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Exact budget equations for the second-order structure function tensor 〈δuiδuj〉,
where δui is the difference of the ith fluctuating velocity component between
two points, are used to study the two-point statistics of velocity fluctuations in
inhomogeneous turbulence. The anisotropic generalised Kolmogorov equations
(AGKE) describe the production, transport, redistribution and dissipation of every
Reynolds stress component occurring simultaneously among different scales and in
space, i.e. along directions of statistical inhomogeneity. The AGKE are effective to
study the inter-component and multi-scale processes of turbulence. In contrast to
more classic approaches, such as those based on the spectral decomposition of the
velocity field, the AGKE provide a natural definition of scales in the inhomogeneous
directions, and describe fluxes across such scales too. Compared to the generalised
Kolmogorov equation, which is recovered as their half-trace, the AGKE can describe
inter-component energy transfers occurring via the pressure–strain term and contain
also budget equations for the off-diagonal components of 〈δuiδuj〉. The non-trivial
physical interpretation of the AGKE terms is demonstrated with three examples. First,
the near-wall cycle of a turbulent channel flow at a friction Reynolds number of
Reτ = 200 is considered. The off-diagonal component 〈−δuδv〉, which cannot be
interpreted in terms of scale energy, is discussed in detail. Wall-normal scales in the
outer turbulence cycle are then discussed by applying the AGKE to channel flows at
Reτ = 500 and 1000. In a third example, the AGKE are computed for a separating and
reattaching flow. The process of spanwise-vortex formation in the reverse boundary
layer within the separation bubble is discussed for the first time.
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1. Introduction

Since the early days of fluid mechanics, understanding turbulence fascinates
scholars, enticed by the goal of identifying the key mechanisms governing turbulent
fluctuations and eventually determining the mean flow. This is essential for developing
and improving Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation
(LES) turbulence models, useful in engineering practice. Most turbulent flows of
applicative interest, in particular, are challenging because of their anisotropic and
inhomogeneous nature.

Among the several approaches pursued so far to address the physics of inhomoge-
neous and anisotropic turbulence, the two most common ones observe the flow
either in the space of scales, or in the physical space. In the scale-space approach,
the characteristic shape and size of the statistically most significant structures
of turbulence are deduced from two-point second-order statistics. A spectral
decomposition of the velocity field can be employed to describe the scale distribution
of energy, while spatial correlation functions are used to characterise the shape of
the so-called coherent structures (Robinson 1991; Jiménez 2018). Since a turbulent
flow contains eddies of different scales, the power spectral density of turbulent
fluctuations is a gauge to the actual eddy population, and provides useful information
to develop kinematic models of turbulence capable to explain some of its features. One
such model rests on the attached-eddy hypothesis by Townsend (1976), and predicts
self-similar features of turbulent spectra in wall-bounded flows (Perry & Chong 1982).
Two-points correlations of velocity fluctuations are the inverse Fourier transform of
power spectra. They emphasise the spatial coherence of the largest and strongest
turbulent fluctuations, and have been, for instance, employed to describe the streaky
structure of near-wall turbulence (Kline et al. 1967), to identify large-scale structures
in high Reynolds number flows (Smits, McKeon & Marusic 2011; Sillero, Jiménez
& Moser 2014) or to describe the structural properties of highly inhomogeneous
separating and reattaching turbulent flows (Cimarelli, Leonforte & Angeli 2018;
Mollicone et al. 2018).

In the physical-space approach, it is possible to characterise the spatial organisation
of production, transfer and dissipation of the turbulent kinetic energy associated with
the temporal fluctuations of the three velocity components. The tools of choice are
the exact single-point budget equations for the components of the Reynolds stress
tensor and of its half-trace, the turbulent kinetic energy k. This approach has been
successfully applied to canonical wall-bounded flows and, more recently, to more
complex turbulent flows. For the former, the main focus has been the inhomogeneity
and anisotropy induced by the wall (Mansour, Kim & Moin 1988) and the effect of
the Reynolds number (Hoyas & Jiménez 2008) on the Reynolds stress budgets. For
the latter, the Reynolds stress production and transport phenomena have been studied
in free shear layers and recirculation bubbles (Mollicone et al. 2017; Cimarelli et al.
2018, 2019b), where local non-equilibrium results in significantly different physics.

Typical results ensuing from the two approaches above are exemplified in figure 1,
where key plots from Kim et al. (1987) and from Mansour et al. (1988) are
reproduced. Both diagrams stem from the analysis of the same direct numerical
simulation database for a turbulent channel flow at small value of Reynolds number
(Re). Panels (a,b) are one-dimensional turbulent energy spectra as functions of the
streamwise wavenumber, each computed at a specific distance from the wall. Panel
(c) shows the wall-normal behaviour of the terms appearing in the budget of the 1, 1
component of the Reynolds stress tensor.
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FIGURE 1. Second-order statistics after the seminal direct numerical simulation of a
turbulent channel flow by Kim, Moin & Moser (1987). Panels (a,b) adapted from Kim
et al. (1987): one-dimensional energy spectra versus streamwise wavenumber κx, at two
wall distances. Continuous, dashed and dotted lines refer to streamwise, spanwise and
wall-normal velocity fluctuations. Panel (c) adapted from Mansour et al. (1988): terms in
the budget equation for 〈u′1u′1〉, with notation as in the original paper. P11: production;
ε11: dissipation; Π11: velocity pressure-gradient term; T11: turbulent transport; D11: viscous
diffusion.

Despite their fundamental importance, both approaches suffer of some limitations.
Indeed, it is well known since Richardson (1922) that turbulence is a truly multi-scale
phenomenon, where fluctuations of different spatial extent nonlinearly interact
through energy-cascading mechanisms. Even more so, in inhomogeneous flows these
interactions vary in space significantly, leading to a transfer of momentum between
different spatial locations. The single-point budget equations for the Reynolds stresses
do not contain information about the scales involved in such energy fluxes, and
therefore miss the multi-scale nature of turbulence. The spectral decomposition and
two-point spatial correlations do discern the different scales, but fail to provide direct
information on their role in the processes of production, transfer and dissipation of
k, and therefore lack a dynamical description of turbulent interactions.

These limitations are overcome when space and scale properties of turbulence are
considered jointly. For example, to recover the scale information Lumley (1964),
Domaradzki et al. (1994) and more recently Mizuno (2016) and Lee & Moser (2019)
analysed spectrally decomposed budget equations for the Reynolds stresses. They
observed inverse energy transfers from small to large scales, supporting substantial
modifications of the Richardson scenario in wall-bounded flows. Unfortunately,
however, spectral analysis does not allow a definition of scales in statistically
inhomogeneous directions, such as the wall-normal one in wall-bounded flows.
Hill (2001), Danaila et al. (2001), Hill (2002) and Dubrulle (2019) proposed a
complementary approach, free from this restriction, and generalised the Kolmogorov
(1941) description of the energy transfer among scales from isotropic flows to
inhomogeneous flows.

The generalised Kolmogorov equation or GKE (see for example Danaila, Antonia &
Burattini 2004; Marati, Casciola & Piva 2004; Rincon 2006; Cimarelli, De Angelis &
Casciola 2013; Cimarelli et al. 2015, 2016; Portela, Papadakis & Vassilicos 2017) is
an exact budget equation for the trace of the so-called second-order structure function
tensor, i.e. the sum of the squared increments in all three velocity components
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between two points in space. This quantity is interpreted as scale energy, and provides
scale and space information in every spatial direction, regardless of its statistical
homogeneity. The present work discusses the anisotropic generalised Kolmogorov
equations (AGKE), which extend the scale and space description of the GKE, limited
to scale energy. The goal is to describe each component of the structure function
tensor separately, thus capturing the anisotropy of the Reynolds stress tensor and
of the underlying budget equations. This provides a complete description of energy
redistribution among the various Reynolds stresses. The AGKE identify scales and
regions of the flow involved in the production, transfer and dissipation of turbulent
stresses, thus integrating the dynamical picture provided by single-point Reynolds
stress budgets with the scale information provided by the spectral decomposition.
The relationship between the second-order velocity increments and the two-point
spatial correlation functions can be exploited to identify the topological features of
the structures involved in creation, transport and destruction of turbulent stresses. This
endows the kinematic information provided by the spatial correlation functions with
additional dynamical information from exact budget equations.

The present work aims at introducing the reader to the AGKE and to their use
via example applications to inhomogeneous turbulent flows. The paper is structured
as follows. First, in § 2 the budget equations for the structure function tensor are
presented and provided with a physical interpretation, and the numerical datasets used
in the example flows are described in § 2.2. Then AGKE are applied to canonical
turbulent channel flows. In particular, § 3 focuses on the near-wall turbulence cycle
of a low-Re channel flow. The energy exchange among the diagonal terms of the
structure function tensor via the pressure–strain term is discussed, and the complete
AGKE budget of the off-diagonal component is described for the first time. Then, § 4
demonstrates the capability of the AGKE to disentangle the dynamics of flows with a
broader range of scales by considering the outer cycle of wall turbulence in channel
flows at higher Reynolds numbers. Finally, § 5 considers the separating and reattaching
flow over a finite rectangular cylinder, and shows how the AGKE do in such highly
inhomogeneous flows. The paper is closed by a brief discussion in § 6. Additional
material is reported in three appendices. The complete derivation of the AGKE and
their complete form, both in tensorial and component-wise notation, are detailed for
reference in appendix A. Appendix B lists the symmetries of the AGKE terms in
the specialised form valid for the indefinite plane channel. Appendix C describes the
computation of the velocity field induced by the ensemble-averaged quasi-streamwise
vortex, employed in § 3.

2. Anisotropic generalised Kolmogorov equations
Let us consider an incompressible turbulent flow, described via its mean and

fluctuating velocity fields, Ui and ui respectively, defined after Reynolds decomposition.
The AGKE are exact budget equations for the second-order structure function tensor〈
δuiδuj

〉
, derived from the Navier–Stokes equations. The operator 〈·〉 denotes ensemble

averaging, as well as averaging along homogeneous directions, if available, and over
time if the flow is statistically stationary. The structure function tensor features
the velocity increment δui of the ith velocity component between two points x
and x′ identified by their midpoint X = (x + x′)/2 and separation r = x′ − x,
i.e. δui = ui(X + r/2, t) − ui(X − r/2, t). (In the following, unless index notation is
used, vectors are indicated in bold.)

In the general case, 〈δuiδuj〉 depends upon seven independent variables, i.e. the six
coordinates of the vectors X and r and time t, as schematically shown in figure 2,
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X

∂u

u(X - r/2, t)

u(X + r/2, t)

x = X - r/2

x� = X + r/2

FIGURE 2. Sketch of the quantities involved in the definition of the second-order structure
function. x = X − r/2 and x′ = X + r/2 are the two points across which the velocity
increment δu is computed.

and is related (Davidson, Nickels & Krogstad 2006; Agostini & Leschziner 2017) to
the variance of the velocity fluctuations (i.e. the Reynolds stresses) and the spatial
cross-correlation function as follows:

〈δuiδuj〉(X, r, t)= Vij(X, r, t)− Rij(X, r, t)− Rij(X,−r, t), (2.1)

where
Vij(X, r, t)= 〈uiuj〉

(
X +

r
2
, t
)
+ 〈uiuj〉

(
X −

r
2
, t
)

(2.2)

is the sum of the single-point Reynolds stresses evaluated at the two points X + r/2
and X − r/2 at time t, and

Rij(X, r, t)=
〈

ui

(
X +

r
2
, t
)

uj

(
X −

r
2
, t
)〉

(2.3)

is the two-point spatial cross-correlation function. The AGKE contains the structural
information of Rij; however, for large enough |r| the correlation vanishes, and 〈δuiδuj〉

reduces to Vij, whereas the AGKE become the sum of the single-point Reynolds stress
budgets at X ± r/2.

2.1. Budget equations
The budget equations for 〈δuiδuj〉 describe production, transport and dissipation of the
turbulent stresses in the compound space of scales and positions, and fully account for
the anisotropy of turbulence. For a statistically unsteady turbulent flow, these equations
link the variation in time of 〈δuiδuj〉 at a given scale and position, to the instantaneous
unbalance among production, inter-component transfer, transport and dissipation. The
full derivation starting from the Navier–Stokes equations is detailed in appendix A,
and appendix B mentions the symmetries that apply in the plane channel case.

The AGKE can be cast in the following compact form (repeated indices imply
summation):

∂〈δuiδuj〉

∂t
+
∂φk,ij

∂rk
+
∂ψk,ij

∂Xk
= ξij. (2.4)
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For each (i, j) pair, φk,ij and ψk,ij are the components in the space of scales rk and in
the physical space Xk of a six-dimensional vector field of fluxes Φij, and are given by

φk,ij = 〈δUkδuiδuj〉︸ ︷︷ ︸
mean transport

+ 〈δukδuiδuj〉︸ ︷︷ ︸
turbulent transport

−2ν
∂

∂rk
〈δuiδuj〉︸ ︷︷ ︸

viscous diffusion

, k= 1, 2, 3, (2.5)

ψk,ij = 〈Uk
∗δuiδuj〉︸ ︷︷ ︸

mean transport

+ 〈uk
∗δuiδuj〉︸ ︷︷ ︸

turbulent transport

+
1
ρ
〈δpδui〉δkj +

1
ρ
〈δpδuj〉δki︸ ︷︷ ︸

pressure transport

−
ν

2
∂

∂Xk
〈δuiδuj〉︸ ︷︷ ︸

viscous diffusion

, k= 1, 2, 3, (2.6)

and ξij is the source term for 〈δuiδuj〉

ξij = −〈uk
∗δuj〉δ

(
∂Ui

∂xk

)
− 〈uk

∗δui〉δ

(
∂Uj

∂xk

)
︸ ︷︷ ︸

production (Pij)

−〈δukδuj〉

(
∂Ui

∂xk

)∗
− 〈δukδui〉

(
∂Uj

∂xk

)∗
︸ ︷︷ ︸

production (Pij)

+
1
ρ

〈
δp
∂δui

∂Xj

〉
+

1
ρ

〈
δp
∂δuj

∂Xi

〉
︸ ︷︷ ︸

pressure strain (Πij)

−4εij
∗︸ ︷︷ ︸

ps.dissipation (Dij)

. (2.7)

Here, δij is the Kronecker delta, ν is the kinematic viscosity, the asterisk superscript
f ∗ denotes the average of the generic quantity f between positions X ± r/2 and εij
is the pseudo-dissipation tensor, whose trace is the pseudo-dissipation ε. The sum of
the equations for the three diagonal components of 〈δuiδuj〉 reduces to the GKE (Hill
2001).

Each term contributing to the fluxes in (2.5) and (2.6) can be readily interpreted
in analogy with the single-point budget equation for the Reynolds stresses (see e.g.
Pope 2000) as the mean and turbulent transport, pressure transport and viscous
diffusion. φij describes the flux of 〈δuiδuj〉 among scales, and turbulent transport is
the sole nonlinear term; ψij describes the flux of 〈δuiδuj〉 in physical space, and all
its terms but the viscous one are nonlinear. The source term ξij describes the net
production of 〈δuiδuj〉 in space and among scales; it is similar to the one appearing
in the GKE, but additionally features a pressure–strain term, involved in the energy
redistribution process between different components of turbulent stresses. Each term
in (2.4) informs on the spatial position X, scale r and time t at which production,
transport and dissipation of Reynolds stresses are statistically important.

The diagonal components of 〈δuiδuj〉 are positive by definition, and their budget
equations inherit the interpretation proposed by Marati et al. (2004) and Cimarelli
et al. (2013) for the GKE: they are analogous to scale energy, and the AGKE enable
their discrimination into the separate diagonal components of the Reynolds stress
tensor. The non-diagonal components, however, can in general assume positive or
negative values, also when the sign of 〈uiuj〉 can be predicted on physical grounds.
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Reτ 103Cf (Lx, Lz)/h Nx,Ny,Nz 1x+ 1z+ 1y+min N 1t uτ/h

200 7.93 4π, 2π 256, 256, 256 6.5 3.3 0.46 200 0.62
500 6.05 4π, 2π 512, 250, 512 8.2 4.1 0.96 38 1.00
1000 5.00 4π, 2π 1024, 500, 1024 8.2 4.1 0.96 38 0.60

TABLE 1. Details of the three turbulent channel flow direct numerical simulation databases.
For each Reτ , the table provides the computed value of the friction coefficient Cf =

2(uτ/Ub)
2, the size of the computational domain, number of Fourier modes and collocation

points in the wall-normal direction, spatial resolution (computed after the 3/2-rule
dealiasing in the homogeneous directions), the number N of accumulated flow snapshots
and their temporal spacing 1t. The cases at Reτ = 200 and Reτ = 1000 were already
documented by Gatti & Quadrio (2016) and Gatti et al. (2018).

For these components, ξij has the generic meaning of a source term, which can be
viewed as production or dissipation only upon considering the actual sign of 〈δuiδuj〉

at the particular values of (X, r). In analogy with the concept of energy cascade,
paths of 〈δuiδuj〉 in the (X, r) space represent fluxes of Reynolds stresses through
space (X) and scales (r) at time t. The shape of the paths is determined by ψij (space
fluxes) and φij (scale fluxes).

2.2. Simulations and databases
As anticipated in § 1, the AGKE analysis below stems from the post-processing of
velocity and pressure fields obtained via direct numerical simulations (DNS) of two
flows. The former is the turbulent plane channel flow, whose inner and outer turbulent
cycles will be discussed in § 3 and § 4 respectively. The latter is the separating and
reattaching flow around a finite rectangular cylinder, discussed in § 5.

The turbulent channel flow simulations have been carried out for the present work
via the DNS code introduced by Luchini & Quadrio (2006). The incompressible
Navier–Stokes equations are projected in the divergence-free space of the wall-normal
components of the velocity and vorticity vectors and solved by means of a
pseudo-spectral method, as in Kim et al. (1987). Three database are used, with
friction Reynolds numbers Reτ = uτh/ν of Reτ = 200, 500 and 1000. Here, h is the
channel half-height, and uτ =

√
τw/ρ is the friction velocity expressed in terms of the

average wall shear stress τw and the density ρ. The size of the computational domain
is Lx = 4πh and Lz = 2πh in the streamwise and spanwise directions, discretised
by Nx = Nz = 256, 512 and 1024 Fourier modes (further increased by a factor 3/2
for de-aliasing). In the wall-normal direction the differential operators are discretised
via fourth-order compact finite differences using respectively Ny = 256, 250 and 500
points collocated on a non-uniform grid. Further details are provided in table 1. In
this table and throughout the whole paper, quantities denoted with the superscript +
are given in viscous units, i.e. normalised with uτ and ν.

The database for the flow around a finite rectangular cylinder is taken from the
DNS study by Cimarelli et al. (2018), where the information on the numerical set-up
can be found. A rectangular cylinder of length 5h, thickness h and indefinite span is
immersed in a uniform flow with free-stream velocity U∞ aligned with the x direction.
The Reynolds number is Re = U∞h/ν = 3000. The streamwise, wall-normal and
spanwise size of the computation domain is (Lx,Ly,Lz)= (112h, 50h, 5h). The leading
edge of the cylinder is located 35h past the inlet of the computational box. The fluid
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domain is discretised through a Cartesian grid consisting of 1.5 × 107 hexahedral
cells. The average resolution in the three spatial direction is (1x+, 1y+, 1z+) =
(6.1, 0.31, 5.41).

The AGKE terms are computed with an efficient code specifically developed for the
present work, which extends a recently written code for the computation of the GKE
equation (Gatti et al. 2019). The symmetries described in appendix B are exploited to
minimise the amount of memory required during the calculations. Each term of (2.5),
(2.6) and (2.7) is decomposed into simpler correlation terms, which are then computed
as products in Fourier space along the homogeneous directions, with huge savings in
computing time. For maximum accuracy, derivatives in the homogeneous directions are
computed in the Fourier space, otherwise a finite-differences scheme with a five-points
computational stencil is used. Finally, a parallel strategy is implemented (see Gatti
et al. 2019, for details). The calculation receives in input the fluctuating velocity field
for each snapshot of the databases. It outputs 〈δuiδuj〉, the flux vectors ψij and φij, and
the various contributions to the source term ξij as in (2.7) for each of the six different
second-order structure functions, and in the whole physical and scale space.

The statistical convergence of the data is verified by ensuring that the residual of
equation (2.4) is negligible compared to the dissipation, production and pressure–strain
terms.

3. Example: the near-wall turbulence cycle
A turbulent channel flow at Reτ = 200 is considered in the following. The mean

velocity vector is U (y)= {U(y), 0, 0}, directed along the streamwise direction x= x1
and varying only with the wall-normal coordinate y = x2, while z = x3 denotes the
spanwise direction, and u=u1, v=u2 and w=u3 indicate the three fluctuating velocity
components. Since y is the only direction of statistical inhomogeneity, 〈δuiδuj〉(Y, r)
and all AGKE terms are functions of the physical space only through the spatial
coordinate Y = (y + y′)/2, while still depending upon the whole scale vector r.
Similarly, spatial transport of 〈δuiδuj〉 occurs along Y through the only non-zero
component of the spatial flux ψij =ψY,ij.

The GKE for the scale energy 〈δu2
i 〉 has been thoroughly discussed in the literature,

(see e.g. Marati et al. 2004; Cimarelli et al. 2013, 2015, 2016), and different
interpretations and visualisation techniques have been suggested. For this reason,
in the following we only address the new information offered by the AGKE. This
includes the analysis of the anisotropic scale-energy redistribution operated by the
pressure–strain terms, and that of the budget equation for 〈−δuδv〉. The analysis
is also restricted to the subspace rx = 0: this is motivated by the turbulent vortical
structures in channel flow being predominantly aligned in the streamwise direction.
Such structures typically induce the largest negative correlation of velocity components
for rx= 0 and characteristic values of rz. A classic example are the so-called near-wall
streaks, for which r+z ≈ 60. As a consequence of (2.1), the local maxima of, for
instance, 〈δuδu〉 and terms appearing in its budget equation also occur for rx ≈ 0.
Note that in the rx = 0 space the terms of the AGKE are not defined below the
Y = ry/2 plane, owing to the finite size of the channel in the wall-normal direction.

3.1. Scale-energy redistribution by pressure strain
The pressure–strain term Πij redistributes energy among the diagonal components
of 〈δuiδuj〉. Hence, at different scales and positions this term can be a source or a
sink depending on its sign. To better understand its behaviour and link it to physical
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FIGURE 3. Colour plot of Π+11 (a), Π+22 (b) and Π+33 (c) on the bounding planes r+y = 0,
r+z = 0 and Y+ = r+y /2. The contour lines increment is 0.04, with level zero indicated by
a thick line. The two symbols identify the positions of the maxima of Πij (cross) and Pij
(circle). The isosurface in (a) corresponds to Π22/Π11=−0.5 (or equivalently Π33/Π11=

−0.5), with Π22/Π11 <−0.5 for smaller scales.

processes, it is instructive to briefly analyse the scales and position at which 〈δuδu〉,
〈δvδv〉, 〈δwδw〉 and their sources ξij are important.

The position and the intensity of the maxima, hereinafter denoted with the subscript
m, of the diagonal components of 〈δuiδuj〉 and of the associated ξij and Πij are
reported in table 2. 〈δuδu〉, 〈δvδv〉 and 〈δwδw〉 peak at small scales within the buffer
layer, similarly to 〈δu2

i 〉 (Cimarelli et al. 2016), with 〈δvδv〉m located further from
the wall. The anisotropy of the flow is denoted, for instance, by 〈δwδw〉m being much
lower than 〈δuδu〉m and occurring at rz = 0 and small ry, whereas the other maxima
occur at rz 6= 0 and ry = 0. This difference is explained by the quasi-streamwise
vortices populating the near-wall cycle (Schoppa & Hussain 2002): they induce
negatively correlated regions of spanwise fluctuations at ry 6= 0 and of streamwise and
wall-normal fluctuations at rz 6= 0.

The region of negative source terms partially coincides with the one of the source
term in the GKE (see e.g. Cimarelli et al. 2016). As in the GKE, negative sources
are observed at the lower boundary Y = ry/2, and in the whole channel height at
ry, rz → 0: viscous dissipation dominates near the wall and at the smallest scales.
However, the regions of large positive sources vary significantly among the three
diagonal components (see table 2). This is due to the different nature of the positive
source of the three diagonal components of 〈δuiδuj〉. Indeed, in a turbulent channel
flow the streamwise fluctuations are fed by the energy draining from the mean flow
(i.e. by the production term P11), whereas the cross-stream fluctuations are produced
by the redistribution processes (i.e. the pressure–strain term Π22 and Π33). This
explains also the larger order of magnitude of ξ11,m. Unlike the GKE, the scale
and space properties of this energy redistribution can be extracted from the AGKE
(see (2.7)).

Figure 3 plots the pressure–strain term for the diagonal components, with values
and positions of their maxima as reported in table 2. The figure shows the location of
the pressure–strain maximum in absolute value together with the maximum production.
Large values of P11 occur near the plane Y+ = r+y /2 + 14, except for the smallest
scales in the region r+y < 30 and r+z < 20. On the other hand, Π11 is negative almost
everywhere, showing that the streamwise fluctuations lose energy at all scales to feed
the other components. In particular, large negative values of Π11, albeit much smaller

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
di

 M
ila

no
, o

n 
01

 Ju
l 2

02
0 

at
 0

9:
13

:3
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
39

9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.399


898 A5-10 D. Gatti, A. Chiarini, A. Cimarelli and M. Quadrio

〈δuiδuj〉
+

m ξ+ij,m |Π+ij |m P+ij,m
Value Position Value Position Value Position Value Position

i= j= 1 17.15 (0, 58, 14) 0.74 (0, 39, 12) 0.14 (0, 50, 24) 1.24 (0, 39, 12)
i= j= 2 1.76 (0, 59, 53) 0.038 (26, 0, 36) 0.068 (35, 0, 40) — —
i= j= 3 2.83 (42, 0, 45) 0.053 (0, 42, 9) 0.12 (0, 46, 12) — —

TABLE 2. Maximum values for diagonal terms of 〈δuiδuj〉
+, its source ξ+ij , absolute

pressure strain |Π+ij | and production P+ij and positions in the (r+y , r+z , Y+)-space.

than P11, are seen near the plane Y+ = r+y /2+ 24, except for the region r+y , r+z < 20.
This brings to light the dominant scales and wall distances involved in the process of
redistribution of 〈δuδu〉 towards the other components, and discriminates them from
those involved in its production. On the contrary, at the smallest scales where viscous
dissipation is dominant production and redistribution are not observed.

The pressure–strain terms of the cross-stream components, Π22 and Π33, are positive
almost everywhere; they show a positive peak near the wall and remain larger than
dissipation in different regions of the rx = 0 space. Their maxima are located in the
vicinity of the plane Y+ = r+y /2 + 40 for Π22 and Y+ = r+y /2 + 14 for Π33, where
Π11 is negative. Hence, at these scales and wall-normal distances 〈δuδu〉 loses energy
to 〈δvδv〉 and 〈δwδw〉. Moreover, Π22 is negative in the very near-wall region, Y+ <
r+y /2+5, owing to the non-penetration wall boundary condition which converts 〈δvδv〉
into 〈δuδu〉 and 〈δwδw〉. Indeed, here Π11 and Π33 are positive. This phenomenon is
known as the splatting effect (Mansour et al. 1988), and shows no scale dependency.

Different values of Π22 and Π33 imply an anisotropic redistribution of the
streamwise fluctuations to the other components. Owing to the incompressibility
constraint, the following relationship holds:

Π22

Π11
+
Π33

Π11
=−1. (3.1)

Hence, Π22/Π11 = Π33/Π11 = −0.5 corresponds to isotropic transfer of energy
from the streamwise fluctuations towards the other components. In figure 3(a) the
isosurface Π22/Π11 = −0.5 is shown. The inner side at small scales of this surface
is characterised by Π22/Π11 < −0.5, and thus by Π22 > Π33 (as long as Π11 < 0).
Hence, at small scales the pressure strain preferentially redistributes streamwise
energy to the vertical fluctuations. On the contrary, on the outer side of the surface
Π33 >Π22 holds, implying that at larger scales the streamwise energy is preferentially
redistributed towards spanwise fluctuations.

3.2. Scale-by-scale budget of the off-diagonal term 〈−δuδv〉
The only off-diagonal term associated with a non-zero component of the Reynolds
stress tensor is 〈−δuδv〉 which, unlike the diagonal terms, is not definite in sign.
Therefore, 〈−δuδv〉 and its fluxes cannot be interpreted in terms of energy and
energy transfer; 〈−δuδv〉 describes the statistical dependence or, more precisely,
the correlation between δu and δv and, for large r, the mean momentum transfer.
Concepts as production and dissipation only apply to the source term ξ12 after the
sign of 〈−δuδv〉 is taken into account.
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FIGURE 4. Colour plot of 〈−δuδv〉 and its budget terms in the three-dimensional space
rx = 0. (a) 〈−δuδv〉+: contour lines increment by 0.4, with zero indicated by a thick line.
(b) Colour plot of ξ+12: contour lines increment by 0.02, with zero indicated by a thick line.
The grey lines are tangent to the flux vector (φy, φz, ψ) and coloured with its magnitude.
A zoom of the region near the origin is shown in panel (d). (c) Colour plot of P+12 in
the rx= ry= 0 plane, with isolines for Π+12 demonstrating the different scales involved and
the different position of the maximum. The × symbol gives the position of the maximum
for Π12.

〈−δuδv〉+max ξ+12,max ξ+12,min Π+12,min P+12,max

Value Position Value Position Value Position Value Position Value Position

2.06 (0, 53, 30) 0.089 (0, 20, 12) −0.093 (19, 0, 12) −0.183 (0, 30, 17) 0.197 (22, 0, 22)

TABLE 3. Maximum value for 〈−δuδv〉+, maximum and minimum for the source ξ+12,
minimum for the pressure strain Π+12 and maximum of the production P+12 and positions
in the (r+y , r+z , Y+)-space.

3.2.1. Intensity, production and redistribution
The off-diagonal term 〈−δuδv〉 and its budget are plotted in figure 4, and

corresponding quantitative information is reported in table 3. As shown by figure 4(a),
〈−δuδv〉 is positive almost throughout the entire physical/scale space except at very
small separations (r+z = 0, ry 6 10) for Y+ < 50. The largest positive values of
〈−δuδv〉 are in the buffer layer at 156 Y+6 60, at spanwise scales 406 r+z 6 80 and
vanishing ry. A second, less prominent local maximum of 〈−δuδv〉 is located near
the rz = 0 plane.

The source term ξ12, plotted in figure 4(b), is dominated by the (positive) production
term P12 and the (negative) pressure–strain term Π12 (see (A 17) for their definitions).
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FIGURE 5. Source term ξ12 in the ry = 0 plane. (a) ξ+12 versus Y+ for different r+z = (10 :
10 : 100). (b) ξ+12 versus r+z for different Y+ = (10 : 5 : 50). Line colours encode the value
of the parameter, which increases from yellow (light) to red (dark).

Indeed, the viscous pseudo-dissipation D12 plays a minor role, as in the single-point
budget for 〈−uv〉 (see e.g. Mansour et al. 1988). Large positive and negative values
of ξ12 define two distinct regions in the buffer layer (figure 4d). The positive peak
corresponds to spanwise scales 10 6 r+z 6 50, while the negative one to small scales
(r+z ≈ 0). Moreover, ξ12 is negative in a portion of the Y+ = r+y /2 plane, implying
that turbulent structures extending down to the wall are inactive in the production of
〈−δuδv〉.

It is worth noting that ξ12 strongly varies with spanwise separation, as seen in
the ry = 0 plane (figure 4c; see also figure 5). In comparison to the global picture
obtained from single-point analysis of 〈−uv〉 in the buffer layer (here recovered in
the limit rz→ Lz/2) where the source term is slightly negative, one can additionally
appreciate the existence of a large positive peak of ξ12 at r+z = 20 and a negative
one at r+z = 70 (figure 5b). Indeed, P12 and Π12 are of the same order of magnitude
throughout the ry=0 plane, but reach their extreme values at different spanwise scales,
see figure 4(c). In particular large values of P12 are found at (r+z , Y+) ≈ (30, 17),
whereas large negative values of Π12 are found at (r+z , Y+)≈ (60, 16). The structural
interpretation of these findings is discussed below in § 3.2.3.

3.2.2. Fluxes
The transfer of 〈−δuδv〉 in space and among scales is determined by the flux vector

(φy, φz, ψ), and is visualised via its field lines. These field lines can be grouped in
two families. The lines of the first family enter the domain from the channel centreline,
Y = h, and descend towards the wall; they can be further grouped in sets I, II and III
as shown in figure 4(b). The second family only contains set IV, and is visible in the
zoomed figure 4(d); its field lines are confined to the near-wall region, and connect
the positive and negative peaks of ξ12.

Various quantities can be tracked along representative field lines, as done in figure 6.
The position along a field line of length ` in the (rz, ry, Y) space is described by the
normalised curvilinear coordinate

s=
1
`

∫ `

0
ds with ds=

√
dr2

z + dr2
y + dY2. (3.2)
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FIGURE 6. Field lines of the flux vector for 〈−δuδv〉. (a–c) Set I; (d–f ) Set II; (g–i)
Set IV. (a,d,g) Evolution of the values of Y (–·–·–, dark green), ry (——, blue), rz (—
–, red), along a representative field line as a function of its dimensionless arc length s.
(b,e,h) Values of 〈−δuδv〉/10 (–·–·–, dark green), ξ12 (— –, red), P12 (· · · · · ·), D12 (——,
blue) and Π12 (- - - -, grey) along the line. (c, f,i) Evolution of −ρ12 (——) and −ρ21 (- - - -)
along the line.

The values of ry, rz and Y (see figure 2) are plotted in the left column of the figure;
the central column plots the evolution of 〈−δuδv〉, ξ12, P12, Π12 and the dissipation
D12 along the line; the right column plots the evolution of the correlation coefficient
ρij defined by

ρij =
Rij(Y, ry, rz)√
〈uiui〉(Y)〈ujuj〉(Y)

, (3.3)

where repeated indices do not imply summation; Rij is linked to 〈δuiδuj〉 by equation
(2.1).

Figures 6(a–c) and 6(d–f ) illustrate the evolution of various quantities along
representative lines of set I and II. Both lines are qualitatively similar: they highlight
a transfer of 〈−δuδv〉 from the centreline to the near-wall region, through first
decreasing and then increasing wall-normal scales. At the centreline they are parallel
to the Y axis, consistently with the AGKE symmetries (see appendix B). However,
lines of set I are attracted by the negative peak of ξ12 towards smaller rz, while
those of set II are repulsed from the positive source peak towards larger rz. Lines
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of set III are not shown for the sake of brevity, since they pass through regions
of large separations and are characterised by almost zero correlation, see (3.3). On
the other hand, lines of sets I and II exist at smaller ry and rz and, as shown in
figures 6(c) and 6( f ), are characterised by finite levels of correlation. Along lines
of set I and II, 〈−δuδv〉 increases from zero at the centreline (due to the AGKE
symmetries) to reach a positive peak in the near-wall region. Similarly, ξ12 shows a
negative/positive peak when the lines of set I/II approach the near-wall region as the
pressure–strain/production overcomes the production/pressure–strain.

The evolution of the correlation coefficients −ρ12 and −ρ21 (recall that ρij 6= ρji
for i 6= j, see (3.3)) is used to extract information about the turbulent structures
involved in production, transfer and dissipation processes highlighted along the lines.
As shown in figures 6(a) and 6(d), at values of the curvilinear coordinate s > 0.75
corresponding to Y+ < 60, lines of set I intersect positive −ρ12 and −ρ21 for small
rz and ry, while those of set II intersect negative correlations at larger r+z ∼ 50 and
smaller ry. For both sets, this is consistent with the flow field induced by near-wall
quasi-streamwise vortices, creating positive and negative cross-correlation at values
of separation in agreement with the present analysis; positive −ρ12 is associated with
u and v fluctuations at the same-side of the vortices (i.e. small rz), whereas negative
−ρ12 is associated with opposite-side fluctuations. Hence, we relate the peaks of P12
and Π12 (and consequently of ξ12) along the lines of sets I and II to such structures.

The lines of set IV, shown in figure 4(b,d) and in figure 6(g–i), behave differently.
The field lines originate in the lower boundary of the domain at (r+y , r+z , Y+) =
(6, 15, 3). Along their path they first intercept the positive peak of ξ12 at small
ry where 〈−δuδv〉 is maximum. Then, they pass through the negative peak of ξ12,
located at smaller rz and larger ry, where 〈−δuδv〉 is smaller. Eventually, they again
vanish in the lower boundary of the domain.

Focusing on the correlation coefficient −ρ12, lines of set IV intersect a positive
value along their complete extension. In detail, the lines first intersect small values
of −ρ12 for r+z ≈ 20 and Y+ < 5 and then larger −ρ12 for smaller r+z and larger
Y+. Hence, this set of lines highlights a transfer of 〈−δuδv〉 between the small uv-
structures created in the viscous sublayer by the wall boundary condition (Sillero et al.
2014) and the turbulent structures of the near-wall cycle.

3.2.3. Structural properties of wall turbulence
To connect the main statistical features of 〈−δuδv〉 in the buffer layer to the

turbulent structures that populate it, we compute the 〈−δuδv〉 AGKE budget from the
velocity field induced by the ensemble-averaged quasi-streamwise vortex. Such vortex,
visualised in figure 7(a), represents the characteristic near-wall coherent structure
in the average sense. The procedure which extracts the ensemble-average vortical
structure from the DNS database is very similar to the one presented by Jeong et al.
(1997), which is slightly modified here to focus on the structures in the buffer layer
only. Details of the procedure are provided in appendix C.

The ensemble-averaged velocity field is shown in figure 7(b) in a (z+, y+) plane
passing through the vortex centre. The corresponding 〈−δuδv〉, normalisedby its
maximum in the rx= 0 space, is shown in figure 7(c) in the rx= ry= 0 plane. 〈−δuδv〉
computed for the average structure shows a remarkable agreement with the same
quantity computed for the turbulent channel flow. In particular, its maximum occurs
at (r+y , r+z , Y+) = (0, 52, 25), i.e. nearly the same location (r+y , r+z , Y+) = (0, 53, 30)
observed for the full velocity field (see table 3). Figure 7(d) shows the production
P12 and the pressure–strain Π12 normalised with the maximum production in the
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FIGURE 7. (a) Ensemble-average quasi-streamwise vortex, educed as described in
§ 3.2.3 and appendix C, represented as isosurface λ+ci = 0.145 of the swirling strength
criterion (Zhou et al. 1999). The coherent streamwise (black) and wall-normal (red)
velocity field induced by the vortex are plotted on a (y, z) plane, located at x= 0, passing
through the centre of the vortex. The plane is represented both in (a) and, more in detail,
in (b). Contour levels at (0.2 : 0.2 : 0.8) of the maximum (solid line) and of the minimum
(dashed line) of the respective component (0.0058 and −0.0077 for u and 0.0035 and
−0.0035 for v) are plotted on a (y, z) plane passing through the centre of the vortex,
located at z= 0. (c) Colour map of the corresponding 〈δuδv〉 normalised by its maximum
value on the plane rx = ry = 0. (d) Colour map of the corresponding P12, and contours
of Π12, normalised by its maximum value, on the plane rx = ry = 0. Contours levels are
shown at (−0.6, −0.7), and the × symbols locates the maximum.

rx = 0 space. Again, the average quasi-streamwise vortex represents well the typical
rz scales of production and pressure–strain of 〈−δuδv〉. The peak of P12 occurs at
(r+z ,Y

+)= (39.2, 20.0) while the minimum of Π12 is located at (r+z ,Y
+)= (52.3, 19.0),

i.e. at a larger spanwise scale, similar to what figure 4(c) shows for the full velocity
field.

4. Example: the outer turbulence cycle

Thanks to its ability to account for scales also in directions of statistical
inhomogeneity, the AGKE becomes increasingly informative as the range of turbulent
scales widens. For the turbulent channel flow, Reτ is the ratio between the outer
geometrical length scale h and the inner viscous length scale ν/uτ . Hence, for
increasing values of Reτ , the typical scales of the autonomous near-wall cycle
discussed in § 3 are constant in viscous units but shrink compared to h. Meanwhile,
a whole new hierarchy of motions starts to appear: they include larger scales in the
logarithmic region and form the so-called outer cycle (see, for instance, Cossu &
Hwang 2017). The wall-normal extent of such motions is typically not accounted for
by other frameworks for the analysis of scale transfers, but can be easily studied by
the AGKE.
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FIGURE 8. Profile of (a) mean velocity and (b) velocity fluctuation variance at Reτ = 200,
500 and 1000. For validation, in both panels data from Lee & Moser (2015) at Reτ =1000
are also plotted with a thin black line connecting open symbols, which is nearly perfectly
overlapping.
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FIGURE 9. (a) Contour ξ11= 0 for Reτ = 200, 500 and 1000 in the (rz, Y) plane at rx= ry= 0.
(b) Colour map of ξ11 at Reτ = 1000 in the (ry, Y) plane for rx= 0 and r+z = 2300, i.e. for
the plane shown in the left panel (vertical dashed line) which crosses the large-scale ξ11
maximum at Reτ = 1000.

A comparative AGKE analysis for a channel flow at the three different values of
Reτ = 200, 500 and 1000 is presented below. The main features of the DNS databases
have been already introduced in § 2.2. The profiles of mean velocity and variance
of velocity fluctuations at all values of Re considered in the following are reported
in figure 8, which confirms the full agreement of such statistics with the database
available from Lee & Moser (2015).

Figure 9(a) shows the contour ξ11 = 0 in the (rz, Y) plane at rx = ry = 0. Taking
ry = 0 is equivalent to the classic approach, where only wall-parallel separations (or
wavenumbers in the spectral analysis) are considered. Three different regions of net
energy source ξ11 > 0, enclosed by the isoline ξ11 = 0, can be distinguished. The first
region, which collapses for all values of Re with viscous scaling, corresponds to the
net production of 〈δuδu〉 within the near-wall cycle, already described in § 3, and
takes place at all spanwise separations. The second region of ξ11 > 0 is found for
approximately r+z 6 h+ and Y+6 0.6h+. Here, the left boundary of the contour ξ11= 0
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represents the cross-over value of rz, for a given Y , separating larger production
scales from smaller inertial scales. The cross-over scale increases approximately
linearly with the wall distance, in agreement with the overlap layer predictions of the
attached-eddy model (Townsend 1976). Cimarelli et al. (2015) carry out a detailed
analysis of the scaling properties of this second source region, albeit in terms of
〈δuiδui〉, while Marusic & Monty (2019) discuss the attached-eddy model and its
implications. This second region of ξ11 > 0 is observed also with the analysis based
on one-dimensional premultiplied spectral budgets (see, for instance, figure 5 in Lee
& Moser 2019), although here it is clearly separated from the one of the near-wall
cycle. It is also interesting to note that this region, albeit weak and confined to a tiny
range of spanwise scales and wall-normal positions, is already apparent at Reτ = 200,
something that cannot be observed as easily from one-dimensional spectra.

Only for the largest value Reτ = 1000 considered here, a third region of ξ11 > 0
appears, with spanwise scales 2h+ 6 r+z 6 3h+ and values of Y+ pertaining to
the logarithmic layer. This third region is related to the production by additional
large-scale turbulent features, whose statistical footprint cannot be predicted by using
the attached-eddy hypothesis (Marusic & Monty 2019). These motions have been
named superstructures (Hutchins & Marusic 2007) when found in boundary layers
and large-scale motions (LSM) or very large-scale motions (Guala, Hommema &
Adrian 2006) when observed in turbulent channels, pipes and plane Couette flows.
Henceforth, we will adopt the acronym LSM, disregarding the slight differences
in the definition of the three terms given in the literature. LSM are important for
two main reasons. First, their relative contribution to the total turbulent kinetic
energy and Reynolds shear stress rapidly increases with Reτ (Ganapathisubramani,
Longmire & Marusic 2003), making LSM one of the main players in the outer
cycle and thus an obvious target for flow control. Second, LSM modulate the inner
cycle (Mathis, Hutchins & Marusic 2009) and superpose to the near-wall turbulence
(Hoyas & Jimenez 2006), thus causing the failure of exact viscous scaling for several
statistical quantities, such as for example the wall-normal profiles of the streamwise
and spanwise velocity fluctuations.

Figure 9(b) focuses on the Reτ = 1000 case, and illustrates how the AGKE can
naturally consider scales in the wall-normal inhomogeneous direction, something
particularly useful to describe the volume-filling LSM. Contours of ξ11 at Reτ = 1000
are plotted in the (ry, Y) plane for rx = 0 and r+z = 2300, i.e. the spanwise scale at
which LSM have been observed in figure 9(a). The results reveal the wall-normal
distribution of the net positive source, i.e. net production of 〈δuδu〉, occurring
at the scales of the LSM throughout the channel. Positive ξ11 is observed for
150 6 Y+ 6 0.5h+ at wall-normal scales in the range 0 6 r+y 6 400, while the
bottom part of the contour runs parallel to the line Y+ = r+y /2+ 150, indicating that
the wall-normal scales related to LSM are self-similar, contrary to the spanwise ones.
The wall-normal location and scale at which ξ11 is active agrees remarkably well with
the wall-normal extent of LSM measured by Madhusudanan, Illingworth & Marusic
(2019) utilising high-Re DNS data and linearised Navier–Stokes equations subject to
stochastic forcing. Interestingly, positive ξ11 at the LSM spanwise scale occurs also
for r+y ≈ 1.7h+ and Y+ ≈ h+ (see figure 9b), indicating that 〈δuδu〉 is also produced
at very large wall-normal scales at the centreline and thus that large-scale negative
correlation of the streamwise velocity fluctuations is produced across the two channel
halves.
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FIGURE 10. Mean and instantaneous flow field around a 5 : 1 rectangular cylinder at Re=
3000 (flow from left to right; Re is based on free-stream velocity and cylinder height). The
colour background describes the mean velocity field U (x, y)={U, V, 0}. In the upper half,
mean streamlines show flow detachment at the sharp leading edge, a large recirculation
bubble, a smaller secondary bubble and the rear separation in the wake. In the lower half,
isosurfaces for λ2 =−7 visualise instantaneous vortical structures.

5. Example: separating and reattaching flows
The separating and reattaching flow over a rectangular cylinder with length-to-height

ratio of 5 is a popular benchmark for bluff-body aerodynamics (Bruno, Salvetti &
Ricciardelli 2014), known as BARC. It is considered here as an example of complex
flow with two inhomogeneous directions and multiple separations and reattachments.
Various flow structures are known to exist in different parts of the main recirculating
bubble, and recently it has been suggested (Cimarelli et al. 2018) that streamwise- and
spanwise-oriented vortices populate the attached and detached portion respectively of
the reverse boundary layer.

The snapshots used below for the AGKE analysis of the BARC flow are taken
from the DNS study by Cimarelli et al. (2018). Figure 10 visualises the mean and
instantaneous velocity fields. Three recirculation zones are present: a large-scale
primary bubble originating from the leading-edge separation, a separation in the
wake and a smaller secondary recirculation within the primary bubble. Separating
and reattaching flows often feature the simultaneous presence of small scales, related
to turbulent motions, and large scales, related to shedding of large-scale vortices. A
full understanding of their interaction would be of paramount importance for the
correct prediction and control of the flow (Kiya & Sasaki 1983; Cherry, Hillier &
Latour 1984; Kiya & Sasaki 1985; Nakamura, Ohya & Tsuruta 1991; Tafti & Vanka
1991). In particular, transition in the leading-edge shear layer is strongly affected
by such multi-scale interactions: a region with negative turbulence production has
been identified (Cimarelli et al. 2019a), which leads to overwhelming difficulties
with turbulence closures (Bruno et al. 2014). A key role is played by the turbulent
structures advected within the main recirculating bubble, which trigger the transition
of the leading-edge shear layer that in turn creates them, thus effectively belonging
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FIGURE 11. Pressure–strain term Π22 in the (X, Y, rz)-space for rx = ry = 0. Colour plots
are shown on the planes X = 1.2, Y = 0.56 and rz = 1.7.

to a self-sustaining cycle. Remarkably, these structures appear to be quasi-streamwise
vortices at the beginning of the reverse boundary layer and, while working their
way upstream, become spanwise vortices. However, this process is far from being
fully understood, and the AGKE will be used to clarify it. Note that, since statistical
homogeneity only applies to the spanwise direction and time, all two-point statistics
involved in the AGKE are now function of the separation vector r, and the two
spatial coordinates X = (x + x′)/2 and Y = (y + y′)/2. In the figures that follow,
lengths and velocities are made dimensionless with the free-stream velocity and the
cylinder height.

We start with the component 〈δvδv〉, since it is themost obvious proxy for the local
alignment of turbulent structures; in fact, a streamwise structure would be revealed by
a local maximum of 〈δvδv〉 at rx = 0 and a finite rz, whereas aspanwise structure
implies a local maximum at finite rx and rz = 0. In figure 11 the pressure–strain
term Π22 is shown in the (X, Y, rz) space that embraces the whole primary bubble
for rx = ry = 0. Π22 is first observed to mark clearly the outer edge of the bubble.
Within the bubble, Π22 is highly scale and position dependent, and it differs from
channel flow as discussed in § 3. For instance, along the reverse attached boundary
layer, i.e. for −0.86X 6 1 and Y 6 0.75, Π22 shows an evident positive peak at small
spanwise scales (rz < 0.1) even very near the wall, whereas in the channel flow the
splatting effect leads to negative Π22 (see figure 3 in § 3). Therefore, in this region
Π22 feeds clearly identified spanwise scales which are compatible with streamwise-
aligned vortices. However, closer to the detachment of the reverse boundary layer
(i.e. −0.8 6 X 6−1.2), an abrupt change takes place: Π22 becomes positive at every
spanwise separation, suggesting that once detached the reverse boundary layer is no
longer populated by streamwise vortices.

Further insight into the local structure of turbulence in the detachment zone
is obtained by looking at 〈δvδv〉 and 〈δwδw〉 in the (X, rx, rz) space, shown in
figure 12 for (Y, ry) = (0.64, 0). Identifying spanwise-oriented structures requires
considering scales rx along the inhomogeneous streamwise direction. Indeed 〈δvδv〉
locally peaks at (X, rx, rz) = (−0.95, 0.3, 0), i.e. exactly at the X position where
the boundary layer detaches and for a specific streamwise scale. This confirms
the suggestion by Cimarelli et al. (2018) that spanwise-oriented structures are
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FIGURE 12. Values of 〈δvδv〉 (a) and 〈δwδw〉 (b) in the (X, rx, rz)-space for ry = 0 and
Y = 0.64. Black contour lines indicate increments of 0.01.
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FIGURE 13. Production terms P11 (a) and P22 (b) in the (X, rx, rz)-space for ry = 0 and
Y = 0.64. Black contour lines indicate increments of 0.005.

indeed present. 〈δwδw〉 too exhibits a local maximum for finite rx, precisely at
(X, rx, rz)= (−1.13,0.65,0). However, the streamwise extent of this peak is larger than
that for 〈δvδv〉. Moreover, 〈δwδw〉 increases within the secondary recirculation bubble,
where it features a non-monotonic behaviour in rz, while 〈δvδv〉 does not. Hence, the
detached reverse boundary layer and, in particular, the secondary recirculation bubble
appear to be populated by a broader range of structures than just spanwise-oriented
vortices.

The process behind the formation of spanwise-aligned structures is addressed in
figure 13, which shows the production terms P11 and P22 in the same (X, rx, rz) space
of figure 12; P11 has a local maximum at (X, rx, rz)= (−1.05, 0.35, 0). At these scales,
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the streamwise fluctuations drain energy from the mean shear and feed 〈δvδv〉, which
has been connected at such scales to spanwise structures. The process is described by
the pressure–strain terms: at these scales indeed it is found (not shown) that Π11 <

0 and Π22 > 0. Similarly, P22 is negative everywhere, with a relative minimum in
same range of scales where P11 is maximum. Thus, P22 reconverts the energy 〈δvδv〉
received via pressure strain back to the mean flow, thereby sustaining the detachment
of the reverse boundary layer.

Hence, within the limits of this necessarily brief example, the AGKE successfully
confirm the literature suggestion that spanwise-oriented structures exist at the
detachment of the reverse boundary layer. Moreover, they reveal that these structures
do not simply derive from the upstream streamwise-oriented ones simply via a gradual
reorientation. Instead, their appearance is rather abrupt, mediated by pressure–strain
redistribution but mainly driven by local positive and negative production.

6. Concluding discussion

Exact budget equations for the components of the second-order structure function
tensor 〈δuiδuj〉(X, r) have been considered. Because of its close relationship with
two-point velocity correlations and spectra, 〈δuiδuj〉 is interpreted as the scale
Reynolds stress. In this spirit, the budget equations, that we name the anisotropic
generalised Kolmogorov equations, describe production, transport and dissipation of
the scale Reynolds stresses in the combined physical and scale space.

Compared to the GKE, which is half the trace of the AGKE and thus describes
scale energy only, the AGKE fully account for the anisotropy of the structure function
tensor, and allow the description of purely redistributive processes like pressure–strain.
They are a powerful tool to complement energy spectra of turbulent fluctuations and
spectral Reynolds stress budgets (see, for instance, Mizuno 2016; Lee & Moser
2019), to which they add two major features: (i) scales are defined along directions
of statistical inhomogeneity; and (ii) fluxes are defined in the space of scales. Thanks
to the former feature, scale properties of turbulence can be assessed also along the
wall-normal direction of wall-bounded turbulent flows and, in general, in complex
turbulent flows. Thanks to the second feature, fluxes of 〈δuiδuj〉 across all scales and
in physical space can be clearly recognised. Thus, beside the identification of scales
acting as donors or receivers of scale Reynolds stresses, already possible within the
framework of spectral Reynolds stress budgets, the AGKE allow to quantify the local
direction of the fluxes of 〈δuiδuj〉 throughout the whole (X, r) space, informing on
the different physical processes underlying the transfer of scale Reynolds stress in
space or through scales at different spatial positions in the flow.

The AGKE have been demonstrated via three examples. With a low-Re turbulent
plane channel flow, the near-wall turbulence cycle has been observed and described in
terms of the AGKE, thanks to its multi-dimensional and multi-component information.
The pressure–strain term of the diagonal components of 〈δuiδuj〉 is analysed to identify
scales and positions involved in the inter-component energy redistribution processes.
Moreover, the budget equation for the off-diagonal component 〈−δuδv〉, the other
important element that the AGKE adds to the GKE, is presented and discussed. In
contrast to the energetic interpretation of the diagonal components, the scale Reynolds
shear stress 〈−δuδv〉 isnot positive definite, and is rather interpreted as statistical proxy
for coherent structures and related to the production of 〈δuδu〉. The main transport
mechanisms are identifiedvia the combined analysis of the AGKE terms and of the
correlation levels along typical transport patterns in the physical and scale space.
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Channel flows at higher Re (up to Reτ = 1000) are also considered in order to
demonstrate the AGKE on flows characterised by a broader range of scales with
particular focus on the outer cycle of wall turbulence. The range of scales and
positions responsible for the net production of streamwise turbulent fluctuations
in the outer layer are identified. In particular, the presence of two well-separated
self-regenerating cycles belonging to scales attached to the wall and to very large-scale
motions are unequivocally detected in a quantitative way.

Finally, the separating and reattaching flow over a finite rectangular cylinder is
considered as a test case with two inhomogeneous directions. The AGKE describe
how streamwise-oriented structures in the reverse boundary layer within the main
recirculation bubble become spanwise-oriented structures in the detachment region.
The pressure–strain and production terms show that the spanwise structures form
abruptly near the detachment, rather than being gradually reoriented.

The AGKE are a tool with several potential applications. Thanks to the relationship
between δuiδuj and the unresolved stresses (Cimarelli, Abbà & Germano 2019), the
AGKE can be useful to develop large-eddy turbulence models. Indeed, Cimarelli &
De Angelis (2014) already used the GKE a posteriori to improve modelling, and the
AGKE could further this approach, by fully accounting for anisotropy, an essential
property of wall-bounded turbulent flows. For canonical turbulent flows at large values
of Re, the AGKE seem apt to comprehensively describe the large-scale structures
involved in the outer regeneration cycle (Hwang & Cossu 2010) and their modulating
effect (Mathis et al. 2009) onto near-wall turbulence. Such structures, characterised
by a large wall-normal extent (Hutchins & Marusic 2007), may be involved in a
non-negligible transfer of 〈δuiδuj〉 across wall-normal scales, which is captured by
the AGKE but escapes either the spectral Reynolds stress budgets and the analysis
based upon structure function alone (Agostini & Leschziner 2017). Similarly, in plane
Couette flow the AGKE could be used to study the transfer from small to large scales,
resulting from the interaction of small near-wall structures with large scales further
from the wall, which has been experimentally observed by Kawata & Alfredsson
(2018) only for the Reynolds shear stress but not for the normal components. The
AGKE can also be used to study how turbulent wall-bounded flows are modified by
drag reduction (Chiarini, Quadrio & Gatti 2019).

Beside their application to canonical flows, the present paper demonstrates that
AGKE can provide significant contributions in the study of all those complex flows,
such as a backward-facing step, a three-dimensional turbulent boundary layer, flows
over complex surfaces, with shear layers and with separation, where anisotropy and
inhomogeneity are important.
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Appendix A. Budget equation for 〈δuiδuj〉

This appendix documents the derivation of the AGKE, following the approach of
Danaila et al. (2001), and reports the complete form for every component of 〈δuiδuj〉.

Let us consider two independent points within the flow domain, x and x′, separated
by the increment r = x′− x. All quantities in x′ are denoted with the superscript ′. vi
(v′i) and p (p′) are the velocity components and pressure at xi (x′i). The incompressible
Navier–Stokes equations are written at the two points

∂vi

∂t
+ vk

∂vi

∂xk
=−

1
ρ

∂p
∂xi
+ ν

∂2vi

∂xk∂xk
, (A 1)

∂v′i

∂t
+ v′k

∂v′i

∂x′k
=−

1
ρ

∂p′

∂x′i
+ ν

∂2v′i

∂x′k∂x′k
, (A 2)

where ρ is the fluid density, and p the pressure.
The two points x and x′ are independent: hence vi and p only depend on x, while

v′i and p′ only depend on x′, and

∂vi

∂x′k
= 0,

∂p
∂x′k
= 0; (A 3a,b)

∂v′i

∂xk
= 0,

∂p′

∂xk
= 0. (A 4a,b)

The Reynolds decomposition of the velocity field is now introduced: vi=Ui+ui where
Ui=〈vi〉 denotes the mean velocity and ui the fluctuations. The two equations become

∂Ui

∂t
+
∂ui

∂t
+Uk

∂Ui

∂xk
+Uk

∂ui

∂xk
+ uk

∂Ui

∂xk
+ uk

∂ui

∂xk
=−

1
ρ

∂p
∂xi
+ ν

∂2Ui

∂xk∂xk
+ ν

∂2ui

∂xk∂xk
,

(A 5)
∂U′i
∂t
+
∂u′i
∂t
+U′k

∂U′i
∂x′k
+U′k

∂u′i
∂x′k
+ u′k

∂U′i
∂x′k
+ u′k

∂u′i
∂x′k
=−

1
ρ

∂p′

∂x′i
+ ν

∂2U′i
∂x′k∂x′k

+ ν
∂2u′i
∂x′k∂x′k

.

(A 6)

By subtracting (A 5) from (A 6) and using the following relations, derived from the
independence of x and x′,

u′k
∂U′i
∂x′k
− uk

∂Ui

∂xk
= u′k

∂δUi

∂x′k
+ uk

∂δUi

∂xk
,

−
1
ρ

∂p′

∂x′i
+

1
ρ

∂p
∂xi
=−

1
ρ

(
∂

∂x′i
+

∂

∂xi

)
δp,

ν
∂2u′i
∂x′k∂x′k

− ν
∂2ui

∂xk∂xk
= ν

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui,

an equation for the velocity increment δui = u′i − ui is obtained

∂δUi

∂t
+
∂δui

∂t
+U′k

∂δUi

∂x′k
+Uk

∂δUi

∂xk
+U′k

∂δui

∂x′k
+Uk

∂δui

∂xk

+ u′k
∂δUi

∂x′k
+ uk

∂δUi

∂xk
+ u′k

∂δui

∂x′k
+ uk

∂δui

∂xk
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=−
1
ρ

(
∂

∂x′i
+

∂

∂xi

)
δp+ ν

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δUi

+ ν

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui. (A 7)

By adding and subtracting uk(∂δui/∂x′k)+uk(∂δUi/∂x′k)+Uk(∂δui/∂x′k)+Uk(∂δUi/∂x′k)
to the left-hand side and observing that

u′k
∂δUi

∂x′k
= δuk

∂δUi

∂x′k
+ uk

∂δUi

∂x′k
,

equation (A 7) becomes

∂δUi

∂t
+
∂δui

∂t
+ δUk

∂δUi

∂x′k
+Uk

(
∂

∂x′k
+

∂

∂xk

)
δUi + δUk

∂δui

∂x′k
+Uk

(
∂

∂x′k
+

∂

∂xk

)
δui

+ δuk
∂δUi

∂x′k
+ uk

(
∂

∂x′k
+

∂

∂xk

)
δUi + δuk

∂δui

∂x′k
+ uk

(
∂

∂x′k
+

∂

∂xk

)
δui

=−
1
ρ

(
∂

∂x′i
+

∂

∂xi

)
δp+ ν

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δUi

+ ν

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui. (A 8)

Equation (A 8) multiplied by δuj is now summed to the same equation, with the
i-index switched to j-index after multiplication by δui. We then use incompressibility
and again independence of x and x′ to obtain

δuj
∂δUi

∂t
+ δui

∂δUj

∂t
+
∂

∂t

(
δuiδuj

)
+ δujδUk

∂δUi

∂x′k
+ δuiδUk

∂δUj

∂x′k

+ δujUk

(
∂

∂x′k
+

∂

∂xk

)
δUi + δuiUk

(
∂

∂x′k
+

∂

∂xk

)
δUj

+
∂

∂x′k
(δUkδuiδuj)+

(
∂

∂x′k
+

∂

∂xk

)
(Ukδuiδuj)+ δujδuk

∂δUi

∂x′k

+ δuiδuk
∂δUj

∂x′k
+ δujuk

(
∂

∂x′k
+

∂

∂xk

)
δUi + δuiuk

(
∂

∂x′k
+

∂

∂xk

)
δUj

+
∂

∂x′k
(δukδuiδuj)+

(
∂

∂x′k
+

∂

∂xk

) (
ukδuiδuj

)
=−

1
ρ

[(
∂

∂x′i
+

∂

∂xi

) (
δpδuj

)
+

(
∂

∂x′j
+

∂

∂xj

)
(δpδui)

]
+

1
ρ

[
δp
(
∂

∂x′i
+

∂

∂xi

)
δuj + δp

(
∂

∂x′j
+

∂

∂xj

)
δui

]
+ ν

[
δuj

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
(δUi + δui)

]
+ ν

[
δui

(
∂2

∂x′k∂x′k
+

∂

∂xk∂xk

) (
δUj + δuj

)]
. (A 9)
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The averaging operator is now applied

∂

∂t
〈δuiδuj〉 +

∂

∂x′k
〈δUkδuiδuj〉 +

(
∂

∂x′k
+

∂

∂xk

)
〈Ukδuiδuj〉

+ 〈δujδuk〉
∂δUi

∂x′k
+ 〈δuiδuk〉

∂δUj

∂x′k

+〈δujuk〉

(
∂

∂x′k
+

∂

∂xk

)
δUi + 〈δuiuk〉

(
∂

∂x′k
+

∂

∂xk

)
δUj

+
∂

∂x′k
〈δukδuiδuj〉 +

(
∂

∂x′k
+

∂

∂xk

)
〈ukδuiδuj〉

=−
1
ρ

[(
∂

∂x′i
+

∂

∂xi

)
〈δpδuj〉 +

(
∂

∂x′j
+

∂

∂xj

)
〈δpδui〉

]
+

1
ρ

〈
δp
(
∂

∂x′i
+

∂

∂xi

)
δuj

〉
+

1
ρ

〈
δp
(
∂

∂x′j
+

∂

∂xj

)
δui

〉
+ ν

〈
δuj

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui

〉
+ ν

〈
δui

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δuj

〉
.

(A 10)

We now introduce a new set of independent variables, X and r

Xi =
x′i + xi

2
,

ri = x′i − xi.

The derivatives with respect to Xi and ri are related to those with respect to x′i and xi
as follows:

∂

∂xi
=

∂

∂Xi

∂Xi

∂xi
+
∂

∂ri

∂ri

∂xi
=

1
2
∂

∂Xi
−
∂

∂ri
,

∂

∂x′i
=

∂

∂Xi

∂Xi

∂x′i
+
∂

∂ri

∂ri

∂x′i
=

1
2
∂

∂Xi
+
∂

∂ri
,

∂2

∂x′k∂x′k
+

∂2

∂xk∂xk
=

1
2

∂2

∂Xk∂Xk
+ 2

∂2

∂rk∂rk
.

By using X and r as independent variables, equation (A 10) can be further rewritten
as

∂

∂t
〈δuiδuj〉 +

(
1
2
∂

∂Xk
+

∂

∂rk

)
〈δUkδuiδuj〉 +

∂

∂Xk
〈Ukδuiδuj〉

+ 〈δujδuk〉

(
1
2
∂

∂Xk
+

∂

∂rk

)
δUi

+〈δuiδuk〉

(
1
2
∂

∂Xk
+

∂

∂rk

)
δUj + 〈δujuk〉

∂δUi

∂Xk
+ 〈δuiuk〉

∂δUj

∂Xk

+

(
1
2
∂

∂Xk
+

∂

∂rk

)
〈δukδuiδuj〉 +

∂

∂Xk
〈ukδuiδuj〉
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=−
1
ρ

(
∂

∂Xi
〈δpδuj〉 +

∂

∂Xj
〈δpδui〉

)
+

1
ρ

〈
δp
∂δuj

∂Xi

〉
+

1
ρ

〈
δp
∂δui

∂Xj

〉
+ ν

〈
δuj

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui

〉
+ ν

〈
δui

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δuj

〉
.

(A 11)

The viscous term can be written more compactly as

ν

〈
δuj

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δui

〉
+ ν

〈
δui

(
∂2

∂x′k∂x′k
+

∂2

∂xk∂xk

)
δuj

〉
=
ν

2
∂2

∂Xk∂Xk
〈δuiδuj〉 + 2ν

∂2

∂rk∂rk
〈δuiδuj〉 − ν

〈
∂δui

∂Xk

∂δuj

∂Xk

〉
− 4ν

〈
∂δui

∂rk

∂δuj

∂rk

〉
=
ν

2
∂2

∂Xk∂Xk
〈δuiδuj〉 + 2ν

∂2

∂rk∂rk
〈δuiδuj〉 − 2(ε ′ij + εij),

where

εij = ν

〈
∂ui

∂xk

∂uj

∂xk

〉
.

Finally, by using in (A 11) the following relations

1
2
∂

∂Xk
〈δUkδuiδuj〉 +

∂

∂Xk
〈Ukδuiδuj〉 =

∂

∂Xk
〈U∗k δuiδuj〉

〈δujδuk〉

(
1
2
∂

∂Xk
+

∂

∂rk

)
δUi + 〈δujuk〉

∂δUi

∂Xk
= 〈δuju∗k〉δ

(
∂Ui

∂xk

)
+ 〈δujδuk〉

(
∂Ui

∂xk

)∗
,

where the superscript ∗ denotes the average of a generic quantity f at positions X ±
r/2

f ∗ =
f (X + r/2)+ f (X − r/2)

2
,

one arrives at the final form of the AGKE

∂

∂t
〈δuiδuj〉 +

∂

∂rk
〈δUkδuiδuj〉 +

∂

∂rk
〈δukδuiδuj〉 − 2ν

∂2

∂rk∂rk
〈δuiδuj〉 +

∂

∂Xk
〈U∗k δuiδuj〉

+
∂

∂Xk
〈u∗kδuiδuj〉 +

1
ρ

(
∂

∂Xj
〈δpδui〉 +

∂

∂Xi
〈δpδuj〉

)
−
ν

2
∂2

∂Xk∂Xk
〈δuiδuj〉

=−〈u∗kδuj〉δ

(
∂Ui

∂xk

)
− 〈u∗kδui〉δ

(
∂Uj

∂xk

)
− 〈δukδuj〉

(
∂Ui

∂xk

)∗
− 〈δukδui〉

(
∂Uj

∂xk

)∗
+

1
ρ

〈
δp
∂δui

∂Xj

〉
+

1
ρ

〈
δp
∂δuj

∂Xi

〉
− 4ε∗ij. (A 12)

The AGKE can be written in divergence form

∂〈δuiδuj〉

∂t
+
∂φk,ij

∂rk
+
∂ψk,ij

∂Xk
= ξij, (A 13)

where φk,ij and ψk,ij are the components in the space of scales rk and in the physical
space Xk of the six-dimensional vector field of fluxes Φij = (φij, ψij), and ξij is the
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source term. These tensors are defined by the expressions below, where δij denotes
the Kronecker delta

φk,ij = 〈δUkδuiδuj〉 + 〈δukδuiδuj〉 − 2ν
∂

∂rk
〈δuiδuj〉, k= 1, 2, 3,

ψk,ij = 〈U∗k δuiδuj〉 + 〈u∗kδuiδuj〉 +
1
ρ
〈δpδui〉δkj +

1
ρ
〈δpδuj〉δki

−
ν

2
∂

∂Xk
〈δuiδuj〉, k= 1, 2, 3,

ξij = −〈v
∗

k δuj〉δ

(
∂Ui

∂xk

)
− 〈v∗k δui〉δ

(
∂Uj

∂xk

)
− 〈δukδuj〉

(
∂Ui

∂xk

)∗
− 〈δukδui〉

(
∂Uj

∂xk

)∗
+

1
ρ

〈
δp
∂δui

∂Xj

〉
+

1
ρ

〈
δp
∂δuj

∂Xi

〉
− 4εij

∗.

The six complete AGKE components are reported below.

A.1. Component 〈δu1δu1〉

∂

∂t
〈δu1δu1〉 +

∂

∂rk
〈δUkδu1δu1〉 +

∂

∂rk
〈δukδu1δu1〉 − 2ν

∂2

∂rk∂rk
〈δu1δu1〉

+
∂

∂Xk
〈U∗k δu1δu1〉 +

∂

∂Xk
〈u∗kδu1δu1〉 +

2
ρ

∂

∂X1
〈δpδu1〉 −

ν

2
∂2

∂Xk∂Xk
〈δu1δu1〉

=−2〈u∗kδu1〉δ

(
∂U1

∂xk

)
− 2〈δukδu1〉

(
∂U1

∂xk

)∗
+

2
ρ

〈
δp
∂δu1

∂X1

〉
− 4ε11

∗. (A 14)

A.2. Component 〈δu2δu2〉

∂

∂t
〈δu2δu2〉 +

∂

∂rk
〈δUkδu2δu2〉 +

∂

∂rk
〈δukδu2δu2〉 − 2ν

∂2

∂rk∂rk
〈δu2δu2〉

+
∂

∂Xk
〈U∗k δu2δu2〉 +

∂

∂Xk
〈u∗kδu2δu2〉 +

2
ρ

∂

∂X2
〈δpδu2〉 −

ν

2
∂2

∂Xk∂Xk
〈δu2δu2〉

=−2〈u∗kδu2〉δ

(
∂U2

∂xk

)
− 2〈δukδu2〉

(
∂U2

∂xk

)∗
+

2
ρ

〈
δp
∂δu2

∂X2

〉
− 4ε22

∗. (A 15)

A.3. Component 〈δu3δu3〉

∂

∂t
〈δu3δu3〉 +

∂

∂rk
〈δUkδu3δu3〉 +

∂

∂rk
〈δukδu3δu3〉 − 2ν

∂2

∂rk∂rk
〈δu3δu3〉

+
∂

∂Xk
〈U∗k δu3δu3〉 +

∂

∂Xk
〈u∗kδu3δu3〉 +

2
ρ

∂

∂X3
〈δpδu3〉 −

ν

2
∂2

∂Xk∂Xk
〈δu3δu3〉

=−2〈u∗kδu3〉δ

(
∂U3

∂xk

)
− 2〈δukδu3〉

(
∂U3

∂xk

)∗
+

2
ρ

〈
δp
∂δu3

∂X3

〉
− 4ε33

∗. (A 16)
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A.4. Component 〈δu1δu2〉

∂

∂t
〈δu1δu2〉 +

∂

∂rk
〈δUkδu1δu2〉 +

∂

∂rk
〈δukδu1δu2〉 − 2ν

∂2

∂rk∂rk
〈δu1δu2〉

+
∂

∂Xk
〈U∗k δu1δu2〉

+
∂

∂Xk
〈u∗kδu1δu2〉 +

1
ρ

(
∂

∂X2
〈δpδu1〉 +

∂

∂X1
〈δpδu2〉

)
−
ν

2
∂2

∂Xk∂Xk
〈δu1δu2〉

=−〈u∗kδu2〉δ

(
∂U1

∂xk

)
− 〈u∗kδu1〉δ

(
∂U2

∂xk

)
− 〈δukδu2〉

(
∂U1

∂xk

)∗
−〈δukδu1〉

(
∂U2

∂xk

)∗
+

1
ρ

〈
δp
∂δu1

∂X2

〉
+

1
ρ

〈
δp
∂δu2

∂X1

〉
− 4ε12

∗. (A 17)

A.5. Component 〈δu1δu3〉

∂

∂t
〈δu1δu3〉 +

∂

∂rk
〈δUkδu1δu3〉 +

∂

∂rk
〈δukδu1δu3〉 − 2ν

∂2

∂rk∂rk
〈δu1δu3〉

+
∂

∂Xk
〈U∗k δu1δu3〉

+
∂

∂Xk
〈u∗kδu1δu3〉 +

1
ρ

(
∂

∂X3
〈δpδu1〉 +

∂

∂X1
〈δpδu3〉

)
−
ν

2
∂2

∂Xk∂Xk
〈δu1δu3〉

=−〈u∗kδu3〉δ

(
∂U1

∂xk

)
− 〈u∗kδu1〉δ

(
∂U3

∂xk

)
− 〈δukδu3〉

(
∂U1

∂xk

)∗
− 〈δukδu1〉

(
∂U3

∂xk

)∗
+

1
ρ

〈
δp
∂δu1

∂X3

〉
+

1
ρ

〈
δp
∂δu3

∂X1

〉
− 4ε13

∗. (A 18)

A.6. Component 〈δu2δu3〉

∂

∂t
〈δu2δu3〉 +

∂

∂rk
〈δUkδu2δu3〉 +

∂

∂rk
〈δukδu2δu3〉 − 2ν

∂2

∂rk∂rk
〈δu2δu3〉

+
∂

∂Xk
〈U∗k δu2δu3〉

+
∂

∂Xk
〈u∗kδu2δu3〉 +

1
ρ

(
∂

∂X3
〈δpδu2〉 +

∂

∂X2
〈δpδu3〉

)
−
ν

2
∂2

∂Xk∂Xk
〈δu2δu3〉

=−〈u∗kδu3〉δ

(
∂U2

∂xk

)
− 〈u∗kδu2〉δ

(
∂U3

∂xk

)
− 〈δukδu3〉

(
∂U2

∂xk

)∗
−〈δukδu2〉

(
∂U3

∂xk

)∗
+

1
ρ

〈
δp
∂δu2

∂X3

〉
+

1
ρ

〈
δp
∂δu3

∂X2

〉
− 4ε23

∗. (A 19)

Appendix B. Symmetries
Here, the symmetries of the terms of the AGKE in their specialised form tailored

to the indefinite plane channel flow are reported. For simplicity sake, the origin of
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the wall-normal coordinate is shifted to the centreline of the channel. x, y and z
indicate the streamwise, wall-normal and spanwise directions, with u, v and w the
corresponding velocity components.

The terms appearing in the budget equations for 〈δuδu〉, 〈δvδv〉 and 〈δwδw〉
possess the same symmetries as those in the GKE for 〈δu2

〉 (see Cimarelli et al.
2013). In detail, the transformation r→−r leads to φ→−φ, ψ → ψ , ξ → ξ and
〈δuiδui〉→ 〈δuiδui〉. The inversion of the wall-normal coordinate y leads to Y→−Y ,
ry→−ry and φx→ φx, φy→−φy, φz→ φz, ψ→−ψ , ξ→ ξ and 〈δuiδui〉→ 〈δuiδui〉.
The inversion of the spanwise coordinate z leads to rz→−rz and φx→ φx, φy→ φy,
φz→−φz, ψ→ψ , ξ→ ξ and 〈δuiδui〉→ 〈δuiδui〉.

The terms appearing in the budget equations for the off-diagonal are slightly
different: the inversion of r leads to the same symmetries, whereas the inversion
of y and z leads to different changes. In detail, when y→−y the terms related to
〈δuδv〉 and 〈δvδw〉 undergo φx →−φx, φy → φy, φz →−φz, ψ → ψ , ξ →−ξ and
〈δuiδuj〉→ −〈δuiδuj〉, whereas when z→−z the terms of 〈δuδw〉 and 〈δvδw〉 undergo
φx→−φx, φy→−φy, φz→ φz, ψ→−ψ , ξ→−ξ and 〈δuiδuj〉→−〈δuiδuj〉.

The above-described symmetries require that some terms of the AGKE are zero in
particular regions of the four-dimensional domain. These requirements are listed below,
for each of the components of 〈δuiδuj〉.

(i) 〈δuδu〉, 〈δvδv〉, 〈δwδw〉

φx(Y, 0, 0, rz)= 0 φx(0, 0, ry, rz)= 0
φy(Y, 0, 0, rz)= 0 φy(0, rx, 0, rz)= 0
φz(Y, rx, ry, 0)= 0
ψ(Y, 0, 0, 0)= 0 ψ(0, rx, 0, rz)= 0
ψ(0, 0, ry, rz)= 0

(ii) 〈δuδv〉
φx(Y, 0, 0, rz)= 0 φx(0, rx, 0, rz)= 0
φy(Y, 0, 0, rz)= 0 φy(0, 0, ry, rz)= 0
φz(Y, rx, ry, 0)= 0 φz(0, rx, 0, rz)= 0
φz(0, 0, ry, rz)= 0
ψ(Y, 0, 0, 0)= 0
ξ(0, rx, 0, rz)= 0 ξ(0, 0, ry, rz)= 0

〈δuδv〉(0, rx, 0, rz)= 0 〈δuδv〉(0, 0, ry, rz)= 0

(iii) 〈δuδw〉
φx(Y, rx, ry, 0)= 0
φy(Y, rx, ry, 0)= 0 φy(0, rx, 0, rz)= 0
φy(0, 0, ry, rz)= 0
φz(Y, 0, 0, rz)= 0 φz(0, 0, ry, rz)= 0
ψ(Y, rx, ry, 0)= 0 ψ(Y, 0, 0, rz)= 0
ψ(0, rx, 0, rz)= 0 ψ(0, 0, ry, rz)= 0
ξ(Y, rx, ry, 0)= 0 ξ(Y, 0, 0, rz)= 0
ξ(0, 0, ry, rz)= 0

〈δuδw〉(Y, rx, ry, 0)= 0 〈δuδw〉(Y, 0, 0, rz)= 0
〈δuδw〉(0, 0, ry, rz)= 0
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(iv) 〈δvδw〉
φx(Y, rx, ry, 0)= 0 φx(0, rx, 0, rz)= 0
φx(0, 0, ry, rz)= 0
φy(Y, rx, ry, 0)= 0
φz(Y, 0, 0, rz)= 0 φz(0, rx, 0, rz)= 0
ψ(Y, rx, ry, 0)= 0 ψ(Y, 0, 0, rz)= 0
ψ(0, 0, ry, rz)= 0
ξ(Y, rx, ry, 0)= 0 ξ(Y, 0, 0, rz)= 0
ξ(0, rx, 0, rz)= 0

〈δvδw〉(Y, rx, ry, 0)= 0 〈δvδw〉(Y, 0, 0, rz)= 0
〈δvδw〉(0, rx, 0, rz)= 0

Appendix C. The ensemble-averaged quasi-streamwise vortex

The procedure that yields the velocity field induced by the ensemble-averaged quasi-
streamwise vortex used in § 3.2.3 is similar to that introduced by Jeong et al. (1997);
the main steps of the procedure are described in the following.

The dominant vortical structure is educed from the present DNS database. Vortex
candidates are searched first, defined as three-dimensional connected regions where
the imaginary part λci of the complex conjugate eigenvalue pair of the velocity
gradient tensor, also called swirling strength, exceeds the threshold λ+ci > 0.145 (Zhou
et al. 1999). The connected region is built by assembling together 18-connected
voxels (Rosenfeld & Kak 1982), i.e. voxels which are neighbours to every voxel that
touches one of their faces or edges.

Within each connected region, the centre of the vortex is defined as the point where
λci is maximum; the orientation of the vortex axis is computed at the vortex centre.
The orientation is given by the eigenvector associated with the real eigenvalue of the
velocity gradient tensor (Chakraborty, Balachandar & Adrian 2005). Vortices are then
selected based on two additional criteria: (i) their length in wall units must exceed 50
wall units, to exclude small structures in early or late stage of their life cycle (Jeong
et al. 1997); and (ii) their centre must be located within the region 21.2 6 y+ 6 23.6,
the range of wall distances where several structures have been detected. The velocity
fields of the selected quasi-streamwise vortices (approximately 14 % of all detected
vortices) are eventually averaged together, by aligning all vortex centres together in
the wall-normal plane and by accounting for the sense of rotation of the vortex, as
given by the sign of the streamwise vorticity at the vortex centre.
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