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Abstract: This paper describes the trajectory tracking of an underactuated autonomous
underwater vehicle (AUV) with three control inputs (surge, yaw and pitch moment) that
operates in the presence of time-varying disturbances. The AUV kinematics are described
in global coordinates as a Hamiltonian system on the Lie group SE(3) and the boundary-
value problem arising from the geometric framing of Pontryagin’s Maximum Principle is
applied to the vehicle kinematics. This 6-dimensional boundary value problem is solved
using a numerical shooting method and a novel semi-analytical Lie group integrator. The
integrator uses Rodrigue’s formula to express the exact solution of the solution curves, is
symplectic and preserves energy and momentum. Inverse dynamics is applied to construct an
inner-loop controller, which accounts for constraints on maximum torque and force via time
reparametrization. This inner-loop control, which would drive the AUV along the reference
trajectory in perfect conditions, is combined with a disturbance observer to construct an outer-
loop controller, which ensures stability in the presence of bounded disturbances. Simulation
results complete the work.
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1. INTRODUCTION

The control of an AUV is challenging. The dynamic equa-
tions are nonlinear and generally underactuated. In addi-
tion, uncertain dynamics introduced from the environment
can cause failure of control laws that were designed under
ideal circumstances. In the case of manoueverable vehicles
(i.e.vehicles required to undergo large ranges of motion in
3-D space), limitations may also arise from control schemes
themselves: traditional control schemes based on local mo-
tion parametrizations (like Euler angle descriptions) artifi-
cially limit the range of motion due to singularities. Thus, a
global description, such as a Lie group model, is preferred.
For example Nui & Geng (2016) present the stabilization
of a relative equilibrium for an underactuated AUV in the
context of Hamiltonian systems on the Lie group SE(3)
with physical damping terms. A 2-part control law is
derived by reshaping the kinetic energy and reassigning
damping terms via the Simultaneous Interconnection and
Damping Assignment (SIDA) Method to globally stabilize
an underactuated AUV that moves along its longitudinal
axis where the body velocity is given in terms of an arbi-
trary parameter. The optimal control of an underactuated
autonomous underwater vehicle is considered in Biggs &
Holderbaum (2009). The kinematics are modeled on SE(3)
and the integral of a quadratic function of the velocity
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components is minimized by applying Pontryagin’s Maxi-
mum Principle (PMP). A special case of the cost function
for which optimal motions trace helical paths is considered.
The dynamics are not taken into account and an approach
for numerically computing the parameters to match the
boundary conditions is not provided. Yoerger & Slotine
(1985) consider a conventional sliding-mode controller on
SE(3), which has steady-state error when the AUV is
exposed to constant disturbances, such as currents and
buoyancy. In Candeloro et al. (2013), a two-dimensional
curvature-continuous path planning algorithm is presented
based on Voronoi diagrams and Fermat’s spiral segments;
it respects kinematic and dynamic constraints by setting a
maximum threshold for the path curvature to construct a
simple path composed of straight lines and spiral segments.
However, an optimization method based on PMP may be
used to produce similarly simple paths. Viswanathan et al
(2015) use desired waypoints for the translational motion
and a desired trajectory for the attitude, based on the
desired thrust direction to generate a trajectory for an
underactuated AUV with four control inputs modelled on
SE(3). The effects of disturbances along the uncontrolled
axes are considered. A feedback control law is obtained
to steer the underactuated vehicle towards the desired
trajectories, taking into account known bounds on the
control inputs.

The numerical integration of systems evolving on Lie
groups requires symplectic integrators capable of preserv-
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ing Hamiltonian and group structures. Discrete-time ana-
logues of Lagrangian and Hamiltonian mechanics derived
from discrete variational principles yield a class of geomet-
ric numerical integrators, which are referred to as varia-
tional integrators. These are often used for constructing
symplectic numerical integrators for discrete Lagrangians
or Hamiltonians that are group-invariant. The numeri-
cal method is also momentum preserving. Such an ap-
proach is developed in Lee et al (2007). The discretization
scheme of Lee et al (2007) based on the discrete Lagrange-
d’Alembert principle is extended to obtain the Lie group
variational integrator which is applied to a conservative
underwater system. This method is applied in Nordkvist
& Sanyal (2010), which creates a Lie group variational
integrator for the full (translation and orientation) motion
of a rigid body under the possible influence of nonconser-
vative forces and torques. This integrator is also applied
in the paper Sanyal et al (2011) for tracking a desired con-
tinuous trajectory for a maneuverable autonomous vehicle
in the presence of gravity, buoyancy and fluid dynamic
forces and moments. The paper Henninger & Biggs (2018)
gives a theoretical and very general method of designing
an optimal trajectory using a global semi-analytical Lie
group integrator, but does not consider tracking of this
trajectory and does not include any dynamics, both of
which are required for applications in the control of marine
systems. However, unlike variational methods, this can be
adapted using Rodrigue’s formula to achieve conservation
of energy, momentum and symplectic structure using the
exact solutions. The iterative integration method preserves
the first integral and group structure and so makes the
method viable for trajectories with a long time duration,
where other integrators fail to preserve the group structure
over long time intervals and so lose accuracy (Bloch et al.,
2009).

Highly maneuverable AUVs are being developed, including
miniature aerial and underwater vehicles that can be op-
erated in large ranges of motion. For example, the perfor-
mance of miniature autonomous underwater vehicles (Pan
& Zhu (2003)) and the REMUS AUV have been improved
for more manoueverable operation. However, inherently
agile AUVs that undergo complex multiaxis motions that
accentuate nonlinearities- including disturbance terms -
(Yoerger & Slotine, 1985) would operate better under ideal
conditions. Controls which are adapted to handle unknown
exogenous disturbances would be especially practical for
these kinds of vehicles. In many problems of practical
importance, unknown exogenous disturbances, as well as
model uncertainty of the plant and actuators canbe signif-
icant. When disturbance observer based control (DOBC)
design methods Chen & Guo (2014), Chen et al (2016) are
used, the exogenous disturbances and uncertainty can be
combined and treated as an overall disturbance term.
Our aim in this paper is to produce an optimal trajec-
tory between two points for the AUV and to construct
a controller that is stable under disturbances. We will
follow many of the references cited above in describing
the system kinematics on SE(3), and then formulate the
problem as an optimal kinematic control problem on a
matrix Lie group. An application of PMP gives the nec-
essary conditions for optimality in the form of extremal
equations. This has the advantage that simple paths can
be derived. In fact, for maneuvers in 2 dimensions these are

Dubins curves (Jurdjevic, 1997). The extremal equations
and the trajectories are expressed in global coordinates
by adapting the iterative Lie group method developed in
Henninger & Biggs (2018) using Rodrigue’s formula for
the case of SE(3). The method of inverse dynamics is
then applied to the resulting velocities to ensure that the
constraints on the maximum forces and torques are sat-
isfied in the inner-loop control. Finally, using inverse dy-
namics, no anti-windup is needed in the inner-loop control
because this approach keeps the control force magnitude
within the bounds of the controllers. However, inner-loop
controls have generally been found to be highly sensitive
to uncertainties and disturbances. To reduce these errors,
we construct an outer-loop control, which has as an inner
loop the control constructed using the PMP where the
disturbances are estimated using a disturbance observer
(Do, 2010; Du et al, 2016; Wu et al, 2014). This control
is shown to be Lyapunov-stable. The use of a Lie group
symplectic integrator to generate optimal trajectories and
combine this with a stabilizing tracking controller for an
AUV in the presence of disturbances is novel.

This paper is organized as follows. In Section 2 we describe
the model on SE(3) and the methods used to determine
the inner-loop (Section 2.1) and outer-loop (Section 2.2)
controller; the parameters used for the simulations are
listed in Section 3 where the simulation results are pre-
sented and discussed. Section 4 is the conclusion.

2. METHOD

In this section we describe the system kinematics and
dynamics and then formulate the trajectory generation
problem as an optimal kinematic control problem on
a matrix Lie group. An application of PMP gives the
necessary conditions for optimality in the form of extremal
equations. We describe the Lie group integration method
for finding the trajectory in SE(3) and explain how
inverse dynamics are applied to meet the the force and
torque constraints in the inner-loop control. Lastly, the
disturbance observer for outer- loop control is described.

2.1 Kinematics and dynamics

The maneuverable autonomous underwater vehicle is kine-
matically modelled as a submerged rigid body. We assume
three planes of symmetry and that the geometric center
and the center of gravity G are coincident, so that we
can neglect moments generated by the drag force and so
that the propeller line of action lies along G . Following
Nui & Geng (2016), Sanyal et al (2011) and Fossen &
Berge (2011), the configuration of the rigid body is mod-
elled on SE(3), which is the semi-direct product (r,R)
by g € SE(3), where r denotes the inertial position vector
and R denotes the body orientation (attitude) in the body
frame. The pair (r, R) can be written in the more familar

form

n=[xyz¢0bY, (1)
where we extract the Euler angles ¢, 8, ¢ from the rotation
matrix R(t) in the usual way. Since we wish to avoid the
Euler angle parametrization in favor of a global representa-
tion, this expression will not be used in our computations.
The kinematic equations for a rigid body are given by

r=Rv and R=RQ, (2)
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where the translation and angular velocities in the body-
fixed frame are denoted by v = [v1,v2,v3] and Q =

[w1,ws,ws3]T, respectively. We write these as Q= (v,Q)
where Q is an element of the vector space se(3). The Lie
algebra of SE(3), is given by

0 —x¢ x4 x1
se(3) = _96;’4 25 g5 zi | x1, 20, 3,24, 25,26 p,  (3)
0 0 0 0
which is spanned by the basis
0001 0000 0000
0000 0001 0000
Bi=1o000[' 2= |oooo|' P~ |oo001]|"
0000 0000 0000
0010 00 0 O 0-100
0 000 00-10 1000
Ba=1|_ 1000 P5= {010 0[P o0 00|
0 000 00 0 O 0000

(4)

We assume that the origin of the body fixed frame is at
the center of gravity. The equation of motion representing
the dynamics is

MV =—C(V)V —=D(V)V —g(g)+T+d, (5
where
ml + Mf 0
0 Iy + 1y

for m is the mass of the rigid body, 1 is the 3 x 3
identity matrix, I the body inertia matrix, and My,I; are
respectively referred to as the added mass and the added
moment of inertia. We can denote the inertia tensor related
to this quadratic form as M, V = [w(t),v(t)]", C(V) is
the Coriolis and centripetal matrix, D(V') is the damping
matrix, g(g) is the gravity-induced forces and moments,
T are the actuator forces/moments and d is the vector
representing the disturbance forces and torques acting on
the vehicle. We can simplify (5) as

MV =7+ N(V,g) +d, (6)
where IN(V,g) contains the Coriolis and centripetal,

damping and gravity-induced terms. In the absence of
disturbances, this simplifies to

My =7+ N(V,g). (7)

M:

2.2 Trajectory generation

The problem of moving the AUV from a given initial
position to a given final position is described by the
optimal control problem

9(t) = g(t)Q),
{9(0) =90, 9(tf) =ga ®)

where g = (r, R) € SE(3). In this section, we derive an an-
alytic form of the optimal motion and the required (inner-
loop) control forces. To derive this inner-loop control, we
will solve (8) as an optimal control problem, where in
addition to the boundary conditions, the velocities V()
must satisfy the quadratic cost

t
J:/'f VC(e))VTdt. (9)
0

where C(c¢;) = diag(eq, ¢, ..., cg). While this cost is pri-
marily chosen because it gives rise to a smooth Hamilto-
nian and so to smooth expressions of the velocities, forces
and torques, it is also practical in the following sense.
Writing the cost (9) as a metric J(V) = ||V||¢ and the
kinetic energy metric as ||V = VI MV, we note that
we may always find some ¢; such that

Vilee) < IVilr (10)

In fact, to ensure that the choice of ¢; is not trivial (for
example machine epsilon), we may choose ¢; such that

Ci(V) = maxe,cr([[Vlce) < IVr) (11)

for a given curve V. Thus, for these C; we note that
any curve minimizing J will also result in a minimum-
energy curve for the AUV as measured by the metric
|- |- To this optimal control problem (8) , (9) we will then
apply Pontryagin’s Maximum Principle. The Pontryagin
Maximum Principle is a necessary condition for optimality
which associates to (8) with the cost (9) an optimal
Hamiltonian function H on the Lie algebra se(3), and
the extremal equations in terms of Py, Pa, ..., Ps € se(3)
where P; = p(B;) for p(-) a scalar function mapping the
Lie algebra to its dual defined through a non-degenerate
trace form.

In Henninger & Biggs (2018), a generalized case of (8)-
(9) is considered, where instead of g € SE(3), g is in the

so-called generalized € group, and 2 is replaced with an
element Z?:l x; F; where Ej; is in the e-Lie algebra g. with
the basis

0001 0000 00 0 0
0000 0001 000 0
Bi=10 0002 lo o000~ |00 01
€000 0—c00 00 —€0
0010 00 0 0 0-100
0 000 00-10 1000
Ba=1_ 1000 o1 0 0[P |00 00
0 000 00 0 0 0000

Note that when ¢ = 0, this Lie algera coincides with se(3).
For the cases e = 1, —1 in the optimal control problem (8),
(9) , it is well-known that the extremal equations arising

from PMP on g, take the Lax-pair form P = [p(22), P],
where [-,-] is the Lie bracket. From Henninger & Biggs
(2018) we have the following description of the extremal
equations of the optimal control problem (8):

Proposition For optimal control problems of the form (8),
(9) , the extremal is the solution of

g =gt)dH

Bk = 1R, + Slens, B, (12)
. ~ € ~

ehe = [eh®, Q] + €[hF, Q]

as lime — 0 where h € g, h = h* +h¢, h* = hy 1 Epg1 +
. + R E,. O

This means that by taking a very small e (for our purposes
we take e = 1 x 1071%), we may apply this form of the
extremal equations to solve (12) iteratively. We now apply
Rodrigue’s formula to describe the form of the solution:
Theorem 1 The solution curve (g(t), (v(t),w(t)))of the
optimal control problem (8), (9) is given by the iterative
scheme
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g=(I + Q' sin(n)
PH=(I 4+ O sin(n)

S

(@921 —cos(n))g’,
(QH2(1 — cos n))) P (I + Q' sin(n)
+(21)?(1 — cos(n))) — 1,

Q=(PiyAy 4 PigAs + PiyAg)

+
_|_

+ lim — (P, Ay + Pi, Ay + PiyAs),
e—0 €

where n is a chosen step-size, t; = n - 1,
3 3
P(t) = €3 i (A 45 + (3 v (D) A)),
j=1 j=1

and the initial step values are

o 0(0) =7, pjw (0)Ajus + (30—, vE(0)A;),
o PO=Y7 pjwl (0)Aj4s+ (X1, v (0)4;),
e g°=4(0)

for A; = %Ei, i=1,2,3and A; = E; for i = 4,5,6.

Proof 1. The form of the solution of (12) given in Hen-
ninger & Biggs (2018) (equation (16)) is

9= g exp(Q'n)
P= exp(Q'n) " PP exp(Qin)
QO=(Pj3 Ay + Pis A5 + PiyAg)
+ gg% %(PﬂAl + Py Az + Py Ay).

But, by Rodrigue’s formula, we have the explicit form of
the exponential for each 1,

exp(Q) = (I + Q' sin(n) 4+ (29)2(1 — cos(n))).
2.8 Inner-loop control

The following steps are used to solve the constrained
problem of moving the vehicle from the initial to the final
configuration. These steps are applied in the absence of
disturbance forces/torques to design the inner-loop control
under ideal conditions, i.e. the dynamics are given by (7).
The disturbance forces/torques in (6) are introduced in
the next section where we design the outer-loop control.

e Step 1: Determine the solution g(t, P°), P(t, P°) of
(8) with the cost (9) using (13) in terms of the
unknown boundary conditions P° = (v%, w®) and on
the virtual time domain ¢ € [0, 1] (this scaled time is
denoted ¢ to differentiate it from real time e € [0, T%]).

e Step 2: Construct the “error vector” 7(1,PY) =
n(g(1, P°)) — n, and the function

S(P%) = a1, P)|. (13)

e Step 3: Find PY that minimizes S(P°)using a mini-

mizer, such as Matlab’s fminunc.

e Step 4: Apply the method of inverse dynamics, mak-
ing use of the “feasibility” time reparametrization

F():[0,Tf] = [0,1], F()=/Ty.  (14)
Here, T is the true final time, and a new rotation and

translation is defined as R*(t) = R(F(t)), z*(t) =
2(F(t)) and the corresponding angular and linear
velocities are

V@ = T%V(FG». (15)

Equation (14) is used to numerically compute T'(¢) on
the interval [0, T] for some time guess T¢. The time

T} is then tuned to bring the magnitude |T'(¢)| within
the constraints on the maximum force and torque.

2.4 Outer- loop control

In this section a tracking controller is developed to track
the generated attitude motions in the presence of environ-
mental disturbances. This is related to the Singular Sta-
bilization Controls Method described in Horri & Palmer
(2012), but extends to the tracking problem. A disturbance
observer is constructed using the approach presented in
(Wu et al, 2014). The disturbance estimate is computed
as

d =q(t)+ KoMV, (16)

where
a(t) = —Koq(t) — Ko[N(v,n) + 7(u) + KoMv], (17)
and Ko = K& > 0. We define the disturbance estimation
error as R
d=d-d. (18)
As proven in Do (2010), choosing the Lyapunov function
candidate

Tape 1o~
Vi = =dTd = =||d|? 19
a0 =5 2|| [ (19)

since both Vo (t) and ds are globally uniformly ultimately
bounded such that

c Cal —on
OSVdOSTz‘F[VdO_Tz}eZt (20)
and
~ C C
Id]| < \/2; +2 |:Vd0 - 2*;} e~ 2at, (21)

the disturbance error settles to within a compact set that
can be made arbitrarily small by appropriately selecting
K.

We develop the inner-loop for the controller, which defines
V* and g* . The “virtual trajectory” g* is obtained by
applying the inner-loop controller 74 to the system. We will
denote the trajectory arising after the outer-loop control
is applied to the perturbed system with dynamics (6) by g
and the corresponding velocities by V; the error function

in this case is _
V=v-V~.

Note that from (13), if V — 0, then 7 — 0 by definition,
and so we do not need to include the position error 7
further in our computations to track position.

We now construct the outer-loop control
which provides stability in the presence of bounded dis-

turbances. Particularly, we have the Lyapunov candidate
function

V =(V,KV).
Taking the derivative gives

(23)

V_VEV =(V_-V"KV_-KV",

where from (6) we know that KV = 7+ N(V,g) + d.
Thus
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V=(V-V"7T+N(\V,9)-KV')
But from the controller (22), we see that

KV =1+4ky(V-V*) 4+ N(V,g)+d,

and so

V=(V-V*(=k3(V-V*)+(d—-d))
SV =V —kg(V = V) 4 LV = VL (V- V)

1 1 ~~
= (_k3 + §)<V - V*,V - V*> - 5<d7d>
where Young’s inequality is applied. Thus, locally about
the equilibrium point ¢ = 0, V = 0, we see that V' < 0
for any positive ks > 1/2. The desired state is locally
asymptotically stable.

3. SIMULATIONS

The performance of the control law (22) is investigated
using a simulation of a REMUS AUV tracking the con-
structed trajectory in the presence of disturbances. The
maneuvering coeflicients and physical characteristics of the
AUV were obtained from Prestero (2001) and are given in
table 1. The maximum thrust is taken as 7V.

Table 1: Parameter values used in the simulation.
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Fig. 1: Plot of the planned maneuver.

Applying the control (22) to the system (6), we obtain the
position and orientation plotted in figure 2. The controller
tracks the trajectory designed in figure 1 which moves the
AUV from g to gq defined in (24) under the disturbances.
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100 0 20 40 60

time (s)

(0.)

Param  Value Param  Value

w 320 kg Y —1.93 kg - m/rad

I 1.77 x 107 kg -m?2 || Y, —3.55 x 10! kg

I, 3.45 kg - m? Z —3.55 x 10! kg

I, 3.45 kg - m? Z —1.93 kg - m/rad

My —4.88 kg - m? /rad Ky —7.04 x 10~2kg - m? /rad
My, —1.93 kg-m Ny —4.88 kg - m/rad

Xa —9.30 x 10~ kg N, —1.93 kg-m

Fig. 2: Applied (a.) and ( b.) measured disturbances

In figure 2 we plot the disturbances applied and the
measurement of the disturbances. The observer tracks
the disturbances accurately. In figure 3 we plot the error

We apply the steps described n to create a path for
the AUV starting from initial configuration gg to final
configuration g4, where

20

go = y9d = (24)

1000 100
0100 0100
0010 0010
0001 000 1
The plot of this maneuver can be seen in figure 1. It
is a simple descent. To model disturbances, we added
sinusoidal disturbances with 6-N amplitude and 0.13-Hz
frequency, and constant disturbances with 1-N amplitude
surge and sway motions as well as uniformly distributed
random signals with 8-N amplitude to surge, sway, and
heave motions, and constant disturbance with 5-N am-
plitude to heave motion. We then simulated this control

scheme for 100s.

V. under the outer-loop control and in the presence of
disturbances. We can seen that the error remains small
throughout the manouver.

Oyl 7

0.05
2
g
= of
e

-0.05

0.1 ‘ ‘ ‘ ‘ ‘

0 20 40 60 80 100
time ()

Fig. 3: Error V. under tracking control.
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4. CONCLUSIONS

In this study we designed and tracked an optimal tra-
jectory for an underactuated AUV in the presence of
time-varying disturbances and input saturation using a
global representation of the position and orientation in
SE(3). Numerical shooting and inverse dynamics were
applied to determine an inner-loop control to drive the
AUV on the reference trajectory in perfect conditions;
an additional outer-loop part was added to ensure con-
vergence in the presence of bounded disturbances. The
use of global coordinates also avoids singularities and so
allows a more manouverable AUV to be modelled than
local parametrizations (Sanyal et al (2011)). The simu-
lations carried out demonstrate that even under strong
perturbations (with magnitude of up to 8 N) the outer-loop
control tracks the trajectory designed using the shooting
method on SE(3). It can also be seen that the trajectory
that we designed is a simple spiral section. This approach
could be applied to tracking for mechanical systems such
as mobile robots by including the appropriate dynamics.
A possible drawback of our method is that we assumed
the position and attitude of the AUV are precisely known.
However, in a real mission, there will be delays in the
pose estimation. A specific area to be addressed in future
work is the extension to include time delays and sensor
uncertainties.
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