�19, 39, 40]. To assess the relevance of the e�ects

due to higher terms of the geopotential one can refer to the structures of the partial derivatives

presented in Table 1. There, K2 = J2(R⊕/a)2, K22 = K2
2 , K4 = J4(R⊕/a)4, K6 = J6(R⊕/a)6, R⊕

is the Earth radius and η =
√

(1− e2
x − e2

y).

Table 1 Structure of the partial derivatives of Ω̇, ω̇, and Ṁ with respect to a, ex, ey, and i.

(Ω̇ or ω̇)a (Ω̇ or ω̇)e∗ (Ω̇ or ω̇)i Ṁa Ṁe∗ Ṁi

J2 cK2
n
η4

1
a
f(i) cK2

n
η6
e∗f(i) cK2

n
η4
f(i) cK2

n
η3

1
a
f(i) cK2

n
η5
e∗f(i) cK2

n
η3
f(i)

J2
2 cK22

n
η8

1
a
f̂ cK22

n
η10

e∗f̂ cK22
n
η8
f̂ cK22

n
η9

1
a
f̂ cK22

n
η11

e∗f̂ cK22
n
η9
f̂

J4 cK4
n
η8

1
a
f̂ cK4

n
η10

e∗f̂ cK4
n
η8
f̂ cK4

n
η7

1
a
f̂ cK4

n
η9
e∗f̂ cK4

n
η7
f̂

J6 cK6
n
η12

1
a
f̂ cK6

n
η14

e∗f̂ cK6
n
η12

f̂ cK6
n
η11

1
a
f̂ cK6

n
η13

e∗f̂ cK6
n
η11

f̂

Note: c numerical coe�cients, f̂ = f(cos2 i, e2) di�erent for each entry, and e∗ denotes either ex or ey.
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B. The second-order state-transition tensor

When performing active debris removal missions, the chaser satellite undergoes phases of ren-

dezvous from far-range and phases in which its relative orbit with respect to the target's one might

be quite large (e.g., after the coarse orbit phasing when the far-range relative sensors start detect-

ing the target object). In these cases a �rst-order expansion in the orbital elements might not be

enough to preserve the accuracy of the relative motion model and/or to support relative initial orbit

determination or relative navigation algorithms. With the selected parametrization, the inclusion

of further terms of expansion of the unperturbed dynamics is trivial, being g (and thus δλ) only

function of the mean semi-major axis. The second-order correction due to the p term of the J set

can be included considering the H matrix associated to a function z (expressed by the notation Hz),

which assembles as follows the double partials with respect the orbital elements:

Hz =



a2 za,a 0 a za,ex a za,ey a za,i 0

0 0 0 0 0 0

a za,ex 0 zex,ex zex,ey zex,i 0

a za,ey 0 zex,ey zey,ey zey,i 0

a za,i 0 zex,i zey,i zi,i 0

0 0 0 0 0 0



(9)

being z on turn g(p), Ω̇(p), e
(p)
x , and e

(p)
y . Here za,ex , for example, is the short notation for ∂2z

∂a∂ex
.

Thus, the unperturbed part associated to J0 simply reduces to Ṁa,a in the �rst component of Hg(0) .

For the eccentricity vector components, the partial derivatives e∗j,k are computed from Eq. (6). As a

result, the relative motion model in the mean ROE space can be written to include the second-order

correction

δα(t) = Φ(α0,∆t)δα0 + 1
2Ψ(α0,∆t)⊗ δα0 ⊗ δα0

Ψ(α0,∆t) =

[
O6×6 ∆tHg Hex Hey O6×6 sin i∆tHΩ̇

] (10)

where Ψ is the second-order state-transition tensor of dimension 6 × 6 × 6 built from the Hz as

prescribed in Eq. (10) and ⊗ is the dyadic product. For the sake of readability the notation ·(p)

has been dropped. Nevertheless, when accounting for only the unperturbed and J2 (to the �rst-

order) terms, the Ψ in Eq. (10) is the ROE-based version of the STT of Yang et al. [15]. Again
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by using ROEs of Eq. (1) for the parametrization, the tensor presents a sparser structure and the

generalization to include further terms becomes straightforward. Note that in [15] in order to link

∆u to the variation of true argument of latitude, a Taylor expansion of the eccentric argument of

latitude is needed, which requires further hypotheses on the size of the orbital elements' di�erences,

and thus restricts the range of applicability of such second-order model.

Figures 5 and 6 show the sizes of the corrections due higher zonal terms to the �rst order and

second-order expansions of Keplerian and J2 terms. There, the mean elements of the chief are

a = 710 + R⊕ km, e = 0.001, and i = 98.17◦ (i.e., a sun-synchronous condition). In Fig. 5 the size

of the relative orbit is considered. Therefore, the same case of Ref. [8] is taken, where the relative

orbit is parametrized as follows: bounded δa = 0, centered, δλ = 0, (anti-)parallel con�guration

with no y component δey = δiy = 0, and same magnitude of the relative eccentricity and inclination

vectors δe = δi. Accordingly, this case presents a worst-case scenario for the e�ects produced by

the non-spherically symmetric mass distribution, and the orbit size can be parametrized in the non-

dimensional maximum separation between the spacecraft δrmax/ac (as done in [8]). In this case, the

second-order expansion due to J2 becomes more relevant for orbits larger than δrmax/ac > 1.45·10−3

(i.e., aδe ≈ 4600 m) for the relative mean longitude and δrmax/ac > 2.8 · 10−3 (i.e., aδe ≈ 8800 m)

for the relative eccentricity vector.

The plots of Fig. 6 regard the case of a passively safe drifting orbit, as typically used for

noncooperative rendezvous. Accordingly, aδa in meters vary to parametrize the magnitude of the

drift in �ight direction, δex = δix = 0, and the magnitude of relative eccentricity and inclination

vectors are moderate (the orbit size has been already shrink, to �t better in the �eld of view of the

relative navigation sensors). Given such limited size of the orbit, the corrections in δλ are much

more relevant. Moreover, here the second-order expansion of the unperturbed term becomes more

relevant for drifts larger than aδa > 135 m, a common value for far-range rendezvous looking at the

�ight-data of ARGON (Fig. 13 of Ref. [18]) and AVANTI (Fig. 26 of Ref. [6]).
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Fig. 5 ROE corrections for relative orbits of increasing size δα0 = (0, 0, k, 0, k, 0)T.
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Fig. 6 ROE corrections for drifting passively safe relative orbit aδα0 = (k, 4500, 0, 250, 0, 300)T m.

21

Page 21 of 34

Review copy- Do not distribute

Submitted to Journal of Guidance, Control, and Dynamics for Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

V. Results

This section presents the numerical accuracy that can be achieved by adopting the proposed

framework. To this end, the reference states of the deputy and chief satellites yTOD are obtained

by applying the trasformation R to the ones out of the numerical integration carried out in EME,

starting from the initial conditions computed according to Fig. 2, assuming a force �eld speci�ed

case-by-case.

The presented analysis is carried out assuming a scenario from the PRISMA (Prototype Research

Instruments and Space Mission Technology Advancement) mission [58]. Accordingly, the orbit of

the chief is taken as sun-synchronous, dusk-dawn, near-circular e = 0.001 orbit, at the same height

used in section IVB (i.e., 710 km). Moreover, for the inclusion of the e�ects of the non-conservative

perturbations, the deputy and chief satellites are customized on the Tango and Mango spacecraft

respectively, whose properties are recalled in Table 2 of Ref. [8]. The PRISMA scenario has been

chosen as representative of LEO orbits with a height where the e�ect of the di�erential aerodynamic

drag is weak (see section 7 of Ref. [18]). Beyond pure formation �ying applications, for example

devoted to remote sensing, this orbital area is particularly interesting for future active debris removal

activities.

A. The e�ect of the initial conditions

The errors in relative position and velocity at time t in the TOD frame given by Eq. (2) are

weighted as:

δê = Wδe, W = I6×6 · (1, 1, 1, 1/nc0, 1/nc0, 1/nc0)
T

(11)

using the chief's mean motion, to provide an error in dimension of length [8]. In order to assess the

accuracy performance the index of merit ν over the �xed time duration ∆t is de�ned as:

ν∆t = ν(∆t) = max
t0,i∈[t0,t0+Tref]

‖δê(∆t, t0,i)‖2 = max
i
νi(∆t) (12)

Accordingly, this index provides the maximum of the norm-2 of the weighted relative error in

meters, over the given elapsed time ∆t, considering all possible i-th initial times t0,i contained in

the reference interval Tref (typically equal to one orbital period). The index of Eq. (12) is inspired
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from the one de�ned in Eq. (8) of Sullivan et al. [8] and used to compare the several relative motion

models surveyed there. Though, the adopted index extends the one of [8], by considering the e�ect

of the initial conditions, introduced by the osculating/mean elements' conversion errors. In the

comparative work of Alfriend and Yan [59], instead, for each considered relative orbit, a set of

100 equally spaced initial conditions were propagated. As a result, the metric of Eq. (12) merges

two fundamental aspects, namely: the quantitative result of a relative error expressed in meters

(bene�cial to size GNC hardware and algorithms), and the conservative principle of the worst-case

condition (bene�cial to provide a realistic assessment of the performance).

Regarding the relative motion, the relative orbit of the family used in Fig. 6 with δa = 0 is taken

and propagated with the model of Eq. (10). Note that in this condition the e�ects due to the higher

zonal terms and due to second-order expansion are very small, and thus this model provides de-facto

the same propagation of the STM used to develop the spaceborne GNC system of AVANTI (i.e.,

Eq. (6) of Ref. [3]). Here, in fact, the focus is on assessing the bene�ts of using the T2 of section III

in the framework. The summary of the performed simulations is provided in Table 2, where the

results associated to the navigation error δenav are reported. For each performed simulation, the

Tref interval is taken as 5940 seconds that corresponds to circa the unperturbed orbital period of the

chief satellite. By considering a time granularity of 1 minute for the initial times t0,i, a population

of 99 di�erent initial conditions is employed for each run. The value of the index ν is provided

for two simulation legs, corresponding to 1-day (i.e., 14.5 Tref) and 2-day long (i.e., 29 Tref) time

durations.

Table 2 Summary of performed simulations. Index scores are given for the error of the

navigation set-up.

Transf. Geopot. 6×6 Geopot. 30×30 Geopot. 30×30 & Others

Plot ν1-day, m ν2-day, m Plot ν1-day, m ν2-day, m Plot ν1-day, m ν2-day, m

SJ-1st Fig. 7 a) 46.47 61.49 - - - - - -

KA-6×6 Fig. 7 b) 0.77 1.09 Fig. 8 a) 14.55 28.95 Fig. 9 a) 21.61 57.86

KA-10×10 - - - Fig. 8 b) 7.67 14.99 Fig. 9 b) 14.80 43.63

The reference orbits are generated for three di�erent orbital dynamics. In the �rst two cases
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a) T2 with SJ-1st. b) T2 with KA-6×6.

Fig. 7 Accuracy of the navigation set-up: reference orbits from numerical integration in 6×6

gravity �eld.

0 5 10 15 20 25 30

Number of Tref [-]

10-2

100

102

v i(
 t)

 [m
]

1day = 14.55 [m] ,    2day = 28.95 [m]

a) T2 with KA-6×6.
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b) T2 with KA-10×10.

Fig. 8 Accuracy of the navigation set-up: reference orbits from numerical integration in 30×30

gravity �eld.

the non-spherically symmetric mass distribution is the solely perturbation accounted, respectively

geopotential of order-6 degree-6 and order-30 degree-30. In the last case, in addition to the 30×30

geopotential all other orbital perturbations are included (e.g., aerodynamic drag, solar radiation

pressure, third-body due to Moon and Sun, tidal and relativity e�ects). Finally, for each performed

simulation the reference to the related plot is recalled (i.e., see the columns Plot in Table 2).

Figure 7 shows the bene�ts of employing the osculating/mean conversion algorithm of section III

against the one used in the AVANTI �ight software. This comparison is performed in the case when
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